US20100307738A1 - Well cleaning apparatus - Google Patents
Well cleaning apparatus Download PDFInfo
- Publication number
- US20100307738A1 US20100307738A1 US12/744,082 US74408208A US2010307738A1 US 20100307738 A1 US20100307738 A1 US 20100307738A1 US 74408208 A US74408208 A US 74408208A US 2010307738 A1 US2010307738 A1 US 2010307738A1
- Authority
- US
- United States
- Prior art keywords
- debris
- head
- drilling system
- well
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004140 cleaning Methods 0.000 title description 22
- 238000005553 drilling Methods 0.000 claims abstract description 53
- 239000012530 fluid Substances 0.000 claims abstract description 32
- 239000002245 particle Substances 0.000 claims abstract description 19
- 238000005520 cutting process Methods 0.000 claims description 15
- 230000007246 mechanism Effects 0.000 claims description 9
- 238000005086 pumping Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 description 4
- 238000007792 addition Methods 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B27/00—Containers for collecting or depositing substances in boreholes or wells, e.g. bailers, baskets or buckets for collecting mud or sand; Drill bits with means for collecting substances, e.g. valve drill bits
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B27/00—Containers for collecting or depositing substances in boreholes or wells, e.g. bailers, baskets or buckets for collecting mud or sand; Drill bits with means for collecting substances, e.g. valve drill bits
- E21B27/005—Collecting means with a strainer
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B37/00—Methods or apparatus for cleaning boreholes or wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B37/00—Methods or apparatus for cleaning boreholes or wells
- E21B37/02—Scrapers specially adapted therefor
Definitions
- This invention relates to a system for borehole cleaning.
- the invention relates to a system for using mechanical and hydraulic means to remove debris.
- debris can accumulate in the well. This debris may come from drilling cuttings, formation debris due to wellbore instability during drilling, debris from formation fluids deposited during production, scales from pipes, swarfs produced by window milling or other pipe machining. Accumulation of debris can be particular severe where lateral wells are being drilled. Deposits that can accumulate in these lateral regions can result in plugging reducing the effective cross section of the well resulting in a corresponding decrease in flow area and/or excessive wear on producing equipment can occur. In order to maintain the flow of fluid through the well and prevent wear, the debris has to be removed.
- EP1852571 describes one system using coiled tubing and a downhole electrical pump to perform cleaning by withdrawing material from the borehole and pumping it into the tubing up to the surface.
- This invention aims to provide an alternative to conventional borehole cleaning techniques that rely on coiled tubing and instead can be used with wireline drilling equipment to remove debris from the well while still maintaining efficient transport of the debris with the fluid flow.
- a first aspect of the invention comprises an apparatus for removing debris from a well comprising: a tool body having a head, the head having a conduit opening and comprising protrusions extending from the outer surface of the head for moving debris in the well; a chamber in the tool body to store debris; a connector for attaching the tool body to a drilling system; a conduit connected to the opening in the head to convey debris and fluid from the well to the chamber; and a filter in the tool body to limit the size of the particles that can pass into the drilling system from the chamber; wherein in use fluid flow and the protrusions move the debris from the well and into and through the apparatus.
- the apparatus is able to efficiently collect debris from the well and transport the debris up the drilling system.
- the apparatus is attached to a drilling system.
- the drilling system can be a bottomhole drilling assembly (BHA).
- BHA bottomhole drilling assembly
- the drilling system can comprise a pumping system operable to circulate fluid through the tool and drilling system. Fluid can be pumped through the apparatus in any direction.
- the drilling system can also comprise a rotary mechanism operable to rotate the apparatus.
- the drilling system may also comprise an orientation mechanism operable to direct the apparatus in a predetermined direction.
- the apparatus is integrated into the drill bit of a BHA of the drilling system.
- the conduit opening of the apparatus can be located in the centre of the head. This allows debris from the bottom of the well to be collected. Alternatively the conduit opening is offset from the centre of the head. This helps in collecting debris deposited on the side walls of the well.
- the head can include rigid protrusions, flexible protrusions and/or protrusions that are cutting elements.
- the conduit of the apparatus can be rotatable within the apparatus. This helps the flow of the debris through the conduit and packing of debris in the chamber.
- FIG. 1 shows a cross section view of the cleaning apparatus according to the invention
- FIG. 2 shows a detailed view of part of the system of FIG. 1 ;
- FIG. 3 shows embodiments of the conduit that can be used for the invention
- FIG. 4 shows a cross section view of an embodiment of the invention for handling large amounts of debris
- FIG. 5 shows an embodiment of the invention integrated into a drilling bit.
- the borehole cleaning apparatus 10 comprises a connector 12 , a tool body 14 and a conduit 16 .
- the connector 12 allows the apparatus to be connected to a wireline drilling system (not shown).
- the connector 12 includes a filter 18 which will separate particles in the fluid flowing through the apparatus.
- the tool body 14 is attached to the connector 12 at one end and at the other end comprises a cleaning head 20 .
- the cleaning head 20 has an opening 22 to allow debris to enter the cleaning apparatus.
- the conduit 16 runs from the opening 22 to the chamber 24 to convey the particles through the apparatus.
- the apparatus is mounted on the lower end of the wireline lateral drilling equipment (WiLD) (not shown) and uses the functionalities of the bottom hole assembly (BHA) of the wireline drilling system to operate.
- the cleaning apparatus can be placed anywhere in the well using the wireline cable or the crawler system of the BHA.
- the drilling section of the BHA is used to rotate the cleaning apparatus, i.e. as if it was the drill bit, and can be used to deflect and orientate the apparatus using continuous and adjustable displacement.
- the pump system of the BHA is used to pump fluid around and through the apparatus to facilitate the removal the debris from the well.
- the apparatus can be used to collect debris from the bottom end of the borehole before a drilling operation using WILD.
- Debris in the well is agitated by protrusions on the outer surface of the head 20 as the apparatus is rotated by the rotational means of the drilling system, and the protrusions help convey the debris into the apparatus from the well.
- the debris enters the apparatus via the opening 22 in the head along with fluid flowing through the well. Fluid is pumped around the outside of the apparatus 10 so as to flow to the head 20 into the conduit 16 .
- the fluid flow conveys the debris along the conduit 16 to the chamber 24 , where the fluid is pumped through the filter 18 and up through the wireline drilling equipment. As the fluid passes through the filter 18 larger particles present in the fluid will be separated from the smaller particles in the fluid. Smaller particles in the fluid are able to pass through the filter mesh and continue up the drilling system while larger particles remain behind and will be collected in the chamber 24 .
- the pump system can be activated in reverse circulation mode or in direct circulation mode to move fluid through the apparatus in any direction depending on the conditions in the well.
- reverse circulation mode particles smaller than the filter mesh are able to pass through the filter and be pumped through the wireline drilling system with the fluid while the larger particles are trapped by the filter and stored in the chamber. If the filter gets plugged the pumping direction can be reversed and fluid can be pumped through the system in a direct circulation mode. This will dislodge the filter cake from the filter, so that the filter cake will get trapped in the chamber.
- the debris is moved and loosened from the borehole by a combination of mechanical and hydraulic mechanisms.
- the head 20 of the tool body comprises elements 26 protruding from its front and lateral surface as shown in FIG. 2 .
- These elements can be rigid, i.e. teeth or ribs, or soft like i.e. brushes or fingers.
- the choice of elements protruding from the cleaning head will depend on the debris targeted.
- Protrusions such as paddles 26 or teeth extend from the head to agitate and move the debris from the well into the apparatus.
- the protrusions can include cutting elements. For example if scale or adhesive deposits need to be moved the appropriate cutter mechanisms can be used instead of paddles, so the scale or adhesive deposits are grinded or milled.
- the mechanical effort to move the debris provided by the protruding elements is helped by the hydraulic flow through the apparatus and well.
- the hydraulic flow is provided by the pumping system of the drilling system and conveys the debris along the outside surface of the apparatus to the opening in the head and into the conduit. Using both mechanical and hydraulic mechanisms together maximizes the efficiency of debris removal from the well.
- the cross area of the central conduit is selected to provide enough flow speed to convey debris safely along using known design rules for such transportation of debris and the pump characteristics.
- the conduit can be made of rigid material, for example metal or plastic, or a deformable material, for example rubber which allows larger debris to be caught.
- a deformable material the cross section of the conduit can take the form of a flattened cylinder or a star as shown in FIG. 3 .
- the cross section of the conduit could be a circle.
- the shape of the front surface of the tool is designed to provide a constant and controlled cross area between the front surface of the collector and the bottom of the well to maximize the efficiencies of the operation.
- conduit opening 22 can be in the centre of the head 20 of the tool to collect debris from the bottom end of the borehole, if debris on the side of the well is to be collected, the conduit opening 22 can be positioned off-centered in the head, as shown in FIG. 2 .
- the apparatus can be integrated into the BHA of a drilling system. If it is expected that a large amount of debris is going to be collected, then to obtain a greater chamber capacity for the cleaning apparatus the chamber can be placed above the rotating and orientation mechanism of the wireline drilling system, as shown in FIG. 4 .
- the chamber 28 comprising the filter 30 is positioned between the pump unit 32 and the orientation unit 34 , with the rotation unit 36 located between the orientation unit 34 and the cleaning head 38 .
- the conduit 40 conveys debris 42 from the opening in the head 38 through the rotation unit 36 and the orientation unit 34 to the chamber 28 .
- the size of the chamber can be extended by adding sections between the pump module 32 and the orientation module 34 .
- the hole cleaning system can be operated using only the rotation unit 36 and the pump unit 32 of the drilling system and not using an orientation unit 34 .
- the central conduit 40 connecting the chamber 28 to the cleaning head 38 , can have a screw shape on its external surface and can be rotated to help transport the debris along the conduit 40 and help pack the debris in the chamber 28 that is not able to pass through the filter 30 with the fluid flow. This is particularly useful for configurations using multiple chamber units to increase the debris holding capacity of the apparatus.
- the cleaning apparatus can be integrated into the BHA in order to catch any debris above a predetermined size before it has traveled far up the drilling system, and allow larger amounts of debris to be collected.
- the chamber and filter can be placed at the bit level to minimize risk of plugging further up the bottomhole assembly.
- a further embodiment of the invention comprises integrating the cleaning apparatus into a drill bit of the drilling system to allow removal of debris while drilling.
- the drill bit 44 comprises openings 46 which lead to a conduits 48 which conveys debris to the chamber 50 and filter 52 . Particles are separated by the filter 52 and larger particles remain in the chamber 50 in the drill bit. While particles smaller than the filter mesh size can pass through the filter 52 and be pumped up the drilling system 54 .
- the collector chamber that collects the debris is limited in size and could get filled up quickly.
- the large cuttings can be expelled back out the bit into the well where they can be grinded between the bit and rock face.
- These initial larger cutting particles are grinded to a smaller size where they are then able to pass through the filter as they are a small enough size to be efficiently transported up the flow channel of the BHA.
- the cutting distribution can be controlled by controlling the depth of cut (DOC); however large cuttings may still be generated either by the drilling itself or from debris or scales falling from above the bit. These large cuttings will not be transported with the flow through the drilling system and may accumulate in the well or drilling system.
- DOC depth of cut
- the cleaning apparatus of the invention can be used to allow drilling with a higher DOC and yet still maintain the cutting transport efficiency that would be achieved when small cutting are generated with a small DOC.
- the filter of the cleaning apparatus filters all the particles above the maximum size for achieving efficient cutting transport. The smaller particles that can be transported efficiently with the fluid flow up the bottomhole assembly pass through the filter with the fluid, while the larger particles will remain in the chamber.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Earth Drilling (AREA)
Abstract
An apparatus for removing debris from a well is provided. The apparatus comprises a tool body having a head, a chamber, a connector, a conduit, and a filter. The head has an opening and comprises protrusions extending from the outer surface for moving debris. The chamber is in the tool body to store debris. The connector is for attaching the tool body to a drilling system. The conduit is connected to the opening in the head to convey debris and fluid from the well to the chamber. The filter is in the tool body to limit the size of the particles that can pass into the drilling system from the chamber. In use, fluid flow and the protrusions move the debris from the well and through the apparatus.
Description
- The present application is based on and claims priority to GB Application No. 0722818.2, filed 22 Nov. 2007; and International Patent Application No. PCT/EP2008/009696, filed 17 Nov. 2008. The entire contents of each are herein incorporated by reference.
- This invention relates to a system for borehole cleaning. In particular the invention relates to a system for using mechanical and hydraulic means to remove debris.
- In the drilling and completion of oil and gas wells debris can accumulate in the well. This debris may come from drilling cuttings, formation debris due to wellbore instability during drilling, debris from formation fluids deposited during production, scales from pipes, swarfs produced by window milling or other pipe machining. Accumulation of debris can be particular severe where lateral wells are being drilled. Deposits that can accumulate in these lateral regions can result in plugging reducing the effective cross section of the well resulting in a corresponding decrease in flow area and/or excessive wear on producing equipment can occur. In order to maintain the flow of fluid through the well and prevent wear, the debris has to be removed.
- Conventional methods of cleanout involve high pressure jetting through coiled tubing to mobilize the debris around the cleanout tool and using the flow of jetting fluid or production to carrying the debris to the surface, or a foam column is used to sweep the debris up the well. EP1852571 describes one system using coiled tubing and a downhole electrical pump to perform cleaning by withdrawing material from the borehole and pumping it into the tubing up to the surface.
- This invention aims to provide an alternative to conventional borehole cleaning techniques that rely on coiled tubing and instead can be used with wireline drilling equipment to remove debris from the well while still maintaining efficient transport of the debris with the fluid flow.
- Accordingly a first aspect of the invention comprises an apparatus for removing debris from a well comprising: a tool body having a head, the head having a conduit opening and comprising protrusions extending from the outer surface of the head for moving debris in the well; a chamber in the tool body to store debris; a connector for attaching the tool body to a drilling system; a conduit connected to the opening in the head to convey debris and fluid from the well to the chamber; and a filter in the tool body to limit the size of the particles that can pass into the drilling system from the chamber; wherein in use fluid flow and the protrusions move the debris from the well and into and through the apparatus.
- By using a combination of both mechanical means and hydraulic flow means the apparatus is able to efficiently collect debris from the well and transport the debris up the drilling system.
- Preferably the apparatus is attached to a drilling system. The drilling system can be a bottomhole drilling assembly (BHA).
- The drilling system can comprise a pumping system operable to circulate fluid through the tool and drilling system. Fluid can be pumped through the apparatus in any direction. The drilling system can also comprise a rotary mechanism operable to rotate the apparatus.
- The drilling system may also comprise an orientation mechanism operable to direct the apparatus in a predetermined direction.
- In one embodiment of the invention the apparatus is integrated into the drill bit of a BHA of the drilling system.
- The conduit opening of the apparatus can be located in the centre of the head. This allows debris from the bottom of the well to be collected. Alternatively the conduit opening is offset from the centre of the head. This helps in collecting debris deposited on the side walls of the well.
- The head can include rigid protrusions, flexible protrusions and/or protrusions that are cutting elements.
- The conduit of the apparatus can be rotatable within the apparatus. This helps the flow of the debris through the conduit and packing of debris in the chamber.
- The present embodiments may be better understood, and numerous objects, features, and advantages made apparent to those skilled in the art by referencing the accompanying drawings. These drawings are used to illustrate only typical embodiments of this invention, and are not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale or in schematic in the interest of clarity and conciseness.
-
FIG. 1 shows a cross section view of the cleaning apparatus according to the invention; -
FIG. 2 shows a detailed view of part of the system ofFIG. 1 ; -
FIG. 3 shows embodiments of the conduit that can be used for the invention; -
FIG. 4 shows a cross section view of an embodiment of the invention for handling large amounts of debris; and -
FIG. 5 shows an embodiment of the invention integrated into a drilling bit. - Referring to
FIG. 1 theborehole cleaning apparatus 10 according to the invention comprises aconnector 12, atool body 14 and aconduit 16. Theconnector 12 allows the apparatus to be connected to a wireline drilling system (not shown). Theconnector 12 includes afilter 18 which will separate particles in the fluid flowing through the apparatus. Thetool body 14 is attached to theconnector 12 at one end and at the other end comprises acleaning head 20. Thecleaning head 20 has anopening 22 to allow debris to enter the cleaning apparatus. Theconduit 16 runs from theopening 22 to thechamber 24 to convey the particles through the apparatus. - The apparatus is mounted on the lower end of the wireline lateral drilling equipment (WiLD) (not shown) and uses the functionalities of the bottom hole assembly (BHA) of the wireline drilling system to operate. The cleaning apparatus can be placed anywhere in the well using the wireline cable or the crawler system of the BHA. The drilling section of the BHA is used to rotate the cleaning apparatus, i.e. as if it was the drill bit, and can be used to deflect and orientate the apparatus using continuous and adjustable displacement. While the pump system of the BHA is used to pump fluid around and through the apparatus to facilitate the removal the debris from the well. The apparatus can be used to collect debris from the bottom end of the borehole before a drilling operation using WILD.
- Debris in the well is agitated by protrusions on the outer surface of the
head 20 as the apparatus is rotated by the rotational means of the drilling system, and the protrusions help convey the debris into the apparatus from the well. The debris enters the apparatus via theopening 22 in the head along with fluid flowing through the well. Fluid is pumped around the outside of theapparatus 10 so as to flow to thehead 20 into theconduit 16. The fluid flow conveys the debris along theconduit 16 to thechamber 24, where the fluid is pumped through thefilter 18 and up through the wireline drilling equipment. As the fluid passes through thefilter 18 larger particles present in the fluid will be separated from the smaller particles in the fluid. Smaller particles in the fluid are able to pass through the filter mesh and continue up the drilling system while larger particles remain behind and will be collected in thechamber 24. - The pump system can be activated in reverse circulation mode or in direct circulation mode to move fluid through the apparatus in any direction depending on the conditions in the well. In reverse circulation mode particles smaller than the filter mesh are able to pass through the filter and be pumped through the wireline drilling system with the fluid while the larger particles are trapped by the filter and stored in the chamber. If the filter gets plugged the pumping direction can be reversed and fluid can be pumped through the system in a direct circulation mode. This will dislodge the filter cake from the filter, so that the filter cake will get trapped in the chamber.
- The debris is moved and loosened from the borehole by a combination of mechanical and hydraulic mechanisms. The
head 20 of the tool body compriseselements 26 protruding from its front and lateral surface as shown inFIG. 2 . These elements can be rigid, i.e. teeth or ribs, or soft like i.e. brushes or fingers. The choice of elements protruding from the cleaning head will depend on the debris targeted. Protrusions such aspaddles 26 or teeth extend from the head to agitate and move the debris from the well into the apparatus. In some situations the protrusions can include cutting elements. For example if scale or adhesive deposits need to be moved the appropriate cutter mechanisms can be used instead of paddles, so the scale or adhesive deposits are grinded or milled. - The mechanical effort to move the debris provided by the protruding elements is helped by the hydraulic flow through the apparatus and well. The hydraulic flow is provided by the pumping system of the drilling system and conveys the debris along the outside surface of the apparatus to the opening in the head and into the conduit. Using both mechanical and hydraulic mechanisms together maximizes the efficiency of debris removal from the well.
- The cross area of the central conduit is selected to provide enough flow speed to convey debris safely along using known design rules for such transportation of debris and the pump characteristics. The conduit can be made of rigid material, for example metal or plastic, or a deformable material, for example rubber which allows larger debris to be caught. Using a deformable material the cross section of the conduit can take the form of a flattened cylinder or a star as shown in
FIG. 3 . Alternatively the cross section of the conduit could be a circle. - When the bottom of the borehole is to be cleaned the shape of the front surface of the tool is designed to provide a constant and controlled cross area between the front surface of the collector and the bottom of the well to maximize the efficiencies of the operation.
- While the conduit opening 22 can be in the centre of the
head 20 of the tool to collect debris from the bottom end of the borehole, if debris on the side of the well is to be collected, the conduit opening 22 can be positioned off-centered in the head, as shown inFIG. 2 . - In one configuration of the invention the apparatus can be integrated into the BHA of a drilling system. If it is expected that a large amount of debris is going to be collected, then to obtain a greater chamber capacity for the cleaning apparatus the chamber can be placed above the rotating and orientation mechanism of the wireline drilling system, as shown in
FIG. 4 . Thechamber 28 comprising thefilter 30 is positioned between thepump unit 32 and theorientation unit 34, with therotation unit 36 located between theorientation unit 34 and the cleaninghead 38. Theconduit 40 conveysdebris 42 from the opening in thehead 38 through therotation unit 36 and theorientation unit 34 to thechamber 28. The size of the chamber can be extended by adding sections between thepump module 32 and theorientation module 34. AlthoughFIG. 4 exemplifies the system having anorientation unit 34,rotation unit 36 and apump unit 32 it is not necessary to have all three units in all cleaning operations. The hole cleaning system can be operated using only therotation unit 36 and thepump unit 32 of the drilling system and not using anorientation unit 34. - The
central conduit 40, connecting thechamber 28 to the cleaninghead 38, can have a screw shape on its external surface and can be rotated to help transport the debris along theconduit 40 and help pack the debris in thechamber 28 that is not able to pass through thefilter 30 with the fluid flow. This is particularly useful for configurations using multiple chamber units to increase the debris holding capacity of the apparatus. - The cleaning apparatus can be integrated into the BHA in order to catch any debris above a predetermined size before it has traveled far up the drilling system, and allow larger amounts of debris to be collected. However the chamber and filter can be placed at the bit level to minimize risk of plugging further up the bottomhole assembly.
- Referring to
FIG. 5 a further embodiment of the invention comprises integrating the cleaning apparatus into a drill bit of the drilling system to allow removal of debris while drilling. Thedrill bit 44 comprisesopenings 46 which lead to aconduits 48 which conveys debris to thechamber 50 andfilter 52. Particles are separated by thefilter 52 and larger particles remain in thechamber 50 in the drill bit. While particles smaller than the filter mesh size can pass through thefilter 52 and be pumped up thedrilling system 54. - As the drill bit is rotated by its rotary mechanism cuttings are generated and moved into the opening of the bit with the reverse circulation flow of fluid that also is generated by the pumping unit of the drilling system.
- When the cleaning tool is integrated into the bit, the collector chamber that collects the debris is limited in size and could get filled up quickly. However by reversing the direction of the flow the large cuttings can be expelled back out the bit into the well where they can be grinded between the bit and rock face. These initial larger cutting particles are grinded to a smaller size where they are then able to pass through the filter as they are a small enough size to be efficiently transported up the flow channel of the BHA.
- When drilling in reverse circulation, various factors determine the efficiency of cutting transport through the inner flow channel of the BHA and umbilical, such as: fluid rheology, fluid velocity, inner tube profile and dimensions. Therefore particles with a size above a given value will not be transported effectively up the flow channel and may plug the flow channel leading to an increase in pressure losses as well as plugging.
- The cutting distribution can be controlled by controlling the depth of cut (DOC); however large cuttings may still be generated either by the drilling itself or from debris or scales falling from above the bit. These large cuttings will not be transported with the flow through the drilling system and may accumulate in the well or drilling system.
- While limiting the DOC will limit the maximum cutting size generated, this can also limit the drilling efficiency and rate of penetration. Therefore to maintain the drilling efficiency that is achieved with higher DOC the cleaning apparatus of the invention can be used to allow drilling with a higher DOC and yet still maintain the cutting transport efficiency that would be achieved when small cutting are generated with a small DOC. The filter of the cleaning apparatus filters all the particles above the maximum size for achieving efficient cutting transport. The smaller particles that can be transported efficiently with the fluid flow up the bottomhole assembly pass through the filter with the fluid, while the larger particles will remain in the chamber.
- While the embodiments are described with reference to various implementations and exploitations, it will be understood that these embodiments are illustrative and that the scope of the inventive subject matter is not limited to them. Many variations, modifications, additions and improvements are possible.
- Plural instances may be provided for components, operations or structures described herein as a single instance. In general, structures and functionality presented as separate components in the exemplary configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the inventive subject matter.
Claims (13)
1. An apparatus for removing debris from a well, comprising:
a tool body having a head, the head having an opening and comprising protrusions extending from the outer surface of the head for moving debris in the well;
a chamber in the tool body to store debris;
a connector for attaching the tool body to a drilling system;
a conduit connected to the opening in the head to convey debris and fluid from the well to the chamber; and
a filter in the tool body to limit the size of the particles that can pass into the drilling system from the chamber;
wherein, in use, fluid flow and the protrusions move the debris from the well and into and through the apparatus.
2. The apparatus according to claim 1 , wherein the apparatus is attached to a drilling system.
3. The apparatus according to claim 1 , wherein the drilling system is a bottomhole drilling assembly (BHA).
4. The apparatus according to claim 1 , wherein the drilling system comprises a pumping system operable to circulate fluid through the tool body and drilling system.
5. The apparatus according to claim 1 , wherein the drilling system comprises a rotary mechanism operable to rotate the apparatus.
6. The apparatus according to claim 1 , wherein the drilling system comprises an orientation mechanism operable to direct the apparatus in a predetermined direction.
7. The apparatus according to claim 1 , wherein the apparatus is integrated into a drill bit of a BHA of the drilling system.
8. The apparatus according to claim 1 , wherein the opening is in the center of the head.
9. The apparatus according to claim 1 , wherein the conduit opening is offset from the center of the head.
10. The apparatus according to claim 1 , wherein the head includes rigid protrusions.
11. The apparatus according to claim 1 , wherein the head includes flexible protrusions.
12. The apparatus according to claim 1 , wherein the head includes protrusions that are cutting elements.
13. The apparatus according to claim 1 , wherein the conduit is rotatable.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0722818.2 | 2007-11-22 | ||
GB0722818A GB2454884B (en) | 2007-11-22 | 2007-11-22 | Well cleaning apparatus |
PCT/EP2008/009696 WO2009065535A1 (en) | 2007-11-22 | 2008-11-17 | Well cleaning apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100307738A1 true US20100307738A1 (en) | 2010-12-09 |
Family
ID=38925812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/744,082 Abandoned US20100307738A1 (en) | 2007-11-22 | 2008-11-17 | Well cleaning apparatus |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100307738A1 (en) |
GB (1) | GB2454884B (en) |
WO (1) | WO2009065535A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140102801A1 (en) * | 2011-05-31 | 2014-04-17 | Welltec A/S | Formation penetrating tool |
US9410389B2 (en) | 2012-11-20 | 2016-08-09 | Baker Hughes Incorporated | Self-cleaning fluid jet for downhole cutting operations |
RU2713284C1 (en) * | 2019-08-30 | 2020-02-04 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Device for deepening of well bottom |
US10697328B2 (en) | 2017-09-13 | 2020-06-30 | General Electric Company | Device and method for removing particles from air flow |
CN113969764A (en) * | 2021-11-12 | 2022-01-25 | 杭州乾景科技有限公司 | Cable-free paraffin removal robot |
US11466542B2 (en) | 2020-12-17 | 2022-10-11 | Halliburton Energy Services, Inc. | Downhole debris removal apparatus including a modular knockout chamber |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2474672C1 (en) * | 2012-04-13 | 2013-02-10 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Device for liquid cleaning in well shaft |
WO2017142504A1 (en) | 2016-02-15 | 2017-08-24 | Halliburton Energy Services, Inc. | Downhole radial cleanout tool |
NO343357B1 (en) * | 2016-12-22 | 2019-02-11 | Altus Intervention Tech As | System and method for cleaning a production tubing |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2714500A (en) * | 1952-02-06 | 1955-08-02 | Snyder Oil Tool Corp | Impact drill |
US3123157A (en) * | 1964-03-03 | Recovery of drill cuttings from subsurface earth formations | ||
US3572431A (en) * | 1969-09-08 | 1971-03-23 | Donald P Hammon | Fluid circulating and retrieving apparatus for oil wells |
US4515212A (en) * | 1983-01-20 | 1985-05-07 | Marathon Oil Company | Internal casing wiper for an oil field well bore hole |
US4603739A (en) * | 1983-01-20 | 1986-08-05 | Marathon Oil Company | Process for cleaning an oil field well bore hole using an internal casing wiper |
US6276452B1 (en) * | 1998-03-11 | 2001-08-21 | Baker Hughes Incorporated | Apparatus for removal of milling debris |
US20060157249A1 (en) * | 2005-01-14 | 2006-07-20 | Reynolds James S | Finger boot basket |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO319232B1 (en) * | 2003-10-09 | 2005-07-04 | Hpi As | Feed pump for a sand removal device in a underground well |
-
2007
- 2007-11-22 GB GB0722818A patent/GB2454884B/en not_active Expired - Fee Related
-
2008
- 2008-11-17 US US12/744,082 patent/US20100307738A1/en not_active Abandoned
- 2008-11-17 WO PCT/EP2008/009696 patent/WO2009065535A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123157A (en) * | 1964-03-03 | Recovery of drill cuttings from subsurface earth formations | ||
US2714500A (en) * | 1952-02-06 | 1955-08-02 | Snyder Oil Tool Corp | Impact drill |
US3572431A (en) * | 1969-09-08 | 1971-03-23 | Donald P Hammon | Fluid circulating and retrieving apparatus for oil wells |
US4515212A (en) * | 1983-01-20 | 1985-05-07 | Marathon Oil Company | Internal casing wiper for an oil field well bore hole |
US4603739A (en) * | 1983-01-20 | 1986-08-05 | Marathon Oil Company | Process for cleaning an oil field well bore hole using an internal casing wiper |
US6276452B1 (en) * | 1998-03-11 | 2001-08-21 | Baker Hughes Incorporated | Apparatus for removal of milling debris |
US20060157249A1 (en) * | 2005-01-14 | 2006-07-20 | Reynolds James S | Finger boot basket |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140102801A1 (en) * | 2011-05-31 | 2014-04-17 | Welltec A/S | Formation penetrating tool |
US9410389B2 (en) | 2012-11-20 | 2016-08-09 | Baker Hughes Incorporated | Self-cleaning fluid jet for downhole cutting operations |
US10697328B2 (en) | 2017-09-13 | 2020-06-30 | General Electric Company | Device and method for removing particles from air flow |
RU2713284C1 (en) * | 2019-08-30 | 2020-02-04 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Device for deepening of well bottom |
US11466542B2 (en) | 2020-12-17 | 2022-10-11 | Halliburton Energy Services, Inc. | Downhole debris removal apparatus including a modular knockout chamber |
CN113969764A (en) * | 2021-11-12 | 2022-01-25 | 杭州乾景科技有限公司 | Cable-free paraffin removal robot |
Also Published As
Publication number | Publication date |
---|---|
GB2454884A (en) | 2009-05-27 |
GB0722818D0 (en) | 2008-01-02 |
WO2009065535A1 (en) | 2009-05-28 |
GB2454884B (en) | 2011-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100307738A1 (en) | Well cleaning apparatus | |
US6695058B1 (en) | Method and apparatus for cleaning boreholes | |
US9850728B2 (en) | Wireline drilling system | |
US8056622B2 (en) | Slickline conveyed debris management system | |
CA2758583C (en) | Slickline conveyed shifting tool system | |
US8210251B2 (en) | Slickline conveyed tubular cutter system | |
CA2758495C (en) | Slickline conveyed debris management system | |
CA2758493C (en) | Slickline conveyed tubular scraper system | |
US5785509A (en) | Wellbore motor system | |
DK180959B1 (en) | Wellbore cleanout tool | |
EP3014055B1 (en) | Downhole cleaning tool and cleaning method | |
WO2012033819A1 (en) | Apparatus and methods for lateral drilling | |
CA2572779C (en) | System and method for drilling wellbores | |
US11788383B2 (en) | Apparatus and method for removing debris from a wellbore | |
US7174958B2 (en) | Drill string member | |
CN220203799U (en) | Obstacle removing device for laying sleeve of ultra-long horizontal well | |
RU2280747C1 (en) | Rotary turbodrilling method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOUGET, PIERRE;DENOIX, HENRI;HBAIEB, SLIM;SIGNING DATES FROM 20100729 TO 20100817;REEL/FRAME:024887/0281 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |