US20100292261A1 - Quorum sensing antagonist, method of preventing a biofilm formation using the quorum sensing antagonist and method of reducing a bacterial contamination using the quorum sensing antagonist - Google Patents

Quorum sensing antagonist, method of preventing a biofilm formation using the quorum sensing antagonist and method of reducing a bacterial contamination using the quorum sensing antagonist Download PDF

Info

Publication number
US20100292261A1
US20100292261A1 US12/067,731 US6773107A US2010292261A1 US 20100292261 A1 US20100292261 A1 US 20100292261A1 US 6773107 A US6773107 A US 6773107A US 2010292261 A1 US2010292261 A1 US 2010292261A1
Authority
US
United States
Prior art keywords
quorum sensing
antagonist
sensing antagonist
group
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/067,731
Other versions
US8507554B2 (en
Inventor
Je-Yong Yoon
Cheol-Jin Kim
Jae-eun Kim
Hyung-Yeon Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seoul National University Industry Foundation
Original Assignee
Seoul National University Industry Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seoul National University Industry Foundation filed Critical Seoul National University Industry Foundation
Assigned to SEOUL NATIONAL UNIVERSITY INDUSTRY FOUNDATION reassignment SEOUL NATIONAL UNIVERSITY INDUSTRY FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PARK, HYUNG-YEON, KIM, CHEOL-JIN, KIM, JAE-EUN, YOON, JE-YONG
Publication of US20100292261A1 publication Critical patent/US20100292261A1/en
Application granted granted Critical
Publication of US8507554B2 publication Critical patent/US8507554B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms

Definitions

  • This invention relates generally to quorum sensing antagonists and methods for preventing a biofilm formation and reducing a bacterial contamination using the quorum sensing antagonist.
  • Agrobacterium tumefaciens A. tumefaciens
  • Pseudomonas aeruginosa P. aeruginosa
  • A. tumefaciens is known to be the cause of Crown Gall disease. Crown gall, a disease of roots and stems, occurs in over 140 species of dicotyledon.
  • P. aeruginosa makes biofilms.
  • a biofilm is a slimy layer composed of microorganisms attached to a surface by extracellular polymeric substances(EPS) secreted by the cells during metabolism.
  • EPS extracellular polymeric substances
  • QS quorum sensing
  • Bacteria communicate with each other by a mechanism known as QS.
  • QS is a term to describe the phenomenon that a single cell senses the cell density.
  • Bacteria release signaling molecules or autoinducers(AI) out of the cell. Once bacteria reach a high cell density, a high concentration of AI accumulates in the surrounding medium.
  • AI docks with a receptor protein in a cell and AI-receptor protein complex regulates various gene expressions concerning the production of virulence factors, biofilms and infection of plant or animal, depending on a cell density.
  • antagonizing agents that can interfere with the normal QS regulation for controlling the undesired bacterial activities, such as virulence factor production by pathogenic bacteria or biofilm formation by environmental microorganisms.
  • One object of this invention is to provide QS antagonist inhibiting gene expression and blocking cell to cell communication of various bacteria. Another object of this invention is to provide a method blocking biofilm formation using this QS antagonists.
  • Still another object of this invention is to provide a method blocking bacterial contamination using this QS antagonists.
  • QS antagonists to achieve the object of this invention described above are compounds according to the following general formula 1 or 2.
  • n is an integer from 0 to 10
  • R1 is hydrogen, hetero aromatic containing nitrogen, or carboxyl carboxyalkylthio group which has a carbon number from 1 to 10
  • R2 is aromatic or carboxyl carboxyalkylthio group which has a carbon number from 1 to 10.
  • the QS antagonists may contact bacteria to use acylhomoserine lactone as an autoinducer.
  • the QS antagonists may contact Gram-negative bacteria.
  • the bacterial contamination is blocked by contacting the QS antagonists expressed by formula 1 or 2 to an object.
  • contact between QS antagonist and the object may be performed by spray, dipping, or brush method using solution including the quorum sensing antagonist.
  • QS antagonists described above have very similar chemical structure to that of autoinducer or signal that bacteria use to communicate each other, they can interfere with the gene expression by controlling bacterial communication. In addition, they can effectively block propagation, virulence factor production and biofilm formation by bacteria.
  • FIGS. 1 to 8 are photographs illustrating color changes in the experimental results for the activities of the control (or reference example 1) and QS antagonists synthesized according to exemplary embodiments 1 to 7.
  • FIG. 9 is a mimetic diagram of 2-(phenylcarbonothioylthio)acetyl homoserine lactone at binding site of the receptor protein of Agrobacterium tumefaciens.
  • FIG. 10 illustrates experimental results for inhibition efficacy of 2-(phenylcarbonothioylthio)acetyl homoserine lactone against autoinducer of Vibrio harveyi.
  • FIG. 11 illustrates experimental results for inhibition efficacy of 2-(phenylcarbonothioylthio)acetyl homoserine lactone against autoinducer of Agrobacterium tumefaciens.
  • FIG. 12 illustrates experimental results for inhibition efficacy of 2-(phenylcarbonothioylthio)acetyl homoserine lactone against autoinducer of Pseudomonas aeruginosa.
  • FIG. 13 illustrates Micrographs of P. aeruginosa biofilms grown on glass slide in case of using QS antagonist synthesized according to first exemplary embodiment.
  • FIG. 14 illustrates Micrographs of P. aeruginosa biofilms grown on glass slide in case of using only distilled water according to comparative example 1.
  • FIG. 15 illustrates Micrographs of P. aeruginosa biofilms grown on glass slide in solution of autoinducer according to comparative example 2.
  • FIGS. 16-18 illustrate Micrographs of P. aeruginosa biofilms grown on glass slide in solution of antagonist synthesized according to exemplary embodiment 6.
  • FIGS. 19-21 illustrate Micrographs of P. aeruginosa biofilms grown on glass slide in solution of autoinducer according to comparative example 2.
  • QS antagonists according to the present invention may have structures as shown in the following formula 1 or 2.
  • R1 is hydrogen, hetero aromatic containing nitrogen, or carboxyl carboxyalkylthio group which has a carbon number from 1 to 10
  • R2 is aromatic or carboxyl carboxyalkylthio group which has a carbon number from 1 to 10.
  • QS antagonists having structures as described in formula 1 may contain homoserine lactone group and sulfanyl ethanoyl group.
  • This quorum sensing antagonist according to the present invention has the similar chemical structure to that of N-acylhomoserine lactone which is used by bacteria as an autoinducer, and has the ability to block cell-to-cell communication.
  • QS antagonists described as in formula 1 may have schematic structure as illustrated in formulae 3 to 7.
  • QS antagonists described in formula 2 may have schematic structure as shown in formulae 8 to 9.
  • QS antagonists described as in formula 1 or 2 may be synthesized by replacing the hydrogen at the amine group of homoserine lactone with sulfanyl ethanoyl group.
  • the quorum sensing antagonist shown as in formula 3 was replaced by the hydrogen of the amino group of homoserine lactone with the pyridinylsulfanylacetyl group in response to reaction between homoserine lactone and [(2-pyridine-4-ylthio) acetic acid.
  • the quorum sensing antagonist shown in formula 8 was replaced by the hydrogen of the amino group of homoserine lactone with the acetyl group of 2-(phenylcarbonothioylthio) acetic acid according to the reaction between homoserine lactone and 2-(phenylcarbonothioylthio) acetic acid.
  • the quorum sensing antagonist may be 2-(phenylcarbonothioylthio) acetyl homoserine lactone indicated in Formula 8.
  • 2-(phenylcarbonothioylthio) acetyl homoserine lactone may be stably docked to the receptor protein of Gram-negative bacteria such as Agrobacterium tumefaciens because it has the lower bonding energy than the autoinductor.
  • 2-(phenylcarbonothioylthio) acetyl homoserine lactone may also act as the quorum sensing antagonist to inhibit QS of many types of Gram-negative bacteria.
  • the 2-(phenylcarbonothioylthio) acetyl homoserine lactone may act as the quorum sensing antagonist to block QS of the Gram-negative bacteria such as Vibrio harveyi, Agrobacterium tumefaciens and E. coli DH5 ⁇ co-transformed by two compatible plasmids, pJN105L and pSC11.
  • the quorum sensing antagonist according to the present invention has the similar chemical structure to that of acylhomoserine lactone which is used by bacteria as an autoinducer, or the signaling material.
  • the 2-(phenylcarbonothioylthio) acetyl homoserine lactone competes with the autoinductor described above to dock to the receptor protein of Gram-negative
  • the quorum sensing antagonist according to the instant invention may act as a quorum sensing antagonist to block QS of bacteria which uses the above mentioned acylhomoserine lactone as an autoinducer.
  • We may take the Gram-negative bacteria as the bacteria using acylhomoserine lactone as an autoinductor.
  • the quorum sensing antagonist according to the present invention may effectively block the gene expression, the breakup of disease, and the formation of biofilm by inhibiting cell-to-cell communication.
  • biofilm formation on the surface may be inhibited by contacting the quorum sensing antagonist with the bacteria.
  • Biofilm is a structured community of microbial cells enclosed in a self-produced polymeric matrix and adherent to an inert or living surface. The above mentioned biofilm causes diseases by staying in the organs of human body.
  • the quorum sensing antagonist has the structure as described in formula 1 or formula 2, it inhibits the communication between bacteria, thus inhibiting the biofilm formation and reducing the contamination by bacteria.
  • n defines an integer from 0 to 10 and the R1 indicates hydrogen, carboxyl group, nitrogen-containing hetero aromatic hydrocarbon group, or carboxyalkylthio group having a carbon number from 1 to 10.
  • R2 means either aromatic hydrocarbon group or carboxyalkylthio group with a carbon number from 1 to 10.
  • the quorum sensing antagonist may block the biofilm formed by the bacteria which use the acylhomoserine lactone as the autoinductor.
  • We may take the Gram-negative bacteria such as Vibrio harveyi, Agrobacterium tumefaciens, Pseudomonas aeruginosa, Escherichia coli , etc as examples of bacteria which form the biofilm above.
  • an exemplary object may be a medical device or a home appliance. It should be noted that the exemplary object may comprise any structure that can prevent the biofilm formation or bacterial contamination. In addition, the contact of quorum sensing antagonist with bacteria does not require any special method but may be easily done, for example, by using the solvent like water as a medium.
  • the bacterial contamination may be reduced by contacting the quorum sensing antagonist with the object.
  • the solution of the above mentioned quorum sensing antagonist may be applied to the above object by using spray, dipping, or brush.
  • the quorum sensing antagonist according to the present invention can inhibit the communication between bacteria and thus prevent an attack of a disease and the formation of biofilm. Accordingly, the quorum sensing antagonist according to the instant invention can effectively inhibit the formation of biofilm and reduce the contamination by bacteria by applying itself on the device or a tool in which the biofilm is easily formed by contacting water.
  • the quorum sensing antagonist described as formula 1 or 2 was prepared by method according to reaction schemes 1 to 4.
  • N-Fmoc-methionine 14.86 g, 40 mmol
  • 1-hydroxybenzotriazole HOBt, 5.33 g, 40 mmol
  • diisopropyl ethylamine DIEA, 5.17 g, 40 mmol
  • benzotriazol-1-yl-oxy-tris(dimethylamino)phosphonium hexafluorophosphate BOP, 17.69 g, 40 mmol
  • N-Fmoc methionine-mediated resin To remove the Fmoc group from the Resultant 1, N-Fmoc methionine-mediated resin, the resin (11 g) was then treated twice with piperidine/dimethylformamide (DMF) (20%, v/v) at room temperature for 1 hour each time. Thereafter, the resin was filtered, washed two or three times with DMF, MC, and methanol, and dried in vacuo to measure final mass of Resultant 2 (7.13 g). A Ninhydrin test indicated that the solution contained an amine group, although the amide band disappeared from the FT-IR spectrum (1718 cm ⁇ 1).
  • DMF piperidine/dimethylformamide
  • reaction was carried out by reaction scheme 3 at room temperature for 12 hours, then the reaction mixture was filtered and washed with NMP, MC, and methanol, followed by drying in vacuo. At last, Resultant 3 was obtained.
  • the reaction yield was investigated based on the mass increase, which ranged from 90 to 94%.
  • the Resultant 3 resin was treated with BrCN (860 mg, 8 mmol) and trifluoroacetic acid (TFA, 5%) in chloroform/water (10 mL/5 mL) in each of the filtered reactors.
  • the homoserine lactone derivative products were then cleaved from the beads twice for 12 hours using a chemical cleavage method. Thereafter, the resin was filtered and washed two or three times with chloroform, then the cleavage and washing solution were collected in a round-bottom flask (100 mL) and the chloroform layer was separated. The collected solution was extracted several times with CHCl3 and brine, then the final chloroform solution was evaporated. At last, final resultant 4 was obtained.
  • resultant 4 compound was finally confirmed using such techniques as NMR and GC/MS.
  • Mass Spectrum peak (252.2940) of C11H12N2O3S was observed in 252.2939 using high resolution mass spectroscopy.
  • Final resultant 4 was produced by the same method as that of the first exemplary embodiment to get product except that 2-(pyrimidin-2-ylthio)acetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • Mass Spectrum peak (253.2818) of C11H12N2O3S was observed in 253.2817 using high resolution mass spectroscopy.
  • Final resultant 4 was produced by the same method as that of the first exemplary embodiment to get product except that 2,2′-thiodiacetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • Mass Spectrum peak (233.2451) of C11H12N2O3S was observed in 233.2451 using high resolution mass spectroscopy.
  • Final resultant(4) was produced by the same method as that of the first exemplary embodiment to get product except that 2,2′-(ethane-1,2-diylbis(sulfanediyl))diacetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • Final resultant(4) was produced by the same method as that of the first exemplary embodiment to get product except that 2-(methylthio)acetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • Mass Spectrum peak (189.2353) of C11H12N2O3S was observed in 189.2353 using high resolution mass spectroscopy.
  • Final resultant (4) was produced by the same method as that of the first exemplary embodiment to get product except that 2-(phenylcarbonothioylthio)acetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • Final resultant(4) was produced by the same method as that of the first exemplary embodiment to get product except that 2,2′-thiocarbonylbis(sulfanediyl)diacetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • Tests were conducted to confirm whether new homoserinelactone derivatives produced as results of exemplary embodiments 1-7 can block bacterial QS as a quorum sensing antagonist.
  • Agrobacterium tumefaciens A136(pTiA136, pCF218, pCF372) and Agrobacterium tumefaciens KYC6 were used as the indicating microorganisms.
  • Agrobacterium tumefaciens A136 (pTiA136, pCF218, pCF372) are bacteria mutated to produce ⁇ -galactosidase by expressing the lac gene when exposed to HSL.
  • Agrobacterium tumefaciens KYC6 are bacteria mutated to overproduce AHL.
  • the tests were conducted to confirm if Agrobacterium tumefaciens A136 produce ⁇ -galactosidase by exposing themselves to acylhomoserinelactone using 5-bromo-4-chloro-3-indolyl- ⁇ -D-galactopyranoside (X-gal) which gives off a green or blue color when degraded by the ⁇ -galactosidase produced.
  • X-gal 5-bromo-4-chloro-3-indolyl- ⁇ -D-galactopyranoside
  • the Agrobacterium tumefaciens KYC6 type-culture strain was cultured overnight in an LB (Luria-Bertani) broth at 30° C. 10 ⁇ L of the KYC6 strain and 100 ⁇ L of the homoserinelactone derivatives produced as results of exemplary embodiments 1-7 were inoculated into 5 mL of an LB broth and cultured for 24 hours at 30° C. Moreover, Agrobacterium tumefaciens A136 strain was also cultured overnight at 30° C. in an LB broth containing 50 ⁇ g/mL of spectinomycin and 4.5 ⁇ g/mL of tetracycline. Moreover, instead of homoserinelactone derivatives, distilled water was used for the comparative example 1.
  • FIGS. 1 ⁇ 8 are photographs which show color change of the LB agar plate cultured for the experiments using the distilled water according to the comparative example 1 and the synthesized antagonists according to exemplary embodiments 1 ⁇ 8.
  • FlexX docking of 2-(phenylcarbonotiolthio) homoserine lactone molecule was performed using the Run-Multiple Ligand option of FlexX.
  • the optimal conformational binding pose was selected based on the root-mean-square (RMS) deviation from the reference structure.
  • RMS root-mean-square
  • chemical and physical properties of active site region were chracterized using MOLCAD surface program.
  • FIG. 9 The best molecular docking mode between active site of the receptor protein and 2-(phenylcarbonotiolthio) acetyl homoserine lactone molecule was presented in FIG. 9 .
  • Ligand represented 2-(phenylcarbonotiolthio) acetyl homoserine lactone, molecules around Ligand were active site residues of receptor protein and hydrogen atoms were removed.
  • Quorum-sensing antagonistic ability of 2-(phenylcarbonothioylthio) acetyl homoserine lactone described in Formula 8 was evaluated. The evaluation was performed using Vibrio harveyi BB886, Agrobacterium tumefaciens A136(Ti-)(pCF218)(pCF372), E. coli DH5 ⁇ which was co-transformed two compatible plasmids, pJN105L (LasR expression plasmid) and pSC11 (lasl::lacZ fusion reporter plasmid) as reporter strains.
  • Quorum-sensing antagonistic ability of 2-(phenylcarbonothioylthio) acetyl homoserine lactone as described in Formula 8 was evaluated using Vibrio harveyi strain BB886 which responds to the AI-1, i.e., N-(3-hydroxybutanoyl)-1-homoserine lactone (3-OH-C4-HSL) as reporter strain.
  • Vibrio harveyi strain BB886 was grown in LBS medium (10 g/L tryptone, 5 g/L yeast extract, 20 g/L NaCl) at 30° C.
  • LBS medium 10 g/L tryptone, 5 g/L yeast extract, 20 g/L NaCl
  • an overnight culture was diluted 100-fold in a sterile AI bioassay (AB) medium (300 mM NaCl, 50 mM MgSO4, 0.2% (w/v) vitamin-free casamino acid, 10 mM potassium phosphate, 1 mM 1-arginine, 1% glycerol; pH 7.5).
  • AB sterile AI bioassay
  • No. 1 solution which was dissolved 3-hydroxybutanoyl homoserine lactone (autoinducer) in chloroform and No. 2, 3, 4 solutions, which were dissolved 3-hydroxybutanoyl homoserine lactone and 2-(phenylcarbonothioylthio) acetyl homoserine lactone in chloroform were prepared.
  • No. 1 solution contained 1 ⁇ M of autoinducer.
  • No. 2, 3, 4 solutions contained 1 ⁇ M of autoinducer and various concentrations (1, 5, or 10 ⁇ M) of 2-(phenylcarbonothioylthio) acetyl homoserine lactone.
  • Luminescence measurements were performed after 2 hours of incubation using a luminescence meter (Thermo Electron Co.). Bacterial cell density was measured by optical densities at 600 nm (OD600) using a UV spectrophotometer (HP8452A, H.P.). The antagonist activities of 2-(phenylcarbonothioylthio) acetyl homoserine lactone were expressed as a specific luminescence; relative light units/OD600.
  • FIG. 10 is a graph of an evaluation result for antagonist activity using the reporter strain V. harveyi BB886 in order to identify 2-(phenylcarbonothioylthio) acetyl homoserine lactone that could compete against AI-1 and repress lux-operon expression.
  • FIG. 10 illustrates an RLU ratio of V. harveyi BB886 grown for 2 hours in the presence of 1 ⁇ M autoinducer or 1 ⁇ M autoinducer plus 0 ⁇ M, 5 ⁇ M, 10 ⁇ M of 2-(phenylcarbonothioylthio) acetyl homoserine lactone.
  • Quorum-sensing antagonistic ability of 2-(phenylcarbonothioylthio) acetyl homoserine lactone as described in Formula 8 was evaluated using Agrobacterium tumefaciens A136(pTiA136, pCF218, pCF372)) which responds to the autoinducer, 3-oxootanoyl homoserine lactone (3-oxo-C8-HSL) as reporter strain.
  • tumefaciens A136 (pTiA136, pCF218, and pCF372) was cultured in Luria-Bertani (LB) media with 50 ⁇ g/mL spectinomycin and 4.5 ⁇ g/mL tetracycline at 30° C.
  • LB Luria-Bertani
  • 2-(phenylcarbonothioylthio) acetyl homoserine lactone an overnight culture was diluted at 1:100 and incubated up to an optical density of 0.3 at 600 nm (OD600) at 30° C.
  • No. 1 solution which was dissolved 3-oxootanoyl homoserine lactone (autoinducer) in chloroform
  • No. 2 solution which was dissolved 3-oxootanoyl homoserine lactone and 2-(phenylcarbonothioylthio) acetyl homoserine lactone in chloroform were prepared.
  • No. 1 solution contained 0.5 ⁇ M of N-3-oxootanoyl homoserine lactone.
  • No. 2 solution contained 0.5 ⁇ M of autoinducer and 5 ⁇ M of 2-(phenylcarbonothioylthio) acetyl homoserine lactone.
  • LacZ quantative analysis for test tubes described above was performed using Tropix-plus kit (Applied Biosystems, USA). Luminescence measurements were performed after 2 hours of incubation using a luminescence meter (Thermo Electron Co.). Bacterial cell density was measured by optical densities at 600 nm (OD600) using a UV spectrophotometer (HP8452A, H.P.). The antagonist activities of 2-(phenylcarbonothioylthio) acetyl homoserine lactone were expressed as a specific luminescence; relative light units/OD600. Luminescence measurements for the culture solution containing no autoinducer and 2-(phenylcarbonothioylthio) acetyl homoserine lactone as a control experiment were performed.
  • FIG. 11 is a graph of an evaluation result for antagonist activity using the reporter strain A.
  • tumefaciens A136 pTiA136, pCF218, and pCF372 in order to identify 2-(phenylcarbonothioylthio) acetyl homoserine lactone that could compete against autoinducer, N-3-oxootanoyl homoserine lactone and repress gene expression.
  • FIG. 11 illustrates an RLU ratio of A.
  • tumefaciens A136 (pTiA136, pCF218, and pCF372) grown for 2 hours in the presence of the culture solution containing no autoinducer and 2-(phenylcarbonothioylthio) acetyl homoserine lactone, or the culture solution containing 0.5 ⁇ M autoinducer, or the culture solution containing 0.5 ⁇ M autoinducer plus 5 ⁇ M of 2-(phenylcarbonothioylthio) acetyl homoserine lactone.
  • Transformant E. coli was cultured in Luria-Bertani (LB) broth with 10 ⁇ g/mL gentamicin and 50 ⁇ g/mL ampicillin at 37° C.
  • LacZ bioassay of 2-(phenylcarbonothioylthio) acetyl homoserine lactone an overnight culture was diluted at 1:100 and incubated up to an optical density of 0.3 at 600 nm (OD600) at 30° C. Then, 0.4% arabinose was added.
  • No. 1 solution which was dissolved 3-oxododecanoyl homoserine lactone, 3-oxo-C12-HSL ( Pseudomonas aeruginosa autoinducer) in chloroform
  • No. 2, 3, 4 solutions which were dissolved 3-oxododecanoyl homoserine lactone and 2-(phenylcarbonothioylthio) acetyl homoserine lactone in chloroform were prepared.
  • No. 1 solution contained 1 ⁇ M of autoinducer.
  • No. 2, 3, 4 solutions contained 1 ⁇ M of autoinducer and various concentrations (1, 2, or 10 ⁇ M) of 2-(phenylcarbonothioylthio) acetyl homoserine lactone.
  • 4.0 mL of the diluted reporter strain culture was added to No.1 ⁇ No. 4 test tubes.
  • LacZ Bioassay for test tubes described above was performed using Tropix-plus kit (Applied Biosystems, USA). Luminescence measurements were performed after 2 hours of incubation using a luminescence meter (Thermo Electron Co.). Bacterial cell density was measured by optical densities at 600 nm (OD600) using a UV spectrophotometer (HP8452A, H.P.).
  • the antagonist activities of 2-(phenylcarbonothioylthio) acetyl homoserine lactone were expressed as a specific luminescence; relative light units/OD600. Luminescence measurements for the culture solution containing no autoinducer and 2-(phenylcarbonothioylthio) acetyl homoserine lactone as a control experiment were performed.
  • FIG. 12 is a graph of an evaluation result for antagonist activity using E. coli DH5 ⁇ co-transformed by two kinds of plasmid, pJN105L (LasR expression plasmid) and pSC11 (lasI::lacZ fusion reporter plasmid) in order to identify 2-(phenylcarbonothioylthio) acetyl homoserine lactone that could compete against autoinducer, N-3-oxododecanoyl homoserine lactone and repress gene expression.
  • pJN105L LasR expression plasmid
  • pSC11 lasI::lacZ fusion reporter plasmid
  • FIG. 12 illustrates RLU ratio of co-transformed E. coli DH5 ⁇ grown for 2 hours in the presence of the culture solution containing no autoinducer and 2-(phenylcarbonothioylthio) acetyl homoserine lactone, or the culture solution containing 1 ⁇ M autoinducer, or the culture solution containing 1 ⁇ M autoinducer plus 1 ⁇ M, 2 ⁇ M, 10 ⁇ M of 2-(phenylcarbonothioylthio) acetyl homoserine lactone.
  • Specimen was set in nutrient flask containing 10 ⁇ mol/L of quorum-sensing antagonist prepared according to exemplary embodiments 1 ⁇ 7 and P. aeruginosa which has strong adhesive character on surface. Numbers of adhesive P. aeruginosa on surface were counted after 4 hours. Distilled water was poured into nutrient flask instead of quorum-sensing antagonist as a comparison example 1. Numbers of adhesive P. aeruginosa on surface were counted after 4 hours. Moreover, autoinducer, N-3-oxododecanoylhomoserinelactone was filled into nutrient flask instead of quorum-sensing antagonist as a comparative example 2. Numbers of adhesive P. aeruginosa on surface were counted after 4 hours. Number of P. aeruginosa attached on surface after 4 hours and the percentage where the comparative example 2 was set at 100% are shown in Table 2.
  • Specimens were set in nutrient flasks containing compounds according to the first exemplary embodiment 1, comparative examples 1 and 2. Biofilm was grown on the specimens for 48 hours. The specimen were examined using microscope. Furthermore, specimens were set in nutrient flasks containing compounds according to exemplary embodiment 6 and comparative example 2. Biofilm on the specimens was grown for 48 hours. The specimens were examined using a microscope.
  • FIG. 13 showed a microscopic image depicting P. aeruginosa attached on the specimen in nutrient flask containing QS antagonist according to exemplary embodiment 1 of the present invention.
  • FIG. 14 showed a microscopic image depicting P. aeruginosa attached on the specimen in nutrient flask containing distilled water according to comparative example 1.
  • FIG. 15 showed a microscopic image depicting P. aeruginosa attached on the specimen in nutrient flask containing autoinducer according to the comparative example 2.
  • FIGS. 16 ⁇ 18 showed microscopic images depicting P. aeruginosa attached on the specimens in nutrient flasks containing QS antagonists according to exemplary embodiment of the present invention.
  • FIGS. 19 ⁇ 21 showed microscopic images depicting P. aeruginosa attached on the specimens in nutrient flasks containing autoinducer according to the comparative example 2.
  • the homoserine lactone derivatives according to the present invention have excellent efficacy as quorum sensing antagonists which inhibits cell-cell communications.
  • the biofilm formation can be effectively prevented by blocking the gene expression of bacteria such as Gram-negative bacteria. Diseases can be also prevented by inhibiting the growth of bacteria.
  • the quorum sensing antagonist according to the present invention is designed to block the growth of bacteria by inhibiting the communication between bacteria, the propagation of bacteria can be prevented by using only the concentration of 1/100,000 of the conventional antibacterial agent to kill bacteria. Accordingly, the present invention can effectively be applied to home appliances or medical devices which require prevention of bacterial infection and biofilm formation.

Abstract

In the quorum sensing antagonist blocking the communication in bacteria, the method for preventing biofilm formation using this quorum sensing antagonist and the method for reducing the bacterial contamination, the quorum sensing antagonist contains the homoserine lactone moiety and sulfanylethanoyl group, and has a similar chemical structure to that of the autoinducer which is produced by bacteria as a signal, whereby the quorum sensing antagonist can inhibit the formation of biofilm and reduce the bacterial contamination as well.

Description

    FIELD OF THE INVENTION
  • This invention relates generally to quorum sensing antagonists and methods for preventing a biofilm formation and reducing a bacterial contamination using the quorum sensing antagonist.
  • BACKGROUND OF THE INVENTION
  • Controlling the growth of pathogenic bacteria is one of the biggest issues in the field of biological chemistry. Two representative pathogenic bacteria in plants and animals are Agrobacterium tumefaciens (A. tumefaciens) and Pseudomonas aeruginosa (P. aeruginosa). A. tumefaciens is known to be the cause of Crown Gall disease. Crown gall, a disease of roots and stems, occurs in over 140 species of dicotyledon. P. aeruginosa makes biofilms. A biofilm is a slimy layer composed of microorganisms attached to a surface by extracellular polymeric substances(EPS) secreted by the cells during metabolism. P. aeruginosa in biofilms has the capability to protect themselves from attacks by other agents such as antibiotics.
  • Understanding quorum sensing(QS) mechanism is important to solve the problems such as diseases and biofilm formation which get accomplished by bacterial QS. Bacteria communicate with each other by a mechanism known as QS. QS is a term to describe the phenomenon that a single cell senses the cell density. Bacteria release signaling molecules or autoinducers(AI) out of the cell. Once bacteria reach a high cell density, a high concentration of AI accumulates in the surrounding medium. AI docks with a receptor protein in a cell and AI-receptor protein complex regulates various gene expressions concerning the production of virulence factors, biofilms and infection of plant or animal, depending on a cell density.
  • Therefore, it is necessary to develop the antagonizing agents that can interfere with the normal QS regulation for controlling the undesired bacterial activities, such as virulence factor production by pathogenic bacteria or biofilm formation by environmental microorganisms.
  • Moreover, the development of new antagonist blocking QS regulation of various bacteria is demanded.
  • DETAILED DESCRIPTION OF THE INVENTION
  • One object of this invention is to provide QS antagonist inhibiting gene expression and blocking cell to cell communication of various bacteria. Another object of this invention is to provide a method blocking biofilm formation using this QS antagonists.
  • Still another object of this invention is to provide a method blocking bacterial contamination using this QS antagonists.
  • QS antagonists to achieve the object of this invention described above are compounds according to the following general formula 1 or 2.
  • Figure US20100292261A1-20101118-C00001
  • Where n is an integer from 0 to 10, R1 is hydrogen, hetero aromatic containing nitrogen, or carboxyl carboxyalkylthio group which has a carbon number from 1 to 10, R2 is aromatic or carboxyl carboxyalkylthio group which has a carbon number from 1 to 10. In a blocking method of biofilm formation according to another object of the present invention, biofilm formation is blocked by contacting QS antagonists to bacteria according to formula 1 or 2.
  • According to an exemplary embodiment of the present invention, the QS antagonists may contact bacteria to use acylhomoserine lactone as an autoinducer. For example, the QS antagonists may contact Gram-negative bacteria.
  • In a method of reducing a bacterial contamination using the quorum sensing antagonist according to still another object of the present invention, the bacterial contamination is blocked by contacting the QS antagonists expressed by formula 1 or 2 to an object. According to an exemplary embodiment, contact between QS antagonist and the object may be performed by spray, dipping, or brush method using solution including the quorum sensing antagonist.
  • Since QS antagonists described above have very similar chemical structure to that of autoinducer or signal that bacteria use to communicate each other, they can interfere with the gene expression by controlling bacterial communication. In addition, they can effectively block propagation, virulence factor production and biofilm formation by bacteria.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Bioassay for new antagonists. The antagonists show a smaller color change than the reference
  • FIGS. 1 to 8 are photographs illustrating color changes in the experimental results for the activities of the control (or reference example 1) and QS antagonists synthesized according to exemplary embodiments 1 to 7.
  • FIG. 9 is a mimetic diagram of 2-(phenylcarbonothioylthio)acetyl homoserine lactone at binding site of the receptor protein of Agrobacterium tumefaciens.
  • FIG. 10 illustrates experimental results for inhibition efficacy of 2-(phenylcarbonothioylthio)acetyl homoserine lactone against autoinducer of Vibrio harveyi.
  • FIG. 11 illustrates experimental results for inhibition efficacy of 2-(phenylcarbonothioylthio)acetyl homoserine lactone against autoinducer of Agrobacterium tumefaciens.
  • FIG. 12 illustrates experimental results for inhibition efficacy of 2-(phenylcarbonothioylthio)acetyl homoserine lactone against autoinducer of Pseudomonas aeruginosa.
  • FIG. 13 illustrates Micrographs of P. aeruginosa biofilms grown on glass slide in case of using QS antagonist synthesized according to first exemplary embodiment.
  • FIG. 14 illustrates Micrographs of P. aeruginosa biofilms grown on glass slide in case of using only distilled water according to comparative example 1.
  • FIG. 15 illustrates Micrographs of P. aeruginosa biofilms grown on glass slide in solution of autoinducer according to comparative example 2.
  • FIGS. 16-18 illustrate Micrographs of P. aeruginosa biofilms grown on glass slide in solution of antagonist synthesized according to exemplary embodiment 6.
  • FIGS. 19-21 illustrate Micrographs of P. aeruginosa biofilms grown on glass slide in solution of autoinducer according to comparative example 2.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Quorum sensing antagonist of this invention and methods for preventing a biofilm formation using quorum sensing antagonist are explained in detail hereinafter. QS antagonists according to the present invention may have structures as shown in the following formula 1 or 2.
  • Figure US20100292261A1-20101118-C00002
  • Where n defines an integer from 0 to 10, R1 is hydrogen, hetero aromatic containing nitrogen, or carboxyl carboxyalkylthio group which has a carbon number from 1 to 10, R2 is aromatic or carboxyl carboxyalkylthio group which has a carbon number from 1 to 10.
  • QS antagonists having structures as described in formula 1 may contain homoserine lactone group and sulfanyl ethanoyl group. This quorum sensing antagonist according to the present invention has the similar chemical structure to that of N-acylhomoserine lactone which is used by bacteria as an autoinducer, and has the ability to block cell-to-cell communication.
  • According to the example, QS antagonists described as in formula 1 may have schematic structure as illustrated in formulae 3 to 7.
  • Figure US20100292261A1-20101118-C00003
  • QS antagonists described in formula 2 may have schematic structure as shown in formulae 8 to 9.
  • Figure US20100292261A1-20101118-C00004
  • QS antagonists described as in formula 1 or 2 may be synthesized by replacing the hydrogen at the amine group of homoserine lactone with sulfanyl ethanoyl group. For example, the quorum sensing antagonist shown as in formula 3 was replaced by the hydrogen of the amino group of homoserine lactone with the pyridinylsulfanylacetyl group in response to reaction between homoserine lactone and [(2-pyridine-4-ylthio) acetic acid. In addition, the quorum sensing antagonist shown in formula 8 was replaced by the hydrogen of the amino group of homoserine lactone with the acetyl group of 2-(phenylcarbonothioylthio) acetic acid according to the reaction between homoserine lactone and 2-(phenylcarbonothioylthio) acetic acid.
  • According to the exemplary embodiment, the quorum sensing antagonist may be 2-(phenylcarbonothioylthio) acetyl homoserine lactone indicated in Formula 8. 2-(phenylcarbonothioylthio) acetyl homoserine lactone may be stably docked to the receptor protein of Gram-negative bacteria such as Agrobacterium tumefaciens because it has the lower bonding energy than the autoinductor.
  • In addition, 2-(phenylcarbonothioylthio) acetyl homoserine lactone may also act as the quorum sensing antagonist to inhibit QS of many types of Gram-negative bacteria. For example, the 2-(phenylcarbonothioylthio) acetyl homoserine lactone may act as the quorum sensing antagonist to block QS of the Gram-negative bacteria such as Vibrio harveyi, Agrobacterium tumefaciensand E. coli DH5α co-transformed by two compatible plasmids, pJN105L and pSC11.
  • The quorum sensing antagonist according to the present invention has the similar chemical structure to that of acylhomoserine lactone which is used by bacteria as an autoinducer, or the signaling material. We may take N-(3-hydroxybutanoyl) homoserine lactone, N-(3-(oxohexanoyl) homoserine lactone, N-(3-oxooctanoyl) homoserine lactone, N-(3-oxododecanoyl) homoserine lactone, N-(butanoyl) homoserine lactone, N-(hexanoyl) homoserine lactone, and N-(octanoyl) homoserine lactone as the examples of the acylhomoserine lactone above. The 2-(phenylcarbonothioylthio) acetyl homoserine lactone competes with the autoinductor described above to dock to the receptor protein of Gram-negative bacteria, thus inhibiting the gene expression by the autoinductor.
  • The quorum sensing antagonist according to the instant invention may act as a quorum sensing antagonist to block QS of bacteria which uses the above mentioned acylhomoserine lactone as an autoinducer. We may take the Gram-negative bacteria as the bacteria using acylhomoserine lactone as an autoinductor. We may take Vibrio harveyi, Agrobacterium tumefaciens, Pseudomonas aeruginosa, Escherichia coli, Aerononas hydrophila, Burkholderia cepacia, Chromobacterium violaceum, Enterobacter agglomerans, Erwinia stewarti, Nitrosomas europea, Photobacterium fischeri, Pseudomonas aureofaciens, Rhizobium leguminosarum, Serratia liquefaciens, Vibrio Fischeri, etc as the examples of the above mentioned Gram-negative bacteria.
  • The quorum sensing antagonist according to the present invention may effectively block the gene expression, the breakup of disease, and the formation of biofilm by inhibiting cell-to-cell communication.
  • Now, description is made as to how to prevent the biofilm formation and how to reduce the contamination by bacteria using the quorum sensing antagonist according to the following invention.
  • According to the exemplary embodiment, biofilm formation on the surface may be inhibited by contacting the quorum sensing antagonist with the bacteria. Biofilm is a structured community of microbial cells enclosed in a self-produced polymeric matrix and adherent to an inert or living surface. The above mentioned biofilm causes diseases by staying in the organs of human body. As the quorum sensing antagonist has the structure as described in formula 1 or formula 2, it inhibits the communication between bacteria, thus inhibiting the biofilm formation and reducing the contamination by bacteria.
  • Figure US20100292261A1-20101118-C00005
  • In the formulae 1 and 2, the n defines an integer from 0 to 10 and the R1 indicates hydrogen, carboxyl group, nitrogen-containing hetero aromatic hydrocarbon group, or carboxyalkylthio group having a carbon number from 1 to 10. R2 means either aromatic hydrocarbon group or carboxyalkylthio group with a carbon number from 1 to 10.
  • According to the exemplary embodiment, the quorum sensing antagonist may block the biofilm formed by the bacteria which use the acylhomoserine lactone as the autoinductor. We may take the Gram-negative bacteria such as Vibrio harveyi, Agrobacterium tumefaciens, Pseudomonas aeruginosa, Escherichia coli, etc as examples of bacteria which form the biofilm above.
  • According to the exemplary embodiment, an exemplary object may be a medical device or a home appliance. It should be noted that the exemplary object may comprise any structure that can prevent the biofilm formation or bacterial contamination. In addition, the contact of quorum sensing antagonist with bacteria does not require any special method but may be easily done, for example, by using the solvent like water as a medium.
  • According to the exemplary embodiment, the bacterial contamination may be reduced by contacting the quorum sensing antagonist with the object. For example, the solution of the above mentioned quorum sensing antagonist may be applied to the above object by using spray, dipping, or brush. However there is no limitation of method to contact. As described above, the quorum sensing antagonist according to the present invention can inhibit the communication between bacteria and thus prevent an attack of a disease and the formation of biofilm. Accordingly, the quorum sensing antagonist according to the instant invention can effectively inhibit the formation of biofilm and reduce the contamination by bacteria by applying itself on the device or a tool in which the biofilm is easily formed by contacting water.
  • Now, the present invention will be described in detail with reference to the exemplary embodiments and comparative embodiments. However the exemplary embodiment below is just for demonstration of the invention and its experimental example is not limited thereto, but subject to change or modification depending on the experimental circumstances.
  • Preparation of the Quorum Sensing Antagonist
  • The quorum sensing antagonist described as formula 1 or 2 was prepared by method according to reaction schemes 1 to 4.
  • Figure US20100292261A1-20101118-C00006
  • Exemplary Embodiment 1
  • 10 g (22 mmol) of an aminomethyl polystyrene resin (AM PS, 200-400 mesh, 2.2 mmol/g, Beadtech Inc., South Korea) was swollen in 100 mL of N-methyl-2-pyrrolidone (NMP) in a 3-neck flask (250 mL). To introduce a methionine residue onto the resin, N-Fmoc-methionine (14.86 g, 40 mmol), 1-hydroxybenzotriazole (HOBt, 5.33 g, 40 mmol), diisopropyl ethylamine (DIEA, 5.17 g, 40 mmol), and benzotriazol-1-yl-oxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP, 17.69 g, 40 mmol), acting as coupling agents, were added to the flask. The solution was then stirred at room temperature for 12 hours, and the completion of the reaction was determined using a Ninhydrin color test. After filtering the N-Fmoc methionine-coupled resin, the resin was washed two or three times with NMP, methylene chloride (MC), and methanol, followed by drying in vacuo (mass increase: 8.17 g, yield: 99.82%). The resin (Resultant 1 described above) was confirmed to contain an amide bond as a result of the coupling reaction based on the FT-IR spectrum, which showed amide peaks at 1718 and 1670 cm 1.
  • To remove the Fmoc group from the Resultant 1, N-Fmoc methionine-mediated resin, the resin (11 g) was then treated twice with piperidine/dimethylformamide (DMF) (20%, v/v) at room temperature for 1 hour each time. Thereafter, the resin was filtered, washed two or three times with DMF, MC, and methanol, and dried in vacuo to measure final mass of Resultant 2 (7.13 g). A Ninhydrin test indicated that the solution contained an amine group, although the amide band disappeared from the FT-IR spectrum (1718 cm1).
  • The Resultant 2, Fmoc-removed resin (500 mg) was then swollen in NMP (15 mL) in each of the eleven filtered reactors (Libra tube RT-20M, Beadtech Inc., South Korea). The resin was reacted with the N-(alkylsulfanylethanoyl)-L-HSL derivatives, N-(fluoroalkanoyl)-L-HSL derivatives, N-(fluorosulfonyl)-L-HSL, or 2,2 dimethyl butanoyl-L-HSL (2.8 mmol) in the presence of HOBt (378.28 mg, 2.8 mmol), BOP (1238.44 mg, 2.8 mmol), and DIEA (361.9 mg, 2.8 mmol). The reaction was carried out by reaction scheme 3 at room temperature for 12 hours, then the reaction mixture was filtered and washed with NMP, MC, and methanol, followed by drying in vacuo. At last, Resultant 3 was obtained. The reaction yield was investigated based on the mass increase, which ranged from 90 to 94%.
  • To prepare a series of homoserine lactones, the Resultant 3 resin was treated with BrCN (860 mg, 8 mmol) and trifluoroacetic acid (TFA, 5%) in chloroform/water (10 mL/5 mL) in each of the filtered reactors. The homoserine lactone derivative products were then cleaved from the beads twice for 12 hours using a chemical cleavage method. Thereafter, the resin was filtered and washed two or three times with chloroform, then the cleavage and washing solution were collected in a round-bottom flask (100 mL) and the chloroform layer was separated. The collected solution was extracted several times with CHCl3 and brine, then the final chloroform solution was evaporated. At last, final resultant 4 was obtained.
  • The structure of resultant 4 compound was finally confirmed using such techniques as NMR and GC/MS. The NMR spectrometer was operated using CDCl3 solvent at 400 MHz. Chemical shift(δ) was observed in 8.52(d, J=7.24 hz, 2H, Ar-H), 8.29(s, 1H, NH), 7.34(d, J=6.53 hz, 2H, Ar-H), 4.46−4.24(m, 3H, CH-Lac), 3.82(s, 2H, CH2), 2.46−2.42(m, 1H, CH-Lac), and 2.19−2.15(m, 1H, CH-Lac).
  • Mass Spectrum peak (252.2940) of C11H12N2O3S was observed in 252.2939 using high resolution mass spectroscopy.
  • Therefore, it was finally confirmed that the resultant compound (4) was N-(2-oxo-tetrahydrofuran-3-yl)-2-(pyridin-4-ylthio)acetamide as described in Formula 3 below.
  • Figure US20100292261A1-20101118-C00007
  • Exemplary Embodiment 2
  • Final resultant 4 was produced by the same method as that of the first exemplary embodiment to get product except that 2-(pyrimidin-2-ylthio)acetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • The structure of resultant compound was finally confirmed using such techniques as NMR and GC/MS. The NMR spectrometer was operated using CDCl3 solvent at 400 MHz. Chemical shift(δ) was observed in δ=8.61 (d, J=5.4 Hz, 1H,CH), 8.60(d, J=5.0 Hz, 1H,CH), 8.29(s, 1H, NH), 7.09 (t, 1H, CH), 4.46−4.24 (m, 3H, CH-Lac), 3.83 (s, 2H, CH2), 2.42−2.45 (m, 1H, CH-Lac), 2.07−2.00 (m, 1H, CH-Lac).
  • Mass Spectrum peak (253.2818) of C11H12N2O3S was observed in 253.2817 using high resolution mass spectroscopy.
  • Therefore, it was finally confirmed that the resultant compound (4) was N-(2-oxo-tetrahydrofuran-3-yl)-2-(pyridin-4-ylthio)acetamide as described in Formula 4 below.
  • Figure US20100292261A1-20101118-C00008
  • Exemplary Embodiment 3
  • Final resultant 4 was produced by the same method as that of the first exemplary embodiment to get product except that 2,2′-thiodiacetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • The structure of resultant compound was finally confirmed using such techniques as NMR and GC/MS. The NMR spectrometer was operated using CDCl3 solvent at 400 MHz. Chemical shift(δ) was observed in δ=12.34(s, H, OH), 8.30(s, 1H, NH), 4.46−4.24(m, 3H, CH-Lac), 3.37(s, 2H, CH2), 3.32(s, 2H, CH2), 2.43−2.45(m, 1H, CH-Lac) and 2.20−2.17(m, 1H, CH-Lac).
  • Mass Spectrum peak (233.2451) of C11H12N2O3S was observed in 233.2451 using high resolution mass spectroscopy.
  • Therefore, it was finally confirmed that the resultant compound (4) was 2-(2-oxo-2-(2-oxo-tetrahydrofuran-3-ylamino)ethylthio)acetic acid as described in Formula 5 below.
  • Figure US20100292261A1-20101118-C00009
  • Exemplary Embodiment 4
  • Final resultant(4) was produced by the same method as that of the first exemplary embodiment to get product except that 2,2′-(ethane-1,2-diylbis(sulfanediyl))diacetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • The structure of resultant compound was finally confirmed using such techniques as NMR and GC/MS. The NMR spectrometer was operated using CDCl3 solvent at 400 MHz. Chemical shift(δ) was observed in δ=12.33(s, H, OH), 8.34(s, 1H, NH), 4.41−4.24(m, 3H, CH-Lac), 3.39(s, 2H, CH2), 3.32(s, 2H, CH2), 2.83(s, 4H, CH2), 2.46−2.42(m, 1H, CH-Lac)
    Figure US20100292261A1-20101118-P00001
    2.19−2.16(m, 1H, CH-Lac).
  • Mass Spectrum peak (293.3648) of C11H12N2O3S was observed in 293.3649 using high resolution mass spectroscopy.
  • Therefore, it was finally confirmed that the resultant compound (4) was 2-(2-(2-oxo-2-(2-oxo-tetrahydrofuran-3-ylamino) ethylthio)ethylthio)acetic acid as described in Formula 6 below.
  • Figure US20100292261A1-20101118-C00010
  • Exemplary Embodiment 5
  • Final resultant(4) was produced by the same method as that of the first exemplary embodiment to get product except that 2-(methylthio)acetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • The structure of resultant compound was finally confirmed using such techniques as NMR and GC/MS. The NMR spectrometer was operated using CDCl3 solvent at 400 MHz. Chemical shift(δ) was observed in δ=8.18(s, 1H, NH), 4.44−4.24(m, 3H, CH-Lac), 3.33(s, 2H, CH2), 2.47−2.42(m, 1H, CH-Lac), 2.21−2.17(m, 1H, CH-Lac) and 2.10(s, 3H, CH3).
  • Mass Spectrum peak (189.2353) of C11H12N2O3S was observed in 189.2353 using high resolution mass spectroscopy.
  • Therefore, it was finally confirmed that the resultant compound (4) was 2-(methylthio)-N-(2-oxo-tetrahydrofuran-3-yl)acetamide as described in Formula 7 below.
  • Figure US20100292261A1-20101118-C00011
  • Exemplary Embodiment 6
  • Final resultant (4) was produced by the same method as that of the first exemplary embodiment to get product except that 2-(phenylcarbonothioylthio)acetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • The structure of resultant compound was finally confirmed using such techniques as NMR and GC/MS. The NMR spectrometer was operated using CDCl3 solvent at 400 MHz. Chemical shift(δ) was observed in δ=8.03(s, 1H, NH), 7.45−7.41(m, 3H, Ar-H), 7.3(d, J=5.48 hz 2H, Ar-H), 4.52−4.21(m, 3H, CH-Lac), 3.78(s, 2H, CH2), 2.46−2.39(m, 1H, CH-Lac) and 2.22−2.17(m, 1H, CH-Lac).
  • Mass Spectrum peak (295.3832) of C11H12N2O3S was observed in 295.3831 using high resolution mass spectroscopy.
  • Therefore, it was finally confirmed that the resultant compound (4) was 2-(phenylcarbonothioylthio)acetyl homoserine lactone as described in Formula 8 below.
  • Figure US20100292261A1-20101118-C00012
  • Exemplary Embodiment 7
  • Final resultant(4) was produced by the same method as that of the first exemplary embodiment to get product except that 2,2′-thiocarbonylbis(sulfanediyl)diacetic acid was used instead of 2-(pyridin-4-ylthio)acetic acid.
  • The structure of resultant compound was finally confirmed using such techniques as NMR and GC/MS. The NMR spectrometer was operated using CDCl3 solvent at 400 MHz. Chemical shift(δ) was observed in δ=12.33(s, H, OH), 8.19(s, 1H, NH), 4.42−4.25(m, 3H, CH-Lac), 3.80(s, 2H, CH2), 3.73(s, 2H, CH2), 2.47−2.42(m, 1H, CH-Lac) and 2.17−2.14(m, 1H, CH-Lac).
  • Mass Spectrum peak (309.3881) of C11H12N2O3S was observed in 309.3881 using high resolution mass spectroscopy.
  • Therefore, it was finally confirmed that the resultant compound (4) was 2-{((2-oxo-2-(2-oxo-tetrahydrofuran-3-ylamino)ethylthio)carbonothioylthio} acetic acid as described in Formula 9 below.
  • Figure US20100292261A1-20101118-C00013
  • Bioassay of QS Antagonism
  • Tests were conducted to confirm whether new homoserinelactone derivatives produced as results of exemplary embodiments 1-7 can block bacterial QS as a quorum sensing antagonist.
  • Agrobacterium tumefaciens A136(pTiA136, pCF218, pCF372) and Agrobacterium tumefaciens KYC6 were used as the indicating microorganisms.
  • Agrobacterium tumefaciens A136(pTiA136, pCF218, pCF372) are bacteria mutated to produce β-galactosidase by expressing the lac gene when exposed to HSL. Moreover, Agrobacterium tumefaciens KYC6 are bacteria mutated to overproduce AHL.
  • The tests were conducted to confirm if Agrobacterium tumefaciens A136 produce β-galactosidase by exposing themselves to acylhomoserinelactone using 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) which gives off a green or blue color when degraded by the β-galactosidase produced.
  • To put it concretely, the Agrobacterium tumefaciens KYC6 type-culture strain was cultured overnight in an LB (Luria-Bertani) broth at 30° C. 10 μL of the KYC6 strain and 100 μL of the homoserinelactone derivatives produced as results of exemplary embodiments 1-7 were inoculated into 5 mL of an LB broth and cultured for 24 hours at 30° C. Moreover, Agrobacterium tumefaciens A136 strain was also cultured overnight at 30° C. in an LB broth containing 50 μg/mL of spectinomycin and 4.5 μg/mL of tetracycline. Moreover, instead of homoserinelactone derivatives, distilled water was used for the comparative example 1.
  • To examine if new inventions are quorum sensing antagonists, 16 μL of an X-gal (50 mg/mL) /DMF solution and 504 μL of distilled water were spread on an LB agar. The A136 strain was then streaked onto the middle of the LB agar plate using a platinum loop. Thereafter, the KYC6 strains cultured with the homoserinelactone derivatives were streaked 1-2 cm away from the A136 line, and the LB agar plates incubated for two days until a green or blue color was found in the distilled water was used instead of homoserinelactone derivatives as a comparative example 1 at 30° C. The experimental result was shown in from FIG. 1 to FIG. 8.
  • FIGS. 1˜8 are photographs which show color change of the LB agar plate cultured for the experiments using the distilled water according to the comparative example 1 and the synthesized antagonists according to exemplary embodiments 1˜8.
  • In the experiment using the distilled water of the comparative example 1, the color of the medium plate, which is located Agrobacterium tumefaciens A136, was clearly dark blue. In contrast, in the experimental plate using quorum sensing antagonists according to the present invention, there was shown a smaller degree of color change or no color change at all at a partial area which contained Agrobacterium tumefaciens A136. Consequently, we can identify that quorum sensing antagonists according to the present invention repress gene expression by competing with AI's docking to receptor protein of Agrobacterium tumefaciens KYC6 and block Agrobacterium tumefaciens A136 to produce galactosidase. Therefore, it was proven that homoserine lactone derivatives according to the instant invention exhibited outstanding antagonism as quorum sensing antagonists
  • Evaluation of Binding Energy
  • Molecular docking work between the receptor protein of Agrobacterium tumefaciens (gram negative) and 2-(phenylcarbonotiolthio) homoserine lactone molecule as represented by the exemplary embodiment 8 was performed to identify binding energy thereof.
  • We used X-ray crystallographic structure which has been previously performed to explain the quorum-sensing transcription factor complexed with autoinducer and DNA of Agrobacterium tumefaciens (pdb code=1L3L).
  • In order to study active site and interaction of receptor protein of Agrobacterium tumefaciens and 2-(phenylcarbonotiolthio) homoserine lactone molecule, we performed molecular modeling studies using SYBYL packages
  • To be more specific, FlexX docking of 2-(phenylcarbonotiolthio) homoserine lactone molecule was performed using the Run-Multiple Ligand option of FlexX. Among several possible poses, the optimal conformational binding pose was selected based on the root-mean-square (RMS) deviation from the reference structure. Furthermore, chemical and physical properties of active site region were chracterized using MOLCAD surface program.
  • Molecular dockings between the receptor and molecule were performed to identify biological activity and structure was sketched and optimized using the Tripos force field until RMS gradient was less than 0.05.
  • We found that binding mode between AI ligand in the crystal structure and the best-docked structure was almost same and best docking mode of hydrophilic interaction between active site and 2-(phenylcarbonotiolthio) acetyl homoserine lactone molecule without steric hinderance.
  • The best molecular docking mode between active site of the receptor protein and 2-(phenylcarbonotiolthio) acetyl homoserine lactone molecule was presented in FIG. 9. In FIG. 9, Ligand represented 2-(phenylcarbonotiolthio) acetyl homoserine lactone, molecules around Ligand were active site residues of receptor protein and hydrogen atoms were removed.
  • From the best binding pose in FIG. 9, we used FlexX program to study binding energy of the receptor protein of Agrobacterium tumefaciens (gram negative) and 2-(phenylcarbonotiolthio) homoserine lactone, a result of which is summarized in Table 1.
  • TABLE 1
    Ligand Binding energies (kcal/mol)
    Autoinducer −12.78
    2-(phenylcarbonothioylthio) acetyl −20.17
    homoserine lactone
  • With reference to Table 1, the binding energy of 2-(phenylcarbonotiolthio) homoserine lactone was found to be less than that of the autoinducer, which suggests that lactone moiety has a better inhibition activity than that of the autoinducer.
  • Evaluation of quorum-sensing antagonistic ability of 2-(phenylcarbonothioylthio) acetyl homoserine lactone
  • Quorum-sensing antagonistic ability of 2-(phenylcarbonothioylthio) acetyl homoserine lactone described in Formula 8 was evaluated. The evaluation was performed using Vibrio harveyi BB886, Agrobacterium tumefaciens A136(Ti-)(pCF218)(pCF372), E. coli DH5α which was co-transformed two compatible plasmids, pJN105L (LasR expression plasmid) and pSC11 (lasl::lacZ fusion reporter plasmid) as reporter strains.
  • Evaluation of quorum-sensing antagonistic ability of 2-(phenylcarbonothioylthio) acetyl homoserine lactone using Vibrio harveyi BB886
  • Quorum-sensing antagonistic ability of 2-(phenylcarbonothioylthio) acetyl homoserine lactone as described in Formula 8 was evaluated using Vibrio harveyi strain BB886 which responds to the AI-1, i.e., N-(3-hydroxybutanoyl)-1-homoserine lactone (3-OH-C4-HSL) as reporter strain.
  • Vibrio harveyi strain BB886 was grown in LBS medium (10 g/L tryptone, 5 g/L yeast extract, 20 g/L NaCl) at 30° C. For the bioluminescence assay, an overnight culture was diluted 100-fold in a sterile AI bioassay (AB) medium (300 mM NaCl, 50 mM MgSO4, 0.2% (w/v) vitamin-free casamino acid, 10 mM potassium phosphate, 1 mM 1-arginine, 1% glycerol; pH 7.5).
  • No. 1 solution, which was dissolved 3-hydroxybutanoyl homoserine lactone (autoinducer) in chloroform and No. 2, 3, 4 solutions, which were dissolved 3-hydroxybutanoyl homoserine lactone and 2-(phenylcarbonothioylthio) acetyl homoserine lactone in chloroform were prepared. No. 1 solution contained 1 μM of autoinducer. Moreover No. 2, 3, 4 solutions contained 1 μM of autoinducer and various concentrations (1, 5, or 10 μM) of 2-(phenylcarbonothioylthio) acetyl homoserine lactone.
  • After vaporizing chloroform in 4 test tubes at 30° C. for 2 hours, 4.0 mL of the diluted reporter strain culture was added to No.1˜No. 4 test tubes and incubated at 30° C. Luminescence measurements were performed after 2 hours of incubation using a luminescence meter (Thermo Electron Co.). Bacterial cell density was measured by optical densities at 600 nm (OD600) using a UV spectrophotometer (HP8452A, H.P.). The antagonist activities of 2-(phenylcarbonothioylthio) acetyl homoserine lactone were expressed as a specific luminescence; relative light units/OD600.
  • FIG. 10 is a graph of an evaluation result for antagonist activity using the reporter strain V. harveyi BB886 in order to identify 2-(phenylcarbonothioylthio) acetyl homoserine lactone that could compete against AI-1 and repress lux-operon expression. To put it concretely, FIG. 10 illustrates an RLU ratio of V. harveyi BB886 grown for 2 hours in the presence of 1 μM autoinducer or 1 μM autoinducer plus 0 μM, 5 μM, 10 μM of 2-(phenylcarbonothioylthio) acetyl homoserine lactone.
  • As shown in FIG. 10, it was examined that the luminescence intensity per V. harveyi was relatively high in a sample containing only 3-hydroxybutanoylhomoserine lactone. This shows a case where the gene expression was activated by the autoinducer, whereby the luminescence intensity per V. harveyi was high.
  • In contrast, the luminescence assays performed on 2-(phenylcarbonothioylthio) acetyl homoserine lactone showed that the intensity of V. harveyi luminescence decreased remarkably by increasing the concentration of compound used.
  • This means that 2-(phenylcarbonothioylthio) acetyl homoserine lactone has eminent quorum-sensing inhibiting ability to suppress V. harveyi gene expression.
  • Evaluation of quorum-sensing antagonistic ability of 2-(phenylcarbonothioylthio) acetyl homoserine lactone using Agrobacterium tumefaciens A136 (pTiA136, pCF218, pCF372)
  • Quorum-sensing antagonistic ability of 2-(phenylcarbonothioylthio) acetyl homoserine lactone as described in Formula 8 was evaluated using Agrobacterium tumefaciens A136(pTiA136, pCF218, pCF372)) which responds to the autoinducer, 3-oxootanoyl homoserine lactone (3-oxo-C8-HSL) as reporter strain.
  • A. tumefaciens A136 (pTiA136, pCF218, and pCF372) was cultured in Luria-Bertani (LB) media with 50 μg/mL spectinomycin and 4.5 μg/mL tetracycline at 30° C. For the bioassay of 2-(phenylcarbonothioylthio) acetyl homoserine lactone, an overnight culture was diluted at 1:100 and incubated up to an optical density of 0.3 at 600 nm (OD600) at 30° C.
  • No. 1 solution, which was dissolved 3-oxootanoyl homoserine lactone (autoinducer) in chloroform and No. 2 solution, which was dissolved 3-oxootanoyl homoserine lactone and 2-(phenylcarbonothioylthio) acetyl homoserine lactone in chloroform were prepared. No. 1 solution contained 0.5 μM of N-3-oxootanoyl homoserine lactone. No. 2 solution contained 0.5 μM of autoinducer and 5 μM of 2-(phenylcarbonothioylthio) acetyl homoserine lactone.
  • After vaporizing chloroform in 2 test tubes at 30° C. for 2 hours, 4.0 mL of the diluted reporter strain culture was added to No.1 and No. 2 test tubes. The solution containing no autoinducer and 2-(phenylcarbonothioylthio) acetyl homoserine lactone as a control experiment was also prepared and incubated at 30° C. for 3 hours.
  • LacZ quantative analysis for test tubes described above was performed using Tropix-plus kit (Applied Biosystems, USA). Luminescence measurements were performed after 2 hours of incubation using a luminescence meter (Thermo Electron Co.). Bacterial cell density was measured by optical densities at 600 nm (OD600) using a UV spectrophotometer (HP8452A, H.P.). The antagonist activities of 2-(phenylcarbonothioylthio) acetyl homoserine lactone were expressed as a specific luminescence; relative light units/OD600. Luminescence measurements for the culture solution containing no autoinducer and 2-(phenylcarbonothioylthio) acetyl homoserine lactone as a control experiment were performed.
  • FIG. 11 is a graph of an evaluation result for antagonist activity using the reporter strain A. tumefaciens A136 (pTiA136, pCF218, and pCF372) in order to identify 2-(phenylcarbonothioylthio) acetyl homoserine lactone that could compete against autoinducer, N-3-oxootanoyl homoserine lactone and repress gene expression. To put it concretely, FIG. 11 illustrates an RLU ratio of A. tumefaciens A136 (pTiA136, pCF218, and pCF372) grown for 2 hours in the presence of the culture solution containing no autoinducer and 2-(phenylcarbonothioylthio) acetyl homoserine lactone, or the culture solution containing 0.5 μM autoinducer, or the culture solution containing 0.5 μM autoinducer plus 5 μM of 2-(phenylcarbonothioylthio) acetyl homoserine lactone.
  • As shown in FIG. 11, in case 2-(phenylcarbonothioylthio) acetyl homoserine lactone was added in test tube containing N-3-oxootanoyl homoserine lactone, it was examined the luminescence intensity per A. tumefaciens A136 (pTiA136, pCF218, and pCF372) decreased remarkably.
  • This means that 2-(phenylcarbonothioylthio) acetyl homoserine lactone has eminent quorum-sensing inhibiting ability to suppress gene expression and cell-cell communication of A. tumefaciens A136 (pTiA136, pCF218, and pCF372).
  • Evaluation of quorum-sensing antagonistic ability of 2-(phenylcarbonothioylthio) acetyl homoserine lactone using E. coli DH5α co-transformed by two kinds of plasmid, pJN105L (LasR expression plasmid) and pSC11 (lasI::lacZ fusion reporter plasmid) Quorum-sensing antagonistic ability of 2-(phenylcarbonothioylthio) acetyl homoserine lactone as described in Formula 8 was evaluated using E. coli DH5α co-transformed by two kinds of plasmid, pJN105L (LasR expression plasmid) and pSC11 (lasI::lacZ fusion reporter plasmid) which responds to the autoinducer, 3-oxododecanoyl homoserine lactone (3-oxo-C12-HSL) as reporter strain.
  • Transformant E. coli was cultured in Luria-Bertani (LB) broth with 10 μg/mL gentamicin and 50 μg/mL ampicillin at 37° C.
  • For LacZ bioassay of 2-(phenylcarbonothioylthio) acetyl homoserine lactone, an overnight culture was diluted at 1:100 and incubated up to an optical density of 0.3 at 600 nm (OD600) at 30° C. Then, 0.4% arabinose was added.
  • No. 1 solution, which was dissolved 3-oxododecanoyl homoserine lactone, 3-oxo-C12-HSL (Pseudomonas aeruginosa autoinducer) in chloroform and No. 2, 3, 4 solutions, which were dissolved 3-oxododecanoyl homoserine lactone and 2-(phenylcarbonothioylthio) acetyl homoserine lactone in chloroform were prepared. No. 1 solution contained 1 μM of autoinducer. No. 2, 3, 4 solutions contained 1 μM of autoinducer and various concentrations (1, 2, or 10 μM) of 2-(phenylcarbonothioylthio) acetyl homoserine lactone. After vaporizing chloroform in 4 test tubes at 37° C. for 2 hours, 4.0 mL of the diluted reporter strain culture was added to No.1˜No. 4 test tubes.
  • The solution containing no autoinducer and 2-(phenylcarbonothioylthio) acetyl homoserine lactone as a control experiment was also prepared and incubated at 37° C. for 3 h.
  • LacZ Bioassay for test tubes described above was performed using Tropix-plus kit (Applied Biosystems, USA). Luminescence measurements were performed after 2 hours of incubation using a luminescence meter (Thermo Electron Co.). Bacterial cell density was measured by optical densities at 600 nm (OD600) using a UV spectrophotometer (HP8452A, H.P.).
  • The antagonist activities of 2-(phenylcarbonothioylthio) acetyl homoserine lactone were expressed as a specific luminescence; relative light units/OD600. Luminescence measurements for the culture solution containing no autoinducer and 2-(phenylcarbonothioylthio) acetyl homoserine lactone as a control experiment were performed.
  • FIG. 12 is a graph of an evaluation result for antagonist activity using E. coli DH5α co-transformed by two kinds of plasmid, pJN105L (LasR expression plasmid) and pSC11 (lasI::lacZ fusion reporter plasmid) in order to identify 2-(phenylcarbonothioylthio) acetyl homoserine lactone that could compete against autoinducer, N-3-oxododecanoyl homoserine lactone and repress gene expression.
  • To put it concretely, FIG. 12 illustrates RLU ratio of co-transformed E. coli DH5α grown for 2 hours in the presence of the culture solution containing no autoinducer and 2-(phenylcarbonothioylthio) acetyl homoserine lactone, or the culture solution containing 1 μM autoinducer, or the culture solution containing 1 μM autoinducer plus 1 μM, 2 μM, 10 μM of 2-(phenylcarbonothioylthio) acetyl homoserine lactone.
  • As shown in FIG. 12, in case 2-(phenylcarbonothioylthio) acetyl homoserine lactone was added in test tube containing N-3-oxododecanoyl homoserine lactone, it was examined the luminescence intensity per co-transformed E. coli DH5α decreased remarkably.
  • This means that 2-(phenylcarbonothioylthio) acetyl homoserine lactone has eminent quorum-sensing inhibiting ability to suppress gene expression and cell-cell communication of co-transformed E. coli DH5α or Pseudomonas aeruginosa.
  • In conclusion, it was examined that 2-(phenylcarbonothioylthio) acetyl homoserine lactone according to the present invention competes with the autoinductor to dock to the receptor protein of V. harveyi, A. tumefaciens A136 (pTiA136, pCF218, and pCF372), co-transformed E. coli DH5α, or Pseudomonas aeruginosa and block gene expression. Therefore, it was proven that 2-(phenylcarbonothioylthio) acetyl homoserine lactone of this invention has eminent quorum-sensing inhibiting ability against various bacteria.
  • Evaluation of Inhibiting Ability Against Biofilm Formation
  • Inhibiting ability against biofilm formation of quorum-sensing antagonist prepared according to exemplary embodiments 1˜7 was evaluated.
  • Specimen was set in nutrient flask containing 10 μmol/L of quorum-sensing antagonist prepared according to exemplary embodiments 1˜7 and P. aeruginosa which has strong adhesive character on surface. Numbers of adhesive P. aeruginosa on surface were counted after 4 hours. Distilled water was poured into nutrient flask instead of quorum-sensing antagonist as a comparison example 1. Numbers of adhesive P. aeruginosa on surface were counted after 4 hours. Moreover, autoinducer, N-3-oxododecanoylhomoserinelactone was filled into nutrient flask instead of quorum-sensing antagonist as a comparative example 2. Numbers of adhesive P. aeruginosa on surface were counted after 4 hours. Number of P. aeruginosa attached on surface after 4 hours and the percentage where the comparative example 2 was set at 100% are shown in Table 2.
  • TABLE 2
    Numbers of adhesive P.
    aeruginosa [CFU/cm2] %
    Example 1 3.0 × 107 40
    Example 2 3.8 × 107 51
    Example 3 2.5 × 107 33
    Example 4 1.0 × 107 13
    Example 5 2.3 × 107 30
    Example 6 1.5 × 107 20
    Example 7 2.3 × 107 30
    Comparative example 1 7.5 × 107 100
    Comparative example 2 1.4 × 108 190
  • As shown in Table 2, the extent of P. aeruginosa adhesion in nutrient flask containing QS antagonists prepared according to exemplary embodiments 1˜7 was much less than that of P. aeruginosa adhesion in nutrient flask containing distilled water and autoinducer prepared in comparative examples 1 and 2.
  • Specimens were set in nutrient flasks containing compounds according to the first exemplary embodiment 1, comparative examples 1 and 2. Biofilm was grown on the specimens for 48 hours. The specimen were examined using microscope. Furthermore, specimens were set in nutrient flasks containing compounds according to exemplary embodiment 6 and comparative example 2. Biofilm on the specimens was grown for 48 hours. The specimens were examined using a microscope.
  • FIG. 13 showed a microscopic image depicting P. aeruginosa attached on the specimen in nutrient flask containing QS antagonist according to exemplary embodiment 1 of the present invention. FIG. 14 showed a microscopic image depicting P. aeruginosa attached on the specimen in nutrient flask containing distilled water according to comparative example 1. FIG. 15 showed a microscopic image depicting P. aeruginosa attached on the specimen in nutrient flask containing autoinducer according to the comparative example 2. FIGS. 16˜18 showed microscopic images depicting P. aeruginosa attached on the specimens in nutrient flasks containing QS antagonists according to exemplary embodiment of the present invention. FIGS. 19˜21 showed microscopic images depicting P. aeruginosa attached on the specimens in nutrient flasks containing autoinducer according to the comparative example 2.
  • As shown in FIGS. 13˜21, the P. aeruginosa attached on specimen in the presence of QS antagonist according to the present invention was hardly observed. However, P. aeruginosa attached on specimen in the presence of distilled water or autoinducer was plentifully observed and initiated biofilm formation. Therefore, it was proven that the quorum sensing antagonist of this invention had the outstanding ability to prohibit biofilm formation.
  • The homoserine lactone derivatives according to the present invention have excellent efficacy as quorum sensing antagonists which inhibits cell-cell communications. The biofilm formation can be effectively prevented by blocking the gene expression of bacteria such as Gram-negative bacteria. Diseases can be also prevented by inhibiting the growth of bacteria. Especially, as the quorum sensing antagonist according to the present invention is designed to block the growth of bacteria by inhibiting the communication between bacteria, the propagation of bacteria can be prevented by using only the concentration of 1/100,000 of the conventional antibacterial agent to kill bacteria. Accordingly, the present invention can effectively be applied to home appliances or medical devices which require prevention of bacterial infection and biofilm formation.
  • While the disclosure ha been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the disclosure as defined by the appended claims.

Claims (12)

1. A quorum sensing antagonist of Formula 1 or 2.
Figure US20100292261A1-20101118-C00014
where n defines an integer from 0 to 10, R1 indicates hydrogen, carboxyl group, nitrogen-containing hetero aromatic hydrocarbon group, or carboxyalkylthio group which has a carbon number from 1 to 10, and R2 defines either an aromatic hydrocarbon group or a carboxyalkylthio group which has a carbon number from 1 to 10.
2. The quorum sensing antagonist of claim 1, having Formula 3 to 7.
Figure US20100292261A1-20101118-C00015
3. The quorum sensing antagonist of claim 1, having Formula 8 or 9.
Figure US20100292261A1-20101118-C00016
4. The quorum sensing antagonist of claim 1, wherein the antagonist blocks quorum sensing of Gram-negative bacteria.
5. A method for preventing a biofilm formation including a step of inhibiting biofilm formation on an object by contacting a quorum sensing antagonist expressed by formula 1 or 2 to the object.
Figure US20100292261A1-20101118-C00017
where n is an integer from 0 to 10, R1 indicates hydrogen, carboxyl group, nitrogen-containing hetero aromatic hydrocarbon group, or carboxyalkylthio group which has a carbon number from 1 to 10, R2 means either an aromatic hydrocarbon group or a carboxyalkylthio group which has a carbon number from 1 to 10.
6. The method of claim 5, wherein the quorum sensing antagonist is expressed by Formula 8.
Figure US20100292261A1-20101118-C00018
7. The method of claim 5, wherein the quorum sensing antagonist contacts bacteria using acylhomoserine lactone as an autoinducer.
8. The method of claim 5, wherein the quorum sensing antagonist contacts Gram-negative bacteria.
9. The method of claim 5, wherein the Gram-negative bacteria are selected from a group consisting of Vibrio harveyi, Agrobacterium tumefaciens, Pseudomonas aeruginosa, Escherichia coli, Aerononas hydrophila, Burkholderia cepacia, Chromobacterium violaceum, Enterobacter agglomerans, Erwinia stewarti, Nitrosomas europea, Photobacterium fischeri, Pseudomonas aureofaciens, Rhizobium leguminosarum, Serratia liquefaciens, and Vibrio Fischeri.
10. A method for reducing a bacterial contamination including a step of contacting to an object a quorum sensing antagonist of Formula 1 or 2.
Figure US20100292261A1-20101118-C00019
where n is an integer from 0 to 10, R1 is hydrogen, carboxyl group, nitrogen-containing hetero aromatic hydrocarbon group, or carboxyalkylthio group which has a carbon number from 1 to 10, R2 is either an aromatic hydrocarbon group or a carboxyalkylthio group which has a carbon number from 1 to 10.
11. The method of claim 10, wherein the quorum sensing antagonist is expressed by Formula 8.
Figure US20100292261A1-20101118-C00020
12. The method of claim 10, wherein the step of contacting the quorum sensing antagonist to the object comprises: a spray method; a dipping method; or a brush method using a solution containing the quorum sensing antagonist.
US12/067,731 2006-12-04 2007-05-03 Quorum sensing antagonist and method of reducing a bacterial contamination using the quorum sensing antagonist Active 2029-02-10 US8507554B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2006-0121650 2006-12-04
KR1020060121650A KR100841294B1 (en) 2006-12-04 2006-12-04 Homoserine lactone derivative for a quorum sensing antagonist and method of preventing a biofilm formation
PCT/KR2007/002169 WO2008069374A1 (en) 2006-12-04 2007-05-03 Quorum sensing antagonist, method of preventing a biofilm formation using the quorum sensing antagonist and method of reducing a bacterial contamination using the quorum sensing antagonist

Publications (2)

Publication Number Publication Date
US20100292261A1 true US20100292261A1 (en) 2010-11-18
US8507554B2 US8507554B2 (en) 2013-08-13

Family

ID=39492234

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/067,731 Active 2029-02-10 US8507554B2 (en) 2006-12-04 2007-05-03 Quorum sensing antagonist and method of reducing a bacterial contamination using the quorum sensing antagonist

Country Status (3)

Country Link
US (1) US8507554B2 (en)
KR (1) KR100841294B1 (en)
WO (1) WO2008069374A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10172362B2 (en) 2015-10-26 2019-01-08 The Penn State Research Foundation Biofilms, components and methods of use to reduce biofouling and contamination
CN115532295A (en) * 2022-09-27 2022-12-30 苏州大学 Application of nano material containing Zn-N-C active center in removing bacterial biofilm

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2342807B2 (en) * 2008-08-01 2011-03-18 Universidade De Santiago De Compostela USE OF TENACIBACULUM BATTERIES FOR QUORUM QUENCHING.
KR101672829B1 (en) 2014-07-30 2016-11-07 서울대학교산학협력단 Homoserine lactone derivatives, preparation method thereof and pharmaceutical composition for prevention or treatment of the periodontal diseases containing the same as an active ingredient
CN111615387B (en) 2019-05-14 2021-08-24 中国科学院微生物研究所 A method and composition for inhibiting biofilm formation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555356B2 (en) * 1995-03-23 2003-04-29 Unisearch Limited Methods for microbial regulation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395282B1 (en) 1998-04-16 2002-05-28 University Of Rochester Immunogenic conjugates of Gram-negative bacterial autoinducer molecules
US6756404B2 (en) * 1998-06-18 2004-06-29 The Research & Development Institute, Inc. Autoinducer compounds
US6337347B1 (en) * 1998-06-18 2002-01-08 The Research & Development Institute, Inc. Autoinducer compounds
GB0007588D0 (en) 2000-03-30 2000-05-17 Univ Nottingham N-Acyl homoserine lactones
US20070010477A1 (en) 2005-04-07 2007-01-11 Dolnick Bruce J Acyl homoserine lactones for inhibition of cell growth

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555356B2 (en) * 1995-03-23 2003-04-29 Unisearch Limited Methods for microbial regulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Al-Bataineh et al., "XPS characterization of the surface immobilization of antibacterial furanones", Surface Science, Vol. 600, No. 4, pages 952-962. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10172362B2 (en) 2015-10-26 2019-01-08 The Penn State Research Foundation Biofilms, components and methods of use to reduce biofouling and contamination
CN115532295A (en) * 2022-09-27 2022-12-30 苏州大学 Application of nano material containing Zn-N-C active center in removing bacterial biofilm

Also Published As

Publication number Publication date
KR100841294B1 (en) 2008-06-25
US8507554B2 (en) 2013-08-13
WO2008069374A1 (en) 2008-06-12
KR20080050844A (en) 2008-06-10

Similar Documents

Publication Publication Date Title
US8501969B2 (en) Covalent inhibition of bacterial quorum sensing
US8507554B2 (en) Quorum sensing antagonist and method of reducing a bacterial contamination using the quorum sensing antagonist
US9505773B2 (en) Rapamycin analogues and their pharmaceutical use
US8436083B2 (en) Multifunctional self-decontaminating surface coating
KR100841333B1 (en) Antibacterial homoserine lactone derivatives and method of removing bacteria using the same
US8940911B2 (en) Squarylated lactones inhibitors for bacterial biofilm formation
CN107674070A (en) A kind of cyano group imines thiazolidine furoyl amine compound and its preparation method and application
US20030130121A1 (en) Novel bacterial isolate and the preparation and use of its active metabolites
RU2760335C1 (en) Acinetobacter johnsonii a1 bacterial strain to increase grain yield
KR101672829B1 (en) Homoserine lactone derivatives, preparation method thereof and pharmaceutical composition for prevention or treatment of the periodontal diseases containing the same as an active ingredient
US10285978B2 (en) Heterocycle analogs of CAI-1 as agonists of quorum sensing in vibrio
JP2004527583A (en) Certain salts of discodermolide acid, pharmaceutical compositions containing them and their use in the treatment of tumors
KR100841289B1 (en) Antibacterial homoserine lactone derivatives and method of preventing a biofilm formation
KR20210024434A (en) Pharmaceutical composition for preventing or treating bacterial infection comprising of 4-Gingerol Analogs as active ingredients
CN100467021C (en) Use of novel 2-oxo-heterocyclic compounds and the pharmaceutical compositions comprising the same
US9457321B2 (en) Furanone containing polymer compound with bacteria-adhesion properties
KR102274050B1 (en) A novel antimicrobial and antiscutica composition
EP2337823B1 (en) Photo-crosslinkable antifouling compositions, films obtained from said compositions, and corresponding uses
KR20080060777A (en) Antibacterial amide derivative and method of preventing a biofilm formation using the same
Nizalapur Design, synthesis and biological evaluation of novel glyoxamide based antibacterial agents
Ojha Marine Microorganisms as Potential Source of Quorum-Sensing Inhibitory Compounds
CA2172854C (en) Antimicrobial indole derivatives
Ilangovan et al. Synthesis and Antimicrobial Activity of 2, 2-Bis (ethoxycarbonyl) vinyl-amine Derived Bioactive Compounds
KR20030066026A (en) Immunosuppressive agents

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEOUL NATIONAL UNIVERSITY INDUSTRY FOUNDATION, KOR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOON, JE-YONG;KIM, CHEOL-JIN;KIM, JAE-EUN;AND OTHERS;SIGNING DATES FROM 20080321 TO 20080324;REEL/FRAME:024787/0563

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 8