US20100287821A9 - Process for the manufacture of diesel range hydro-carbons - Google Patents

Process for the manufacture of diesel range hydro-carbons Download PDF

Info

Publication number
US20100287821A9
US20100287821A9 US11/477,921 US47792106A US2010287821A9 US 20100287821 A9 US20100287821 A9 US 20100287821A9 US 47792106 A US47792106 A US 47792106A US 2010287821 A9 US2010287821 A9 US 2010287821A9
Authority
US
United States
Prior art keywords
process according
oil
feed
fatty acids
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US11/477,921
Other versions
US8278492B2 (en
US20070006523A1 (en
Inventor
Jukka Myllyoja
Pekka Aalto
Elina Harlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neste Oyj
Original Assignee
Neste Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37617030&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20100287821(A9) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Neste Oyj filed Critical Neste Oyj
Priority to US11/477,921 priority Critical patent/US8278492B2/en
Assigned to NESTE OIL OYJ reassignment NESTE OIL OYJ ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AALTO, PEKKA, MYLLYOJA, JUKKA, HARLIN, ELINA
Publication of US20070006523A1 publication Critical patent/US20070006523A1/en
Publication of US20100287821A9 publication Critical patent/US20100287821A9/en
Application granted granted Critical
Publication of US8278492B2 publication Critical patent/US8278492B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • C10G3/46Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof in combination with chromium, molybdenum, tungsten metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/47Catalytic treatment characterised by the catalyst used containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/80Additives
    • C10G2300/802Diluents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the invention relates to an improved process for the manufacture of diesel range hydrocarbons from bio oils and fats with reduced hydrogen consumption. Particularly the invention relates to an improved process for the manufacture of diesel range hydrocarbons with high selectivity and which process yields a product with improved cold flow properties concurrently without decreasing diesel yield during isomerisation.
  • Undesired oxygen may be removed from fatty acids or esters by deoxygenation reactions.
  • the deoxygenation of bio oils and fats which mean oils and fats based on biological material, to hydrocarbons suitable as diesel fuel products, may be carried out in the presence of a catalyst under controlled hydroprocessing conditions, known as hydrotreating or hydrocracking processes.
  • hydrodeoxygenation oxogroups are reacted with hydrogen and removed through formation of water.
  • the hydrodeoxygenation reaction requires relatively high amounts of hydrogen. Due to the highly exothermic reactions the control of reaction heat is extremely important. Unnecessary high reaction temperature, insufficient control of reaction temperature or unnecessary low hydrogen availability in the feed stream cause increased formation of unwanted side reaction products and coking of catalyst. Unwanted side reactions, such as cracking, polymerisation, ketonisation, cyclisation and aromatisation decrease the yield and the properties of diesel fraction. Unsaturated feeds and free fatty acids in triglyceridic bio oils may also promote the formation of heavy molecular weight compounds.
  • U.S. Pat. No. 4,992,605 and U.S. Pat. No. 5,705,722 describe processes for the production of diesel fuel additives by conversion of bio oils into saturated hydrocarbons under hydroprocessing conditions with NiMo and CoMo catalysts.
  • the hydrotreatment operates at high temperatures of 350-450° C. and produces n-paraffins and other hydrocarbons.
  • the product has high cetane number but poor cold properties, which limit the amount of product that can be blended in conventional diesel fuel in summer time and prevent its use during winter time.
  • the formation of heavy compounds with a boiling point above 343° C. was observed, especially when a fatty acid fraction was used as a feed.
  • a lower limit of 350° C. for reaction temperature was concluded as a requirement for trouble-free operation.
  • a two-step process is disclosed in FI 100248 for producing middle distillates from vegetable oils by hydrogenating fatty acids or triglycerides of vegetable oil origin using commercial sulphur removal catalysts, such as NiMo and CoMo, to give n-paraffins, followed by isomerizing said n-paraffins using metal containing molecule sieves or zeolites to obtain branched-chain paraffins.
  • the hydrotreating was carried out at rather high reaction temperatures of 330-450° C., preferably 390° C. Hydrogenating fatty acids at those high temperatures leads to shortened catalyst life resulting from coking and formation of side products.
  • EP 1 396 531 describes a process containing at least two steps, the first one being a hydrodeoxygenation step and the second one being a hydroisomerisation step utilizing counter-current flow principle, and biological raw material containing fatty acids and/or fatty acid esters serving as the feedstock.
  • the process comprises an optional stripping step.
  • FR 2,607,803 describes a process for hydrocracking of vegetable oils or their fatty acid derivatives under elevated pressure to give hydrocarbons and to some extent acid.
  • the catalyst contains metal dispersed on a support.
  • a high reaction temperature of 370° C. did not result in complete conversion and high selectivity of n-paraffins.
  • the product formed contained also some intermediate fatty acid compounds.
  • Water formation during hydrotreatment mainly results from deoxygenation of triglyceride oxygen by the means of hydrogen (hydrodeoxygenation).
  • Deoxygenation using hydrodeoxygenation conditions is to some extent accompanied by decarboxylation reaction path, described below as reaction A, and decarbonylation reaction path (reaction B1 and B2).
  • Deoxygenation of fatty acid derivatives by decarboxylation and/or decarbonylation reactions forms carbon oxides (CO 2 and CO) and aliphatic hydrocarbon chains with one carbon atom less than in the original fatty acid molecule.
  • water-gas-shift reaction may balance the concentrations of CO and CO 2 (reaction E).
  • Methanation reaction uses hydrogen and forms H 2 O and methane if it is active during hydrotreatment conditions (reaction D).
  • decarboxylation varies greatly with the type of carboxylic acid or derivative thereof used as the starting material.
  • Alpha-hydroxy, alpha-carbonyl and dicarboxylic acids are activated forms and they are more easily deoxygenated by decarb-reactions, which mean here decarboxylation and/or decarbonylation.
  • Linear aliphatic acids are not activated this way and generally they are difficult to deoxygenate through the decarb-reaction path and they need much more severe reaction conditions.
  • U.S. Pat. No. 4,554,397 discloses a process for the manufacture of linear olefins from saturated fatty acids or esters, suggesting a catalytic system consisting of nickel and at least one metal selected from the group consisting of lead, tin and germanium. With other catalysts, such as Pd/C, low catalytic activity and cracking to saturated hydrocarbons, or formation of ketones when Raney-Ni was used, were observed.
  • Bio raw materials often contain several impurities, such as metal compounds, organic nitrogen, sulphur and phosphorus compounds, which are known catalyst inhibitors and poisons inevitably reducing the service life of catalysts and necessitating more frequent catalyst regeneration or change.
  • impurities such as metal compounds, organic nitrogen, sulphur and phosphorus compounds, which are known catalyst inhibitors and poisons inevitably reducing the service life of catalysts and necessitating more frequent catalyst regeneration or change.
  • Metals in bio oils/fats inevitable build up on catalyst surface and change the activity of catalyst. Metals can promote some side reactions and blocking of active sites of catalysts typically decreases the activity.
  • Fatty acid composition, size and saturation degree of the fatty acid may vary considerably in feedstock of different origin. Melting point of bio oil or fat is mainly consequence of saturation degree. Fats are more saturated than liquid oils and in this respect need less hydrogen for hydrogenation of double bonds. Double bonds in fatty acid chains contribute also to different kinds of side reactions, such as oligomerisation/polymerization, cyclisation/aromatisation and cracking reactions, which deactivate catalyst, increase hydrogen consumption and reduce diesel yield.
  • Diglycerides and monoglycerides are surface-active compounds, which can form emulsions and make liquid/liquid separations of water and oil more difficult.
  • Bio oils and fats can also contain other glyceride-like surface-active impurities like phospholipids, suck as lecithin, which have phosphorus in their structures.
  • Phospholipids are gum like materials, which can be harmful for catalysts.
  • Natural oils and fats also contain non-glyceride components. These are among others waxes, sterols, tocopherols and carotenoids, some metals and organic sulphur compounds as well as organic nitrogen compounds. These compounds can be harmful for catalysts or pose other problems in processing.
  • Plant oils/fats and animal oils/fat may contain free fatty acids, which are formed during processing of oils and fats through hydrolysis of triglycerides.
  • Free fatty acids are a class of problematic components in bio oils and fats, their typical content being between 0 and 30% by weight. Free fatty acids are corrosive in their nature, they can attack the materials of the process unit or catalyst and they can promote side reactions like formation of metal carboxylates in the presence of metal impurities. Due to the free fatty acids contained in bio oils and fats, the formation of heavy molecular weight compounds is significantly increased when compared to triglyceridic bio-feedstock having only low amounts of free fatty acids, typically below 1% by weight.
  • An object of the invention is an improved process for the manufacture of diesel range hydrocarbons from bio oils and fats with reduced hydrogen consumption.
  • a further object of the invention is an improved process for the manufacture of diesel range hydrocarbons from bio oils and fats with high selectivity and which process yields a product with improved cold flow properties concurrently without decreasing diesel yield during isomerisation.
  • a further object of the invention is an improved process for the manufacture of high quality diesel range hydrocarbons from bio oils and fats with decreased hydrogen consumption and high diesel yield.
  • hydroprocessing is understood as catalytic processing of organic material by all means of molecular hydrogen.
  • hydrotreatment is understood as a catalytic process, which removes oxygen from organic oxygen compounds as water (hydrodeoxygenation, HDO), sulphur from organic sulphur compounds as dihydrogen sulphide (H 2 S) (hydrodesulphurisation, HDS), nitrogen from organic nitrogen compounds as ammonia (NH 3 ) (hydrodenitrogenation, HDN) and halogens, such as chloride from organic chloride compounds as hydrochloric acid (HCl) (hydrodechlorination, HDCl), typically under the influence of a sulphided NiMo or sulphided CoMo catalysts.
  • H 2 S dihydrogen sulphide
  • HDS nitrogen from organic nitrogen compounds as ammonia
  • halogens such as chloride from organic chloride compounds as hydrochloric acid (HCl) (hydrodechlorination, HDCl), typically under the influence of a sulphided NiMo or sulphided CoMo catalysts.
  • deoxygenation is understood to mean removal of oxygen from organic molecules, such as fatty acid derivatives, alcohols, ketones, aldehydes or ethers by any means previously described.
  • hydrodeoxygenation (HDO) of triglycerides or other fatty acid derivatives or fatty acids is understood to mean the removal of carboxyl oxygen as water by the means of molecular hydrogen under the influence of a catalyst.
  • decarboxylation and/or decarbonylation of triglycerides or other fatty acid derivatives or fatty acids is understood to mean removal of carboxyl oxygen as CO 2 (decarboxylation) or as CO (decarbonylation) with or without the influence of molecular hydrogen.
  • Decarboxylation and/or decarbonylation reactions are referred to as decarb-reactions.
  • hydrocracking is understood as catalytic decomposition of organic hydrocarbon materials using molecular hydrogen at high pressures.
  • hydrogenation means saturation of carbon-carbon double bonds by the means of molecular hydrogen under the influence of a catalyst.
  • n-paraffins mean normal alkanes or linear alkanes that do not contain side chains.
  • isoparaffins means alkanes having one or more C 1 -C 9 , typically C 1 -C 2 alkyl side chains, typically mono-, di-, tri- or tetramethylalkanes.
  • the feed (total feed) to the hydrotreatment step is to be understood comprising fresh feed and optionally at least one dilution agent.
  • the present invention relates to an improved process comprising a hydrotreatment step and an isomerisation step, for the manufacture of diesel range hydrocarbons from renewable sources like bio oils and fats, such as plant oils/fats and animal and fish oils/fats, particularly C 12 -C 16 fatty acids and/or derivatives thereof in the presence of sulphur.
  • the invention relates to hydrotreating of the feed comprising triglycerides, fatty acids and derivatives of fatty acids and particularly C 12 -C 16 fatty acids and/or derivatives thereof or combinations of thereof, into n-paraffins with reduced hydrogen consumption during hydrotreating, in the presence of sulphur, followed by converting the n-paraffins into diesel range branched alkanes using isomerisation with high diesel yield.
  • the hydrocarbon oil product formed via this method is a high quality diesel component.
  • the feed is contacted with a sulphided hydrotreatment catalyst in the presence of sulphur, followed by the isomerisation step with an isomerisation catalyst.
  • the bio oil and/or fat used as the fresh feed in the process of the present invention originates from renewable sources, such as fats and oils from plants and/or animals and/or fish and compounds derived from them.
  • the basic structural unit of a typical plant or vegetable or animal oil/fat useful as the feedstock is a triglyceride, which is a triester of glycerol with three fatty acid molecules, having the structure presented in the following formula I:
  • R 1 , R 2 and R 3 are alkyl chains. Fatty acids found in natural triglycerides are almost solely fatty acids of even carbon number. Therefore R 1 , R 2 , and R 3 typically are C 5 -C 23 alkyl groups, mainly C 11 -C 19 alkyl groups and most typically C 15 or C 17 alkyl groups. R 1 , R 2 , and R 3 may contain carbon-carbon double bonds. These alkyl chains can be saturated, unsaturated or polyunsaturated. Suitable bio oils are plant and vegetable oils and fats, animal fats, fish oils, and mixtures thereof containing fatty acids and/or fatty acid esters.
  • Examples of said materials are wood-based and other plant-based and vegetable-based fats and oils such as rapeseed oil, colza oil, canola oil, tall oil, sunflower oil, soybean oil, hempseed oil, olive oil, linseed oil, mustard oil, palm oil, peanut oil, castor oil, coconut oil, as well as fats contained in plants bred by means of gene manipulation, animal-based fats such as lard, tallow, train oil, and fats contained in milk, as well as recycled fats of the food industry and mixtures of the above.
  • rapeseed oil colza oil
  • canola oil tall oil
  • sunflower oil soybean oil
  • hempseed oil olive oil
  • linseed oil mustard oil
  • palm oil peanut oil
  • castor oil coconut oil
  • a bio oil or fat suitable as feedstock, comprises C 12 -C 24 fatty acids, derivatives thereof such as anhydrides or esters of fatty acids as well as triglycerides of fatty acids or combinations of thereof.
  • the fatty acids or fatty acid derivatives, such as esters may be produced via hydrolysis of bio oils or by their fractionalization or esterification reactions of triglycerides.
  • the fresh feed contains at least 20%, preferably at least 30% and most preferably at least 40% by weight of triglyceride C 12 -C 16 fatty acids or C 12 -C 16 fatty acid esters or C 12 -C 16 fatty acids or combinations of thereof.
  • this kind of feed are palm oils and animal fats containing lower carbon numbers fatty acids, which are typically more saturated than C 18 fatty acids and their decarboxylation tendency is lower than that of higher carbon number fatty acids during hydrodeoxygenation.
  • the fresh feed may also comprise feedstock of biological origin and a hydrocarbon or hydrocarbons.
  • C 12 -C 16 fatty acids can be bound to glycerol as triglycerides or other esters.
  • Animal fats and palm oil triglycerides contain significant amounts of C 16 fatty acids, typically 15-45 wt-% and especially palmitic acid.
  • Other vegetable triglycerides contain only 1-13 wt-% C 16 fatty acids, for example rapeseed oil only 1-5 wt-%.
  • the feed shall comply with the following requirements:
  • the amount of alkaline and alkaline earth metals, calculated as elemental alkaline and alkaline earth metals, in the feed is below 10, preferably below 5 and most preferably below 1 w-ppm.
  • the amount of other metals, calculated as elemental metals, in the feed is below 10, preferably below 5 and most preferably below 1 w-ppm.
  • the amount of phosphorus, calculated as elemental phosphorus is below 30, preferably below 15 and most preferably below 5 w-ppm.
  • the feedstock such as crude plant oil or animal fat
  • the feedstock is not suitable as such for processing because of high impurity content and thus the feedstock is preferably purified using suitable one or more conventional purification procedures, before introducing it to the hydrotreating step of the process. Examples of some conventional procedures are provided in the following.
  • Degumming of plant oils/fats and animal oils/fats means removal of phosphorus compounds, such as phospholipids.
  • Solvent extracted vegetable oils contain often significant amounts of gums, typically 0.5-3% by weight, which are mostly phosphatides (phospholipids) and therefore a degumming stage is needed for crude plant oils and animal fats in order to remove phospholipids and metals present in crude oils and fats.
  • Iron and also other metals may be present in the form of metal-phosphatide complexes. Even a trace amount of iron is capable of catalysing oxidation of the oil or fat.
  • Degumming is performed by washing the feed at 90-105° C., 300-500 kPa(a), with H 3 PO 4 , NaOH and soft water and separating the formed gums. A major amount of metal components, which are harmful for the hydrotreatment catalyst, are also removed from the feedstock during the degumming stage. The moisture content of the degummed oil is reduced in dryer at 90-105° C., 5-50 kPa(a).
  • the amount of free fatty acids present in vegetable oils is typically 1-5 wt % and in animal fat 10-25 wt-%.
  • High amounts of free fatty acids in a feedstock may be reduced using a deacidification stage, which may be performed for example by steam stripping.
  • a feedstock, which is optionally degummed is typically first degassed under 5-10 kPa(a) a pressure at a temperature of approx. 90° C. Thereafter the obtained oil is heated to approx. 250-280° C., 5-10 kPa(a) and directed to a stripping column, where life steam strips at 230-260° C. the free fatty acids and deodorizes the oil under vacuum.
  • the fatty acid fraction is withdrawn from the column overhead.
  • a feedstock which is optionally degummed or refined in another conventional way, may be bleached.
  • the degummed or refined feedstock is heated and mixed with natural or acid-activated bleaching clay.
  • Bleaching removes various impurity traces left from other pretreatment steps like degumming, such as chlorophyll, carotenoids, phospholipids, metals, soaps and oxidation products.
  • Bleaching is typically carried out under vacuum to minimize possible oxidation.
  • Bleaching is used to reduce the color pigments in order to produce an oil of acceptable color and to reduce the oxidation tendency of oil.
  • the feed to the hydrotreating unit comprises fresh feed and optionally at least one diluting agent.
  • the diluting agent can be a hydrocarbon of biological origin and/or non biological origin.
  • the feed comprises additionally at least one diluting agent it is preferable that the feed contains less than 20 wt-% of fresh feed.
  • the diluting agent can also be recycled product from the process (product recycle) and then the diluting agent/fresh feed-ratio is 5-30:1, preferably 10-30:1 and most preferably 12-25:1.
  • the total feed comprising fresh feed containing at least 20%, preferably at least 30% and most preferably at least 40% by weight of triglyceride C 12 -C 16 fatty acids or C 12 -C 16 fatty acid esters or C 12 -C 16 fatty acids or combinations of thereof, is hydrotreated in the presence of hydrogen with a catalyst at hydrotreating conditions in the presence of 50-20000 w-ppm, preferably 1000-8000 w-ppm, most preferably 2000-5000 w-ppm of sulphur in the total feed, calculated as elemental sulphur.
  • fatty acids, triglycerides and fatty acid derivatives are deoxygenated, denitrogenated, desulphurisated and dechlorinated.
  • known hydrogenation catalysts containing metals from Group VIII and/or VIB of the Periodic System may be used.
  • the hydrogenation catalysts are supported Pd, Pt, Ni, NiMo or a CoMo catalysts, the support being alumina and/or silica, as described for instance in FI 100248.
  • NiMo/Al 2 O 3 and CoMo/Al 2 O 3 catalysts are used.
  • the pressure range can be varied between 2 and 15 MPa, preferably between 3 and 10 MPa and most preferably between 4 and 8 MPa, and the temperature between 200 and 400° C., preferably between 250 and 350° C. and most preferably 280-345° C.
  • deoxygenation of starting materials originating from renewable sources can be controlled between two partially alternative reaction routes: hydrodeoxygenation and decarboxylation and/or decarbonylation (decarb-reactions).
  • the selectivity of decarb-reactions and the deoxygenation through decarb-reactions can be promoted during hydrotreating over the hydrotreatment catalyst, by using sulphur content of 50-20000 w-ppm in the total feed.
  • the specific sulphur content in the feed is able to double the extent of n-paraffins formed by removal of COx.
  • Complete deoxygenation of triglycerides by decarb-reactions can theoretically lower the consumption of hydrogen about 60% (max) compared with pure deoxygenation by hydrogen as can be seen in Table 3.
  • At least one organic or inorganic sulphur compound may be fed along with hydrogen or with the feed to achieve the desired sulphur content.
  • the inorganic sulphur compound can be for example H 2 S or elemental sulphur or the sulphur compound may be an easily decomposable organic sulphur compound such as dimethyl disulphide, carbon disulphide and butyl thiol or a mixture of easily decomposable organic sulphur compounds. It is also possible to use refinery gas or liquid streams containing decomposable sulphur compounds.
  • n-C 15 and n-C 16 paraffins are formed, with melting points of 9.9° C. and 18.2° C. respectively.
  • the conversion of other vegetable oils like rapeseed oil and soybean oil produces almost totally n-C 17 and n-C 18 paraffins with significantly higher melting points of 22.0 and 28.2° C.
  • Hydrodeoxygenation of triglycerides facilitates controlled decomposition of the triglyceride molecule contrary to uncontrolled cracking. Double bonds are also hydrogenated during the controlled hydrotreatment. Light hydrocarbons and gases formed, mainly propane, water, CO2, CO, H 2 S and NH 3 , are removed from hydrotreated product.
  • the fresh feed comprises more than 5 wt-% free fatty acids
  • diluting agent or product recycle in the process as described in FIG. 1 , wherein an improved reactor configuration is presented, particularly for the control of the increase of temperature over catalyst bed and side reaction formation.
  • a hydrotreatment process configuration is provided, comprising one or more catalyst beds in series, hydrotreated product recycle introduction on the top of the first catalyst bed and fresh feed, quench liquid and hydrogen introduction on top of each catalyst beds. This results in improved control of the reaction temperature in the catalyst beds and hence diminishes undesired side reactions.
  • the hydrotreatment reactor 100 comprises two catalyst beds 10 and 20 .
  • Fresh feed 11 is introduced as streams 12 and 13 on the catalyst beds 10 and 20 , respectively, and hydrogen as stream 22 and 23 on the catalyst beds 10 and 20 , respectively.
  • the fresh feed stream 12 is first mixed with the hydrotreated product recycle stream 41 and quench liquid stream 43 and the resulting mixture 31 , diluted in the fresh feed concentration, is then introduced on the catalyst bed 10 .
  • required amount of sulphur make up is added to the fresh feed stream 11 via stream 15 .
  • fatty acids and fatty acid derivatives of the fresh feed stream 12 are converted to the corresponding reaction products.
  • a two-phase stream 32 is withdrawn from the bottom of the catalyst bed 10 and is mixed with the fresh feed stream 13 , quench liquid stream 44 and the hydrogen stream 23 .
  • the formed vapor-liquid mixture 33 diluted in the fresh feed concentration, is then introduced on the catalyst bed 20 at reduced temperature due to cooling effect of the hydrogen, quench liquid and fresh feed, passed through the catalyst bed 20 and finally withdrawn from the catalyst bed as a product stream 34 .
  • the stream 34 is separated in to a vapor stream 35 and liquid stream 36 in the high temperature separator 101 .
  • Vapor stream 35 is rich in hydrogen and is directed to further treatment.
  • Part of the liquid stream 36 is returned to the reactor 100 as recycle stream 40 , which is further divided to dilution stream 41 and total quench liquid stream 42 .
  • the quench liquid stream 42 is cooled in the heat exchanger 102 to provide adequate cooling effect on the top of the catalyst beds 10 and 20 .
  • Hydrotreated product stream 51 is directed from the hydrotreatment step to further processing.
  • the catalyst beds 10 and 20 may be located in the same pressure vessel or in separate pressure vessels. In the embodiment where the catalyst beds are in the same pressure vessels the hydrogen streams 22 and 23 may alternatively be introduced on the catalyst bed 10 and then be passed through the catalyst beds 10 and 20 . In the embodiment where the catalyst beds are in separate pressure vessels, the catalyst beds may operate in parallel mode with separate dilution streams, hydrogen streams and quench liquid streams.
  • the number of catalyst beds may be one or two or more than two.
  • the sulphur make up to the hydrotreatment step may be introduced with the fresh feed stream 11 .
  • required amount of sulphur may be fed with the hydrogen streams 22 and 23 as gaseous sulphur component such as hydrogen sulphide.
  • Hydrogen is fed to the hydrotreating reactor in excess of the theoretical hydrogen consumption.
  • triglyceride oils, fatty acids and derivatives thereof are almost theoretically converted to n-paraffins without or almost without side reactions.
  • propane is formed from the glycerol part of the triglycerides, water and CO and/or CO 2 from carboxylic oxygen, H 2 S from organic sulphur compounds and NH 3 from organic nitrogen compounds.
  • the temperature needed for reactions to start up is achieved in the beginning of each catalyst bed, the temperature increase in the catalyst beds is limited, harmful and partially converted product intermediates can be avoided and the catalyst life is extended considerably.
  • the temperature at the end of the catalyst bed is controlled by net heat of reactions and to the extent of diluting agent used.
  • Diluting agent may be any hydrocarbon available, bio-origin or non bio-origin. It can also be product recycle. If diluting agent is used, fresh feed content from total feed is less than 20 wt-%. If the product recycle is used, product recycle/fresh feed ratio is 5-30:1, preferably 10-30:1, most preferably 12-25:1. After the hydrotreatment step, the product is subjected to an isomerisation step.
  • Isoparaffins may typically have mono-, di-, tri- or tetramethyl branches.
  • the product obtained from the hydrotreatment step is isomerised with a catalyst under isomerisation conditions.
  • the feed into the isomerisation reactor is a mixture of pure n-paraffins and the composition of the feed can be predicted from the fatty acid distribution of each individual bio oil used as feed to the hydrotreatment.
  • the isomerisation step may comprise an optional purification step, wherein the reaction product from the hydrotreatment step may be purified using a suitable method such as stripping with water vapour or a suitable gas such as light hydrocarbon, nitrogen or hydrogen. Preferably acid gases and water impurities are removed as completely as possible before the hydrocarbons are contacted with the isomerization catalyst.
  • a suitable method such as stripping with water vapour or a suitable gas such as light hydrocarbon, nitrogen or hydrogen.
  • a suitable gas such as light hydrocarbon, nitrogen or hydrogen.
  • acid gases and water impurities are removed as completely as possible before the hydrocarbons are contacted with the isomerization catalyst.
  • the pressure varies in the range of 2-15 MPa, preferably in the range of 3-10 MPa and the temperature varies between 200 and 500° C., preferably between 280 and 400° C.
  • isomerisation catalysts known in the art may be used. Suitable isomerisation catalysts contain a molecular sieve and/or a metal selected from Group VIII of the Periodic Table and/or a carrier. Preferably, the isomerisation catalyst contains SAPO-11 or SAPO-41 or ZSM-22 or ZSM-23 or ferrierite and Pt, Pd or Ni and Al 2 O 3 or SiO 2 . Typical isomerisation catalysts are, for example, Pt/SAPO-11/Al 2 O 3 , Pt/ZSM-22/Al 2 O 3 , Pt/ZSM-23/Al 2 O 3 and Pt/SAPO-11/SiO 2 . Most of these catalysts require the presence of hydrogen to reduce the catalyst deactivation.
  • the isomerised diesel product consists mainly of branched hydrocarbons and also linear hydrocarbons and it has a boiling range of 180-350° C. Additionally some gasoline and gas may be obtained.
  • the process according to the invention provides a way to reduce the formation of higher molecular weight compounds during the hydrotreatment of the fresh feed, which may contain fatty acids and derivatives thereof.
  • the process according to the invention provides selective manufacture of diesel range hydrocarbons from bio oils and fats with high diesel yield and without significant side-reactions.
  • Branched hydrocarbons can be manufactured from plant and vegetable oils and fats as well as animal and fish oils and fats using promoted assistance of decarb-reactions during hydrodeoxygenation and therefore the consumption of hydrogen is decreased by 20-60%, typically 20-40%.
  • feeds having a high content of C 12 -C 16 fatty acids and/or their derivatives decreases hydrogen consumption in the isomerisation step and also improve cold properties of diesel fuel.
  • the yield of diesel range hydrocarbons is especially increased during isomerisation of n-paraffins due to the lower cracking of n-paraffins formed from the fatty acid derivative feed to hydrotreatment.
  • the C 11 -C 16 n-paraffins formed during hydrotreatment need lower conversion and lower reaction temperature during isomerisation in order to maintain same cold properties of diesel and thus significantly lower the extent of cracking and coke formation compared to heavier n-paraffins.
  • improved cold properties can be achieved at the same reaction temperature without yield loss.
  • the stability of the catalysts during hydrotreating and isomerisation is increased.
  • Palm oil containing 0.3 area-% of free fatty acids was used as the fresh feed, along with product recycle 5:1 in the presence of hydrogen.
  • the content of triglyceride C 12 -C 16 fatty acids in the fresh feed was 58.3 wt-%.
  • the total feed contained alkaline and alkaline earth metals, calculated as elemental alkaline and alkaline earth metals in a amount of below 10 w-ppm.
  • the amount of other metals, calculated as elemental metals, in the feed was below 10 w-ppm.
  • the amount of phosphorus, calculated as elemental phosphorus was below 30 w-ppm.
  • Palm oil containing 44.8 wt-% of triglyceride C 12 -C 16 fatty acids was used in the fresh feed.
  • Dimethyl disulphide was added to palm oil to obtain sulphur content of about 600 w-ppm in the feed, calculated as elemental sulphur.
  • the feed purity was same as in example 1, but the amount of free fatty acids was 0.2 area-%. No diluting agent was used.
  • the feed was hydrotreated at 305° C. in the presence of hydrogen, reactor pressure was 5 MPa and space velocity was 2 g/g for fresh feed.
  • the products contained mainly n-paraffins.
  • the n-paraffin feeds were isomerised at 317° C., 4 MPa and WHSV was 3 l/h in presence of hydrogen.
  • the catalyst (A) contained Pt, SAPO-11 and an alumina support.
  • the amount of hydrocarbons >C10 was 97 wt-% in the product.
  • the cloud point of the liquid product was ⁇ 22° C. Results of analysis of the product are provided in table 4.
  • Rapeseed oil contained of 4.5 wt-%. of triglyceride C 12 -C 16 fatty acids. Rapeseed oil was hydrotreated and isomerised at the same reaction conditions as described above. The amount of hydrocarbons >C10 was 96 wt-% in the product. The cloud point of the liquid product was ⁇ 15° C. Results of analysis of the product are provided in table 4.
  • Animal fat containing 30 wt-% of triglyceride C12-C16 fatty acids was used as fresh feed.
  • the feed contained alkaline and alkaline earth metals, calculated as elemental alkaline and alkaline earth metals in the amount of below 10 w-ppm.
  • the amount of other metals, calculated as elemental metals, in the feed was below 10 w-ppm.
  • the amount of phosphorus, calculated as elemental phosphorus was below 30 w-ppm.
  • Dimethyl disulphide was added to animal fat to obtain sulphur content of about 100 w-ppm in the feed.
  • Fresh feed contained free fatty acids 0.6 area-%.
  • the feed was hydrotreated at 300° C.
  • reactor pressure was 5 MPa and space velocity was 2 g/g for fresh feed without any diluting agent.
  • the products contained mainly n-paraffins.
  • the n-paraffin feeds were isomerised at 316° C., 4 MPa and WHSV was 1.5 l/h in the presence of hydrogen.
  • the catalyst (B) contained Pt, SAPO-11 and an alumina support.
  • the amount of hydrocarbons >C10 was 95 wt-% in the product.
  • the cloud point of the liquid product was ⁇ 20° C.
  • Rapeseed oil was hydrotreated and isomerisated at the same reaction conditions as described above. Rapeseed oil contained 4.5 wt-% of triglyceride C12-C16 fatty acids. In the isomerised product, the amount of hydrocarbons >C10 was 95 wt-%. The cloud point of the liquid product was ⁇ 14° C.
  • the hydrotreated animal fat obtained in Example 4 was isomerised at 312° C., 4 MPa and WHSV was 1.5 l/h in the presence of hydrogen with catalyst B. This yielded a liquid product with a cloud point of ⁇ 13° C. The amount of hydrocarbons >C10 was now 98 wt-%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fats And Perfumes (AREA)

Abstract

The invention relates to a process for the manufacture of diesel range hydrocarbons wherein a feed comprising fresh feed is hydrotreated in a hydrotreating step and isomerised in an isomerisation step and the fresh feed contains at least 20% by weight triglyceride C12-C16 fatty acids or C12-C16 fatty acid esters or C12-C16 fatty acids or combinations of thereof and feed contains 50-20000 w-ppm sulphur calculated as elemental sulphur.

Description

    FIELD OF THE INVENTION
  • The invention relates to an improved process for the manufacture of diesel range hydrocarbons from bio oils and fats with reduced hydrogen consumption. Particularly the invention relates to an improved process for the manufacture of diesel range hydrocarbons with high selectivity and which process yields a product with improved cold flow properties concurrently without decreasing diesel yield during isomerisation.
  • BACKGROUND OF THE INVENTION
  • Environmental interests and an increasing demand for diesel fuel, especially in Europe, encourage fuel producers to employ more intensively renewable sources available. In the manufacture of diesel fuel based on biological raw materials the main interest has concentrated on vegetable oils and animal fats comprising triglycerides of fatty acids. Long, straight and mostly saturated hydrocarbon chains of fatty acids correspond chemically to the hydrocarbons present in diesel fuels. However, neat vegetable oils display inferior properties, particularly extreme viscosity and poor stability and therefore their use in transportation fuels is limited.
  • Conventional approaches for converting vegetable oils or other fatty acid derivatives into liquid fuels comprise processes such as transesterification, catalytic hydrotreatment, hydrocracking, catalytic cracking without hydrogen and thermal cracking. Typically triglycerides, forming the main component in vegetable oils, are converted into the corresponding esters by the transesterification reaction with an alcohol in the presence of catalysts. The obtained product is a fatty acid alkyl ester, most commonly fatty acid methyl ester (FAME). Poor low-temperature properties of FAME however limit its wider use in regions with colder climatic conditions. Poor cold flow properties are a result of the straight chain nature of the FAME molecule and thus double bonds are needed in order to create even bearable cold flow properties. Carbon-carbon double bonds and ester groups however decrease the stability of fatty acid esters, which is a major disadvantage of transesterification technology. Further, Schmidt, K., Gerpen J. V.: SAE paper 961086 teaches that the presence of oxygen in esters results in undesired and higher emissions of NOx in comparison to conventional diesel fuels.
  • Undesired oxygen may be removed from fatty acids or esters by deoxygenation reactions. The deoxygenation of bio oils and fats, which mean oils and fats based on biological material, to hydrocarbons suitable as diesel fuel products, may be carried out in the presence of a catalyst under controlled hydroprocessing conditions, known as hydrotreating or hydrocracking processes.
  • During hydrodeoxygenation oxogroups are reacted with hydrogen and removed through formation of water. The hydrodeoxygenation reaction requires relatively high amounts of hydrogen. Due to the highly exothermic reactions the control of reaction heat is extremely important. Unnecessary high reaction temperature, insufficient control of reaction temperature or unnecessary low hydrogen availability in the feed stream cause increased formation of unwanted side reaction products and coking of catalyst. Unwanted side reactions, such as cracking, polymerisation, ketonisation, cyclisation and aromatisation decrease the yield and the properties of diesel fraction. Unsaturated feeds and free fatty acids in triglyceridic bio oils may also promote the formation of heavy molecular weight compounds.
  • U.S. Pat. No. 4,992,605 and U.S. Pat. No. 5,705,722 describe processes for the production of diesel fuel additives by conversion of bio oils into saturated hydrocarbons under hydroprocessing conditions with NiMo and CoMo catalysts. The hydrotreatment operates at high temperatures of 350-450° C. and produces n-paraffins and other hydrocarbons. The product has high cetane number but poor cold properties, which limit the amount of product that can be blended in conventional diesel fuel in summer time and prevent its use during winter time. The formation of heavy compounds with a boiling point above 343° C. was observed, especially when a fatty acid fraction was used as a feed. A lower limit of 350° C. for reaction temperature was concluded as a requirement for trouble-free operation.
  • A two-step process is disclosed in FI 100248 for producing middle distillates from vegetable oils by hydrogenating fatty acids or triglycerides of vegetable oil origin using commercial sulphur removal catalysts, such as NiMo and CoMo, to give n-paraffins, followed by isomerizing said n-paraffins using metal containing molecule sieves or zeolites to obtain branched-chain paraffins. The hydrotreating was carried out at rather high reaction temperatures of 330-450° C., preferably 390° C. Hydrogenating fatty acids at those high temperatures leads to shortened catalyst life resulting from coking and formation of side products.
  • EP 1 396 531 describes a process containing at least two steps, the first one being a hydrodeoxygenation step and the second one being a hydroisomerisation step utilizing counter-current flow principle, and biological raw material containing fatty acids and/or fatty acid esters serving as the feedstock. The process comprises an optional stripping step.
  • Cracking is significant side reaction in isomerisation of n-paraffins. Cracking increases with higher isomerisation conversion (more severe reaction conditions) and decrease the yield of diesel. The severity of isomerisation conditions (isomerisation conversion) controls also the amount of methyl branches formed and their distance from each other and therefore cold properties of bio diesel fraction produced.
  • FR 2,607,803 describes a process for hydrocracking of vegetable oils or their fatty acid derivatives under elevated pressure to give hydrocarbons and to some extent acid. The catalyst contains metal dispersed on a support. A high reaction temperature of 370° C. did not result in complete conversion and high selectivity of n-paraffins. The product formed contained also some intermediate fatty acid compounds.
  • Water formation during hydrotreatment mainly results from deoxygenation of triglyceride oxygen by the means of hydrogen (hydrodeoxygenation). Deoxygenation using hydrodeoxygenation conditions is to some extent accompanied by decarboxylation reaction path, described below as reaction A, and decarbonylation reaction path (reaction B1 and B2). Deoxygenation of fatty acid derivatives by decarboxylation and/or decarbonylation reactions forms carbon oxides (CO2 and CO) and aliphatic hydrocarbon chains with one carbon atom less than in the original fatty acid molecule. Thereafter water-gas-shift reaction may balance the concentrations of CO and CO2 (reaction E). Methanation reaction uses hydrogen and forms H2O and methane if it is active during hydrotreatment conditions (reaction D). Hydrogenation of fatty acids gives aliphatic hydrocarbons and water (reaction C). Reaction schemes A-E are described below. Decarboxylation : C 17 H 35 COOH C 17 H 36 + CO 2 ( A ) Decarbonylation : C 17 H 35 COOH ÷ H 2 C 17 H 36 + CO + H 2 O ( B 1 ) C 17 H 35 COOH C 17 H 34 + CO + H 2 O ( B 2 ) Hydrogenation : C 17 H 35 COOH + 3 H 2 C 18 H 38 + 2 H 2 O ( C ) Methanation : CO + 3 H 2 CH 4 + H 2 O ( D ) Water - Gas - shift : CO + H 2 O H 2 + CO 2 ( E )
  • The feasibility of decarboxylation varies greatly with the type of carboxylic acid or derivative thereof used as the starting material. Alpha-hydroxy, alpha-carbonyl and dicarboxylic acids are activated forms and they are more easily deoxygenated by decarb-reactions, which mean here decarboxylation and/or decarbonylation. Linear aliphatic acids are not activated this way and generally they are difficult to deoxygenate through the decarb-reaction path and they need much more severe reaction conditions.
  • Decarboxylation of carboxylic acids to hydrocarbons by contacting carboxylic acids with heterogeneous catalysts was suggested by Maier, W. F. et al: Chemische Berichte (1982), 115(2), 808-12. Maier et al tested Ni/Al2O3 and Pd/SiO2 catalysts for decarboxylation of several carboxylic acids. During the reaction the vapors of the reactant were passed through a catalytic bed together with hydrogen. Hexane represented the main product of the decarboxylation of the tested compound heptanoic acid.
  • U.S. Pat. No. 4,554,397 discloses a process for the manufacture of linear olefins from saturated fatty acids or esters, suggesting a catalytic system consisting of nickel and at least one metal selected from the group consisting of lead, tin and germanium. With other catalysts, such as Pd/C, low catalytic activity and cracking to saturated hydrocarbons, or formation of ketones when Raney-Ni was used, were observed.
  • Decarboxylation, accompanied with hydrogenation of oxo-compound, is described in Laurent, E., Delmon, B.: Applied Catalysis, A: General (1994), 109(1), 77-96 and 97-115, wherein hydrodeoxygenation of biomass derived pyrolysis oils over sulphided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts was studied. Diethyldecanedioate was used among others as a model compound and it was observed that the rates of formation of the decarboxylation product, nonane and the hydrogenation product, decane were comparable under hydrotreating conditions (260-300° C., 7 MPa, in hydrogen). The presence of hydrogen sulphide (H2S) in feed promoted the decarboxylation selectivity compared with zero sulphur in feed. Different sulphur levels studied however had no effect on the decarboxylation selectivity of diethyldecanedioate.
  • Biological raw materials often contain several impurities, such as metal compounds, organic nitrogen, sulphur and phosphorus compounds, which are known catalyst inhibitors and poisons inevitably reducing the service life of catalysts and necessitating more frequent catalyst regeneration or change. Metals in bio oils/fats inevitable build up on catalyst surface and change the activity of catalyst. Metals can promote some side reactions and blocking of active sites of catalysts typically decreases the activity.
  • Fatty acid composition, size and saturation degree of the fatty acid may vary considerably in feedstock of different origin. Melting point of bio oil or fat is mainly consequence of saturation degree. Fats are more saturated than liquid oils and in this respect need less hydrogen for hydrogenation of double bonds. Double bonds in fatty acid chains contribute also to different kinds of side reactions, such as oligomerisation/polymerization, cyclisation/aromatisation and cracking reactions, which deactivate catalyst, increase hydrogen consumption and reduce diesel yield.
  • Hydrolysis of triglycerides produces also diglycerides and monoglycerides, which are partially hydrolyzed products. Diglycerides and monoglycerides are surface-active compounds, which can form emulsions and make liquid/liquid separations of water and oil more difficult. Bio oils and fats can also contain other glyceride-like surface-active impurities like phospholipids, suck as lecithin, which have phosphorus in their structures. Phospholipids are gum like materials, which can be harmful for catalysts. Natural oils and fats also contain non-glyceride components. These are among others waxes, sterols, tocopherols and carotenoids, some metals and organic sulphur compounds as well as organic nitrogen compounds. These compounds can be harmful for catalysts or pose other problems in processing.
  • Plant oils/fats and animal oils/fat may contain free fatty acids, which are formed during processing of oils and fats through hydrolysis of triglycerides. Free fatty acids are a class of problematic components in bio oils and fats, their typical content being between 0 and 30% by weight. Free fatty acids are corrosive in their nature, they can attack the materials of the process unit or catalyst and they can promote side reactions like formation of metal carboxylates in the presence of metal impurities. Due to the free fatty acids contained in bio oils and fats, the formation of heavy molecular weight compounds is significantly increased when compared to triglyceridic bio-feedstock having only low amounts of free fatty acids, typically below 1% by weight.
  • Deoxygenation of plant oils/fats and animal oils/fats with hydrogen requires rather much hydrogen and at thc same time releases significant amount of heat. Heat is produced from the deoxygenation reactions and from double bond hydrogenation. Different feedstocks produce significantly different amounts of reaction heat. The variation in reaction heat produced is mainly dependent of double bond hydrogenation. The average amount of double bonds per triglyceride molecule can vary from about 1.5 to over 5 depending on the source of bio oil or fat.
  • OBJECT OF THE INVENTION
  • An object of the invention is an improved process for the manufacture of diesel range hydrocarbons from bio oils and fats with reduced hydrogen consumption.
  • A further object of the invention is an improved process for the manufacture of diesel range hydrocarbons from bio oils and fats with high selectivity and which process yields a product with improved cold flow properties concurrently without decreasing diesel yield during isomerisation.
  • A further object of the invention is an improved process for the manufacture of high quality diesel range hydrocarbons from bio oils and fats with decreased hydrogen consumption and high diesel yield.
  • Characteristic features of the process according to the invention are provided in the claims.
  • Definitions
  • Here hydroprocessing is understood as catalytic processing of organic material by all means of molecular hydrogen.
  • Here hydrotreatment is understood as a catalytic process, which removes oxygen from organic oxygen compounds as water (hydrodeoxygenation, HDO), sulphur from organic sulphur compounds as dihydrogen sulphide (H2S) (hydrodesulphurisation, HDS), nitrogen from organic nitrogen compounds as ammonia (NH3) (hydrodenitrogenation, HDN) and halogens, such as chloride from organic chloride compounds as hydrochloric acid (HCl) (hydrodechlorination, HDCl), typically under the influence of a sulphided NiMo or sulphided CoMo catalysts.
  • Here deoxygenation is understood to mean removal of oxygen from organic molecules, such as fatty acid derivatives, alcohols, ketones, aldehydes or ethers by any means previously described.
  • Here hydrodeoxygenation (HDO) of triglycerides or other fatty acid derivatives or fatty acids is understood to mean the removal of carboxyl oxygen as water by the means of molecular hydrogen under the influence of a catalyst.
  • Here decarboxylation and/or decarbonylation of triglycerides or other fatty acid derivatives or fatty acids is understood to mean removal of carboxyl oxygen as CO2 (decarboxylation) or as CO (decarbonylation) with or without the influence of molecular hydrogen. Decarboxylation and/or decarbonylation reactions are referred to as decarb-reactions.
  • Here hydrocracking is understood as catalytic decomposition of organic hydrocarbon materials using molecular hydrogen at high pressures.
  • Here hydrogenation means saturation of carbon-carbon double bonds by the means of molecular hydrogen under the influence of a catalyst.
  • Here n-paraffins mean normal alkanes or linear alkanes that do not contain side chains.
  • Here isoparaffins means alkanes having one or more C1-C9, typically C1-C2 alkyl side chains, typically mono-, di-, tri- or tetramethylalkanes.
  • The feed (total feed) to the hydrotreatment step is to be understood comprising fresh feed and optionally at least one dilution agent.
  • SUMMARY OF THE INVENTION
  • The present invention relates to an improved process comprising a hydrotreatment step and an isomerisation step, for the manufacture of diesel range hydrocarbons from renewable sources like bio oils and fats, such as plant oils/fats and animal and fish oils/fats, particularly C12-C16 fatty acids and/or derivatives thereof in the presence of sulphur. The invention relates to hydrotreating of the feed comprising triglycerides, fatty acids and derivatives of fatty acids and particularly C12-C16 fatty acids and/or derivatives thereof or combinations of thereof, into n-paraffins with reduced hydrogen consumption during hydrotreating, in the presence of sulphur, followed by converting the n-paraffins into diesel range branched alkanes using isomerisation with high diesel yield. The hydrocarbon oil product formed via this method is a high quality diesel component. In the hydrotreating step the feed is contacted with a sulphided hydrotreatment catalyst in the presence of sulphur, followed by the isomerisation step with an isomerisation catalyst.
  • DETAILED DESCRIPTION OF THE INVENTION
  • It was surprisingly found that hydrogen consumption in the hydrotreatment step, deoxygenation of fatty acids and/or fatty acid derivatives, and cracking during isomerisation of n-paraffins can be significantly reduced by adding one or more sulphur compounds to the feed to achieve sulphur content of 50-20000 w-ppm, preferably 1000-8000 w-ppm, most preferably 2000-5000 w-ppm in the feed, calculated as elemental sulphur, particularly when bio oils and fats comprising C12-C16 fatty acids and/or derivatives thereof are used as the fresh feed for the hydrotreatment step.
  • Feedstock
  • The bio oil and/or fat used as the fresh feed in the process of the present invention originates from renewable sources, such as fats and oils from plants and/or animals and/or fish and compounds derived from them. The basic structural unit of a typical plant or vegetable or animal oil/fat useful as the feedstock is a triglyceride, which is a triester of glycerol with three fatty acid molecules, having the structure presented in the following formula I:
    Figure US20100287821A9-20101118-C00001
  • In formula I R1, R2 and R3 are alkyl chains. Fatty acids found in natural triglycerides are almost solely fatty acids of even carbon number. Therefore R1, R2, and R3 typically are C5-C23 alkyl groups, mainly C11-C19 alkyl groups and most typically C15 or C17 alkyl groups. R1, R2, and R3 may contain carbon-carbon double bonds. These alkyl chains can be saturated, unsaturated or polyunsaturated. Suitable bio oils are plant and vegetable oils and fats, animal fats, fish oils, and mixtures thereof containing fatty acids and/or fatty acid esters. Examples of said materials are wood-based and other plant-based and vegetable-based fats and oils such as rapeseed oil, colza oil, canola oil, tall oil, sunflower oil, soybean oil, hempseed oil, olive oil, linseed oil, mustard oil, palm oil, peanut oil, castor oil, coconut oil, as well as fats contained in plants bred by means of gene manipulation, animal-based fats such as lard, tallow, train oil, and fats contained in milk, as well as recycled fats of the food industry and mixtures of the above.
  • Typically a bio oil or fat, suitable as feedstock, comprises C12-C24 fatty acids, derivatives thereof such as anhydrides or esters of fatty acids as well as triglycerides of fatty acids or combinations of thereof. The fatty acids or fatty acid derivatives, such as esters may be produced via hydrolysis of bio oils or by their fractionalization or esterification reactions of triglycerides.
  • In the process according to the invention the fresh feed contains at least 20%, preferably at least 30% and most preferably at least 40% by weight of triglyceride C12-C16 fatty acids or C12-C16 fatty acid esters or C12-C16 fatty acids or combinations of thereof. Examples of this kind of feed are palm oils and animal fats containing lower carbon numbers fatty acids, which are typically more saturated than C18 fatty acids and their decarboxylation tendency is lower than that of higher carbon number fatty acids during hydrodeoxygenation. The fresh feed may also comprise feedstock of biological origin and a hydrocarbon or hydrocarbons.
  • C12-C16 fatty acids can be bound to glycerol as triglycerides or other esters. Animal fats and palm oil triglycerides contain significant amounts of C16 fatty acids, typically 15-45 wt-% and especially palmitic acid. Other vegetable triglycerides contain only 1-13 wt-% C16 fatty acids, for example rapeseed oil only 1-5 wt-%.
  • In order to avoid catalyst deactivation and undesired side reactions the feed shall comply with the following requirements: The amount of alkaline and alkaline earth metals, calculated as elemental alkaline and alkaline earth metals, in the feed is below 10, preferably below 5 and most preferably below 1 w-ppm. The amount of other metals, calculated as elemental metals, in the feed is below 10, preferably below 5 and most preferably below 1 w-ppm. The amount of phosphorus, calculated as elemental phosphorus is below 30, preferably below 15 and most preferably below 5 w-ppm.
  • In many cases the feedstock, such as crude plant oil or animal fat, is not suitable as such for processing because of high impurity content and thus the feedstock is preferably purified using suitable one or more conventional purification procedures, before introducing it to the hydrotreating step of the process. Examples of some conventional procedures are provided in the following.
  • Degumming of plant oils/fats and animal oils/fats means removal of phosphorus compounds, such as phospholipids. Solvent extracted vegetable oils contain often significant amounts of gums, typically 0.5-3% by weight, which are mostly phosphatides (phospholipids) and therefore a degumming stage is needed for crude plant oils and animal fats in order to remove phospholipids and metals present in crude oils and fats. Iron and also other metals may be present in the form of metal-phosphatide complexes. Even a trace amount of iron is capable of catalysing oxidation of the oil or fat.
  • Degumming is performed by washing the feed at 90-105° C., 300-500 kPa(a), with H3PO4, NaOH and soft water and separating the formed gums. A major amount of metal components, which are harmful for the hydrotreatment catalyst, are also removed from the feedstock during the degumming stage. The moisture content of the degummed oil is reduced in dryer at 90-105° C., 5-50 kPa(a).
  • The amount of free fatty acids present in vegetable oils is typically 1-5 wt % and in animal fat 10-25 wt-%. High amounts of free fatty acids in a feedstock may be reduced using a deacidification stage, which may be performed for example by steam stripping. A feedstock, which is optionally degummed, is typically first degassed under 5-10 kPa(a) a pressure at a temperature of approx. 90° C. Thereafter the obtained oil is heated to approx. 250-280° C., 5-10 kPa(a) and directed to a stripping column, where life steam strips at 230-260° C. the free fatty acids and deodorizes the oil under vacuum. The fatty acid fraction is withdrawn from the column overhead.
  • A feedstock, which is optionally degummed or refined in another conventional way, may be bleached. In bleaching the degummed or refined feedstock is heated and mixed with natural or acid-activated bleaching clay. Bleaching removes various impurity traces left from other pretreatment steps like degumming, such as chlorophyll, carotenoids, phospholipids, metals, soaps and oxidation products. Bleaching is typically carried out under vacuum to minimize possible oxidation. Bleaching is used to reduce the color pigments in order to produce an oil of acceptable color and to reduce the oxidation tendency of oil.
  • In the following the process according to the invention comprising a hydrotreating step and an isomerisation step is described in more detail.
  • Hydrotreating Step
  • The feed to the hydrotreating unit comprises fresh feed and optionally at least one diluting agent. The diluting agent can be a hydrocarbon of biological origin and/or non biological origin. In the case the feed comprises additionally at least one diluting agent it is preferable that the feed contains less than 20 wt-% of fresh feed.
  • The diluting agent can also be recycled product from the process (product recycle) and then the diluting agent/fresh feed-ratio is 5-30:1, preferably 10-30:1 and most preferably 12-25:1.
  • The total feed comprising fresh feed containing at least 20%, preferably at least 30% and most preferably at least 40% by weight of triglyceride C12-C16 fatty acids or C12-C16 fatty acid esters or C12-C16 fatty acids or combinations of thereof, is hydrotreated in the presence of hydrogen with a catalyst at hydrotreating conditions in the presence of 50-20000 w-ppm, preferably 1000-8000 w-ppm, most preferably 2000-5000 w-ppm of sulphur in the total feed, calculated as elemental sulphur.
  • In the hydrotreating step of the process fatty acids, triglycerides and fatty acid derivatives are deoxygenated, denitrogenated, desulphurisated and dechlorinated.
  • In the hydrotreating step, known hydrogenation catalysts containing metals from Group VIII and/or VIB of the Periodic System may be used. Preferably, the hydrogenation catalysts are supported Pd, Pt, Ni, NiMo or a CoMo catalysts, the support being alumina and/or silica, as described for instance in FI 100248. Typically, NiMo/Al2O3 and CoMo/Al2O3 catalysts are used.
  • In the hydrotreating step, the pressure range can be varied between 2 and 15 MPa, preferably between 3 and 10 MPa and most preferably between 4 and 8 MPa, and the temperature between 200 and 400° C., preferably between 250 and 350° C. and most preferably 280-345° C.
  • It was found that the deoxygenation of starting materials originating from renewable sources can be controlled between two partially alternative reaction routes: hydrodeoxygenation and decarboxylation and/or decarbonylation (decarb-reactions). The selectivity of decarb-reactions and the deoxygenation through decarb-reactions can be promoted during hydrotreating over the hydrotreatment catalyst, by using sulphur content of 50-20000 w-ppm in the total feed. The specific sulphur content in the feed is able to double the extent of n-paraffins formed by removal of COx. Complete deoxygenation of triglycerides by decarb-reactions can theoretically lower the consumption of hydrogen about 60% (max) compared with pure deoxygenation by hydrogen as can be seen in Table 3.
  • At least one organic or inorganic sulphur compound may be fed along with hydrogen or with the feed to achieve the desired sulphur content. The inorganic sulphur compound can be for example H2S or elemental sulphur or the sulphur compound may be an easily decomposable organic sulphur compound such as dimethyl disulphide, carbon disulphide and butyl thiol or a mixture of easily decomposable organic sulphur compounds. It is also possible to use refinery gas or liquid streams containing decomposable sulphur compounds.
  • It was surprisingly observed from the examples that with added sulphur compounds in the feed, resulting in sulphur contents of 100-10000 w-ppm in the feed the decarboxylation of short chain fatty acids and derivatives, such as C16 fatty acids increases significantly more than that of C18 fatty acids.
  • When C16 containing fatty acids and derivatives thereof are hydrodeoxygenated, n-C15 and n-C16 paraffins are formed, with melting points of 9.9° C. and 18.2° C. respectively. The conversion of other vegetable oils like rapeseed oil and soybean oil produces almost totally n-C17 and n-C18 paraffins with significantly higher melting points of 22.0 and 28.2° C.
  • Hydrodeoxygenation of triglycerides facilitates controlled decomposition of the triglyceride molecule contrary to uncontrolled cracking. Double bonds are also hydrogenated during the controlled hydrotreatment. Light hydrocarbons and gases formed, mainly propane, water, CO2, CO, H2S and NH3, are removed from hydrotreated product.
  • In the case the fresh feed comprises more than 5 wt-% free fatty acids, it is preferable to use diluting agent or product recycle in the process as described in FIG. 1, wherein an improved reactor configuration is presented, particularly for the control of the increase of temperature over catalyst bed and side reaction formation. In FIG. 1 a hydrotreatment process configuration is provided, comprising one or more catalyst beds in series, hydrotreated product recycle introduction on the top of the first catalyst bed and fresh feed, quench liquid and hydrogen introduction on top of each catalyst beds. This results in improved control of the reaction temperature in the catalyst beds and hence diminishes undesired side reactions.
  • In FIG. 1 the hydrotreatment reactor 100 comprises two catalyst beds 10 and 20. Fresh feed 11 is introduced as streams 12 and 13 on the catalyst beds 10 and 20, respectively, and hydrogen as stream 22 and 23 on the catalyst beds 10 and 20, respectively. The fresh feed stream 12 is first mixed with the hydrotreated product recycle stream 41 and quench liquid stream 43 and the resulting mixture 31, diluted in the fresh feed concentration, is then introduced on the catalyst bed 10. In order to obtain a required sulphur concentration in the feed stream 31, required amount of sulphur make up is added to the fresh feed stream 11 via stream 15. As mixture 31 passes through the catalyst bed 10 with the hydrogen stream 22, fatty acids and fatty acid derivatives of the fresh feed stream 12 are converted to the corresponding reaction products. A two-phase stream 32 is withdrawn from the bottom of the catalyst bed 10 and is mixed with the fresh feed stream 13, quench liquid stream 44 and the hydrogen stream 23. The formed vapor-liquid mixture 33, diluted in the fresh feed concentration, is then introduced on the catalyst bed 20 at reduced temperature due to cooling effect of the hydrogen, quench liquid and fresh feed, passed through the catalyst bed 20 and finally withdrawn from the catalyst bed as a product stream 34. The stream 34 is separated in to a vapor stream 35 and liquid stream 36 in the high temperature separator 101. Vapor stream 35 is rich in hydrogen and is directed to further treatment. Part of the liquid stream 36 is returned to the reactor 100 as recycle stream 40, which is further divided to dilution stream 41 and total quench liquid stream 42. The quench liquid stream 42 is cooled in the heat exchanger 102 to provide adequate cooling effect on the top of the catalyst beds 10 and 20. Hydrotreated product stream 51 is directed from the hydrotreatment step to further processing.
  • The catalyst beds 10 and 20 may be located in the same pressure vessel or in separate pressure vessels. In the embodiment where the catalyst beds are in the same pressure vessels the hydrogen streams 22 and 23 may alternatively be introduced on the catalyst bed 10 and then be passed through the catalyst beds 10 and 20. In the embodiment where the catalyst beds are in separate pressure vessels, the catalyst beds may operate in parallel mode with separate dilution streams, hydrogen streams and quench liquid streams. The number of catalyst beds may be one or two or more than two.
  • The sulphur make up to the hydrotreatment step may be introduced with the fresh feed stream 11. Alternatively, required amount of sulphur may be fed with the hydrogen streams 22 and 23 as gaseous sulphur component such as hydrogen sulphide.
  • Hydrogen is fed to the hydrotreating reactor in excess of the theoretical hydrogen consumption. During the hydrotreating step, triglyceride oils, fatty acids and derivatives thereof are almost theoretically converted to n-paraffins without or almost without side reactions. Additionally, propane is formed from the glycerol part of the triglycerides, water and CO and/or CO2 from carboxylic oxygen, H2S from organic sulphur compounds and NH3 from organic nitrogen compounds.
  • Using the above described procedures in the hydrotreating step, the temperature needed for reactions to start up is achieved in the beginning of each catalyst bed, the temperature increase in the catalyst beds is limited, harmful and partially converted product intermediates can be avoided and the catalyst life is extended considerably. The temperature at the end of the catalyst bed is controlled by net heat of reactions and to the extent of diluting agent used. Diluting agent may be any hydrocarbon available, bio-origin or non bio-origin. It can also be product recycle. If diluting agent is used, fresh feed content from total feed is less than 20 wt-%. If the product recycle is used, product recycle/fresh feed ratio is 5-30:1, preferably 10-30:1, most preferably 12-25:1. After the hydrotreatment step, the product is subjected to an isomerisation step.
  • Isomerisation of n-Paraffins Formed during Hydrotreatment
  • In order to improve the cold properties of the products, isomerisation of n-paraffins are needed. During the isomerisation branched isoparaffins are formed. Isoparaffins may typically have mono-, di-, tri- or tetramethyl branches.
  • The product obtained from the hydrotreatment step is isomerised with a catalyst under isomerisation conditions. The feed into the isomerisation reactor is a mixture of pure n-paraffins and the composition of the feed can be predicted from the fatty acid distribution of each individual bio oil used as feed to the hydrotreatment.
  • The isomerisation step may comprise an optional purification step, wherein the reaction product from the hydrotreatment step may be purified using a suitable method such as stripping with water vapour or a suitable gas such as light hydrocarbon, nitrogen or hydrogen. Preferably acid gases and water impurities are removed as completely as possible before the hydrocarbons are contacted with the isomerization catalyst.
  • In the isomerisation step, the pressure varies in the range of 2-15 MPa, preferably in the range of 3-10 MPa and the temperature varies between 200 and 500° C., preferably between 280 and 400° C.
  • In the isomerisation step, isomerisation catalysts known in the art may be used. Suitable isomerisation catalysts contain a molecular sieve and/or a metal selected from Group VIII of the Periodic Table and/or a carrier. Preferably, the isomerisation catalyst contains SAPO-11 or SAPO-41 or ZSM-22 or ZSM-23 or ferrierite and Pt, Pd or Ni and Al2O3 or SiO2. Typical isomerisation catalysts are, for example, Pt/SAPO-11/Al2O3, Pt/ZSM-22/Al2O3, Pt/ZSM-23/Al2O3 and Pt/SAPO-11/SiO2. Most of these catalysts require the presence of hydrogen to reduce the catalyst deactivation.
  • The isomerised diesel product consists mainly of branched hydrocarbons and also linear hydrocarbons and it has a boiling range of 180-350° C. Additionally some gasoline and gas may be obtained.
  • ADVANTAGES OF THE INVENTION
  • The process according to the invention provides a way to reduce the formation of higher molecular weight compounds during the hydrotreatment of the fresh feed, which may contain fatty acids and derivatives thereof. The process according to the invention provides selective manufacture of diesel range hydrocarbons from bio oils and fats with high diesel yield and without significant side-reactions. Branched hydrocarbons can be manufactured from plant and vegetable oils and fats as well as animal and fish oils and fats using promoted assistance of decarb-reactions during hydrodeoxygenation and therefore the consumption of hydrogen is decreased by 20-60%, typically 20-40%.
  • During the deoxygenation of the feed through decarboxylation and/or decarbonylation, oxygen is removed in the form of CO and CO2. The decarb-reactions decrease hydrogen consumption, theoretically in complete deoxygenation about 60-70% compared to complete hydrodeoxygenation route, but depends on the triglyceride source. C12-C16 fatty acids and their derivatives have typically lower amount of double bonds and their decarboxylation tendency is lower than higher carbon number fatty acids and their derivatives during hydrodeoxygenation. However, it was surprisingly found that when 50-20000 w-ppm of sulphur, calculated as elemental sulphur, was present in the feed comprising fresh feed containing at least 20% by weight of C12-C16 fatty acids and/or their derivatives, the decarboxylation of C16 fatty acids and derivatives thereof increases significantly more than that of C18 fatty acids and its derivatives. This results in still lower consumption of hydrogen. Added sulphur compounds in hydrodeoxygenation feed facilitate the control of catalyst stability and reduce hydrogen consumption. Feedstock like palm oil or animal fat, containing more saturated fatty acid derivatives, produces less heat.
  • It was also found that feeds having a high content of C12-C16 fatty acids and/or their derivatives decreases hydrogen consumption in the isomerisation step and also improve cold properties of diesel fuel. The yield of diesel range hydrocarbons is especially increased during isomerisation of n-paraffins due to the lower cracking of n-paraffins formed from the fatty acid derivative feed to hydrotreatment. The C11-C16 n-paraffins formed during hydrotreatment need lower conversion and lower reaction temperature during isomerisation in order to maintain same cold properties of diesel and thus significantly lower the extent of cracking and coke formation compared to heavier n-paraffins. Alternatively improved cold properties can be achieved at the same reaction temperature without yield loss. The stability of the catalysts during hydrotreating and isomerisation is increased.
  • The invention is illustrated in the following with examples presenting some preferable embodiments of the invention. However, it is evident to a man skilled in the art that the scope of the invention is not meant to be limited to these examples.
  • EXAMPLES Example 1 Effect of Sulphur Content of Total Feed
  • Palm oil containing 0.3 area-% of free fatty acids was used as the fresh feed, along with product recycle 5:1 in the presence of hydrogen. The content of triglyceride C12-C16 fatty acids in the fresh feed was 58.3 wt-%. The total feed contained alkaline and alkaline earth metals, calculated as elemental alkaline and alkaline earth metals in a amount of below 10 w-ppm. The amount of other metals, calculated as elemental metals, in the feed was below 10 w-ppm. The amount of phosphorus, calculated as elemental phosphorus was below 30 w-ppm.
  • During the test runs various amounts of dimethyl disulfide in the total feed were used. The reaction temperature was 305° C., reactor pressure was 5 MPa and space velocity was 0.5 g/g for fresh feed. Higher content of sulphur in feed significantly increased the total deoxygenation reactions through CO and CO2 (decarb-reactions, production of one carbon less n-paraffins than original fatty acid) instead of deoxygenation by hydrogen (HDO, production of same carbon number n-paraffins than original fatty acid). However the decarb-reactions of C16-fatty acids increased significantly more than decarb-reactions of higher C18 or C20 fatty acids. High content of sulphur in the feed decreased the double bond hydrogenation activity of catalyst and also decreased decarb-reactions as can be seen from table 1, wherein the effect of sulphur content of total feed calculated as elemental sulphur, on decarb-% of different carbon number fatty acids observed in product oil (decarb-% calculated from fresh feed) is presented. Table 2 discloses relative increase of decarb-reactions compared to the feed with 100 w-ppm of sulphur and table 3 presents theoretical decrease of hydrogen consumption due to decarb-reactions.
    TABLE 1
    Effect of sulphur content of total feed calculated as elemental sulphur
    Sulphur Sulphur Sulphur Sulphur Sulphur Sulphur
    100 570 w- 1000 w- 3000 w- 5000 w- 10000
    w-ppm ppm ppm ppm ppm w-ppm
    C15/(C15 + 29.1% 45.6% 52.6% 55.1% 56.2% 47.5%
    C16)
    C17/(C17 + 30.2% 37.5% 40.1% 42.5% 43.3% 39.7%
    C18)
    C19/(C19 + 36.6% 43.4% 46.0% 48.1% 49.2% 46.5%
    C20)
    Total decarb-% 32.0% 42.2% 46.2% 48.6% 49.5% 44.6%
  • TABLE 2
    Relative increase of decarb-reactions
    Sulphur Sulphur
    Sulphur 1000 Sulphur 5000 Sulphur
    570 ppm vs ppm vs 3000 ppm vs ppm vs 10000 ppm
    100 ppm 100 ppm 100 ppm 100 ppm vs 100 ppm
    C16 56.8% 80.9% 89.5% 93.2% 63.3%
    C18 24.1% 32.7% 40.7% 43.2% 31.4%
    C20 18.7% 25.7% 31.5% 34.4% 27.1%
    Total 31.9% 44.6% 52.0% 55.0% 39.5%
  • TABLE 3
    Theoretical hydrogen consumption with and without decarb-reactions
    Rapeseed
    oil Palm stearin Palm oil Animal fat
    Hydrogen consumption (H2 molecules per triglyceride), 100% dehydro-
    genation by hydrodeoxygenation
    Water 6 6 6 6
    Subst. Hy- 6 6 6 6
    drogen
    Double 4 1.16 1.8 2
    bonds
    Ttotal 16 13.16 13.8 14
    Hydrogen consumption (H2 molecules per triglyceride), 100% deoxy-
    genation by decarb-reactions
    Water 0 0 0 0
    Subst. Hy- 3 3 3 3
    drogen
    Double bonds 4 1.16 1.8 2
    Total 7 4.16 4.8 5
    H2 reduction 56% 68% 65% 64%
    (max)
  • Example 2 Effect of C16 Fatty Acids on Cracking during Isomerisation and Diesel Yield at Same Pour Point Level with Palm Oil Feed
  • Palm oil containing 44.8 wt-% of triglyceride C12-C16 fatty acids was used in the fresh feed. Dimethyl disulphide was added to palm oil to obtain sulphur content of about 600 w-ppm in the feed, calculated as elemental sulphur. The feed purity was same as in example 1, but the amount of free fatty acids was 0.2 area-%. No diluting agent was used. The feed was hydrotreated at 305° C. in the presence of hydrogen, reactor pressure was 5 MPa and space velocity was 2 g/g for fresh feed. The products contained mainly n-paraffins. The n-paraffin feeds were isomerised at 317° C., 4 MPa and WHSV was 3 l/h in presence of hydrogen. The catalyst (A) contained Pt, SAPO-11 and an alumina support. The amount of hydrocarbons >C10 was 97 wt-% in the product. The cloud point of the liquid product was −22° C. Results of analysis of the product are provided in table 4.
  • A comparative test was carried out with rapeseed oil feed. Rapeseed oil contained of 4.5 wt-%. of triglyceride C12-C16 fatty acids. Rapeseed oil was hydrotreated and isomerised at the same reaction conditions as described above. The amount of hydrocarbons >C10 was 96 wt-% in the product. The cloud point of the liquid product was −15° C. Results of analysis of the product are provided in table 4.
  • Example 3 Effect of C16 Fatty Acids on Pour Point of Isomerised Diesel Oil at Same Diesel Yield with Palm Oil Feed
  • The hydrotreated palm oil obtained in Example 2 was isomerised at 312° C., 4 MPa and WHSV was 3 l/h in the presence of hydrogen with catalyst A. This yielded a liquid product with a cloud point of −14° C. The amount of hydrocarbons >C10 was now 98 wt-% in the product. A small amount of lighter hydrocarbons can be concluded from the flash point and in the distillation curve of the products as can be seen from table 4, which presents analysis results of hydrotreated and isomerised products from rapeseed oil and palm oil, and HRO=hydrotreated rapeseed oil, HPO=hydrotreated palm oil.
    TABLE 4
    Analysis results of hydrotreated and isomerised products from rapeseed
    oil and palm oil.
    Feed Method Unit HRO HPO HPO
    Isomerisation T ° C. 317 317 312
    Density 15° C. EN ISO kg/m3 782.7 779.2 779.3
    12185
    Cloud point ASTM ° C. −15 −22 −14
    D5773
    Pour point ASTM ° C. −24 −33 −24
    D5949
    CFPP EN 116 ° C. −15 −22 −15
    Flash point EN 22719 ° C. 52 53 65
    Distillation TA ° C. 117 123 185
    EN ISO 3405 5 vol-% ° C. 274 264 268
    10 vol-% ° C. 282 270 274
    30 vol-% ° C. 290 279 280
    50 vol-% ° C. 292 283 283
    70 vol-% ° C. 294 287 287
    90 vol-% ° C. 299 294 294
    95 vol-% ° C. 306 298 299
    TL ° C. 327 311 308
  • Example 4 Effect of C16 Fatty Acids on Cracking during Isomerisation and Diesel Yield at Same Pour Point Level with Animal Fat Feed
  • Animal fat containing 30 wt-% of triglyceride C12-C16 fatty acids was used as fresh feed. The feed contained alkaline and alkaline earth metals, calculated as elemental alkaline and alkaline earth metals in the amount of below 10 w-ppm. The amount of other metals, calculated as elemental metals, in the feed was below 10 w-ppm. The amount of phosphorus, calculated as elemental phosphorus was below 30 w-ppm. Dimethyl disulphide was added to animal fat to obtain sulphur content of about 100 w-ppm in the feed. Fresh feed contained free fatty acids 0.6 area-%. The feed was hydrotreated at 300° C. in the presence of hydrogen, reactor pressure was 5 MPa and space velocity was 2 g/g for fresh feed without any diluting agent. The products contained mainly n-paraffins. The n-paraffin feeds were isomerised at 316° C., 4 MPa and WHSV was 1.5 l/h in the presence of hydrogen. The catalyst (B) contained Pt, SAPO-11 and an alumina support. The amount of hydrocarbons >C10 was 95 wt-% in the product. The cloud point of the liquid product was −20° C.
  • As a comparative example, rapeseed oil was hydrotreated and isomerisated at the same reaction conditions as described above. Rapeseed oil contained 4.5 wt-% of triglyceride C12-C16 fatty acids. In the isomerised product, the amount of hydrocarbons >C10 was 95 wt-%. The cloud point of the liquid product was −14° C.
  • Example 5 Effect of C16 Fatty Acids on Pour Point of Isomerised Diesel Oil at Same Diesel Yield with Animal Fat Feed
  • The hydrotreated animal fat obtained in Example 4 was isomerised at 312° C., 4 MPa and WHSV was 1.5 l/h in the presence of hydrogen with catalyst B. This yielded a liquid product with a cloud point of −13° C. The amount of hydrocarbons >C10 was now 98 wt-%.

Claims (20)

1. Process for the manufacture of diesel range hydrocarbons wherein a feed is hydrotreated in a hydrotreating step and isomerised in an isomerisation step, characterized in that the feed comprises fresh feed containing at least 20% by weight of triglyceride C12-C16 fatty acids or C12-C16 fatty acid esters or C12-C16 fatty acids or combinations of thereof and the total feed contains 50-20000 w-ppm sulphur calculated as elemental sulphur.
2. Process according to claim 1, characterized in that the fresh feed contains at least 30% by weight and preferably at least 40% by weight of triglyceride C12-C16 fatty acids or other fatty acid esters or combinations of thereof.
3. Process according to claim 1 or 2, characterized in that the fresh feed contains more than 5% by weight of free fatty acids.
4. Process according to any one of claims 1-3, characterised in that the feed contains less than 10 w-ppm alkaline and alkaline earth metals, calculated as elemental alkaline and alkaline earth metals, less than 10 w-ppm other metals, calculated as elemental metals and less than 30 w-ppm phosphorus, calculated as elemental phosphorus.
5. Process according to any one of claims 1-4, characterized in that the feed comprises less than 20 wt-% of fresh feed and additionally at least one diluting agent.
6. Process according to claim 5, characterized in that the diluting agent is diluting agent is selected from hydrocarbons and recycled products of the process or mixtures thereof and the diluting agent/fresh feed-ratio is 5-30:1, preferably 10-30:1 and most preferably 12-25:1.
7. Process according to any one of claims 1-6, characterized in that the feed contains 1000-8000 w-ppm and preferably 2000-5000 w-ppm of sulphur calculated as elemental sulphur.
8. Process according to any one of claims 1-7, characterized in that at least one inorganic or organic sulphur compound or a refinery gas and/or liquid stream containing sulphur compounds is added to the feed.
9. Process according to any one of claims 1-8, characterized in that the fresh feed is of biological origin selected from plant oils/fats, animal fats/oils, fish fats/oils, fats contained in plants bred by means of gene manipulation, recycled fats of the food industry and mixtures thereof.
10. Process according to any one of claims 1-9, characterized in that the fresh feed is selected from rapeseed oil, colza oil, canola oil, tall oil, sunflower oil, soybean oil, hempseed oil, olive oil, linseed oil, mustard oil, palm oil, peanut oil, castor oil, coconut oil, lard, tallow, train oil or fats contained in milk or mixtures thereof.
11. Process according to any one of claims 1-10, characterized in that the fresh feed comprises feed of biological origin and a hydrocarbon/hydrocarbons.
12. Process according to any of the claims 1-11, characterized in that in the hydrotreatment step a catalyst bed system is used comprising one or more catalyst beds.
13. Process according to any of the above claims 1-12, characterized in that in the hydrotreating step, the pressure varies in the range of 2-15 MPa, preferably in the range of 3-10 MPa, the temperature varying between 200 and 400° C., preferably between 250 and 350° C., and most preferably between 280 and 345° C.
14. Process according to any of the above claims 1-13, characterized in that in the isomerisation step, the pressure varies in the range of 2-15 MPa, preferably in the range of 3-10 MPa, the temperature varying between 200 and 500° C., preferably between 280 and 400° C.
15. Process according to any of the above claims 1-14, characterized in that the hydrotreatment is carried out in the presence of a hydrogenation catalyst, said hydrogenation catalyst containing a metal from the Group VIII and/or VIB of the Periodic System.
16. Process according to claim 15, characterized in that the hydrotreating catalyst is a supported Pd, Pt, Ni, NiMo or a CoMo catalyst, the support being alumina and/or silica.
17. Process according to any of the above claims 1-16, characterized in that an isomerisation catalyst containing molecular sieve is used in the isomerisation step.
18. Process according to claim 17, characterized in that isomerisation catalyst comprises a metal from the Element Group VIII.
19. Process according to claim 17 or 18, characterized in that the isomerisation catalyst contains Al2O3 or SiO2.
20. Process according to any one of claims 17-19, characterized in that the isomerisation catalyst contains SAPO-11 or SAPO41 or ZSM-22 or ZSM-23 or ferrierite and Pt or Pd or Ni and Al2O3 or SiO2.
US11/477,921 2005-07-05 2006-06-30 Process for the manufacture of diesel range hydrocarbons Active 2029-03-11 US8278492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/477,921 US8278492B2 (en) 2005-07-05 2006-06-30 Process for the manufacture of diesel range hydrocarbons

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US69585205P 2005-07-05 2005-07-05
US11/477,921 US8278492B2 (en) 2005-07-05 2006-06-30 Process for the manufacture of diesel range hydrocarbons

Publications (3)

Publication Number Publication Date
US20070006523A1 US20070006523A1 (en) 2007-01-11
US20100287821A9 true US20100287821A9 (en) 2010-11-18
US8278492B2 US8278492B2 (en) 2012-10-02

Family

ID=37617030

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/477,921 Active 2029-03-11 US8278492B2 (en) 2005-07-05 2006-06-30 Process for the manufacture of diesel range hydrocarbons

Country Status (1)

Country Link
US (1) US8278492B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090250376A1 (en) * 2008-04-06 2009-10-08 Brandvold Timothy A Production of Blended Gasoline and Blended Aviation Fuel from Renewable Feedstocks
US20090253947A1 (en) * 2008-04-06 2009-10-08 Brandvold Timothy A Production of Blended Fuel from Renewable Feedstocks
US20090294324A1 (en) * 2008-04-06 2009-12-03 Brandvold Timothy A Production of Blended Gasoline Aviation and Diesel Fuels from Renewable Feedstocks
US20090301930A1 (en) * 2008-04-06 2009-12-10 Brandvold Timothy A Production of Blended Fuel from Renewable Feedstocks
US20100197537A1 (en) * 2009-02-02 2010-08-05 R.T. Vanderbilt Company, Inc. Ashless lubricant composition
US9315760B2 (en) 2009-02-02 2016-04-19 Vanderbilt Chemicals, Llc Ashless lubricant composition
US20160177185A1 (en) * 2014-12-18 2016-06-23 Kior, Llc Method of thermolyzing biomass in presence of hydrogen sulfide

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279018B2 (en) 2002-09-06 2007-10-09 Fortum Oyj Fuel composition for a diesel engine
US8022258B2 (en) 2005-07-05 2011-09-20 Neste Oil Oyj Process for the manufacture of diesel range hydrocarbons
US7754931B2 (en) * 2005-09-26 2010-07-13 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Production of high-cetane diesel fuel from low-quality biomass-derived feedstocks
FR2910483B1 (en) * 2006-12-21 2010-07-30 Inst Francais Du Petrole METHOD OF CONVERTING CHARGES FROM RENEWABLE SOURCES IN GOODLY GASOLINE FUEL BASES.
US20080163543A1 (en) * 2007-01-05 2008-07-10 Ramin Abhari Process for producing bio-derived fuel with alkyl ester and iso-paraffin components
US7846323B2 (en) * 2007-04-06 2010-12-07 Syntroleum Corporation Process for co-producing jet fuel and LPG from renewable sources
US20080299018A1 (en) * 2007-05-21 2008-12-04 Ken Agee Biomass to liquids process
US8058484B2 (en) * 2007-08-24 2011-11-15 Syntroleum Corporation Flexible glycerol conversion process
US7982078B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US20090077864A1 (en) * 2007-09-20 2009-03-26 Marker Terry L Integrated Process of Algae Cultivation and Production of Diesel Fuel from Biorenewable Feedstocks
US7982077B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7999142B2 (en) * 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7999143B2 (en) * 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption
US7982076B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US8003834B2 (en) * 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US7982075B2 (en) * 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption
US7915460B2 (en) * 2007-09-20 2011-03-29 Uop Llc Production of diesel fuel from biorenewable feedstocks with heat integration
CO6040046A1 (en) * 2007-11-29 2009-05-29 Ecopetrol Sa PROCESS FOR OBTAINING DIESEL FROM VEGETABLE OR ANIMAL OILS BY HYDROTRATANATION WITH REDUCED RESIDENCE TIMES AND PRODUCTS OBTAINED FROM THE SAME
US8575409B2 (en) 2007-12-20 2013-11-05 Syntroleum Corporation Method for the removal of phosphorus
US8026401B2 (en) 2007-12-20 2011-09-27 Syntroleum Corporation Hydrodeoxygenation process
US8742183B2 (en) * 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
US20090162264A1 (en) * 2007-12-21 2009-06-25 Mccall Michael J Production of Aviation Fuel from Biorenewable Feedstocks
WO2009095711A1 (en) * 2008-02-01 2009-08-06 Johnson Matthey Plc Process for the conversion of fatty acids and derivatives thereof
US8039682B2 (en) 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US8058492B2 (en) 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US8198492B2 (en) * 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
US8193399B2 (en) * 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel and aviation fuel from renewable feedstocks
US8193400B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel from renewable feedstocks
AU2009233957B2 (en) * 2008-04-06 2013-09-26 Battelle Memorial Institute Fuel and fuel blending components from biomass derived pyrolysis oil
US20090300971A1 (en) * 2008-06-04 2009-12-10 Ramin Abhari Biorenewable naphtha
US8581013B2 (en) 2008-06-04 2013-11-12 Syntroleum Corporation Biorenewable naphtha composition and methods of making same
US8304592B2 (en) * 2008-06-24 2012-11-06 Uop Llc Production of paraffinic fuel from renewable feedstocks
US8766025B2 (en) 2008-06-24 2014-07-01 Uop Llc Production of paraffinic fuel from renewable feedstocks
FR2932811B1 (en) * 2008-06-24 2010-09-03 Inst Francais Du Petrole METHOD FOR CONVERTING CHARGES FROM RENEWABLE SOURCES TO GOOD GAS FUEL BASES USING A ZEOLITHIC TYPE CATALYST
US20090321311A1 (en) * 2008-06-27 2009-12-31 Uop Llc Production of diesel fuel from renewable feedstocks containing phosphorus
US7960596B2 (en) * 2008-07-24 2011-06-14 Chevron U.S.A. Inc. Conversion of vegetable oils to base oils and transportation fuels
US8772555B2 (en) * 2008-07-24 2014-07-08 Chevron U.S.A. Inc. Conversion of vegetable oils to base oils and transportation fuels
US7960597B2 (en) * 2008-07-24 2011-06-14 Chevron U.S.A. Inc. Conversion of vegetable oils to base oils and transportation fuels
US7968757B2 (en) * 2008-08-21 2011-06-28 Syntroleum Corporation Hydrocracking process for biological feedstocks and hydrocarbons produced therefrom
US20100056833A1 (en) * 2008-08-29 2010-03-04 Julio Suarez Pretreatment of biological feedstocks for hydroconversion in fixed-bed reactors
US7982079B2 (en) 2008-09-11 2011-07-19 Uop Llc Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
US20100083563A1 (en) * 2008-10-02 2010-04-08 Chevron U.S.A. Inc. Co-processing diesel fuel with vegetable oil to generate a low cloud point hybrid diesel biofuel
DK2362892T3 (en) * 2008-11-06 2019-07-15 Exxonmobil Res & Eng Co HYDROGEN TREATMENT OF BIODIESEL FUELS AND MIXTURES
US8231804B2 (en) * 2008-12-10 2012-07-31 Syntroleum Corporation Even carbon number paraffin composition and method of manufacturing same
US8921627B2 (en) * 2008-12-12 2014-12-30 Uop Llc Production of diesel fuel from biorenewable feedstocks using non-flashing quench liquid
US8471079B2 (en) * 2008-12-16 2013-06-25 Uop Llc Production of fuel from co-processing multiple renewable feedstocks
US8314274B2 (en) * 2008-12-17 2012-11-20 Uop Llc Controlling cold flow properties of transportation fuels from renewable feedstocks
US8283506B2 (en) * 2008-12-17 2012-10-09 Uop Llc Production of fuel from renewable feedstocks using a finishing reactor
FI121626B (en) * 2009-01-29 2011-02-15 Stora Enso Oyj Process for making olefinic monomers
KR101183703B1 (en) 2009-02-12 2012-09-17 에스케이에너지 주식회사 Catalysts for hydrofined biodiesel and method for preparing the same
US8686203B2 (en) * 2009-06-12 2014-04-01 Exxonmobil Research And Engineering Company Process for preparing diesel fuels using vegetable oils or fatty acid derivatives
PL2440328T3 (en) 2009-06-12 2017-06-30 Albemarle Europe Sprl. Sapo molecular sieve catalysts and their preparation and uses
GB0913193D0 (en) 2009-07-29 2009-09-02 Johnson Matthey Plc Deoxygenation process
HU231091B1 (en) 2009-09-30 2020-07-28 Mol Magyar Olaj- És Gázipari Nyilvánosan Működő Részvénytársaság Fuels and fuel additives for combustion engines and method for producing them
US8471081B2 (en) * 2009-12-28 2013-06-25 Uop Llc Production of diesel fuel from crude tall oil
WO2011099686A1 (en) * 2010-02-11 2011-08-18 Sk Innovation Co., Ltd. Catalyst for producing hydrogenated biodiesel and method of producing the same
JP5789272B2 (en) 2010-03-09 2015-10-07 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Dewaxing of renewable diesel fuel
WO2011112661A2 (en) 2010-03-09 2011-09-15 Exxonmobil Research And Engineering Company Hydroprocessing of diesel range biomolecules
US8394900B2 (en) 2010-03-18 2013-03-12 Syntroleum Corporation Profitable method for carbon capture and storage
EP2368967A1 (en) * 2010-03-22 2011-09-28 Neste Oil Oyj Solvent composition
US8586807B2 (en) 2010-06-24 2013-11-19 Old Dominion University Research Foundation Process for the selective production of hydrocarbon based fuels from plants containing aliphatic biopolymers utilizing water at subcritical conditions
US8778035B2 (en) * 2010-06-24 2014-07-15 Old Dominion University Research Foundation Process for the selective production of hydrocarbon based fuels from algae utilizing water at subcritical conditions
US8877669B2 (en) 2010-08-02 2014-11-04 Basf Corporation Hydroisomerization catalysts for biological feedstocks
US8586806B2 (en) 2010-10-28 2013-11-19 Chevron U.S.A. Inc. Fuel and base oil blendstocks from a single feedstock
US8816142B2 (en) * 2010-10-28 2014-08-26 Chevron U.S.A. Inc. Fuel and base oil blendstocks from a single feedstock
US20120108869A1 (en) * 2010-10-28 2012-05-03 Chevron U.S.A. Inc. Fuel and base oil blendstocks from a single feedstock
US8816143B2 (en) * 2010-10-28 2014-08-26 Chevron U.S.A. Inc. Fuel and base oil blendstocks from a single feedstock
US8586805B2 (en) 2010-10-28 2013-11-19 Chevron U.S.A. Inc. Fuel and base oil blendstocks from a single feedstock
BR112013014687B1 (en) * 2010-12-16 2019-02-05 Energia Technologies, Inc. oxygenated hydrocarbon deoxygenation method
EP2489720A1 (en) 2011-02-15 2012-08-22 Neste Oil Oyj Renewable oil with low iron content and its use in hydrotreatment process
US8900443B2 (en) 2011-04-07 2014-12-02 Uop Llc Method for multi-staged hydroprocessing using quench liquid
US8884086B2 (en) 2011-09-14 2014-11-11 Bp Corporation North America Inc. Renewable diesel refinery strategy
US9708544B2 (en) * 2012-03-30 2017-07-18 Exxonmobil Research And Engineering Company Production of olefinic diesel and corresponding oligomers
US9222032B2 (en) 2012-05-01 2015-12-29 Mississippi State University Composition and methods for improved fuel production
ITMI20121465A1 (en) 2012-09-03 2014-03-04 Eni Spa METHOD TO CONVERT A CONVENTIONAL REFINERY OF MINERAL OILS IN A BIOFINERY
US9328303B2 (en) 2013-03-13 2016-05-03 Reg Synthetic Fuels, Llc Reducing pressure drop buildup in bio-oil hydroprocessing reactors
US8969259B2 (en) 2013-04-05 2015-03-03 Reg Synthetic Fuels, Llc Bio-based synthetic fluids
US20150094506A1 (en) * 2013-09-27 2015-04-02 Uop Llc Systems and methods for producing fuel from a renewable feedstock
CA2937181C (en) 2014-01-28 2022-07-05 Shell Internationale Research Maatschappij B.V. Conversion of biomass or residual waste material to biofuels
WO2016001163A1 (en) 2014-07-01 2016-01-07 Shell Internationale Research Maatschappij B.V. Conversion of solid biomass into a liquid hydrocarbon material
BR112018005995A2 (en) 2015-09-25 2018-10-23 Shell Int Research biomass to methane conversion
EP3184611B1 (en) 2015-12-21 2020-06-03 Neste Corporation Method for producing an aviation fuel composition
FI20186074A1 (en) 2018-12-13 2020-06-14 Neste Oyj Blending of renewable fuels
FI130601B (en) 2018-12-14 2023-12-07 Neste Oyj Diesel fuel composition
US11993752B1 (en) 2022-12-21 2024-05-28 Neste Oyj Process for manufacturing of renewable hydrocarbons from renewable feedstock comprising phosphorus as an impurity

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049686A (en) * 1975-03-10 1977-09-20 Lever Brothers Company Degumming process for triglyceride oils
US4518485A (en) * 1982-05-18 1985-05-21 Mobil Oil Corporation Hydrotreating/isomerization process to produce low pour point distillate fuels and lubricating oil stocks
US4554397A (en) * 1983-08-25 1985-11-19 Institut Francais Du Petrole Process for manufacturing a linear olefin from a saturated fatty acid or fatty acid ester
US4992605A (en) * 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
US4992403A (en) * 1988-08-19 1991-02-12 Sumitomo Metal Mining Company Limited Catalysts for hydrotreating hydrocarbons and methods of preparing the same
US5183556A (en) * 1991-03-13 1993-02-02 Abb Lummus Crest Inc. Production of diesel fuel by hydrogenation of a diesel feed
US5705722A (en) * 1994-06-30 1998-01-06 Natural Resources Canada Conversion of biomass feedstock to diesel fuel additive
US5888376A (en) * 1996-08-23 1999-03-30 Exxon Research And Engineering Co. Conversion of fischer-tropsch light oil to jet fuel by countercurrent processing
US20040230085A1 (en) * 2002-09-06 2004-11-18 Juha Jakkula Process for producing a hydrocarbon component of biological origin
US20050060929A1 (en) * 2003-09-05 2005-03-24 Rinaldo Caprotti Stabilised diesel fuel additive compositions
US20060112614A1 (en) * 2003-12-01 2006-06-01 Davenport John N Power increase and increase in acceleration performance of diesel fuel compositions

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2607803A1 (en) 1986-12-08 1988-06-10 Univ Paris Curie Process for pressure hydrocracking of vegetable oils or of fatty acids derived from the said oils
FI100248B (en) 1996-02-05 1997-10-31 Fortum Oil Oy Manufacture of middle distillate
JP2003171670A (en) 2001-12-07 2003-06-20 Kawaken Fine Chem Co Ltd Method for producing hydrocarbons and catalyst for producing hydrocarbons
DE60312446T3 (en) 2002-09-06 2017-04-27 Neste Oil Oyj Process for the preparation of a hydrocarbon component of biological origin
DE10327059B4 (en) 2003-06-16 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for converting fat and oil containing raw materials and waste into high hydrocarbon content mixtures, products made by this process and their use

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4049686A (en) * 1975-03-10 1977-09-20 Lever Brothers Company Degumming process for triglyceride oils
US4518485A (en) * 1982-05-18 1985-05-21 Mobil Oil Corporation Hydrotreating/isomerization process to produce low pour point distillate fuels and lubricating oil stocks
US4554397A (en) * 1983-08-25 1985-11-19 Institut Francais Du Petrole Process for manufacturing a linear olefin from a saturated fatty acid or fatty acid ester
US4992605A (en) * 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
US4992403A (en) * 1988-08-19 1991-02-12 Sumitomo Metal Mining Company Limited Catalysts for hydrotreating hydrocarbons and methods of preparing the same
US5183556A (en) * 1991-03-13 1993-02-02 Abb Lummus Crest Inc. Production of diesel fuel by hydrogenation of a diesel feed
US5705722A (en) * 1994-06-30 1998-01-06 Natural Resources Canada Conversion of biomass feedstock to diesel fuel additive
US5888376A (en) * 1996-08-23 1999-03-30 Exxon Research And Engineering Co. Conversion of fischer-tropsch light oil to jet fuel by countercurrent processing
US20040230085A1 (en) * 2002-09-06 2004-11-18 Juha Jakkula Process for producing a hydrocarbon component of biological origin
US20050060929A1 (en) * 2003-09-05 2005-03-24 Rinaldo Caprotti Stabilised diesel fuel additive compositions
US20060112614A1 (en) * 2003-12-01 2006-06-01 Davenport John N Power increase and increase in acceleration performance of diesel fuel compositions

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090250376A1 (en) * 2008-04-06 2009-10-08 Brandvold Timothy A Production of Blended Gasoline and Blended Aviation Fuel from Renewable Feedstocks
US20090253947A1 (en) * 2008-04-06 2009-10-08 Brandvold Timothy A Production of Blended Fuel from Renewable Feedstocks
US20090294324A1 (en) * 2008-04-06 2009-12-03 Brandvold Timothy A Production of Blended Gasoline Aviation and Diesel Fuels from Renewable Feedstocks
US20090301930A1 (en) * 2008-04-06 2009-12-10 Brandvold Timothy A Production of Blended Fuel from Renewable Feedstocks
US8324438B2 (en) * 2008-04-06 2012-12-04 Uop Llc Production of blended gasoline and blended aviation fuel from renewable feedstocks
US8329967B2 (en) * 2008-04-06 2012-12-11 Uop Llc Production of blended fuel from renewable feedstocks
US8329968B2 (en) * 2008-04-06 2012-12-11 Uop Llc Production of blended gasoline aviation and diesel fuels from renewable feedstocks
US20100197537A1 (en) * 2009-02-02 2010-08-05 R.T. Vanderbilt Company, Inc. Ashless lubricant composition
US9315760B2 (en) 2009-02-02 2016-04-19 Vanderbilt Chemicals, Llc Ashless lubricant composition
US20160177185A1 (en) * 2014-12-18 2016-06-23 Kior, Llc Method of thermolyzing biomass in presence of hydrogen sulfide
US9644150B2 (en) * 2014-12-18 2017-05-09 Inaeris Technologies, Llc Method of thermolyzing biomass in presence of hydrogen sulfide

Also Published As

Publication number Publication date
US8278492B2 (en) 2012-10-02
US20070006523A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US11473018B2 (en) Process for the manufacture of diesel range hydrocarbons
US8278492B2 (en) Process for the manufacture of diesel range hydrocarbons
EP1741767B2 (en) Process for the manufacture of diesel range hydrocarbons
CA2614014C (en) Process for the manufacture of diesel range hydrocarbons
AU2006264900B2 (en) Process for the manufacture of diesel range hydrocarbons
EP1741768B1 (en) Process for the manufacture of diesel range hydrocarbons
US20230014266A1 (en) Process for the manufacture of diesel range hydrocarbons

Legal Events

Date Code Title Description
AS Assignment

Owner name: NESTE OIL OYJ, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MYLLYOJA, JUKKA;AALTO, PEKKA;HARLIN, ELINA;SIGNING DATES FROM 20060809 TO 20060815;REEL/FRAME:018252/0261

Owner name: NESTE OIL OYJ, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MYLLYOJA, JUKKA;AALTO, PEKKA;HARLIN, ELINA;REEL/FRAME:018252/0261;SIGNING DATES FROM 20060809 TO 20060815

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

IPR Aia trial proceeding filed before the patent and appeal board: inter partes review

Free format text: TRIAL NO: IPR2014-00192

Opponent name: SYNTROLEUM CORPORATION

Effective date: 20131122

FPAY Fee payment

Year of fee payment: 4

IPRC Trial and appeal board: inter partes review certificate

Kind code of ref document: K1

Free format text: INTER PARTES REVIEW CERTIFICATE; TRIAL NO. IPR2014-00192, NOV. 22, 2013INTER PARTES REVIEW CERTIFICATE FOR PATENT 8,278,492, ISSUED OCT. 2, 2012, APPL. NO. 11/477,921, JUN. 30, 2006INTER PARTES REVIEW CERTIFICATE ISSUED FEB. 23, 2018

Effective date: 20180223

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12