US20100283855A1 - Method and Device for Traffic Sign Recognition - Google Patents

Method and Device for Traffic Sign Recognition Download PDF

Info

Publication number
US20100283855A1
US20100283855A1 US12/670,285 US67028508A US2010283855A1 US 20100283855 A1 US20100283855 A1 US 20100283855A1 US 67028508 A US67028508 A US 67028508A US 2010283855 A1 US2010283855 A1 US 2010283855A1
Authority
US
United States
Prior art keywords
traffic sign
region
recognition
classification
traffic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/670,285
Other versions
US8643721B2 (en
Inventor
Lars-Peter Becker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hella KGAA Huek and Co
Original Assignee
Hella KGAA Huek and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102007034505 priority Critical
Priority to DE200710034505 priority patent/DE102007034505A1/en
Priority to DE102007034505.6 priority
Application filed by Hella KGAA Huek and Co filed Critical Hella KGAA Huek and Co
Priority to PCT/EP2008/059409 priority patent/WO2009013223A1/en
Assigned to HELLA KGAA HUECK & CO. reassignment HELLA KGAA HUECK & CO. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BECKER, LARS-PETER
Publication of US20100283855A1 publication Critical patent/US20100283855A1/en
Application granted granted Critical
Publication of US8643721B2 publication Critical patent/US8643721B2/en
Application status is Active legal-status Critical
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/00791Recognising scenes perceived from the perspective of a land vehicle, e.g. recognising lanes, obstacles or traffic signs on road scenes
    • G06K9/00818Recognising traffic signs
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/68Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
    • G06K9/6807Dividing the references in groups prior to recognition, the recognition taking place in steps; Selecting relevant dictionaries

Abstract

In a method and a device for traffic sign recognition, at least one significant feature for a traffic sign is determined which is standardized for a region. The region that corresponds to the determined feature is determined. At least one classification feature and/or at least one classification method is defined depending on the determined region for the recognition of the traffic sign and/or at least one further traffic sign. The recognition of the traffic sign and/or the at least one further traffic sign is performed by using the defined classification feature and/or the defined classification method.

Description

    FIELD OF THE INVENTION
  • The invention relates to a method and a device for traffic sign recognition, in which the recognition of a traffic sign is performed by using a classification feature and/or a classification method.
  • DESCRIPTION OF THE RELATED ART
  • The features and characteristics of known traffic signs in different countries are very different despite the standards established by the Vienna Convention. Therefore, also country-specific classification features or country-specific classification methods should be used for the classification of traffic signs in order to obtain a high recognition quality. In particular, not all special characteristics of traffic signs existing in the countries of the European Union can be sufficiently taken into account when using one single detection and classification strategy. Individual traffic signs in particular differ from one another with respect to left-hand traffic and right-hand traffic, such as “no passing” signs. In countries outside the European Union, further characteristics as well as other types of traffic signs are possible and common.
  • BRIEF SUMMARY
  • It is an object of the invention to specify a method and a device by means of which traffic signs can be reliably recognized, even in cross-border traffic.
  • By defining a classification feature and/or at least one classification method depending on determined recognition qualities or a determined region and by using this classification feature and/or this classification method for recognizing a traffic sign, specific classification features and methods can be used for this region. As a result, recognition quality is increased and the expense is reduced as compared to when classification features and/or classification methods of several regions are taken into account. In particular, a minimization of the calculating time required for the traffic sign recognition and a reduction of the memory requirements necessary for implementing a classification method for the recognition of a traffic sign can be achieved. When using digital signal processors, in particular the memory requirements in the cache memory of the digital signal processor can be reduced if only classification features and classification methods are loaded that are relevant for the region that is determined or defined on the basis of the determined recognition qualities or the determined significant feature.
  • In particular, it is useful if for different regions, in particular for different countries, different databases and/or different data records are used in which the relevant classification features and/or program data for implementing suitable classification methods are stored. Based on the defined region, then the data record or the database is used for the traffic sign recognition. As a result thereof, a high recognition quality at a low processing expense is achieved.
  • In another development of the invention, one significant feature is determined that is significant for several traffic signs standardized for this region. Alternatively or additionally, one significant feature can be determined for each of several traffic signs standardized for this region, the traffic signs preferably indicating different legal provisions.
  • Further, for at least two traffic signs at least one significant feature each for a respective traffic sign can be determined. The region is then determined with the aid of the determined features.
  • As a significant feature, in particular the size of the traffic sign, the font type, symbol characteristics (e.g. in the case of danger signs, city limit signs, etc.) and/or the size of signs shown on the traffic sign, at least one color, a reflection property and/or at least one property of the support means for supporting the traffic sign can be used. For example, the color and/or the design of a supporting rod with which the traffic sign is installed at the roadside can be used as a significant feature. Further, overhead gantry signs, traffic light facilities on which traffic signs are mounted and/or road lighting devices on which traffic signs are mounted can be used as a significant feature.
  • It is also advantageous when, on the basis of available image data of at least one image showing a reproduction of at least a part of the area surrounding a vehicle, at least one traffic sign located in this part of the area is determined. The traffic sign can then be classified with the aid of a classification method for classifying the region. Thus, the traffic sign recognition and the determination of the region can be performed with means that are integrated in a vehicle, in particular a motor vehicle, such as a passenger car, a truck or a motorcycle.
  • During processing of the available image data, the traffic sign can be detected as an object and can be pre-classified as a traffic sign with the aid of a pre-classification method. In doing so, the object or traffic sign is tracked over several images. For this, for example, a known tracking method can be used.
  • The region can be one or more countries or states, one or more federal states, one or more cantons and/or one or more other administrative units with at least one traffic sign specifically specified for the administrative unit.
  • Further, it is advantageous to pre-set a region, and, based on the preset region, to use at least one classification feature specified for the preset region and/or at least one classification method specified for the preset region for the recognition of the traffic sign and/or at least one further traffic sign. Preferably, for the classification and the recognition of the traffic sign, one probability each is determined for several possible traffic signs, the probability indicating to what extent this possible traffic sign actually is the traffic sign that is to be classified.
  • Further, for each of several images of an image sequence with sequentially recorded images the probability can be determined for several possible traffic signs. Thus, for each possible traffic sign a probability is repeatedly determined. On the basis of the single probabilities determined for each traffic sign for the single images, a total probability can be determined by means of which reliable traffic sign recognition is made possible.
  • In some embodiments of the invention, steps for determining the region are only implemented when the determined probabilities for a specific traffic sign and/or for several traffic signs—preferably repeatedly—fall below a preset limit value. Further, in these and/or further embodiments of the invention, these steps can be implemented in periods in which no traffic signs are classified. This is in particular the case when available image data do not comprise any reproductions of one or more traffic signs or a pre-classification method and/or an object recognition method cannot determine a traffic sign during processing of the available image data.
  • Further, for at least two different regions data allocated to a respective region can be stored, wherein only those data are used and/or loaded for the classification of the traffic sign allocated to the determined region. Preferably for each region a data record is stored that is used in a selection or the region is preset for the classification of traffic signs.
  • Further, for each of at least two regions the probability can be determined as to whether, as a result of the determined features, a region is concerned. Preferably the region with the highest determined probability is preset as the current region.
  • Further, a traffic sign already classified with a preset first region can again be classified with a further preset second region or, respectively, with the classification features and/or classification methods allocated to these regions. In this connection, it is checked whether the traffic sign is classified as a specific traffic sign with a higher probability given the classification with the further second preset region than given the classification with the first preset region. This repeated classification of the traffic sign is preferably performed with the same available image data, wherein the repeated classification of the traffic sign is preferably performed in a period in which no further traffic signs are to be classified, in particular when no traffic signs are detected during the processing of available image data.
  • Further, given the recognition of a traffic sign specified for a region, this region can be preset for the classification of further traffic signs. This traffic sign can, for example, be an information board at a border crossing. These information boards differ from one another with respect to different countries, in particular in a country code provided on the information board. In the traffic regulations of the Federal Republic of Germany, such a traffic sign is included as “Information at border crossings” as sign 393.
  • The region can also be determined on the basis of several traffic signs having a feature that is specific for a certain region in order to increase the recognition quality during the recognition or determination of the region.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further features and advantages of the invention result from the following description which in connection with the enclosed Figures explains the invention in more detail with reference to embodiments.
  • FIG. 1 shows a block diagram of a system for image recording and image evaluation of the area surrounding a motor vehicle.
  • FIG. 2 shows a block diagram with functional blocks for performing country-specific traffic sign recognition according to a first embodiment of the invention.
  • FIG. 3 shows a block diagram with functional blocks for performing country-specific traffic sign recognition according to a second embodiment of the invention.
  • DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • In FIG. 1, a block diagram of an image recording and evaluation system 10 is illustrated, which is integrated into a motor vehicle, in particular in a passenger car or a truck. The image recording and evaluation system 10 comprises a camera system 12 that records an image sequence showing reproductions of at least a part of an area in front of the vehicle and generates respective image data. These image data are transferred to an image processing unit 14 of the system 10 and are analyzed and processed with the aid of control and processing modules 16 a to 16 d of the image processing unit 14.
  • The image processing unit 14 is connected via a vehicle bus 18 of the vehicle with further control and processing units 20 to 26, such as the navigation system, the speed detection and/or regulation system of the vehicle, wherein the image processing unit 14 can exchange data with these further control units 20 to 26 via the vehicle bus 18. The image processing unit 14 is further connected via a suitable data line to a display and alarm unit 28 as well as a speed regulation and/or limit control 30. Further, the image processing unit 14 is connected to a non-volatile storage 32 via a data line. Such a non-volatile storage 32 can, for example, be a hard-disk storage, a flash memory or a further control unit. Further, the non-volatile storage 32 can also be provided by a database system of the motor vehicle. The camera system 12 can comprise a mono camera, several mono cameras, a stereo camera system and/or several stereo camera systems, wherein the individual cameras generate gray scale images or color images. As a vehicle bus 18 conventional known bus systems, such as a LIN bus, a CAN bus and/or a FlexRay bus, can be used. The optical systems of the camera or cameras of the camera system 12 can in particular have different fixed focal lengths or a focal length can be set in particular via a turret-mounted lens system or a zoom lens system.
  • Via the vehicle bus 18, the image processing unit 14 also communicates with further sensors and receiving units, which in particular can enter into an ad hoc communication with further vehicles and/or with traffic devices, such as traffic light facilities, overhead gantry signs and/or individual traffic signs. Further, via the vehicle bus 18, information on signal states of individual actuators and sensors, in particular on the activation of the travel direction display devices of the vehicle, are transferred.
  • With the aid of the image sequence recorded by the camera system 12, the traffic signs in the detection area of the camera system 12 are detected and classified by an analysis of the image data with the aid of the image processing unit 14. By the classification of the traffic signs with the aid of a suitable recognition method, each imaged traffic sign is identified as a specific traffic sign. Via the display and alarm unit 28, the reproduction of the traffic sign and/or a symbol corresponding to this traffic sign is displayed.
  • Additionally or alternatively, text information and/or acoustic information can be output. Further, traffic information, in particular about a speed limit or a minimum speed is transferred to the speed regulation and/or limit control 30, wherein the speed regulation and/or limit control 30 can output a warning signal when the admissible maximum speed is exceeded and/or a minimum speed is fallen below. Alternatively, the speed limits can be used as maximum limit values of a speed regulation and/or speed limit, possibly with an offset.
  • A further processing and control module 16 a to 16 d of the image processing unit 14 can determine the current lane of the vehicle on the basis of the reproductions of the image sequence. A further processing module 16 a to 16 d can allocate those traffic signs that can be allocated unambiguously to one of the determined lanes to this lane only, wherein these traffic signs that are allocated to one lane only can be stored together with the lane information in the non-volatile storage 32. Further, in the non-volatile storage 32, comparison data for a pattern comparison for traffic sign recognition can be stored, in particular country-specific patterns of traffic signs, symbols that can be output on the display unit 28 instead of the reproductions of the recognized traffic signs, as well as texts and/or acoustic information to be output.
  • A further processing and control module 16 a to 16 d checks whether a detected traffic sign has at least one feature that is significant for a region. If such a significant feature is determined, the region allocated to this determined feature is determined and defined as a current region. Based on this defined region, for the recognition of the detected traffic sign and/or at least one further detected traffic sign at least one classification feature allocated to this region and/or at least one classification method allocated to this region is determined and used for classification.
  • In FIG. 2, a block diagram with functional blocks for performing a country-specific traffic sign recognition according to a first embodiment of the invention is illustrated. On the basis of the available image data of an image sequence, traffic sign recognition is performed by the functional block 50, wherein for the traffic sign recognition a country-specific traffic sign database with at least partly country-specific classification features and/or at least partly country-specific classification methods or program data for providing these classification methods are used. The country-specific database preferably comprises classification methods and classification features for the classification of all standardized traffic signs that are relevant for at least one specific vehicle and can be found in a preset country. Preferably, one country is preset. Depending on this preset country, the country-specific traffic sign database allocated to this country is loaded and used for traffic sign recognition.
  • By the functional block 52, the result of the traffic sign recognition is determined, and the total quality or total probability of a recognized traffic sign determined over several individual images of the image sequence is transferred as a result to the functional block 54, which collects and stores the results of the qualities or probabilities of recognized traffic signs. The functional block 56 checks whether, on the basis of the collected qualities and probabilities of several successively recognized traffic signs with a preset country-specific traffic sign database in which specific classification features and/or classification methods specified for this country are stored, a sufficient quality is given or not.
  • In addition, the image regions of the images of the image sequence that are used by the functional block 50 for traffic sign recognition are stored by the functional block 58 so that they are available for further traffic sign recognitions with alternative country-specific traffic sign databases. If the functional block 56 determines that the traffic sign recognition has a low quality, the traffic sign recognition is repeatedly performed with a further alternative country-specific traffic sign database by the functional block 60 with the aid of the image regions with detected traffic signs stored by the functional block 58. The qualities and probabilities determined hereby are transferred to the functional block 56, by means of which the probabilities and qualities determined with the aid of the further alternative country-specific traffic sign database are interpreted. If again only a low recognition quality is determined, this procedure is repeated with further country-specific traffic sign databases until it is determined by the functional block 56 that the result of the traffic sign recognition has a sufficient quality. Then the functional block 64 presets for further traffic sign recognitions the country-specific traffic sign database, for which at least a sufficient and/or the best quality has been determined in the traffic sign recognition. If no sufficient quality is achieved with any available country-specific traffic sign database, a corresponding error message can be output and/or the vehicle driver is requested via a corresponding dialogue to enter a country code and/or to enter the country where the vehicle currently is.
  • Alternatively, after the repeated traffic sign recognition with a further country-specific traffic sign database by the functional block 60, there can be a branching to the functional block 54 in which the determined qualities and probabilities are stored, wherein then there is a branching from the functional block 54 further to the functional block 56. In the embodiment according to FIG. 1, the repeated traffic sign recognition with a further country-specific traffic sign database by the functional block 60 with the aid of the stored image data takes place in periods in which no qualities and probabilities of detected traffic signs are to be determined, in particular when no traffic signs are detected in recorded images of an image sequence in the block 50.
  • In FIG. 3, a block diagram with functional blocks for performing country-specific traffic sign recognition similar to the block diagram according to FIG. 2 is illustrated according to a second embodiment of the invention. Identical elements are identified by identical reference signs. In contrast to the block diagram of FIG. 2, the alternative traffic sign recognition in the block diagram of FIG. 3 takes place with a further country-specific traffic sign database in parallel with the traffic sign recognition using a currently preset country-specific traffic sign database. In the same way as in FIG. 1, traffic sign recognition is performed by the functional block 50 on the basis of image data of several images of an image sequence with the aid of a preset country-specific traffic sign database. By the functional block 52, the total quality or total probability of the traffic sign recognition for a traffic sign is determined as a result of the traffic sign recognition and is transferred to the functional block 54, which collects and stores the qualities and probabilities of traffic sign recognitions. Thereafter, the determined total probability or recognition quality for a certain number of traffic signs for the preset country is interpreted by the functional block 56, in particular compared to a probability limit value.
  • If the functional block 56 determines that a sufficient quality of the traffic sign recognition is given, a branching to the functional block 50 takes place so that the functional block 50 performs further traffic sign recognitions with the currently preset country-specific traffic sign database. If, however, the functional block 56 determines that the traffic sign has been recognized with a low quality, further country-specific traffic sign databases are used for the traffic sign recognition with the same image data by means of the functional block 64. These image data at least comprise the image areas in which traffic signs have been detected, preferably with the aid of a pre-classification, and which have already been used as a basis for traffic sign recognition by the functional block 50.
  • By means of the functional block 66, and starting out from these image data, a traffic sign recognition is performed preferably for each country for which a country-specific traffic sign database is available, and by means of the functional block 68 the total quality or the total probability for at least one traffic sign is determined for each country as a result of the traffic sign recognition. The result is then supplied to the functional block 70, which collects and stores the results in a manner allocated to the respective country. By means of the functional block 72 the country-specific traffic sign database is determined in which the classification features and/or classification methods are stored with which the highest recognition quality has been determined. This country-specific traffic sign database is then preset in the system for further traffic sign recognition so that this country-specific traffic sign database is used for the further traffic sign recognition by the functional block 50. By determining the country-specific traffic sign database, the region or the country is determined in which the vehicle is situated with the highest determined probability.
  • By way of the possibilities shown in the embodiments for determining the region or the country in which the vehicle currently is, this information can also be determined without a country or region information from a navigation system and can be used for traffic sign recognition. This is particularly necessary when there is no data exchange between a navigation system of a vehicle and the system for traffic sign recognition, for example when using mobile navigation systems. Further, navigation information is also lacking when the navigation system has failed or the map data for the region in which the vehicle currently is are not available. When crossing a country border, by way of the described procedure it can automatically be switched to the relevant country-specific traffic sign database in which in particular classification features and/or classification methods are stored. At least a part of these classification features and/or classification methods is specifically adapted to the traffic signs of the country or the region. By providing specific country-specific traffic sign databases, the recognition quality can be considerably increased at least for individual countries. Further, only a relatively low processing expense is required since all possible country-specific traffic sign databases do not have to be referred to for every single traffic sign recognition. Preferably, a newly determined region or a newly determined country is verified by the repeated recognition of several traffic signs in order to achieve a statistical hedging of the result of the region recognition or country recognition. In particular, a preset region is only replaced by a new region when a minimum number of localized and processed traffic signs has been determined.
  • After crossing a country border relevant for a specific traffic sign class, the determined probability of the recognized traffic sign will decrease and, in individual cases, the determined probability will tend to zero. This is, for example, the case when the traffic sign is a “no passing” sign for trucks, and the vehicle passes a country border, wherein in the country of origin there is right-hand traffic and in the new country there is left-hand traffic or vice versa, so that the “no passing” signs differ from one another. However, for example, differences in the font type and/or font size of prohibition signs and mandatory signs for a speed limit also occur, which differences have a considerable influence on the recognition quality of the traffic sign recognition.
  • By proceeding as described, the automatic recognition of the country or the region in which the vehicle is currently situated takes place. This automatic recognition is based on the quality of the traffic sign recognition, without navigation information having to be referred to. As illustrated in the embodiments, the method for determining the region or the country in which the vehicle is currently situated can be performed continuously or only when the quality of the traffic sign recognition or the traffic sign classification falls below a preset limit value. This limit value is, for example, fallen below when a preset number of classified traffic signs falls below a preset probability value or when a preset number of detected traffic signs cannot be classified on the basis of the country-specific traffic sign database selected by the preset region. Also a country-specific data record or several country-specific data records are considered as a country-specific traffic sign database herein, which data records are provided by a database system and/or are stored in a non-volatile storage of the vehicle.

Claims (23)

1. A method for traffic sign recognition, comprising:
on the basis of available image data of at least one reproduction of a traffic sign, performing a first traffic sign recognition with at least one of a first classification feature specified for a first region and a first classification method specified for the first region to determine a first recognition quality of the first traffic sign recognition;
on the basis of the available image data of the at least one reproduction of the traffic sign, performing a second traffic sign recognition with at least one of a second classification feature specified for a second region and a second classification method specified for the second region to determine a second recognition quality of the second traffic sign recognition;
using the at least one of the first classification feature specified for the first region and the first classification method specified for the first region for the traffic sign recognition of the traffic sign when the first recognition quality is greater than the second recognition quality; and
using the at least one of the second classification feature specified for the second region and a second classification method specified for the second region the traffic sign recognition of the traffic sign when the first recognition quality is less than the second recognition quality.
2. The method according to claim 1, characterized in that the second traffic sign recognition is only performed when the recognition quality determined with the aid of the first traffic sign recognition falls below a preset recognition quality limit value.
3. A method for traffic sign recognition, comprising:
determining at least one significant feature for a traffic sign, wherein the traffic sign is standardized for a region;
determining the region corresponding to the at least one significant feature;
defining at least one of a classification feature a classification method depending on the determined region for the recognition of the traffic sign; and
performing the recognition of the traffic sign using the at least one of the defined classification feature and the defined classification method.
4. The method according to claim 3, characterized in that at least one of the at least one significant feature is significant for several traffic signs standardized for the region or in that for each of several traffic signs standardized for this region one significant feature is determined, wherein the traffic signs indicate different legal regulations.
5. The method according to claim 4, characterized in that for each of at least two traffic signs at least one feature significant for this traffic sign is determined, wherein the region is determined with the aid of the determined features.
6. The method according to claim 3, characterized in that as a significant feature at least one of a size of the traffic sign, a font type, a symbol characteristic a size of signs that are illustrated on the traffic sign, at least one color, a reflection property and at least one property of support means for supporting the traffic sign is used.
7. The method according to claim 1, characterized in that, on the basis of available image data of at least one image with a reproduction of at least a part of an area surrounding a vehicle, at least one traffic sign present in this area is determined.
8. The method according to claim 7, characterized in that during a processing of the available image data the traffic sign is detected as an object and is pre-classified as a traffic sign with the aid of a pre-classification method, wherein the object is preferably tracked over several images.
9. The method according to claim 1, characterized in that a region comprises at least one country, a federal state, a canton and another administrative unit having at least one traffic sign specifically specified for the administrative unit.
10. The method according to claim 1, characterized in that each time region-allocated data with the at least one classification feature specified for the respective region or each time region-allocated program data for providing at least one classification method specified for the respective region are held available by a data processing unit for the recognition of the traffic sign, wherein at least two different regions are provided.
11. The method according to claim 10, characterized in that at least one of the region-allocated data and the region-allocated program data are stored in a non-volatile storage area of the data processing unit.
12. The method according to claim 10, characterized in that a region is preset, and in that, on the basis of the preset region, at least one of a classification feature specified for the preset region and a classification method specified for the preset region are used for the recognition of the traffic sign, wherein for each of several possible traffic signs a probability is determined that the possible traffic sign actually is the traffic sign to be classified.
13. The method according to claim 12, characterized in that for each of several images of an image sequence with sequentially recorded images the probabilities for several possible traffic signs is determined.
14. The method according to claim 12, characterized in that the method steps for determining the region are only implemented when the determined probabilities fall below a preset limit value or in periods in which no traffic signs are classified.
15. The method according to claim 1, characterized in that for at least two different regions, data allocated to the respective region are stored, and in that only those data are loaded for classification of the traffic sign which are allocated to the determined region, wherein preferably for each region a data record is stored which is used in the selection or presetting of this region for the classification of traffic signs.
16. The method according to claim 1, characterized in that for each of at least two regions the probability is determined whether, on the basis of the features determined, this region is concerned, wherein preferably the region with the highest determined probability is preset as the current region.
17. The method according to claim 3, characterized in that a traffic sign already classified with a preset first region is classified again with a further preset second region, wherein it is checked whether given the classification with the further preset second region the traffic sign is classified with a higher probability than given the classification with the first preset region.
18. The method according to claim 17, characterized in that this repeated classification of the traffic sign of the preset second region takes place with the same available image data as the classification with the first preset region, wherein the repeated classification of the traffic sign is preferably performed in a period in which no further traffic signs are to be classified, in particular when no traffic signs are detected in the recorded images.
19. The method according to claim 1, characterized in that given the recognition of a traffic sign specified for a region this region is preset for the classification of further traffic signs.
20. The method according to claim 19, characterized in that this traffic sign is an information board at border crossings, wherein the information boards for different regions differ from one another in particular by a country code provided on the information board.
21. The method according to claim 3, characterized in that the region is determined on the basis of several traffic signs having a feature that is specific for a certain region.
22. A device for traffic sign recognition, comprising:
an image recording system for generating image data of at least one image with a reproduction of at least a part of an area surrounding a vehicle; and
a processing unit
that processes the image data and determines a traffic sign that is present in the area covered by the reproduction,
that, on the basis of the image data of the traffic sign, performs a first traffic sign recognition with at least one of a first classification feature specified for a first region and a first classification method specified for the first region, wherein the processing unit determines a first recognition quality of the first traffic sign recognition,
that, on the basis of the image data of the traffic sign, performs a second traffic sign recognition with at least one of a second classification feature specified for a second region and a second classification method specified for the second region, wherein the processing unit determines a second recognition quality of the second traffic sign recognition,
that uses the at least one of the first classification feature specified for the first region and the first classification method specified for the first region for the traffic sign recognition of the traffic sign when the first recognition quality is greater than the second recognition quality, and
that uses the at least one of the second classification feature specified for the second region and the second classification method specified for the second region for the traffic sign recognition of the traffic sign when the first recognition quality is less than the second recognition quality.
23. A device for traffic sign recognition, comprising:
an image recording system for generating image data of at least one image with a reproduction of at least a part of an area surrounding a vehicle; and
a processing unit that processes the image data and determines at least one traffic sign present in the area covered by the reproduction,
wherein the processing unit determines at least one significant feature for the traffic sign, wherein the traffic sign is standardized for a region,
wherein the processing unit determines the region corresponding to the at least one significant feature,
wherein the processing unit defines at least one of a classification feature and a classification method depending on the determined region for the recognition of the traffic sign, and
wherein the processing unit performs the recognition of the traffic sign by using the at least one of the defined classification feature and the defined classification method.
US12/670,285 2007-07-24 2008-07-17 Method and device for traffic sign recognition Active 2030-12-29 US8643721B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102007034505 2007-07-24
DE200710034505 DE102007034505A1 (en) 2007-07-24 2007-07-24 Method and device for traffic sign recognition
DE102007034505.6 2007-07-24
PCT/EP2008/059409 WO2009013223A1 (en) 2007-07-24 2008-07-17 Method and apparatus for recognizing traffic signs

Publications (2)

Publication Number Publication Date
US20100283855A1 true US20100283855A1 (en) 2010-11-11
US8643721B2 US8643721B2 (en) 2014-02-04

Family

ID=40130801

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/670,285 Active 2030-12-29 US8643721B2 (en) 2007-07-24 2008-07-17 Method and device for traffic sign recognition

Country Status (5)

Country Link
US (1) US8643721B2 (en)
EP (1) EP2179381B1 (en)
KR (1) KR20100051066A (en)
DE (1) DE102007034505A1 (en)
WO (1) WO2009013223A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150220795A1 (en) * 2012-11-06 2015-08-06 Conti Temic Microelectronic Gmbh Method and device for recognizing traffic signs for a vehicle
JP2015146119A (en) * 2014-02-03 2015-08-13 株式会社デンソー Sign recognition device, and method of determining transit division and distance unit
JP2015191619A (en) * 2014-03-28 2015-11-02 富士重工業株式会社 Outside-vehicle environment recognition device
US9193355B2 (en) * 2012-09-05 2015-11-24 Google Inc. Construction zone sign detection using light detection and ranging
US20160034769A1 (en) * 2014-07-29 2016-02-04 Magna Electronics Inc. Vehicle vision system with traffic sign recognition
US20160167641A1 (en) * 2014-12-11 2016-06-16 Kia Motors Corporation Apparatus and method for controlling battery state of charge in hybrid electric vehicle
US20170270377A1 (en) * 2016-03-21 2017-09-21 Elektrobit Automotive Gmbh Method and device for recognizing traffic signs
KR101936108B1 (en) 2014-01-08 2019-01-09 주식회사 만도 Method and apparatus for detecting traffic sign
US10227038B2 (en) * 2015-05-11 2019-03-12 Toyota Jidosha Kabushiki Kaisha Regulation speed display apparatus of vehicle
US10228699B2 (en) * 2015-05-21 2019-03-12 Denso Corporation Image generation apparatus
WO2019119356A1 (en) * 2017-12-21 2019-06-27 华为技术有限公司 Information detection method and mobile device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011121278A1 (en) * 2011-12-15 2013-06-20 Gm Global Technology Operations, Llc Method for operating traffic sign recognition system of e.g. truck, involves converting country-specific information of sign in one of vehicle's specification, if country-specific information does not match vehicle's specification
US9460355B2 (en) 2014-10-14 2016-10-04 Here Global B.V. Lateral sign placement determination
DE102017208854A1 (en) 2017-05-24 2018-11-29 Volkswagen Aktiengesellschaft A method, apparatus and computer readable storage medium having instructions for determining applicable traffic rules for a motor vehicle

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040010352A1 (en) * 2002-07-09 2004-01-15 Oyvind Stromme Automatic traffic sign recognition
US6801638B1 (en) * 1998-11-14 2004-10-05 Daimlerchrysler Ag Device and method for recognizing traffic signs
US20050273212A1 (en) * 2004-06-07 2005-12-08 Darrell Hougen Object classification system for a vehicle
US20070124157A1 (en) * 2005-05-06 2007-05-31 Laumeyer Robert A Network-based navigation system having virtual drive-thru advertisements integrated with actual imagery from along a physical route
US20070131851A1 (en) * 2005-12-14 2007-06-14 Nevine Holtz Polarimetric detection of road signs
US20070154067A1 (en) * 1998-10-23 2007-07-05 Facet Technology Corp. Method and apparatus for identifying objects depicted in a videostream
US20070171431A1 (en) * 2006-01-20 2007-07-26 Claude Laflamme Automatic asset detection, location measurement and recognition
US7433889B1 (en) * 2002-08-07 2008-10-07 Navteq North America, Llc Method and system for obtaining traffic sign data using navigation systems
US20090285445A1 (en) * 2008-05-15 2009-11-19 Sony Ericsson Mobile Communications Ab System and Method of Translating Road Signs
US20100232656A1 (en) * 2006-02-14 2010-09-16 Olaworks, Inc. Method and System for Tagging Digital Data
US20120002053A1 (en) * 2006-12-06 2012-01-05 Stein Gideon P Detecting and recognizing traffic signs

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334503B2 (en) 1982-11-30 1988-07-11 Sharp Kk
JPS59109978A (en) * 1982-12-15 1984-06-25 Hitachi Ltd Optical character reader
DE59208632D1 (en) * 1992-01-31 1997-07-24 Mars Inc Means for the classification of a pattern, especially of a bank note or a coin,
DE19723293A1 (en) * 1997-06-04 1998-12-10 Siemens Ag Pattern recognition methods
DE19938256B4 (en) * 1999-08-12 2010-07-15 Volkswagen Ag Method and device for the electronic detection of traffic signs
US7062498B2 (en) * 2001-11-02 2006-06-13 Thomson Legal Regulatory Global Ag Systems, methods, and software for classifying text from judicial opinions and other documents
DE102007002562A1 (en) * 2007-01-17 2008-07-24 Audi Ag Method and device for the dynamic classification of objects and / or traffic situations

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070154067A1 (en) * 1998-10-23 2007-07-05 Facet Technology Corp. Method and apparatus for identifying objects depicted in a videostream
US6801638B1 (en) * 1998-11-14 2004-10-05 Daimlerchrysler Ag Device and method for recognizing traffic signs
US20040010352A1 (en) * 2002-07-09 2004-01-15 Oyvind Stromme Automatic traffic sign recognition
US7433889B1 (en) * 2002-08-07 2008-10-07 Navteq North America, Llc Method and system for obtaining traffic sign data using navigation systems
US20050273212A1 (en) * 2004-06-07 2005-12-08 Darrell Hougen Object classification system for a vehicle
US20070124157A1 (en) * 2005-05-06 2007-05-31 Laumeyer Robert A Network-based navigation system having virtual drive-thru advertisements integrated with actual imagery from along a physical route
US20110093350A1 (en) * 2005-05-06 2011-04-21 Facet Technology Corporation Network-Based Navigation System Having Virtual Drive-Thru Advertisements Integrated with Actual Imagery from Along a Physical Route
US20070131851A1 (en) * 2005-12-14 2007-06-14 Nevine Holtz Polarimetric detection of road signs
US20070171431A1 (en) * 2006-01-20 2007-07-26 Claude Laflamme Automatic asset detection, location measurement and recognition
US20100232656A1 (en) * 2006-02-14 2010-09-16 Olaworks, Inc. Method and System for Tagging Digital Data
US20120002053A1 (en) * 2006-12-06 2012-01-05 Stein Gideon P Detecting and recognizing traffic signs
US20090285445A1 (en) * 2008-05-15 2009-11-19 Sony Ericsson Mobile Communications Ab System and Method of Translating Road Signs

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9193355B2 (en) * 2012-09-05 2015-11-24 Google Inc. Construction zone sign detection using light detection and ranging
US20150220795A1 (en) * 2012-11-06 2015-08-06 Conti Temic Microelectronic Gmbh Method and device for recognizing traffic signs for a vehicle
US10223600B2 (en) * 2012-11-06 2019-03-05 Conti Temic Microelectronic Gmbh Method and device for recognizing traffic signs for a vehicle
KR101936108B1 (en) 2014-01-08 2019-01-09 주식회사 만도 Method and apparatus for detecting traffic sign
JP2015146119A (en) * 2014-02-03 2015-08-13 株式会社デンソー Sign recognition device, and method of determining transit division and distance unit
JP2015191619A (en) * 2014-03-28 2015-11-02 富士重工業株式会社 Outside-vehicle environment recognition device
US9558412B2 (en) 2014-03-28 2017-01-31 Fuji Jukogyo Kabushiki Kaisha Vehicle exterior environment recognition device
US20160034769A1 (en) * 2014-07-29 2016-02-04 Magna Electronics Inc. Vehicle vision system with traffic sign recognition
EP3069920A1 (en) * 2014-12-11 2016-09-21 Hyundai Motor Company Apparatus and method for controlling battery state of charge in hybrid electric vehicle
CN105691383A (en) * 2014-12-11 2016-06-22 现代自动车株式会社 Apparatus and method for controlling battery state of charge in hybrid electric vehicle
US9834199B2 (en) * 2014-12-11 2017-12-05 Hyundai Motor Company Apparatus and method for controlling battery state of charge in hybrid electric vehicle
US20160167641A1 (en) * 2014-12-11 2016-06-16 Kia Motors Corporation Apparatus and method for controlling battery state of charge in hybrid electric vehicle
US10227038B2 (en) * 2015-05-11 2019-03-12 Toyota Jidosha Kabushiki Kaisha Regulation speed display apparatus of vehicle
US10228699B2 (en) * 2015-05-21 2019-03-12 Denso Corporation Image generation apparatus
US20170270377A1 (en) * 2016-03-21 2017-09-21 Elektrobit Automotive Gmbh Method and device for recognizing traffic signs
US10339398B2 (en) * 2016-03-21 2019-07-02 Elektrobit Automotive Gmbh Method and device for recognizing traffic signs
WO2019119356A1 (en) * 2017-12-21 2019-06-27 华为技术有限公司 Information detection method and mobile device

Also Published As

Publication number Publication date
EP2179381B1 (en) 2015-06-24
WO2009013223A1 (en) 2009-01-29
US8643721B2 (en) 2014-02-04
EP2179381A1 (en) 2010-04-28
KR20100051066A (en) 2010-05-14
DE102007034505A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
US8311274B2 (en) Image recognition system
US7366325B2 (en) Moving object detection using low illumination depth capable computer vision
EP1145186B1 (en) Method and apparatus for increasing the power of a traffic sign recognition system
CN100595811C (en) Pavement marking recognition system
US8751154B2 (en) Enhanced clear path detection in the presence of traffic infrastructure indicator
US9733093B2 (en) Data mining to identify locations of potentially hazardous conditions for vehicle operation and use thereof
JP5022609B2 (en) Imaging environment recognition device
US8743202B2 (en) Stereo camera for a motor vehicle
EP1930863B1 (en) Detecting and recognizing traffic signs
JP2006208223A (en) Vehicle position recognition device and vehicle position recognition method
JP2009266003A (en) Object recognizing device and object recognizing method
KR101680023B1 (en) Method for combining a road sign recognition system and lane detection system of a motor vehicle
JP4506790B2 (en) Road information generation apparatus, road information generation method, and road information generation program
EP2740076B1 (en) Method for recognition of traffic signs
CN102568236B (en) Identify traffic sign and the method and apparatus it compared with road signs information
KR20090014124A (en) Method and apparatus for evaluating an image
JP2009205191A (en) Parking space recognition system
US8452524B2 (en) Method and device for identifying traffic-relevant information
US20080013789A1 (en) Apparatus and System for Recognizing Environment Surrounding Vehicle
DE102007002419A1 (en) Vehicle environment monitoring device, method and program
DE102009023326A1 (en) Apparatus and method for detecting a critical area and pedestrian detection apparatus using the same
CN102447911A (en) Image acquisition unit, acquisition method, and associated control unit
Fuerstenberg A new European approach for intersection safety-the EC-Project INTERSAFE
US9082038B2 (en) Dram c adjustment of automatic license plate recognition processing based on vehicle class information
CN102956118B (en) Device and method for traffic sign recognition

Legal Events

Date Code Title Description
AS Assignment

Owner name: HELLA KGAA HUECK & CO., GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BECKER, LARS-PETER;REEL/FRAME:024600/0322

Effective date: 20100624

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4