US20100256489A1 - Handheld Transducer Scanning Speed Guides and Position Detectors - Google Patents
Handheld Transducer Scanning Speed Guides and Position Detectors Download PDFInfo
- Publication number
- US20100256489A1 US20100256489A1 US12/680,538 US68053808A US2010256489A1 US 20100256489 A1 US20100256489 A1 US 20100256489A1 US 68053808 A US68053808 A US 68053808A US 2010256489 A1 US2010256489 A1 US 2010256489A1
- Authority
- US
- United States
- Prior art keywords
- light sources
- transducer
- row
- user
- external ultrasound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N7/02—Localised ultrasound hyperthermia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00115—Electrical control of surgical instruments with audible or visual output
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0004—Applications of ultrasound therapy
- A61N2007/0008—Destruction of fat cells
Definitions
- the present invention relates to the field of non-invasive external ultrasound lipoplasty, skin tightening, and various non-invasive aesthetic, dermatologic, and therapeutic applications.
- the transducer's movement or instantaneous scanning speed needs to be known or better yet its position from which the scanning speed can be easily derived.
- U.S. Pat. No. 7,347,855 teaches a passive system of computerized tracking of a multiplicity of target volumes with compensation for body movements.
- U.S. Pat. No. 6,645,162 teaches an active tracking system depicted in their FIGS. 12 and 13 guiding a transducer in a linear motion.
- U.S. Pat. No. 7,150,716 is specific to diagnostic ultrasound, and teaches two methods (and systems) of detecting transducer scanning speed, namely one through the use of an sensor similar to an optical computer mouse and another through real time de-correlation of ultrasound images.
- FIG. 1 a is a functional block diagram of one embodiment of the present invention.
- FIG. 1 b is a functional block diagram of an alternate form of the embodiment of FIG. 1 a.
- FIG. 2 a is a functional block diagram of another embodiment of the present invention.
- FIG. 2 b is a functional block diagram of alternate form of the second embodiment.
- FIG. 3 is a functional block diagram of still another embodiment of the present invention.
- FIG. 4 is a view of a graphical user interface (e.g., touch screen display menu) with a scanning speed indicator in accordance with the embodiment of FIG. 1 a.
- a graphical user interface e.g., touch screen display menu
- FIG. 5 is a transducer with an integral scanning speed indicator, which in this example consists of five LEDs, in accordance with the embodiment of FIG. 1 b.
- FIG. 6 is a flexible scanning speed guidance strip with built in LEDs in accordance with the embodiments of FIGS. 2 a and 2 b.
- FIG. 7 is a cross sectional view of an exemplary optical sensor in accordance with still another embodiment of the present invention.
- the optimum transducer “scanning” speed for delivering a predetermined dose of ultrasound to a desired treatment area determined by a scanning plan is a function of both the cavitation related Mechanical Index (MI) and tissue temperature Thermal Index (TI) settings. While cavitation is a threshold mechanism there is both an amplitude factor beyond the threshold level and an exposure time factor involved in emulsifying a certain fraction of the treated fat, whereby low settings require a slow scanning speed and high settings require faster scanning speeds.
- the relationships can be estimated from the numerical values of MI and TI and further refined empirically using data from animal and clinical studies.
- the transducer since the transducer is not 100% energy efficient, its face (skin contact area) will create heat and if not properly controlled may present a hazard for potential skin burns.
- control of the skin heating can be included in the speed indicator. If there is no transducer face temperature sensor the suggested transducer movement speed component due to tissue heating can be based on empirical data from animal and clinical studies.
- FIGS. 1 a and 1 b There are at least three approaches for addressing control of the ultrasound dose delivery, as summarized in FIGS. 1 a and 1 b , FIGS. 2 a and 2 b , and FIG. 3 .
- One method requires the user to be part of the feedback loop, whereby the system, the transducer, or a separate device acts as a visual guide for the user to apply the desired scanning speed.
- the first embodiment is an example of this approach.
- Another method consists of a subsystem that detects the transducer scanning velocity and in real time transfers this information to the system, which in turn adjusts parameters such as MI and TI (i.e., ultrasound dose) to achieve the desired effect based on the actual speed of transducer movement. This relieves the user from precisely matching the desired scanning speed, but still requires the user to keep track of the transducer position and the ultrasound beam focal depth.
- MI and TI i.e., ultrasound dose
- a third method monitors the transducer position, which is transferred to the system in real time. With this information and the presence of a clock, the transducer velocity may also be easily calculated. Now the system can automatically adjust the needed parameters such as MI, TI and focal length to accomplish the planned treatment, giving the user the freedom to move the transducer almost “at will”.
- the third embodiment is an example of this.
- the connecting lines in the functional block diagrams in FIGS. 1 a to 3 have the following meaning.
- the occasional user control of the system/console is shown as 7 .
- Item 8 indicates that the user reads the scanning speed indicator.
- Item 9 indicates that the user views the actual scanning speed of the transducer.
- Item 10 indicates that the user actually holds and moves the transducer.
- Item 11 shows the transmit signals from the system to the transducer.
- Item 12 shows the low level power supply and control signals from the system to the Scanning Speed Pad 5 or optical sensor.
- Item 13 indicates the path of sensor signals from the optical sensor to the built in Decoder, which translates the information into position and speed.
- FIGS. 1 a and 4 are to have a visual transducer scanning speed indicator on the transmitter (main unit, console or system) that moves with the same speed that is optimal for the transducer motion on the skin.
- the speed indicator can take the form of a moving cursor 2 on a screen 1 of the transmitter.
- the moving cursor can take many forms, the one shown in FIGS. 1 a , 1 b , 2 a , 2 b and 4 through 6 consists of four moving dots (light sources such as LEDs). These may be sequentially switched on and off at a controlled rate, or the first switched on, the second switched on, etc. with all being switched off and the cycle repeated after the last light source has been switched on, either of which is to be considered sequential switching on, or scanning.
- the user can then practice matching that speed while holding the transducer near the screen. When sufficiently proficient he/she can match the speed when scanning on the skin. As verification, the user can mark the skin for a certain distance and calculate the time needed to traverse that distance based on the numerical value of the desired velocity.
- FIGS. 1 b and 5 Another version ( FIGS. 1 b and 5 ) of the first embodiment is to have a visual transducer scanning speed indicator on the transducer itself 3 , for example in the form of an array of visual indicators (light sources) such as Light Emitting Diodes (LEDs) 4 , which light up in a sequence corresponding to the desired speed of the transducer. It will then be up to the user to provide the “feedback loop” by moving the transducer at the indicated speed. Here the user can perform the same verification as described above.
- a visual transducer scanning speed indicator on the transducer itself 3 , for example in the form of an array of visual indicators (light sources) such as Light Emitting Diodes (LEDs) 4 , which light up in a sequence corresponding to the desired speed of the transducer.
- LEDs Light Emitting Diodes
- a second embodiment is a separate flexible scanning speed guidance pad 5 ( FIGS. 2 a , 2 b and 6 ), which can be placed on the patient adjacent to the intended transducer path.
- the flexible material can be silicone rubber or other material with LEDs (or other visual indicators) 6 molded in.
- the LEDs are sequentially switched on and off so that they provide visual scanning speed guidance in proximity to the transducer.
- the speed guidance pad can be manufactured in different lengths and/or from different materials to fit the desired treatment area, and can also be either disposable (single patient use), semi-disposable, or reusable.
- the LEDs can be powered either by batteries, as in the embodiment of FIG. 2 a , or by the transmitter, embodiment of FIG.
- the system may display the scanning speed, scanning location or position, and range of scan distance if the pad is physically longer than the desired scan needed to match the system settings, while the battery operated solution either would require wireless transmission of the information, or require the user to set the scanning speed according to the transmitter's displayed parameters.
- a third embodiment is an optical 2D location sensor technology similar or identical to those used in an optical computer mouse, as in FIGS. 3 and 7 .
- the sensor primarily consists of a light source 13 , a translucent membrane or cavity 16 , a lens 14 to collimate the reflected light from the skin 18 , which also goes through the acoustic coupling gel 19 and continues through an optical guide to an optical sensor array 20 embedded in an integrated circuit 17 .
- the optical sensor is attached to or built into a transducer, generally like that of FIG. 5 .
- the sensor information is passed through the transducer cable and processed in the system to find the position and velocity of the transducer. Any speckle, phase shift, frequency shift or other characteristics may be used to detect motion and velocity.
- the sensor information may be wirelessly communicated to the system.
- the optical 2D location sensor can lose track of the transducer position if lifted from the surface (skin). This can be overcome with a simple calibration process, whereby the user moves the transducer to a marked calibration spot on the skin, push a calibration button on the transducer or on the system, and moves the transducer on the skin to the desired location.
- This third embodiment is very adaptable to a scanning plan in which the user graphically composes a 3D volume using software within the system or off line, showing the relative location and amount of treatment wanted, both with respect to cavitation (fat emulsification), heating (skin tightening), or other aesthetic/dermatologic/therapeutic treatments.
- Off line use of the scanning plan software allows data transfer to the system.
- the system can keep track of the transducer's location and in real time can adjust critical parameters such as MI, TI and focal depth (if equipped with electronic focusing), so the desired treatment “dose” eventually will be delivered.
- the real time difference between the desired and actual delivered “dose” can also be displayed on the system graphically in a 2D format, so the user can concentrate the transducer motion in the area where more treatment is needed. This allows the user to move the transducer freely within certain boundaries with respect to both position and speed.
- the transducer needs to be oriented perpendicular to the skin and in the case of a brush-beam transducer, the scanning velocity vector needs to be perpendicular to the brush width direction.
- an angular error relative to the exact perpendicularity is a cosine function, meaning that it is a weak dependency, so that in reality, perpendicularity need not be monitored, but can be continuously estimated by the user.
- the suggested speed shown by the various embodiments of the speed indicator can be based on MI, TI and instantaneous transducer face temperatures and/or acquired data from animal and clinical studies. While the above methods are intended to be used in conjunction with a non-invasive ultrasound lipoplasty transducer, the inventions, the scanning light source of the first two embodiments can be used on handheld transducers for other modalities, including aesthetic, dermatologic, or other therapeutic applications.
- a reference to a handheld external ultrasound treatment transducer is a reference to a handheld external ultrasound transducer useable for lipoplasty, skin tightening, aesthetic, dermatologic/, and other therapeutic purposes.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Surgical Instruments (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/680,538 US20100256489A1 (en) | 2007-09-28 | 2008-09-29 | Handheld Transducer Scanning Speed Guides and Position Detectors |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US99589507P | 2007-09-28 | 2007-09-28 | |
US12/680,538 US20100256489A1 (en) | 2007-09-28 | 2008-09-29 | Handheld Transducer Scanning Speed Guides and Position Detectors |
PCT/US2008/078188 WO2009043046A1 (en) | 2007-09-28 | 2008-09-29 | Handheld transducer scanning speed guides and position detectors |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100256489A1 true US20100256489A1 (en) | 2010-10-07 |
Family
ID=40511916
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/680,538 Abandoned US20100256489A1 (en) | 2007-09-28 | 2008-09-29 | Handheld Transducer Scanning Speed Guides and Position Detectors |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100256489A1 (de) |
EP (1) | EP2254477B1 (de) |
WO (1) | WO2009043046A1 (de) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130018268A1 (en) * | 2011-07-12 | 2013-01-17 | Nivasonix, Llc | Scanning Speed Detection for Freehand High Frequency Ultrasound Transducers |
CN103027717A (zh) * | 2011-10-09 | 2013-04-10 | 北京汇福康医疗技术有限公司 | 超声换能器的位置监控方法及装置 |
US20130099932A1 (en) * | 2011-10-25 | 2013-04-25 | Lockheed Martin Corporation | Surface treatment pace meter |
WO2013163591A1 (en) * | 2012-04-26 | 2013-10-31 | Dbmedx Inc. | Apparatus to removably secure an ultrasound probe to tissue |
US20140276247A1 (en) * | 2013-03-15 | 2014-09-18 | Sonovia Holdings Llc | Light and ultrasonic transducer device |
US8932224B2 (en) | 2004-10-06 | 2015-01-13 | Guided Therapy Systems, Llc | Energy based hyperhidrosis treatment |
US9039619B2 (en) | 2004-10-06 | 2015-05-26 | Guided Therapy Systems, L.L.C. | Methods for treating skin laxity |
WO2015054688A3 (en) * | 2013-10-11 | 2015-06-18 | Seno Medical Instruments, Inc. | Systems and methods for component separation in medical imaging |
US9095697B2 (en) | 2004-09-24 | 2015-08-04 | Guided Therapy Systems, Llc | Methods for preheating tissue for cosmetic treatment of the face and body |
US9283410B2 (en) | 2004-10-06 | 2016-03-15 | Guided Therapy Systems, L.L.C. | System and method for fat and cellulite reduction |
US9283409B2 (en) | 2004-10-06 | 2016-03-15 | Guided Therapy Systems, Llc | Energy based fat reduction |
US9320537B2 (en) | 2004-10-06 | 2016-04-26 | Guided Therapy Systems, Llc | Methods for noninvasive skin tightening |
EP3021941A1 (de) * | 2013-07-19 | 2016-05-25 | Koninklijke Philips N.V. | Hochintensive fokussierte ultraschallsonden (hifu) mit automatischer steuerung |
US9440096B2 (en) | 2004-10-06 | 2016-09-13 | Guided Therapy Systems, Llc | Method and system for treating stretch marks |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
US9694212B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of skin |
US9827449B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US10420960B2 (en) | 2013-03-08 | 2019-09-24 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US10537304B2 (en) | 2008-06-06 | 2020-01-21 | Ulthera, Inc. | Hand wand for ultrasonic cosmetic treatment and imaging |
US10603521B2 (en) | 2014-04-18 | 2020-03-31 | Ulthera, Inc. | Band transducer ultrasound therapy |
US10639498B2 (en) | 2016-05-26 | 2020-05-05 | Carewear Corp. | Photoeradication of microorganisms with pulsed purple or blue light |
US10864385B2 (en) | 2004-09-24 | 2020-12-15 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US11020605B2 (en) | 2018-05-29 | 2021-06-01 | Carewear Corp. | Method and system for irradiating tissue with pulsed blue and red light to reduce muscle fatigue, enhance wound healing and tissue repair, and reduce pain |
US11207548B2 (en) | 2004-10-07 | 2021-12-28 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11224895B2 (en) | 2016-01-18 | 2022-01-18 | Ulthera, Inc. | Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof |
US11235179B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | Energy based skin gland treatment |
US11241218B2 (en) | 2016-08-16 | 2022-02-08 | Ulthera, Inc. | Systems and methods for cosmetic ultrasound treatment of skin |
US11338156B2 (en) | 2004-10-06 | 2022-05-24 | Guided Therapy Systems, Llc | Noninvasive tissue tightening system |
US11724133B2 (en) | 2004-10-07 | 2023-08-15 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US11883688B2 (en) | 2004-10-06 | 2024-01-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11944849B2 (en) | 2018-02-20 | 2024-04-02 | Ulthera, Inc. | Systems and methods for combined cosmetic treatment of cellulite with ultrasound |
US12076591B2 (en) | 2018-01-26 | 2024-09-03 | Ulthera, Inc. | Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions |
US12102473B2 (en) | 2008-06-06 | 2024-10-01 | Ulthera, Inc. | Systems for ultrasound treatment |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964297A (en) * | 1974-12-16 | 1976-06-22 | Ithaco, Incorporated | Ultrasonic inspection apparatus |
US5645066A (en) * | 1996-04-26 | 1997-07-08 | Advanced Technology Laboratories, Inc. | Medical ultrasonic diagnostic imaging system with scanning guide for three dimensional imaging |
US5766234A (en) * | 1996-03-07 | 1998-06-16 | Light Sciences Limited Partnership | Implanting and fixing a flexible probe for administering a medical therapy at a treatment site within a patient'body |
US5954674A (en) * | 1997-10-13 | 1999-09-21 | Kinex Iha Corporation | Apparatus for gathering biomechanical parameters |
US6132379A (en) * | 1998-11-04 | 2000-10-17 | Patacsil; Estelito G. | Method and apparatus for ultrasound guided intravenous cannulation |
US6213781B1 (en) * | 1996-05-23 | 2001-04-10 | Technical Education Research Centers, Inc. | Educational game using selective light displacement to teach physical concepts |
US20010050765A1 (en) * | 1998-10-09 | 2001-12-13 | Keith Antonelli | Fingerprint image optical input apparatus |
US20030009205A1 (en) * | 1997-08-25 | 2003-01-09 | Biel Merrill A. | Treatment device for topical photodynamic therapy and method of using same |
US20030130615A1 (en) * | 2000-03-23 | 2003-07-10 | Scimed Life Systems, Inc. | Pressure sensor for therapeutic delivery device and method |
US20050256406A1 (en) * | 2004-05-12 | 2005-11-17 | Guided Therapy Systems, Inc. | Method and system for controlled scanning, imaging and/or therapy |
US7150716B2 (en) * | 2003-02-20 | 2006-12-19 | Siemens Medical Solutions Usa, Inc. | Measuring transducer movement methods and systems for multi-dimensional ultrasound imaging |
US7258674B2 (en) * | 2002-02-20 | 2007-08-21 | Liposonix, Inc. | Ultrasonic treatment and imaging of adipose tissue |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6645162B2 (en) | 2000-12-27 | 2003-11-11 | Insightec - Txsonics Ltd. | Systems and methods for ultrasound assisted lipolysis |
US7347855B2 (en) | 2001-10-29 | 2008-03-25 | Ultrashape Ltd. | Non-invasive ultrasonic body contouring |
US20050038343A1 (en) * | 2003-07-10 | 2005-02-17 | Alfred E. Mann Institute For Biomedical Research At The University Of Southern California | Apparatus and method for locating a bifurcation in an artery |
-
2008
- 2008-09-29 WO PCT/US2008/078188 patent/WO2009043046A1/en active Application Filing
- 2008-09-29 EP EP08833737.3A patent/EP2254477B1/de not_active Not-in-force
- 2008-09-29 US US12/680,538 patent/US20100256489A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964297A (en) * | 1974-12-16 | 1976-06-22 | Ithaco, Incorporated | Ultrasonic inspection apparatus |
US5766234A (en) * | 1996-03-07 | 1998-06-16 | Light Sciences Limited Partnership | Implanting and fixing a flexible probe for administering a medical therapy at a treatment site within a patient'body |
US5645066A (en) * | 1996-04-26 | 1997-07-08 | Advanced Technology Laboratories, Inc. | Medical ultrasonic diagnostic imaging system with scanning guide for three dimensional imaging |
US6213781B1 (en) * | 1996-05-23 | 2001-04-10 | Technical Education Research Centers, Inc. | Educational game using selective light displacement to teach physical concepts |
US20030009205A1 (en) * | 1997-08-25 | 2003-01-09 | Biel Merrill A. | Treatment device for topical photodynamic therapy and method of using same |
US5954674A (en) * | 1997-10-13 | 1999-09-21 | Kinex Iha Corporation | Apparatus for gathering biomechanical parameters |
US20010050765A1 (en) * | 1998-10-09 | 2001-12-13 | Keith Antonelli | Fingerprint image optical input apparatus |
US6132379A (en) * | 1998-11-04 | 2000-10-17 | Patacsil; Estelito G. | Method and apparatus for ultrasound guided intravenous cannulation |
US20030130615A1 (en) * | 2000-03-23 | 2003-07-10 | Scimed Life Systems, Inc. | Pressure sensor for therapeutic delivery device and method |
US7258674B2 (en) * | 2002-02-20 | 2007-08-21 | Liposonix, Inc. | Ultrasonic treatment and imaging of adipose tissue |
US7150716B2 (en) * | 2003-02-20 | 2006-12-19 | Siemens Medical Solutions Usa, Inc. | Measuring transducer movement methods and systems for multi-dimensional ultrasound imaging |
US20050256406A1 (en) * | 2004-05-12 | 2005-11-17 | Guided Therapy Systems, Inc. | Method and system for controlled scanning, imaging and/or therapy |
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9095697B2 (en) | 2004-09-24 | 2015-08-04 | Guided Therapy Systems, Llc | Methods for preheating tissue for cosmetic treatment of the face and body |
US11590370B2 (en) | 2004-09-24 | 2023-02-28 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US10864385B2 (en) | 2004-09-24 | 2020-12-15 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US10328289B2 (en) | 2004-09-24 | 2019-06-25 | Guided Therapy Systems, Llc | Rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US9895560B2 (en) | 2004-09-24 | 2018-02-20 | Guided Therapy Systems, Llc | Methods for rejuvenating skin by heating tissue for cosmetic treatment of the face and body |
US10245450B2 (en) | 2004-10-06 | 2019-04-02 | Guided Therapy Systems, Llc | Ultrasound probe for fat and cellulite reduction |
US11179580B2 (en) | 2004-10-06 | 2021-11-23 | Guided Therapy Systems, Llc | Energy based fat reduction |
US8932224B2 (en) | 2004-10-06 | 2015-01-13 | Guided Therapy Systems, Llc | Energy based hyperhidrosis treatment |
US9039619B2 (en) | 2004-10-06 | 2015-05-26 | Guided Therapy Systems, L.L.C. | Methods for treating skin laxity |
US11883688B2 (en) | 2004-10-06 | 2024-01-30 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11717707B2 (en) | 2004-10-06 | 2023-08-08 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US11697033B2 (en) | 2004-10-06 | 2023-07-11 | Guided Therapy Systems, Llc | Methods for lifting skin tissue |
US9283410B2 (en) | 2004-10-06 | 2016-03-15 | Guided Therapy Systems, L.L.C. | System and method for fat and cellulite reduction |
US9283409B2 (en) | 2004-10-06 | 2016-03-15 | Guided Therapy Systems, Llc | Energy based fat reduction |
US9320537B2 (en) | 2004-10-06 | 2016-04-26 | Guided Therapy Systems, Llc | Methods for noninvasive skin tightening |
US11400319B2 (en) | 2004-10-06 | 2022-08-02 | Guided Therapy Systems, Llc | Methods for lifting skin tissue |
US9421029B2 (en) | 2004-10-06 | 2016-08-23 | Guided Therapy Systems, Llc | Energy based hyperhidrosis treatment |
US9427601B2 (en) | 2004-10-06 | 2016-08-30 | Guided Therapy Systems, Llc | Methods for face and neck lifts |
US9427600B2 (en) | 2004-10-06 | 2016-08-30 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US9440096B2 (en) | 2004-10-06 | 2016-09-13 | Guided Therapy Systems, Llc | Method and system for treating stretch marks |
US11338156B2 (en) | 2004-10-06 | 2022-05-24 | Guided Therapy Systems, Llc | Noninvasive tissue tightening system |
US9522290B2 (en) | 2004-10-06 | 2016-12-20 | Guided Therapy Systems, Llc | System and method for fat and cellulite reduction |
US9533175B2 (en) | 2004-10-06 | 2017-01-03 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11235179B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | Energy based skin gland treatment |
US9694211B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US9694212B2 (en) | 2004-10-06 | 2017-07-04 | Guided Therapy Systems, Llc | Method and system for ultrasound treatment of skin |
US9707412B2 (en) | 2004-10-06 | 2017-07-18 | Guided Therapy Systems, Llc | System and method for fat and cellulite reduction |
US9713731B2 (en) | 2004-10-06 | 2017-07-25 | Guided Therapy Systems, Llc | Energy based fat reduction |
US11235180B2 (en) | 2004-10-06 | 2022-02-01 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US9827449B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | Systems for treating skin laxity |
US9827450B2 (en) | 2004-10-06 | 2017-11-28 | Guided Therapy Systems, L.L.C. | System and method for fat and cellulite reduction |
US9833639B2 (en) | 2004-10-06 | 2017-12-05 | Guided Therapy Systems, L.L.C. | Energy based fat reduction |
US9833640B2 (en) | 2004-10-06 | 2017-12-05 | Guided Therapy Systems, L.L.C. | Method and system for ultrasound treatment of skin |
US11207547B2 (en) | 2004-10-06 | 2021-12-28 | Guided Therapy Systems, Llc | Probe for ultrasound tissue treatment |
US9974982B2 (en) | 2004-10-06 | 2018-05-22 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US10010721B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, L.L.C. | Energy based fat reduction |
US11167155B2 (en) | 2004-10-06 | 2021-11-09 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US10010725B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, Llc | Ultrasound probe for fat and cellulite reduction |
US10010724B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US10046181B2 (en) | 2004-10-06 | 2018-08-14 | Guided Therapy Systems, Llc | Energy based hyperhidrosis treatment |
US10046182B2 (en) | 2004-10-06 | 2018-08-14 | Guided Therapy Systems, Llc | Methods for face and neck lifts |
US10238894B2 (en) | 2004-10-06 | 2019-03-26 | Guided Therapy Systems, L.L.C. | Energy based fat reduction |
US10960236B2 (en) | 2004-10-06 | 2021-03-30 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US10252086B2 (en) | 2004-10-06 | 2019-04-09 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US10265550B2 (en) | 2004-10-06 | 2019-04-23 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US10888718B2 (en) | 2004-10-06 | 2021-01-12 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US10010726B2 (en) | 2004-10-06 | 2018-07-03 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US10888717B2 (en) | 2004-10-06 | 2021-01-12 | Guided Therapy Systems, Llc | Probe for ultrasound tissue treatment |
US10525288B2 (en) | 2004-10-06 | 2020-01-07 | Guided Therapy Systems, Llc | System and method for noninvasive skin tightening |
US10532230B2 (en) | 2004-10-06 | 2020-01-14 | Guided Therapy Systems, Llc | Methods for face and neck lifts |
US10888716B2 (en) | 2004-10-06 | 2021-01-12 | Guided Therapy Systems, Llc | Energy based fat reduction |
US10603519B2 (en) | 2004-10-06 | 2020-03-31 | Guided Therapy Systems, Llc | Energy based fat reduction |
US10603523B2 (en) | 2004-10-06 | 2020-03-31 | Guided Therapy Systems, Llc | Ultrasound probe for tissue treatment |
US10610706B2 (en) | 2004-10-06 | 2020-04-07 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US10610705B2 (en) | 2004-10-06 | 2020-04-07 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11207548B2 (en) | 2004-10-07 | 2021-12-28 | Guided Therapy Systems, L.L.C. | Ultrasound probe for treating skin laxity |
US11724133B2 (en) | 2004-10-07 | 2023-08-15 | Guided Therapy Systems, Llc | Ultrasound probe for treatment of skin |
US11723622B2 (en) | 2008-06-06 | 2023-08-15 | Ulthera, Inc. | Systems for ultrasound treatment |
US12102473B2 (en) | 2008-06-06 | 2024-10-01 | Ulthera, Inc. | Systems for ultrasound treatment |
US10537304B2 (en) | 2008-06-06 | 2020-01-21 | Ulthera, Inc. | Hand wand for ultrasonic cosmetic treatment and imaging |
US11123039B2 (en) | 2008-06-06 | 2021-09-21 | Ulthera, Inc. | System and method for ultrasound treatment |
US20130018268A1 (en) * | 2011-07-12 | 2013-01-17 | Nivasonix, Llc | Scanning Speed Detection for Freehand High Frequency Ultrasound Transducers |
CN103027717A (zh) * | 2011-10-09 | 2013-04-10 | 北京汇福康医疗技术有限公司 | 超声换能器的位置监控方法及装置 |
US8760308B2 (en) * | 2011-10-25 | 2014-06-24 | Lockheed Martin Corporation | Surface treatment pace meter |
US20130099932A1 (en) * | 2011-10-25 | 2013-04-25 | Lockheed Martin Corporation | Surface treatment pace meter |
WO2013163591A1 (en) * | 2012-04-26 | 2013-10-31 | Dbmedx Inc. | Apparatus to removably secure an ultrasound probe to tissue |
US9510802B2 (en) | 2012-09-21 | 2016-12-06 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
US9802063B2 (en) | 2012-09-21 | 2017-10-31 | Guided Therapy Systems, Llc | Reflective ultrasound technology for dermatological treatments |
US10420960B2 (en) | 2013-03-08 | 2019-09-24 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US11969609B2 (en) | 2013-03-08 | 2024-04-30 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US11517772B2 (en) | 2013-03-08 | 2022-12-06 | Ulthera, Inc. | Devices and methods for multi-focus ultrasound therapy |
US11083619B2 (en) | 2013-03-15 | 2021-08-10 | Carewear Corp. | Organic LED light and ultrasonic transducer device in a flexible layer configuration with electrical stimulation |
US9561357B2 (en) * | 2013-03-15 | 2017-02-07 | Sonovia Holdings Llc | Light and ultrasonic transducer device for skin therapy |
US9061128B2 (en) * | 2013-03-15 | 2015-06-23 | Sonovia Holdings Llc | Light and/or ultrasonic transducer device with sensor feedback for dose control |
US20140276247A1 (en) * | 2013-03-15 | 2014-09-18 | Sonovia Holdings Llc | Light and ultrasonic transducer device |
US20140276248A1 (en) * | 2013-03-15 | 2014-09-18 | Sonovia Holdings Llc | Light and/or ultrasonic transducer device with sensor feedback for dose control |
EP3021941A1 (de) * | 2013-07-19 | 2016-05-25 | Koninklijke Philips N.V. | Hochintensive fokussierte ultraschallsonden (hifu) mit automatischer steuerung |
US10309936B2 (en) | 2013-10-11 | 2019-06-04 | Seno Medical Instruments, Inc. | Systems and methods for component separation in medical imaging |
WO2015054688A3 (en) * | 2013-10-11 | 2015-06-18 | Seno Medical Instruments, Inc. | Systems and methods for component separation in medical imaging |
US10603521B2 (en) | 2014-04-18 | 2020-03-31 | Ulthera, Inc. | Band transducer ultrasound therapy |
US11351401B2 (en) | 2014-04-18 | 2022-06-07 | Ulthera, Inc. | Band transducer ultrasound therapy |
US11224895B2 (en) | 2016-01-18 | 2022-01-18 | Ulthera, Inc. | Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof |
US10639498B2 (en) | 2016-05-26 | 2020-05-05 | Carewear Corp. | Photoeradication of microorganisms with pulsed purple or blue light |
US11241218B2 (en) | 2016-08-16 | 2022-02-08 | Ulthera, Inc. | Systems and methods for cosmetic ultrasound treatment of skin |
US12076591B2 (en) | 2018-01-26 | 2024-09-03 | Ulthera, Inc. | Systems and methods for simultaneous multi-focus ultrasound therapy in multiple dimensions |
US11944849B2 (en) | 2018-02-20 | 2024-04-02 | Ulthera, Inc. | Systems and methods for combined cosmetic treatment of cellulite with ultrasound |
US11020605B2 (en) | 2018-05-29 | 2021-06-01 | Carewear Corp. | Method and system for irradiating tissue with pulsed blue and red light to reduce muscle fatigue, enhance wound healing and tissue repair, and reduce pain |
Also Published As
Publication number | Publication date |
---|---|
EP2254477A1 (de) | 2010-12-01 |
WO2009043046A1 (en) | 2009-04-02 |
EP2254477B1 (de) | 2013-05-29 |
EP2254477A4 (de) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2254477B1 (de) | Hand-wandler-scanninggeschwindigkeitsführungen und positionsdetektoren | |
US11406461B2 (en) | Delivery system and method for delivering material to a target site during a medical procedure | |
AU2004311419B2 (en) | Systems and methods for the destruction of adipose tissue | |
US10905900B2 (en) | Systems and methods for ultrasound treatment | |
EP3280495B1 (de) | System zur erhöhten steuerung einer ultraschallbehandlung | |
KR102479936B1 (ko) | 초음파 치료 시스템 | |
US20130303905A1 (en) | Systems for Cosmetic Treatment | |
KR101885136B1 (ko) | 움직임 측정을 이용한 고강도 집속 초음파 조사 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |