US20100245599A1 - Communicating Audio Data - Google Patents
Communicating Audio Data Download PDFInfo
- Publication number
- US20100245599A1 US20100245599A1 US12/797,312 US79731210A US2010245599A1 US 20100245599 A1 US20100245599 A1 US 20100245599A1 US 79731210 A US79731210 A US 79731210A US 2010245599 A1 US2010245599 A1 US 2010245599A1
- Authority
- US
- United States
- Prior art keywords
- data
- camera
- display surface
- computing
- computing device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/025—Systems for the transmission of digital non-picture data, e.g. of text during the active part of a television frame
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/114—Indoor or close-range type systems
- H04B10/1143—Bidirectional transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/114—Indoor or close-range type systems
- H04B10/116—Visible light communication
Definitions
- FIG. 2 illustrates an embodiment of an optical projection system, according to an embodiment.
- FIG. 3 illustrates a sample object, according to an embodiment.
- FIG. 5 illustrates an embodiment of a method of transmitting data between an object and a display device, according to an embodiment.
- FIG. 6 illustrates various components of an embodiment of a computing device which may be utilized to implement portions of the techniques discussed herein.
- a method optically transmits audio data between the object and a display device.
- the object may include an optical receiver and/or an optical transmitter to communicate the audio data.
- the object may optically receive the audio data from a computing device coupled to the display device (e.g., through optical images displayed on the display).
- the object may also optically transmit the audio data to a camera and/or a suitable optical communication device.
- the object may convert the audio data to/from sound waves. It is envisioned that such embodiments may provide a communication channel that is relatively secure from unauthorized interception (e.g., when the optical transmission is interrupted, the transmission stops).
- optical communication e.g., transmitting and/or receiving data via optical signals
- the display surface 104 may be any suitable display such as the display 620 discussed with reference to FIG. 6 .
- the display surface 104 may be substantially horizontal, such as a display embedded and/or attached to the top side of a table to enable a plurality of users around the table to interact with the display surface 104 .
- the display surface 104 may be any suitable display device capable of being controlled by a computing device (such as those discussed with respect to FIG. 6 ), for example, including a rear projection display device, a liquid crystal display device, a cathode ray tube display device, a plasma display device, and the like.
- the communication devices 106 are coupled to a computing device 108 to enable data transmission between the object 102 and the computing device 108 , as will be further discussed with reference to FIG. 4 .
- the data transmission between the object 102 and the one or more communication devices 106 may be performed using optical communication.
- the transmitted data may be encrypted.
- the optical transmission may be performed through one or more spectrums of light rays such as visible light and non-visible light rays (e.g., ultraviolet and infrared light rays).
- the communication devices 106 may be any suitable optical receiver such as a charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS) image sensor, an infrared receiver, and/or an infrared Data Association (IrDA) transceiver. Additionally, it is envisioned that broad, narrow, and/or multiple spectrum frequencies may be utilized in various embodiments.
- CCD charge-coupled device
- CMOS complementary metal oxide semiconductor
- IrDA infrared Data Association
- the object 102 may also include a transmitter and/or a receiver (such as those discussed with reference to the communication devices 106 ) to enable data transmission between the object 102 and the one or more communication devices 106 . Furthermore, the object 102 's receiver may receive data from the display surface 104 .
- the optical transmitters discussed herein may be light-emitting diodes (LEDs).
- the transmitted data may include one or more items such as digital audio data and/or audio control data (e.g., commands and/or macros regarding audio data).
- the object 102 may be capable of providing digital audio data regarding sound waves or audio commands it receives from a user to the computing device 108 and the computing device 108 may be capable of transmitting data to the object 102 to invoke audio sounds.
- the object 102 may convert digital audio data received from the computing device 108 into sound waves (e.g., a speaker) and/or convert sound waves it receives from its surrounding (e.g., from a user) into digital audio data that is transmitted to the computing device 108 (e.g., a microphone).
- the object ( 102 ) may receive data and convert it to sound waves.
- the user may carry the object ( 102 ) from one system (e.g., 100 ) to another system to provide data communication, authenticity, translation capabilities, and the like.
- a profile e.g., associated with a user or a voice, e.g., through voice recognition
- the profile may be transferred between systems (e.g., 100 ) and provide access to users that are authenticated with authority to perform certain activities on the corresponding system.
- FIG. 2 illustrates an embodiment of an optical projection system 200 , according to an embodiment.
- the system 200 may be utilized to enable optical communication between the object 102 and the computing device 108 .
- the object 102 may be placed on a surface 202 .
- the object 102 may be placed over or attached to the surface 202 (e.g., using suction cups, magnets, gravity, and the like).
- the surface 202 may be the same as or similar to the display surface 104 of FIG. 1 .
- the system 200 utilizes a camera 204 and, a projector 206 to enable communication between the object 102 and the computing device 108 (whereas the system 100 of FIG. 1 utilizes the communication devices 106 to at least receive data from the object 102 optically).
- the display surface 202 may include the camera 204 and the projector 206 .
- the camera 204 captures one or more images of the surface 202 , e.g., to receive data optically transmitted by the object 102 as will be further discussed with reference to FIG. 4 .
- the surface 202 may be any suitable type of a translucent or semi-translucent surface capable of supporting the object 102 , while allowing electromagnetic waves to pass through the surface 202 .
- the camera 204 may be any suitable type of capture device such as a CCD sensor, a CMOS sensor, and the like.
- the surface 202 , camera 204 , and projector 206 may be part of an enclosure ( 208 ), e.g., to protect the parts from physical elements (such as dust, liquids, and the like) and/or to provide a sufficiently controlled environment for the camera 204 to be able to capture accurate images and/or for the projector 206 to project brighter images.
- the computing device 108 such as a laptop
- the enclosure 208 may be provided wholly or partially inside the enclosure 208 , or wholly external to the enclosure 208 .
- FIG. 3 illustrates a sample object 300 , according to an embodiment.
- the object 300 may be the object 102 discussed with reference to FIGS. 1 and 2 , in one embodiment.
- the object 300 includes an optical transmitter 302 , e.g., to optically transmit data to one or more devices (such as the communication devices 106 discussed with reference to FIG. 1 and/or the camera 204 of FIG. 2 ), one or more optional windows 304 , e.g., to allow rays ( 306 ) from the transmitter 302 to pass through while protecting the transmitter 302 from the elements (such as dust, water, etc.), and an optical receiver 308 , e.g., to optically receive data from one or more devices (such as 104 and/or 106 of FIG. 1 , and/or 206 of FIG. 2 ).
- the windows 304 may filter the rays ( 306 ) that pass through them ( 304 ), e.g., to provide polarized rays and the like.
- the object 300 may include logic ( 308 ) to convert digital audio data to sound waves and vice versa. More than one logic 308 may also be utilized.
- the object 300 may include a digital to analog converter (e.g., within the logic 308 ) to convert the received digital audio data (e.g., from the computing device 108 such as discussed with reference to FIG. 2 ) into analog form (e.g., generated sound waves that are provided to a user via one or more speakers 310 ).
- FIG. 3 illustrates the receiver 314 to be on a bottom side and the transmitter to be on the interior of the object 300 , it is envisioned that the transmitter 302 and the receiver 314 may be positioned at any suitable location to enable data transmission with one or more devices (such as 104 and/or 106 of FIG. 1 , or 204 and/or 206 of FIG. 2 ).
- the transmitter 302 and the receiver 314 may be positioned at any suitable location to enable data transmission with one or more devices (such as 104 and/or 106 of FIG. 1 , or 204 and/or 206 of FIG. 2 ).
- FIG. 4 illustrates sample components of the computing device 108 of FIGS. 1 and 2 , according to an embodiment.
- the computing device 108 may be a general computing device such as 600 discussed with reference to FIG. 6 .
- the computing device 108 includes an embodiment of a processor, such as an audio processor 402 (which may be a general processor(s), such as 602 discussed with reference to FIG. 6 , to execute instructions, such as firmware, suitable for accomplishing the audio processing), coupled to the receivers discussed with reference to FIGS. 1 and 2 to optically receive data from the object 102 .
- the data may include audio and/or control data.
- the digital to analog and/or analog to digital conversion of audio (or control) data may be performed by the object ( 102 ) and/or the audio processor 402 in various embodiments.
- the audio processor 402 is coupled to an operating system (O/S) 404 and one or more application programs 406 .
- the audio processor 402 may communicate data received from the camera 204 of FIG. 2 and/or the communication devices 106 of FIG. 1 to one or more of the O/S 404 and application programs 406 .
- the application program(s) 406 may utilize the communicated data to cause the communication devices 106 of FIG. 1 and/or the projector 206 of FIG. 2 to optically transmit desired data to the object 102 . As discussed with reference to FIG. 1 , the data may be streamed and/or pulsed.
- FIG. 5 illustrates a method 500 of transmitting data between an object and a display device, according to an embodiment.
- the method 500 provides an object ( 502 ) such as the objects 102 and 300 discussed with reference to FIGS. 1 and 3 .
- One or more optical communication devices are also provided ( 504 ), such as 106 of FIG. 1 , the camera 204 and the projector 206 of FIG. 2 , and/or 302 and 312 of FIG. 3 .
- the communication devices may be positioned proximate to a display ( 506 ), such as the display surface 104 of FIG. 1 or the surface 202 of FIG. 2 .
- data is transmitted between the object ( 102 , 300 ) and the display ( 508 ), such as discussed with reference to the previous figures. It is also envisioned that data may be transmitted between several objects ( 102 , 300 ) directly, or through the communication devices 106 of FIG. 1 and/or the camera 204 and the projector 206 of FIG. 2 .
- FIG. 6 illustrates various components of an embodiment of a computing device 600 which may be utilized to implement portions of the techniques discussed herein.
- the computing device 600 can be used to perform the method of FIG. 5 .
- the computing device 600 may also be used to provide the computing device 108 .
- the computing device 600 may further be used to manipulate, enhance, and/or store the audio data discussed herein.
- the computing device 600 includes one or more processor(s) 602 (e.g., microprocessors, controllers, etc.), input/output interfaces 604 for the input and/or output of data, and user input devices 606 .
- the processor(s) 602 process various instructions to control the operation of the computing device 600 , while the input/output interfaces 604 provide a mechanism for the computing device 600 to communicate with other electronic and computing devices.
- the user input devices 606 can include a keyboard, touch screen, mouse, pointing device, and/or other mechanisms to interact with, and to input information to the computing device 600 .
- the computing device 600 may also include a memory 608 (such as read-only memory (ROM) and/or random-access memory (RAM)), a disk drive 610 , a floppy disk drive 612 , and a compact disk read-only memory (CD-ROM) and/or digital video disk (DVD) drive 614 , which may provide data storage mechanisms for the computing device 600 .
- a memory 608 such as read-only memory (ROM) and/or random-access memory (RAM)
- a disk drive 610 such as read-only memory (ROM) and/or random-access memory (RAM)
- CD-ROM compact disk read-only memory
- DVD digital video disk
- the computing device 600 also includes one or more application program(s) 616 and an operating system 618 (such as 404 and 406 discussed with reference to FIG. 4 ), which can be stored in non-volatile memory (e.g., the memory 608 ) and executed on the processor(s) 602 to provide a runtime environment in which the application program(s) 616 can run or execute.
- the computing device 600 can also include one or more integrated display device(s) 620 , such as for a PDA, a portable computing device, and any other mobile computing device.
- Select embodiments discussed herein may include various operations. These operations may be performed by hardware components or may be embodied in machine-executable instructions, which may be in turn utilized to cause a general-purpose or special-purpose processor, or logic circuits programmed with the instructions to perform the operations. Alternatively, the operations may be performed by a combination of hardware and software.
- some embodiments may be provided as computer program products, which may include a machine-readable or computer-readable medium having stored thereon instructions used to program a computer (or other electronic devices) to perform a process discussed herein.
- the machine-readable medium may include, but is not limited to, floppy diskettes, hard disk, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, erasable programmable ROMs (EPROMs), electrically EPROMs (EEPROMs), magnetic or optical cards, flash memory, or other suitable types of media or computer-readable media suitable for storing electronic instructions and/or data.
- data discussed herein may be stored in a single database, multiple databases, or otherwise in select forms (such as in a table).
- a carrier wave shall be regarded as comprising a machine-readable medium.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- Optical Communication System (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
A system including a display device including a display surface. The system can include a camera to capture one or more images of the display surface. A computing device can be connected to the camera to control the camera and to recognize an object placed on the display surface.
Description
- This continuation application claims priority to application Ser. No. 11/167,862 filed on Jun. 27, 2005.
- Audio data may be transmitted through wires between an audio device (such as microphones and speakers) and a computer. Such an approach may become cumbersome since the wires may become tangled as the audio device is moved, for example, to adjust the orientation or location of the audio device. Audio data may also be transmitted wirelessly between audio devices and a computer. Such wireless communications may however be intercepted.
- The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.
-
FIG. 1 illustrates an embodiment of a system for transmitting data between an object and one or more communication devices, according to an embodiment. -
FIG. 2 illustrates an embodiment of an optical projection system, according to an embodiment. -
FIG. 3 illustrates a sample object, according to an embodiment. -
FIG. 4 illustrates sample components of thecomputing device 108 ofFIGS. 1 and 2 , according to an embodiment. -
FIG. 5 illustrates an embodiment of a method of transmitting data between an object and a display device, according to an embodiment. -
FIG. 6 illustrates various components of an embodiment of a computing device which may be utilized to implement portions of the techniques discussed herein. - Various embodiments for transmitting audio data between an object and a display device are described. In one embodiment, a method optically transmits audio data between the object and a display device. The object may include an optical receiver and/or an optical transmitter to communicate the audio data. The object may optically receive the audio data from a computing device coupled to the display device (e.g., through optical images displayed on the display). The object may also optically transmit the audio data to a camera and/or a suitable optical communication device. The object may convert the audio data to/from sound waves. It is envisioned that such embodiments may provide a communication channel that is relatively secure from unauthorized interception (e.g., when the optical transmission is interrupted, the transmission stops). Also, optical communication (e.g., transmitting and/or receiving data via optical signals) may provide flexibility in object placement and/or orientation.
-
FIG. 1 illustrates an embodiment of asystem 100 for transmitting data between an object and one or more communication devices, according to an embodiment. In one embodiment, the data transmitted may be digital audio data that is streamed and/or pulsed. Thesystem 100 includes anobject 102 that is proximate to adisplay surface 104. For example, theobject 102 may be placed over or attached to the display surface 104 (e.g., using suction cups, magnets, gravity, and the like). Theobject 102 may be any suitable object capable of transmitting and/or receiving data optically such as a computing device (e.g., those discussed with reference toFIG. 6 ), a token, a game piece, and the like. - The
display surface 104 may be any suitable display such as thedisplay 620 discussed with reference toFIG. 6 . In one embodiment, thedisplay surface 104 may be substantially horizontal, such as a display embedded and/or attached to the top side of a table to enable a plurality of users around the table to interact with thedisplay surface 104. In one embodiment, thedisplay surface 104 may be any suitable display device capable of being controlled by a computing device (such as those discussed with respect toFIG. 6 ), for example, including a rear projection display device, a liquid crystal display device, a cathode ray tube display device, a plasma display device, and the like. - The
display surface 104 may be proximate to one ormore communication devices 106. Thecommunication devices 106 may be proximate to the perimeter of thedisplay surface 104, and be capable of transmitting and/or receiving data to/from theobject 102 optically in one embodiment. Hence, thecommunication devices 106 may be transmitters and/or receivers. In an embodiment, thedisplay surface 104 may include the one ormore communication devices 106. Moreover, even thoughFIG. 1 illustrates that thecommunication devices 106 are at the corners of thedisplay surface 104, they may be positioned at any suitable location around thedisplay surface 104 to enable data communication with theobject 102. Theobject 102 may also receive data from the display surface 104 (in addition to or in place of the communication devices 106). - The
communication devices 106 are coupled to acomputing device 108 to enable data transmission between theobject 102 and thecomputing device 108, as will be further discussed with reference toFIG. 4 . In one embodiment, the data transmission between theobject 102 and the one ormore communication devices 106 may be performed using optical communication. Also, the transmitted data may be encrypted. The optical transmission may be performed through one or more spectrums of light rays such as visible light and non-visible light rays (e.g., ultraviolet and infrared light rays). As receivers, thecommunication devices 106 may be any suitable optical receiver such as a charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS) image sensor, an infrared receiver, and/or an infrared Data Association (IrDA) transceiver. Additionally, it is envisioned that broad, narrow, and/or multiple spectrum frequencies may be utilized in various embodiments. - The
object 102 may also include a transmitter and/or a receiver (such as those discussed with reference to the communication devices 106) to enable data transmission between theobject 102 and the one ormore communication devices 106. Furthermore, theobject 102's receiver may receive data from thedisplay surface 104. In one embodiment, the optical transmitters discussed herein may be light-emitting diodes (LEDs). - The transmitted data may include one or more items such as digital audio data and/or audio control data (e.g., commands and/or macros regarding audio data). For example, the
object 102 may be capable of providing digital audio data regarding sound waves or audio commands it receives from a user to thecomputing device 108 and thecomputing device 108 may be capable of transmitting data to theobject 102 to invoke audio sounds. Hence, theobject 102 may convert digital audio data received from thecomputing device 108 into sound waves (e.g., a speaker) and/or convert sound waves it receives from its surrounding (e.g., from a user) into digital audio data that is transmitted to the computing device 108 (e.g., a microphone). - Other examples include an object (102) that is capable of recognizing speech (e.g., in a given language) and/or a voice (e.g., for authenticity purposes) which are converted into digital audio data and/or audio control data and transmitted to the
computing device 108. Hence, a user may issue commands (e.g., in the user's native language) and/or provide audio sounds to an object (102) that recognizes and/or converts the user-provided sound waves to digital audio data. Also, a user may record and store a sound in the object (102) and associate it with a string that may be control data or information. Thecomputing device 108 may interpret the control data and/or the information to perform various tasks such as invoking one or more commands or macros. Conversely, the object (102) may receive data and convert it to sound waves. In some embodiments, the user may carry the object (102) from one system (e.g., 100) to another system to provide data communication, authenticity, translation capabilities, and the like. For example, a profile (e.g., associated with a user or a voice, e.g., through voice recognition) may be stored in the object (102). The profile may be transferred between systems (e.g., 100) and provide access to users that are authenticated with authority to perform certain activities on the corresponding system. -
FIG. 2 illustrates an embodiment of anoptical projection system 200, according to an embodiment. Thesystem 200 may be utilized to enable optical communication between theobject 102 and thecomputing device 108. As illustrated inFIG. 2 , theobject 102 may be placed on asurface 202. For example, theobject 102 may be placed over or attached to the surface 202 (e.g., using suction cups, magnets, gravity, and the like). In an embodiment, thesurface 202 may be the same as or similar to thedisplay surface 104 ofFIG. 1 . - In one embodiment, the
system 200 utilizes acamera 204 and, aprojector 206 to enable communication between theobject 102 and the computing device 108 (whereas thesystem 100 ofFIG. 1 utilizes thecommunication devices 106 to at least receive data from theobject 102 optically). In an embodiment, thedisplay surface 202 may include thecamera 204 and theprojector 206. In an embodiment, when theobject 102 is placed on thesurface 202, thecamera 204 captures one or more images of thesurface 202, e.g., to receive data optically transmitted by theobject 102 as will be further discussed with reference toFIG. 4 . Moreover, thesurface 202 may be any suitable type of a translucent or semi-translucent surface capable of supporting theobject 102, while allowing electromagnetic waves to pass through thesurface 202. Thecamera 204 may be any suitable type of capture device such as a CCD sensor, a CMOS sensor, and the like. - The
system 200 also includes theprojector 206 to project images and/or optical signals onto thesurface 202. Hence, thesurface 202 may be a suitable surface capable of projecting images such as a projection screen. Thecamera 204 and theprojector 206 are coupled to thecomputing device 108. Thecomputing device 108 may control thecamera 204 and/or theprojector 206, e.g., to capture images of thesurface 202 and/or project images (or data) onto thesurface 202. For example, theprojector 206 may project data on thesurface 202 that is detected by theobject 102. - Additionally, as illustrated in
FIG. 2 , thesurface 202,camera 204, andprojector 206 may be part of an enclosure (208), e.g., to protect the parts from physical elements (such as dust, liquids, and the like) and/or to provide a sufficiently controlled environment for thecamera 204 to be able to capture accurate images and/or for theprojector 206 to project brighter images. Also, it is envisioned that the computing device 108 (such as a laptop) may be provided wholly or partially inside theenclosure 208, or wholly external to theenclosure 208. -
FIG. 3 illustrates asample object 300, according to an embodiment. Theobject 300 may be theobject 102 discussed with reference toFIGS. 1 and 2 , in one embodiment. Theobject 300 includes anoptical transmitter 302, e.g., to optically transmit data to one or more devices (such as thecommunication devices 106 discussed with reference toFIG. 1 and/or thecamera 204 ofFIG. 2 ), one or moreoptional windows 304, e.g., to allow rays (306) from thetransmitter 302 to pass through while protecting thetransmitter 302 from the elements (such as dust, water, etc.), and anoptical receiver 308, e.g., to optically receive data from one or more devices (such as 104 and/or 106 ofFIG. 1 , and/or 206 ofFIG. 2 ). It is also envisioned that thewindows 304 may filter the rays (306) that pass through them (304), e.g., to provide polarized rays and the like. - In an embodiment, the
object 300 may include logic (308) to convert digital audio data to sound waves and vice versa. More than onelogic 308 may also be utilized. In one embodiment, theobject 300 may include a digital to analog converter (e.g., within the logic 308) to convert the received digital audio data (e.g., from thecomputing device 108 such as discussed with reference toFIG. 2 ) into analog form (e.g., generated sound waves that are provided to a user via one or more speakers 310). Theobject 300 may further include an analog to digital converter (e.g., within the logic 308) to convert sound waves (e.g., from its surroundings that are received from or detected by one or more microphones 312) into digital audio data that may be transmitted to thecomputing device 108. Additionally, theobject 300 may include a digital signal processor (DSP) (e.g., within the logic 308) to process the audio data in an embodiment. - Also, while
FIG. 3 illustrates thereceiver 314 to be on a bottom side and the transmitter to be on the interior of theobject 300, it is envisioned that thetransmitter 302 and thereceiver 314 may be positioned at any suitable location to enable data transmission with one or more devices (such as 104 and/or 106 ofFIG. 1 , or 204 and/or 206 ofFIG. 2 ). -
FIG. 4 illustrates sample components of thecomputing device 108 ofFIGS. 1 and 2 , according to an embodiment. In an embodiment, thecomputing device 108 may be a general computing device such as 600 discussed with reference toFIG. 6 . Thecomputing device 108 includes an embodiment of a processor, such as an audio processor 402 (which may be a general processor(s), such as 602 discussed with reference toFIG. 6 , to execute instructions, such as firmware, suitable for accomplishing the audio processing), coupled to the receivers discussed with reference toFIGS. 1 and 2 to optically receive data from theobject 102. As discussed with reference toFIG. 2 , the data may include audio and/or control data. Hence, the digital to analog and/or analog to digital conversion of audio (or control) data may be performed by the object (102) and/or theaudio processor 402 in various embodiments. - The
audio processor 402 is coupled to an operating system (O/S) 404 and one ormore application programs 406. Theaudio processor 402 may communicate data received from thecamera 204 ofFIG. 2 and/or thecommunication devices 106 ofFIG. 1 to one or more of the O/S 404 andapplication programs 406. The application program(s) 406 may utilize the communicated data to cause thecommunication devices 106 ofFIG. 1 and/or theprojector 206 ofFIG. 2 to optically transmit desired data to theobject 102. As discussed with reference toFIG. 1 , the data may be streamed and/or pulsed. -
FIG. 5 illustrates amethod 500 of transmitting data between an object and a display device, according to an embodiment. Themethod 500 provides an object (502) such as theobjects FIGS. 1 and 3 . One or more optical communication devices are also provided (504), such as 106 ofFIG. 1 , thecamera 204 and theprojector 206 ofFIG. 2 , and/or 302 and 312 ofFIG. 3 . The communication devices may be positioned proximate to a display (506), such as thedisplay surface 104 ofFIG. 1 or thesurface 202 ofFIG. 2 . And, data is transmitted between the object (102, 300) and the display (508), such as discussed with reference to the previous figures. It is also envisioned that data may be transmitted between several objects (102, 300) directly, or through thecommunication devices 106 ofFIG. 1 and/or thecamera 204 and theprojector 206 ofFIG. 2 . -
FIG. 6 illustrates various components of an embodiment of acomputing device 600 which may be utilized to implement portions of the techniques discussed herein. In one embodiment, thecomputing device 600 can be used to perform the method ofFIG. 5 . Thecomputing device 600 may also be used to provide thecomputing device 108. Thecomputing device 600 may further be used to manipulate, enhance, and/or store the audio data discussed herein. - The
computing device 600 includes one or more processor(s) 602 (e.g., microprocessors, controllers, etc.), input/output interfaces 604 for the input and/or output of data, anduser input devices 606. The processor(s) 602 process various instructions to control the operation of thecomputing device 600, while the input/output interfaces 604 provide a mechanism for thecomputing device 600 to communicate with other electronic and computing devices. Theuser input devices 606 can include a keyboard, touch screen, mouse, pointing device, and/or other mechanisms to interact with, and to input information to thecomputing device 600. - The
computing device 600 may also include a memory 608 (such as read-only memory (ROM) and/or random-access memory (RAM)), adisk drive 610, afloppy disk drive 612, and a compact disk read-only memory (CD-ROM) and/or digital video disk (DVD) drive 614, which may provide data storage mechanisms for thecomputing device 600. - The
computing device 600 also includes one or more application program(s) 616 and an operating system 618 (such as 404 and 406 discussed with reference toFIG. 4 ), which can be stored in non-volatile memory (e.g., the memory 608) and executed on the processor(s) 602 to provide a runtime environment in which the application program(s) 616 can run or execute. Thecomputing device 600 can also include one or more integrated display device(s) 620, such as for a PDA, a portable computing device, and any other mobile computing device. - Select embodiments discussed herein (such as those discussed with reference to
FIG. 5 ) may include various operations. These operations may be performed by hardware components or may be embodied in machine-executable instructions, which may be in turn utilized to cause a general-purpose or special-purpose processor, or logic circuits programmed with the instructions to perform the operations. Alternatively, the operations may be performed by a combination of hardware and software. - Moreover, some embodiments may be provided as computer program products, which may include a machine-readable or computer-readable medium having stored thereon instructions used to program a computer (or other electronic devices) to perform a process discussed herein. The machine-readable medium may include, but is not limited to, floppy diskettes, hard disk, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, erasable programmable ROMs (EPROMs), electrically EPROMs (EEPROMs), magnetic or optical cards, flash memory, or other suitable types of media or computer-readable media suitable for storing electronic instructions and/or data. Moreover, data discussed herein may be stored in a single database, multiple databases, or otherwise in select forms (such as in a table).
- Additionally, some embodiments discussed herein may be downloaded as a computer program product, wherein the program may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection). Accordingly, herein, a carrier wave shall be regarded as comprising a machine-readable medium.
- Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an implementation. The appearances of the phrase “in one embodiment” in various places in the specification may or may not be all referring to the same embodiment.
- Thus, although embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that claimed subject matter may not be limited to the specific features or acts described. Rather, the specific features and acts are disclosed as sample forms of implementing the claimed subject matter.
Claims (20)
1. A system comprising:
a display device including a display surface;
a camera to capture one or more images of the display surface; and
a computing device connected to the camera to control the camera and to recognize an object placed on the display surface.
2. The system of claim 1 , further comprising a transmitter to communicate data from the computing device to the object.
3. The system of claim 2 , wherein the transmitter is a wireless transmitter.
4. The system of claim 2 , wherein the transmitter is an infrared transmitter or ultraviolet transmitter.
5. The system of claim 2 , wherein the data is audio data.
6. The system of claim 1 , wherein the display device is one of, a rear projection display device, a liquid crystal display device, a cathode ray tube display device, or a plasma display device.
7. The system of claim 1 , further comprising a receiver to communicate audio data from the object to the computing device.
8. The system of claim 1 , wherein the receiver is, a charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS) image sensor, an infrared receiver, an infrared Data Association (IrDA) transceiver or combinations thereof.
9. The system of claim 1 , wherein the computing device can enable data transmission with one or more devices.
10. The system of claim 1 , further comprising logic in the object to convert digital audio from the computing system to an analog form.
11. The system of claim 1 , further comprising a touch screen input device on the display device.
12. The system of claim 1 , wherein the computing device and the display device are integrated.
13. The system of claim 1 , further comprising an enclosure to protect the camera and the surface of the display device.
14. A method of communicating with an object comprising:
capturing one or more images of a display surface with a camera;
recognizing an object on the display surface with a computing system connected to the camera; and
transmitting data to the object on the display surface.
15. The method of claim 14 , wherein the computing device determines to transmit data from one or more devices.
16. The method of claim 15 , further comprising receiving by the computing system an input from a touch screen input device.
17. A non-transitory computer readable media comprising instructions that if executed by a computing system cause the computing system to:
capture one or more images of a display surface with a camera;
recognize an object on the display surface with a computing system connected to the camera; and
transmit data to the object on the display surface.
18. The non-transitory computer readable media of claim 17 further comprising instruction if executed cause the computing system to receive audio data to the object on the display surface.
19. The non-transitory computer readable media of claim 17 further comprising instruction if executed cause the computing system to determine to transmit data from one or more devices.
20. The non-transitory computer readable media of claim 18 further comprising instruction if executed cause the computing system to receive an input from a touch screen input device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/797,312 US20100245599A1 (en) | 2005-06-27 | 2010-06-09 | Communicating Audio Data |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/167,862 US7760897B2 (en) | 2005-06-27 | 2005-06-27 | Communicating audio data |
US12/797,312 US20100245599A1 (en) | 2005-06-27 | 2010-06-09 | Communicating Audio Data |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/167,862 Continuation US7760897B2 (en) | 2005-06-27 | 2005-06-27 | Communicating audio data |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100245599A1 true US20100245599A1 (en) | 2010-09-30 |
Family
ID=37567461
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/167,862 Expired - Fee Related US7760897B2 (en) | 2005-06-27 | 2005-06-27 | Communicating audio data |
US12/797,312 Abandoned US20100245599A1 (en) | 2005-06-27 | 2010-06-09 | Communicating Audio Data |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/167,862 Expired - Fee Related US7760897B2 (en) | 2005-06-27 | 2005-06-27 | Communicating audio data |
Country Status (1)
Country | Link |
---|---|
US (2) | US7760897B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7760897B2 (en) * | 2005-06-27 | 2010-07-20 | Hewlett-Packard Development Company, L.P. | Communicating audio data |
US20120157204A1 (en) * | 2010-12-20 | 2012-06-21 | Lai Games Australia Pty Ltd. | User-controlled projector-based games |
US10016650B2 (en) * | 2013-02-08 | 2018-07-10 | Excel Equipment Llc | Systems and methods for target training including synchronized music |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4633522A (en) * | 1984-01-24 | 1986-12-30 | Sony Corporation | Apparatus for emitting and receiving light signals, more particularly infrared signals |
US5930808A (en) * | 1996-05-30 | 1999-07-27 | Matsushita Electric Industrial Co., Ltd. | Data conversion apparatus for data communication system |
US6025946A (en) * | 1996-08-30 | 2000-02-15 | Sony Corporation | Transmission device and transmission method |
US20030035556A1 (en) * | 1997-11-18 | 2003-02-20 | Jerry Curtis | Audio distribution system |
US6529189B1 (en) * | 2000-02-08 | 2003-03-04 | International Business Machines Corporation | Touch screen stylus with IR-coupled selection buttons |
US20040030561A1 (en) * | 2002-08-09 | 2004-02-12 | Heng-Chien Chen | Method and apparatus for digital signal communication between computer-based multi-channel audio controller and surround sound systems |
US6785539B2 (en) * | 2001-12-05 | 2004-08-31 | Disney Enterprises, Inc. | System and method of wirelessly triggering portable devices |
US20040172166A1 (en) * | 2003-02-26 | 2004-09-02 | Paul Lapstun | Robot |
US6811267B1 (en) * | 2003-06-09 | 2004-11-02 | Hewlett-Packard Development Company, L.P. | Display system with nonvisible data projection |
US20040218766A1 (en) * | 2003-05-02 | 2004-11-04 | Angell Daniel Keith | 360 Degree infrared transmitter module |
US6907013B1 (en) * | 1997-12-17 | 2005-06-14 | Infracom, Ltd. | Network communications link |
US6904977B2 (en) * | 2002-10-18 | 2005-06-14 | Andreas Stihl Ag & Co. Kg | Portable handheld work apparatus |
US20050245302A1 (en) * | 2004-04-29 | 2005-11-03 | Microsoft Corporation | Interaction between objects and a virtual environment display |
US7072475B1 (en) * | 2001-06-27 | 2006-07-04 | Sprint Spectrum L.P. | Optically coupled headset and microphone |
US20060149495A1 (en) * | 2005-01-05 | 2006-07-06 | Massachusetts Institute Of Technology | Method for object identification and sensing in a bounded interaction space |
US7137710B2 (en) * | 2003-07-28 | 2006-11-21 | Hewlett-Packard Development Company, L.P. | Projection system |
US20070009268A1 (en) * | 2003-09-29 | 2007-01-11 | Koninklijke Philips Electronics N.V. | System and method for transmitting data in a video signal by modulating a video signal brightness level |
US7216082B2 (en) * | 2001-03-27 | 2007-05-08 | Sony Corporation | Action teaching apparatus and action teaching method for robot system, and storage medium |
US7760897B2 (en) * | 2005-06-27 | 2010-07-20 | Hewlett-Packard Development Company, L.P. | Communicating audio data |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0903653A3 (en) | 1997-09-19 | 1999-12-15 | Siemens Aktiengesellschaft | Control and viewing device having infrared transmitter and receiver unit |
JP2000115159A (en) * | 1998-09-30 | 2000-04-21 | Nec Corp | Work protection system and work protection method therefor |
DE10220298A1 (en) | 2002-05-07 | 2003-11-20 | Schairer Werner | Miniaturized infrared (IR) transceiver for directional two-way data transmission, uses detector without lens |
-
2005
- 2005-06-27 US US11/167,862 patent/US7760897B2/en not_active Expired - Fee Related
-
2010
- 2010-06-09 US US12/797,312 patent/US20100245599A1/en not_active Abandoned
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4633522A (en) * | 1984-01-24 | 1986-12-30 | Sony Corporation | Apparatus for emitting and receiving light signals, more particularly infrared signals |
US5930808A (en) * | 1996-05-30 | 1999-07-27 | Matsushita Electric Industrial Co., Ltd. | Data conversion apparatus for data communication system |
US6025946A (en) * | 1996-08-30 | 2000-02-15 | Sony Corporation | Transmission device and transmission method |
US20030035556A1 (en) * | 1997-11-18 | 2003-02-20 | Jerry Curtis | Audio distribution system |
US6907013B1 (en) * | 1997-12-17 | 2005-06-14 | Infracom, Ltd. | Network communications link |
US6529189B1 (en) * | 2000-02-08 | 2003-03-04 | International Business Machines Corporation | Touch screen stylus with IR-coupled selection buttons |
US7216082B2 (en) * | 2001-03-27 | 2007-05-08 | Sony Corporation | Action teaching apparatus and action teaching method for robot system, and storage medium |
US7072475B1 (en) * | 2001-06-27 | 2006-07-04 | Sprint Spectrum L.P. | Optically coupled headset and microphone |
US6785539B2 (en) * | 2001-12-05 | 2004-08-31 | Disney Enterprises, Inc. | System and method of wirelessly triggering portable devices |
US20040030561A1 (en) * | 2002-08-09 | 2004-02-12 | Heng-Chien Chen | Method and apparatus for digital signal communication between computer-based multi-channel audio controller and surround sound systems |
US6904977B2 (en) * | 2002-10-18 | 2005-06-14 | Andreas Stihl Ag & Co. Kg | Portable handheld work apparatus |
US20040172166A1 (en) * | 2003-02-26 | 2004-09-02 | Paul Lapstun | Robot |
US20040218766A1 (en) * | 2003-05-02 | 2004-11-04 | Angell Daniel Keith | 360 Degree infrared transmitter module |
US6811267B1 (en) * | 2003-06-09 | 2004-11-02 | Hewlett-Packard Development Company, L.P. | Display system with nonvisible data projection |
US7137710B2 (en) * | 2003-07-28 | 2006-11-21 | Hewlett-Packard Development Company, L.P. | Projection system |
US20070009268A1 (en) * | 2003-09-29 | 2007-01-11 | Koninklijke Philips Electronics N.V. | System and method for transmitting data in a video signal by modulating a video signal brightness level |
US20050245302A1 (en) * | 2004-04-29 | 2005-11-03 | Microsoft Corporation | Interaction between objects and a virtual environment display |
US20060149495A1 (en) * | 2005-01-05 | 2006-07-06 | Massachusetts Institute Of Technology | Method for object identification and sensing in a bounded interaction space |
US7760897B2 (en) * | 2005-06-27 | 2010-07-20 | Hewlett-Packard Development Company, L.P. | Communicating audio data |
Also Published As
Publication number | Publication date |
---|---|
US20060291802A1 (en) | 2006-12-28 |
US7760897B2 (en) | 2010-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10481734B2 (en) | Computing device, apparatus and system for display and integrated projection | |
JP7254949B2 (en) | Photoelectric fingerprint identification device, terminal and fingerprint identification method | |
US20190037329A1 (en) | Portable terminal, hearing aid, and method of indicating positions of sound sources in the portable terminal | |
EP3396593A1 (en) | Organic light emitting diode display module and control method thereof | |
US20200329303A1 (en) | Electronic device including acoustic duct having a vibratable sheet | |
CN109078319B (en) | Game interface display method and terminal | |
CN108038405A (en) | Barcode scanning light compensation method, mobile terminal and computer-readable recording medium | |
US20150177865A1 (en) | Alternative input device for press/release simulations | |
JP2001306254A (en) | Inputting function by slapping sound detection | |
WO2016197697A1 (en) | Gesture control method, device and system | |
US9819915B2 (en) | Smart laser phone | |
CN111445901B (en) | Audio data acquisition method and device, electronic equipment and storage medium | |
CN103999452A (en) | Dual mode proximity sensor | |
WO2021129776A1 (en) | Imaging processing method, and electronic device | |
WO2021147583A1 (en) | Method, apparatus and system for determining relative angle between smart devices, and smart device | |
CN108989494A (en) | A kind of electronic equipment | |
EP3673360A1 (en) | Voice-controlled multimedia device and universal remote | |
US20100245599A1 (en) | Communicating Audio Data | |
WO2019165999A1 (en) | Ultrasonic fingerprint collection precision control processing method, storage medium and mobile terminal | |
CN115943621A (en) | Control method applied to electronic equipment and electronic equipment | |
CN107888758B (en) | Screen color adjusting method, mobile terminal and computer readable storage medium | |
CN114079691A (en) | Equipment identification method and related device | |
EP3435283A1 (en) | Method and device for optical fingerprint recognition, and computer-readable storage medium | |
US10122448B2 (en) | Mobile terminal and control method therefor | |
WO2022143310A1 (en) | Double-channel screen projection method and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |