US20100245599A1 - Communicating Audio Data - Google Patents

Communicating Audio Data Download PDF

Info

Publication number
US20100245599A1
US20100245599A1 US12/797,312 US79731210A US2010245599A1 US 20100245599 A1 US20100245599 A1 US 20100245599A1 US 79731210 A US79731210 A US 79731210A US 2010245599 A1 US2010245599 A1 US 2010245599A1
Authority
US
United States
Prior art keywords
data
camera
display surface
computing
computing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/797,312
Inventor
Kenneth L. Anthony
Michael M. Blythe
Wyatt Allen Huddlesto
Gregory W. Blythe
Jonathan J. Sandoval
Steven D. Morrow
Quinn V. Jemmott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/797,312 priority Critical patent/US20100245599A1/en
Publication of US20100245599A1 publication Critical patent/US20100245599A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/025Systems for the transmission of digital non-picture data, e.g. of text during the active part of a television frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/1143Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • FIG. 2 illustrates an embodiment of an optical projection system, according to an embodiment.
  • FIG. 3 illustrates a sample object, according to an embodiment.
  • FIG. 5 illustrates an embodiment of a method of transmitting data between an object and a display device, according to an embodiment.
  • FIG. 6 illustrates various components of an embodiment of a computing device which may be utilized to implement portions of the techniques discussed herein.
  • a method optically transmits audio data between the object and a display device.
  • the object may include an optical receiver and/or an optical transmitter to communicate the audio data.
  • the object may optically receive the audio data from a computing device coupled to the display device (e.g., through optical images displayed on the display).
  • the object may also optically transmit the audio data to a camera and/or a suitable optical communication device.
  • the object may convert the audio data to/from sound waves. It is envisioned that such embodiments may provide a communication channel that is relatively secure from unauthorized interception (e.g., when the optical transmission is interrupted, the transmission stops).
  • optical communication e.g., transmitting and/or receiving data via optical signals
  • the display surface 104 may be any suitable display such as the display 620 discussed with reference to FIG. 6 .
  • the display surface 104 may be substantially horizontal, such as a display embedded and/or attached to the top side of a table to enable a plurality of users around the table to interact with the display surface 104 .
  • the display surface 104 may be any suitable display device capable of being controlled by a computing device (such as those discussed with respect to FIG. 6 ), for example, including a rear projection display device, a liquid crystal display device, a cathode ray tube display device, a plasma display device, and the like.
  • the communication devices 106 are coupled to a computing device 108 to enable data transmission between the object 102 and the computing device 108 , as will be further discussed with reference to FIG. 4 .
  • the data transmission between the object 102 and the one or more communication devices 106 may be performed using optical communication.
  • the transmitted data may be encrypted.
  • the optical transmission may be performed through one or more spectrums of light rays such as visible light and non-visible light rays (e.g., ultraviolet and infrared light rays).
  • the communication devices 106 may be any suitable optical receiver such as a charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS) image sensor, an infrared receiver, and/or an infrared Data Association (IrDA) transceiver. Additionally, it is envisioned that broad, narrow, and/or multiple spectrum frequencies may be utilized in various embodiments.
  • CCD charge-coupled device
  • CMOS complementary metal oxide semiconductor
  • IrDA infrared Data Association
  • the object 102 may also include a transmitter and/or a receiver (such as those discussed with reference to the communication devices 106 ) to enable data transmission between the object 102 and the one or more communication devices 106 . Furthermore, the object 102 's receiver may receive data from the display surface 104 .
  • the optical transmitters discussed herein may be light-emitting diodes (LEDs).
  • the transmitted data may include one or more items such as digital audio data and/or audio control data (e.g., commands and/or macros regarding audio data).
  • the object 102 may be capable of providing digital audio data regarding sound waves or audio commands it receives from a user to the computing device 108 and the computing device 108 may be capable of transmitting data to the object 102 to invoke audio sounds.
  • the object 102 may convert digital audio data received from the computing device 108 into sound waves (e.g., a speaker) and/or convert sound waves it receives from its surrounding (e.g., from a user) into digital audio data that is transmitted to the computing device 108 (e.g., a microphone).
  • the object ( 102 ) may receive data and convert it to sound waves.
  • the user may carry the object ( 102 ) from one system (e.g., 100 ) to another system to provide data communication, authenticity, translation capabilities, and the like.
  • a profile e.g., associated with a user or a voice, e.g., through voice recognition
  • the profile may be transferred between systems (e.g., 100 ) and provide access to users that are authenticated with authority to perform certain activities on the corresponding system.
  • FIG. 2 illustrates an embodiment of an optical projection system 200 , according to an embodiment.
  • the system 200 may be utilized to enable optical communication between the object 102 and the computing device 108 .
  • the object 102 may be placed on a surface 202 .
  • the object 102 may be placed over or attached to the surface 202 (e.g., using suction cups, magnets, gravity, and the like).
  • the surface 202 may be the same as or similar to the display surface 104 of FIG. 1 .
  • the system 200 utilizes a camera 204 and, a projector 206 to enable communication between the object 102 and the computing device 108 (whereas the system 100 of FIG. 1 utilizes the communication devices 106 to at least receive data from the object 102 optically).
  • the display surface 202 may include the camera 204 and the projector 206 .
  • the camera 204 captures one or more images of the surface 202 , e.g., to receive data optically transmitted by the object 102 as will be further discussed with reference to FIG. 4 .
  • the surface 202 may be any suitable type of a translucent or semi-translucent surface capable of supporting the object 102 , while allowing electromagnetic waves to pass through the surface 202 .
  • the camera 204 may be any suitable type of capture device such as a CCD sensor, a CMOS sensor, and the like.
  • the surface 202 , camera 204 , and projector 206 may be part of an enclosure ( 208 ), e.g., to protect the parts from physical elements (such as dust, liquids, and the like) and/or to provide a sufficiently controlled environment for the camera 204 to be able to capture accurate images and/or for the projector 206 to project brighter images.
  • the computing device 108 such as a laptop
  • the enclosure 208 may be provided wholly or partially inside the enclosure 208 , or wholly external to the enclosure 208 .
  • FIG. 3 illustrates a sample object 300 , according to an embodiment.
  • the object 300 may be the object 102 discussed with reference to FIGS. 1 and 2 , in one embodiment.
  • the object 300 includes an optical transmitter 302 , e.g., to optically transmit data to one or more devices (such as the communication devices 106 discussed with reference to FIG. 1 and/or the camera 204 of FIG. 2 ), one or more optional windows 304 , e.g., to allow rays ( 306 ) from the transmitter 302 to pass through while protecting the transmitter 302 from the elements (such as dust, water, etc.), and an optical receiver 308 , e.g., to optically receive data from one or more devices (such as 104 and/or 106 of FIG. 1 , and/or 206 of FIG. 2 ).
  • the windows 304 may filter the rays ( 306 ) that pass through them ( 304 ), e.g., to provide polarized rays and the like.
  • the object 300 may include logic ( 308 ) to convert digital audio data to sound waves and vice versa. More than one logic 308 may also be utilized.
  • the object 300 may include a digital to analog converter (e.g., within the logic 308 ) to convert the received digital audio data (e.g., from the computing device 108 such as discussed with reference to FIG. 2 ) into analog form (e.g., generated sound waves that are provided to a user via one or more speakers 310 ).
  • FIG. 3 illustrates the receiver 314 to be on a bottom side and the transmitter to be on the interior of the object 300 , it is envisioned that the transmitter 302 and the receiver 314 may be positioned at any suitable location to enable data transmission with one or more devices (such as 104 and/or 106 of FIG. 1 , or 204 and/or 206 of FIG. 2 ).
  • the transmitter 302 and the receiver 314 may be positioned at any suitable location to enable data transmission with one or more devices (such as 104 and/or 106 of FIG. 1 , or 204 and/or 206 of FIG. 2 ).
  • FIG. 4 illustrates sample components of the computing device 108 of FIGS. 1 and 2 , according to an embodiment.
  • the computing device 108 may be a general computing device such as 600 discussed with reference to FIG. 6 .
  • the computing device 108 includes an embodiment of a processor, such as an audio processor 402 (which may be a general processor(s), such as 602 discussed with reference to FIG. 6 , to execute instructions, such as firmware, suitable for accomplishing the audio processing), coupled to the receivers discussed with reference to FIGS. 1 and 2 to optically receive data from the object 102 .
  • the data may include audio and/or control data.
  • the digital to analog and/or analog to digital conversion of audio (or control) data may be performed by the object ( 102 ) and/or the audio processor 402 in various embodiments.
  • the audio processor 402 is coupled to an operating system (O/S) 404 and one or more application programs 406 .
  • the audio processor 402 may communicate data received from the camera 204 of FIG. 2 and/or the communication devices 106 of FIG. 1 to one or more of the O/S 404 and application programs 406 .
  • the application program(s) 406 may utilize the communicated data to cause the communication devices 106 of FIG. 1 and/or the projector 206 of FIG. 2 to optically transmit desired data to the object 102 . As discussed with reference to FIG. 1 , the data may be streamed and/or pulsed.
  • FIG. 5 illustrates a method 500 of transmitting data between an object and a display device, according to an embodiment.
  • the method 500 provides an object ( 502 ) such as the objects 102 and 300 discussed with reference to FIGS. 1 and 3 .
  • One or more optical communication devices are also provided ( 504 ), such as 106 of FIG. 1 , the camera 204 and the projector 206 of FIG. 2 , and/or 302 and 312 of FIG. 3 .
  • the communication devices may be positioned proximate to a display ( 506 ), such as the display surface 104 of FIG. 1 or the surface 202 of FIG. 2 .
  • data is transmitted between the object ( 102 , 300 ) and the display ( 508 ), such as discussed with reference to the previous figures. It is also envisioned that data may be transmitted between several objects ( 102 , 300 ) directly, or through the communication devices 106 of FIG. 1 and/or the camera 204 and the projector 206 of FIG. 2 .
  • FIG. 6 illustrates various components of an embodiment of a computing device 600 which may be utilized to implement portions of the techniques discussed herein.
  • the computing device 600 can be used to perform the method of FIG. 5 .
  • the computing device 600 may also be used to provide the computing device 108 .
  • the computing device 600 may further be used to manipulate, enhance, and/or store the audio data discussed herein.
  • the computing device 600 includes one or more processor(s) 602 (e.g., microprocessors, controllers, etc.), input/output interfaces 604 for the input and/or output of data, and user input devices 606 .
  • the processor(s) 602 process various instructions to control the operation of the computing device 600 , while the input/output interfaces 604 provide a mechanism for the computing device 600 to communicate with other electronic and computing devices.
  • the user input devices 606 can include a keyboard, touch screen, mouse, pointing device, and/or other mechanisms to interact with, and to input information to the computing device 600 .
  • the computing device 600 may also include a memory 608 (such as read-only memory (ROM) and/or random-access memory (RAM)), a disk drive 610 , a floppy disk drive 612 , and a compact disk read-only memory (CD-ROM) and/or digital video disk (DVD) drive 614 , which may provide data storage mechanisms for the computing device 600 .
  • a memory 608 such as read-only memory (ROM) and/or random-access memory (RAM)
  • a disk drive 610 such as read-only memory (ROM) and/or random-access memory (RAM)
  • CD-ROM compact disk read-only memory
  • DVD digital video disk
  • the computing device 600 also includes one or more application program(s) 616 and an operating system 618 (such as 404 and 406 discussed with reference to FIG. 4 ), which can be stored in non-volatile memory (e.g., the memory 608 ) and executed on the processor(s) 602 to provide a runtime environment in which the application program(s) 616 can run or execute.
  • the computing device 600 can also include one or more integrated display device(s) 620 , such as for a PDA, a portable computing device, and any other mobile computing device.
  • Select embodiments discussed herein may include various operations. These operations may be performed by hardware components or may be embodied in machine-executable instructions, which may be in turn utilized to cause a general-purpose or special-purpose processor, or logic circuits programmed with the instructions to perform the operations. Alternatively, the operations may be performed by a combination of hardware and software.
  • some embodiments may be provided as computer program products, which may include a machine-readable or computer-readable medium having stored thereon instructions used to program a computer (or other electronic devices) to perform a process discussed herein.
  • the machine-readable medium may include, but is not limited to, floppy diskettes, hard disk, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, erasable programmable ROMs (EPROMs), electrically EPROMs (EEPROMs), magnetic or optical cards, flash memory, or other suitable types of media or computer-readable media suitable for storing electronic instructions and/or data.
  • data discussed herein may be stored in a single database, multiple databases, or otherwise in select forms (such as in a table).
  • a carrier wave shall be regarded as comprising a machine-readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Optical Communication System (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)

Abstract

A system including a display device including a display surface. The system can include a camera to capture one or more images of the display surface. A computing device can be connected to the camera to control the camera and to recognize an object placed on the display surface.

Description

    PRIORITY
  • This continuation application claims priority to application Ser. No. 11/167,862 filed on Jun. 27, 2005.
  • BACKGROUND
  • Audio data may be transmitted through wires between an audio device (such as microphones and speakers) and a computer. Such an approach may become cumbersome since the wires may become tangled as the audio device is moved, for example, to adjust the orientation or location of the audio device. Audio data may also be transmitted wirelessly between audio devices and a computer. Such wireless communications may however be intercepted.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. The use of the same reference numbers in different figures indicates similar or identical items.
  • FIG. 1 illustrates an embodiment of a system for transmitting data between an object and one or more communication devices, according to an embodiment.
  • FIG. 2 illustrates an embodiment of an optical projection system, according to an embodiment.
  • FIG. 3 illustrates a sample object, according to an embodiment.
  • FIG. 4 illustrates sample components of the computing device 108 of FIGS. 1 and 2, according to an embodiment.
  • FIG. 5 illustrates an embodiment of a method of transmitting data between an object and a display device, according to an embodiment.
  • FIG. 6 illustrates various components of an embodiment of a computing device which may be utilized to implement portions of the techniques discussed herein.
  • DETAILED DESCRIPTION
  • Various embodiments for transmitting audio data between an object and a display device are described. In one embodiment, a method optically transmits audio data between the object and a display device. The object may include an optical receiver and/or an optical transmitter to communicate the audio data. The object may optically receive the audio data from a computing device coupled to the display device (e.g., through optical images displayed on the display). The object may also optically transmit the audio data to a camera and/or a suitable optical communication device. The object may convert the audio data to/from sound waves. It is envisioned that such embodiments may provide a communication channel that is relatively secure from unauthorized interception (e.g., when the optical transmission is interrupted, the transmission stops). Also, optical communication (e.g., transmitting and/or receiving data via optical signals) may provide flexibility in object placement and/or orientation.
  • FIG. 1 illustrates an embodiment of a system 100 for transmitting data between an object and one or more communication devices, according to an embodiment. In one embodiment, the data transmitted may be digital audio data that is streamed and/or pulsed. The system 100 includes an object 102 that is proximate to a display surface 104. For example, the object 102 may be placed over or attached to the display surface 104 (e.g., using suction cups, magnets, gravity, and the like). The object 102 may be any suitable object capable of transmitting and/or receiving data optically such as a computing device (e.g., those discussed with reference to FIG. 6), a token, a game piece, and the like.
  • The display surface 104 may be any suitable display such as the display 620 discussed with reference to FIG. 6. In one embodiment, the display surface 104 may be substantially horizontal, such as a display embedded and/or attached to the top side of a table to enable a plurality of users around the table to interact with the display surface 104. In one embodiment, the display surface 104 may be any suitable display device capable of being controlled by a computing device (such as those discussed with respect to FIG. 6), for example, including a rear projection display device, a liquid crystal display device, a cathode ray tube display device, a plasma display device, and the like.
  • The display surface 104 may be proximate to one or more communication devices 106. The communication devices 106 may be proximate to the perimeter of the display surface 104, and be capable of transmitting and/or receiving data to/from the object 102 optically in one embodiment. Hence, the communication devices 106 may be transmitters and/or receivers. In an embodiment, the display surface 104 may include the one or more communication devices 106. Moreover, even though FIG. 1 illustrates that the communication devices 106 are at the corners of the display surface 104, they may be positioned at any suitable location around the display surface 104 to enable data communication with the object 102. The object 102 may also receive data from the display surface 104 (in addition to or in place of the communication devices 106).
  • The communication devices 106 are coupled to a computing device 108 to enable data transmission between the object 102 and the computing device 108, as will be further discussed with reference to FIG. 4. In one embodiment, the data transmission between the object 102 and the one or more communication devices 106 may be performed using optical communication. Also, the transmitted data may be encrypted. The optical transmission may be performed through one or more spectrums of light rays such as visible light and non-visible light rays (e.g., ultraviolet and infrared light rays). As receivers, the communication devices 106 may be any suitable optical receiver such as a charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS) image sensor, an infrared receiver, and/or an infrared Data Association (IrDA) transceiver. Additionally, it is envisioned that broad, narrow, and/or multiple spectrum frequencies may be utilized in various embodiments.
  • The object 102 may also include a transmitter and/or a receiver (such as those discussed with reference to the communication devices 106) to enable data transmission between the object 102 and the one or more communication devices 106. Furthermore, the object 102's receiver may receive data from the display surface 104. In one embodiment, the optical transmitters discussed herein may be light-emitting diodes (LEDs).
  • The transmitted data may include one or more items such as digital audio data and/or audio control data (e.g., commands and/or macros regarding audio data). For example, the object 102 may be capable of providing digital audio data regarding sound waves or audio commands it receives from a user to the computing device 108 and the computing device 108 may be capable of transmitting data to the object 102 to invoke audio sounds. Hence, the object 102 may convert digital audio data received from the computing device 108 into sound waves (e.g., a speaker) and/or convert sound waves it receives from its surrounding (e.g., from a user) into digital audio data that is transmitted to the computing device 108 (e.g., a microphone).
  • Other examples include an object (102) that is capable of recognizing speech (e.g., in a given language) and/or a voice (e.g., for authenticity purposes) which are converted into digital audio data and/or audio control data and transmitted to the computing device 108. Hence, a user may issue commands (e.g., in the user's native language) and/or provide audio sounds to an object (102) that recognizes and/or converts the user-provided sound waves to digital audio data. Also, a user may record and store a sound in the object (102) and associate it with a string that may be control data or information. The computing device 108 may interpret the control data and/or the information to perform various tasks such as invoking one or more commands or macros. Conversely, the object (102) may receive data and convert it to sound waves. In some embodiments, the user may carry the object (102) from one system (e.g., 100) to another system to provide data communication, authenticity, translation capabilities, and the like. For example, a profile (e.g., associated with a user or a voice, e.g., through voice recognition) may be stored in the object (102). The profile may be transferred between systems (e.g., 100) and provide access to users that are authenticated with authority to perform certain activities on the corresponding system.
  • FIG. 2 illustrates an embodiment of an optical projection system 200, according to an embodiment. The system 200 may be utilized to enable optical communication between the object 102 and the computing device 108. As illustrated in FIG. 2, the object 102 may be placed on a surface 202. For example, the object 102 may be placed over or attached to the surface 202 (e.g., using suction cups, magnets, gravity, and the like). In an embodiment, the surface 202 may be the same as or similar to the display surface 104 of FIG. 1.
  • In one embodiment, the system 200 utilizes a camera 204 and, a projector 206 to enable communication between the object 102 and the computing device 108 (whereas the system 100 of FIG. 1 utilizes the communication devices 106 to at least receive data from the object 102 optically). In an embodiment, the display surface 202 may include the camera 204 and the projector 206. In an embodiment, when the object 102 is placed on the surface 202, the camera 204 captures one or more images of the surface 202, e.g., to receive data optically transmitted by the object 102 as will be further discussed with reference to FIG. 4. Moreover, the surface 202 may be any suitable type of a translucent or semi-translucent surface capable of supporting the object 102, while allowing electromagnetic waves to pass through the surface 202. The camera 204 may be any suitable type of capture device such as a CCD sensor, a CMOS sensor, and the like.
  • The system 200 also includes the projector 206 to project images and/or optical signals onto the surface 202. Hence, the surface 202 may be a suitable surface capable of projecting images such as a projection screen. The camera 204 and the projector 206 are coupled to the computing device 108. The computing device 108 may control the camera 204 and/or the projector 206, e.g., to capture images of the surface 202 and/or project images (or data) onto the surface 202. For example, the projector 206 may project data on the surface 202 that is detected by the object 102.
  • Additionally, as illustrated in FIG. 2, the surface 202, camera 204, and projector 206 may be part of an enclosure (208), e.g., to protect the parts from physical elements (such as dust, liquids, and the like) and/or to provide a sufficiently controlled environment for the camera 204 to be able to capture accurate images and/or for the projector 206 to project brighter images. Also, it is envisioned that the computing device 108 (such as a laptop) may be provided wholly or partially inside the enclosure 208, or wholly external to the enclosure 208.
  • FIG. 3 illustrates a sample object 300, according to an embodiment. The object 300 may be the object 102 discussed with reference to FIGS. 1 and 2, in one embodiment. The object 300 includes an optical transmitter 302, e.g., to optically transmit data to one or more devices (such as the communication devices 106 discussed with reference to FIG. 1 and/or the camera 204 of FIG. 2), one or more optional windows 304, e.g., to allow rays (306) from the transmitter 302 to pass through while protecting the transmitter 302 from the elements (such as dust, water, etc.), and an optical receiver 308, e.g., to optically receive data from one or more devices (such as 104 and/or 106 of FIG. 1, and/or 206 of FIG. 2). It is also envisioned that the windows 304 may filter the rays (306) that pass through them (304), e.g., to provide polarized rays and the like.
  • In an embodiment, the object 300 may include logic (308) to convert digital audio data to sound waves and vice versa. More than one logic 308 may also be utilized. In one embodiment, the object 300 may include a digital to analog converter (e.g., within the logic 308) to convert the received digital audio data (e.g., from the computing device 108 such as discussed with reference to FIG. 2) into analog form (e.g., generated sound waves that are provided to a user via one or more speakers 310). The object 300 may further include an analog to digital converter (e.g., within the logic 308) to convert sound waves (e.g., from its surroundings that are received from or detected by one or more microphones 312) into digital audio data that may be transmitted to the computing device 108. Additionally, the object 300 may include a digital signal processor (DSP) (e.g., within the logic 308) to process the audio data in an embodiment.
  • Also, while FIG. 3 illustrates the receiver 314 to be on a bottom side and the transmitter to be on the interior of the object 300, it is envisioned that the transmitter 302 and the receiver 314 may be positioned at any suitable location to enable data transmission with one or more devices (such as 104 and/or 106 of FIG. 1, or 204 and/or 206 of FIG. 2).
  • FIG. 4 illustrates sample components of the computing device 108 of FIGS. 1 and 2, according to an embodiment. In an embodiment, the computing device 108 may be a general computing device such as 600 discussed with reference to FIG. 6. The computing device 108 includes an embodiment of a processor, such as an audio processor 402 (which may be a general processor(s), such as 602 discussed with reference to FIG. 6, to execute instructions, such as firmware, suitable for accomplishing the audio processing), coupled to the receivers discussed with reference to FIGS. 1 and 2 to optically receive data from the object 102. As discussed with reference to FIG. 2, the data may include audio and/or control data. Hence, the digital to analog and/or analog to digital conversion of audio (or control) data may be performed by the object (102) and/or the audio processor 402 in various embodiments.
  • The audio processor 402 is coupled to an operating system (O/S) 404 and one or more application programs 406. The audio processor 402 may communicate data received from the camera 204 of FIG. 2 and/or the communication devices 106 of FIG. 1 to one or more of the O/S 404 and application programs 406. The application program(s) 406 may utilize the communicated data to cause the communication devices 106 of FIG. 1 and/or the projector 206 of FIG. 2 to optically transmit desired data to the object 102. As discussed with reference to FIG. 1, the data may be streamed and/or pulsed.
  • FIG. 5 illustrates a method 500 of transmitting data between an object and a display device, according to an embodiment. The method 500 provides an object (502) such as the objects 102 and 300 discussed with reference to FIGS. 1 and 3. One or more optical communication devices are also provided (504), such as 106 of FIG. 1, the camera 204 and the projector 206 of FIG. 2, and/or 302 and 312 of FIG. 3. The communication devices may be positioned proximate to a display (506), such as the display surface 104 of FIG. 1 or the surface 202 of FIG. 2. And, data is transmitted between the object (102, 300) and the display (508), such as discussed with reference to the previous figures. It is also envisioned that data may be transmitted between several objects (102, 300) directly, or through the communication devices 106 of FIG. 1 and/or the camera 204 and the projector 206 of FIG. 2.
  • FIG. 6 illustrates various components of an embodiment of a computing device 600 which may be utilized to implement portions of the techniques discussed herein. In one embodiment, the computing device 600 can be used to perform the method of FIG. 5. The computing device 600 may also be used to provide the computing device 108. The computing device 600 may further be used to manipulate, enhance, and/or store the audio data discussed herein.
  • The computing device 600 includes one or more processor(s) 602 (e.g., microprocessors, controllers, etc.), input/output interfaces 604 for the input and/or output of data, and user input devices 606. The processor(s) 602 process various instructions to control the operation of the computing device 600, while the input/output interfaces 604 provide a mechanism for the computing device 600 to communicate with other electronic and computing devices. The user input devices 606 can include a keyboard, touch screen, mouse, pointing device, and/or other mechanisms to interact with, and to input information to the computing device 600.
  • The computing device 600 may also include a memory 608 (such as read-only memory (ROM) and/or random-access memory (RAM)), a disk drive 610, a floppy disk drive 612, and a compact disk read-only memory (CD-ROM) and/or digital video disk (DVD) drive 614, which may provide data storage mechanisms for the computing device 600.
  • The computing device 600 also includes one or more application program(s) 616 and an operating system 618 (such as 404 and 406 discussed with reference to FIG. 4), which can be stored in non-volatile memory (e.g., the memory 608) and executed on the processor(s) 602 to provide a runtime environment in which the application program(s) 616 can run or execute. The computing device 600 can also include one or more integrated display device(s) 620, such as for a PDA, a portable computing device, and any other mobile computing device.
  • Select embodiments discussed herein (such as those discussed with reference to FIG. 5) may include various operations. These operations may be performed by hardware components or may be embodied in machine-executable instructions, which may be in turn utilized to cause a general-purpose or special-purpose processor, or logic circuits programmed with the instructions to perform the operations. Alternatively, the operations may be performed by a combination of hardware and software.
  • Moreover, some embodiments may be provided as computer program products, which may include a machine-readable or computer-readable medium having stored thereon instructions used to program a computer (or other electronic devices) to perform a process discussed herein. The machine-readable medium may include, but is not limited to, floppy diskettes, hard disk, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, erasable programmable ROMs (EPROMs), electrically EPROMs (EEPROMs), magnetic or optical cards, flash memory, or other suitable types of media or computer-readable media suitable for storing electronic instructions and/or data. Moreover, data discussed herein may be stored in a single database, multiple databases, or otherwise in select forms (such as in a table).
  • Additionally, some embodiments discussed herein may be downloaded as a computer program product, wherein the program may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection). Accordingly, herein, a carrier wave shall be regarded as comprising a machine-readable medium.
  • Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an implementation. The appearances of the phrase “in one embodiment” in various places in the specification may or may not be all referring to the same embodiment.
  • Thus, although embodiments have been described in language specific to structural features and/or methodological acts, it is to be understood that claimed subject matter may not be limited to the specific features or acts described. Rather, the specific features and acts are disclosed as sample forms of implementing the claimed subject matter.

Claims (20)

1. A system comprising:
a display device including a display surface;
a camera to capture one or more images of the display surface; and
a computing device connected to the camera to control the camera and to recognize an object placed on the display surface.
2. The system of claim 1, further comprising a transmitter to communicate data from the computing device to the object.
3. The system of claim 2, wherein the transmitter is a wireless transmitter.
4. The system of claim 2, wherein the transmitter is an infrared transmitter or ultraviolet transmitter.
5. The system of claim 2, wherein the data is audio data.
6. The system of claim 1, wherein the display device is one of, a rear projection display device, a liquid crystal display device, a cathode ray tube display device, or a plasma display device.
7. The system of claim 1, further comprising a receiver to communicate audio data from the object to the computing device.
8. The system of claim 1, wherein the receiver is, a charge-coupled device (CCD), a complementary metal oxide semiconductor (CMOS) image sensor, an infrared receiver, an infrared Data Association (IrDA) transceiver or combinations thereof.
9. The system of claim 1, wherein the computing device can enable data transmission with one or more devices.
10. The system of claim 1, further comprising logic in the object to convert digital audio from the computing system to an analog form.
11. The system of claim 1, further comprising a touch screen input device on the display device.
12. The system of claim 1, wherein the computing device and the display device are integrated.
13. The system of claim 1, further comprising an enclosure to protect the camera and the surface of the display device.
14. A method of communicating with an object comprising:
capturing one or more images of a display surface with a camera;
recognizing an object on the display surface with a computing system connected to the camera; and
transmitting data to the object on the display surface.
15. The method of claim 14, wherein the computing device determines to transmit data from one or more devices.
16. The method of claim 15, further comprising receiving by the computing system an input from a touch screen input device.
17. A non-transitory computer readable media comprising instructions that if executed by a computing system cause the computing system to:
capture one or more images of a display surface with a camera;
recognize an object on the display surface with a computing system connected to the camera; and
transmit data to the object on the display surface.
18. The non-transitory computer readable media of claim 17 further comprising instruction if executed cause the computing system to receive audio data to the object on the display surface.
19. The non-transitory computer readable media of claim 17 further comprising instruction if executed cause the computing system to determine to transmit data from one or more devices.
20. The non-transitory computer readable media of claim 18 further comprising instruction if executed cause the computing system to receive an input from a touch screen input device.
US12/797,312 2005-06-27 2010-06-09 Communicating Audio Data Abandoned US20100245599A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/797,312 US20100245599A1 (en) 2005-06-27 2010-06-09 Communicating Audio Data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/167,862 US7760897B2 (en) 2005-06-27 2005-06-27 Communicating audio data
US12/797,312 US20100245599A1 (en) 2005-06-27 2010-06-09 Communicating Audio Data

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/167,862 Continuation US7760897B2 (en) 2005-06-27 2005-06-27 Communicating audio data

Publications (1)

Publication Number Publication Date
US20100245599A1 true US20100245599A1 (en) 2010-09-30

Family

ID=37567461

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/167,862 Expired - Fee Related US7760897B2 (en) 2005-06-27 2005-06-27 Communicating audio data
US12/797,312 Abandoned US20100245599A1 (en) 2005-06-27 2010-06-09 Communicating Audio Data

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/167,862 Expired - Fee Related US7760897B2 (en) 2005-06-27 2005-06-27 Communicating audio data

Country Status (1)

Country Link
US (2) US7760897B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7760897B2 (en) * 2005-06-27 2010-07-20 Hewlett-Packard Development Company, L.P. Communicating audio data
US20120157204A1 (en) * 2010-12-20 2012-06-21 Lai Games Australia Pty Ltd. User-controlled projector-based games
US10016650B2 (en) * 2013-02-08 2018-07-10 Excel Equipment Llc Systems and methods for target training including synchronized music

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633522A (en) * 1984-01-24 1986-12-30 Sony Corporation Apparatus for emitting and receiving light signals, more particularly infrared signals
US5930808A (en) * 1996-05-30 1999-07-27 Matsushita Electric Industrial Co., Ltd. Data conversion apparatus for data communication system
US6025946A (en) * 1996-08-30 2000-02-15 Sony Corporation Transmission device and transmission method
US20030035556A1 (en) * 1997-11-18 2003-02-20 Jerry Curtis Audio distribution system
US6529189B1 (en) * 2000-02-08 2003-03-04 International Business Machines Corporation Touch screen stylus with IR-coupled selection buttons
US20040030561A1 (en) * 2002-08-09 2004-02-12 Heng-Chien Chen Method and apparatus for digital signal communication between computer-based multi-channel audio controller and surround sound systems
US6785539B2 (en) * 2001-12-05 2004-08-31 Disney Enterprises, Inc. System and method of wirelessly triggering portable devices
US20040172166A1 (en) * 2003-02-26 2004-09-02 Paul Lapstun Robot
US6811267B1 (en) * 2003-06-09 2004-11-02 Hewlett-Packard Development Company, L.P. Display system with nonvisible data projection
US20040218766A1 (en) * 2003-05-02 2004-11-04 Angell Daniel Keith 360 Degree infrared transmitter module
US6907013B1 (en) * 1997-12-17 2005-06-14 Infracom, Ltd. Network communications link
US6904977B2 (en) * 2002-10-18 2005-06-14 Andreas Stihl Ag & Co. Kg Portable handheld work apparatus
US20050245302A1 (en) * 2004-04-29 2005-11-03 Microsoft Corporation Interaction between objects and a virtual environment display
US7072475B1 (en) * 2001-06-27 2006-07-04 Sprint Spectrum L.P. Optically coupled headset and microphone
US20060149495A1 (en) * 2005-01-05 2006-07-06 Massachusetts Institute Of Technology Method for object identification and sensing in a bounded interaction space
US7137710B2 (en) * 2003-07-28 2006-11-21 Hewlett-Packard Development Company, L.P. Projection system
US20070009268A1 (en) * 2003-09-29 2007-01-11 Koninklijke Philips Electronics N.V. System and method for transmitting data in a video signal by modulating a video signal brightness level
US7216082B2 (en) * 2001-03-27 2007-05-08 Sony Corporation Action teaching apparatus and action teaching method for robot system, and storage medium
US7760897B2 (en) * 2005-06-27 2010-07-20 Hewlett-Packard Development Company, L.P. Communicating audio data

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0903653A3 (en) 1997-09-19 1999-12-15 Siemens Aktiengesellschaft Control and viewing device having infrared transmitter and receiver unit
JP2000115159A (en) * 1998-09-30 2000-04-21 Nec Corp Work protection system and work protection method therefor
DE10220298A1 (en) 2002-05-07 2003-11-20 Schairer Werner Miniaturized infrared (IR) transceiver for directional two-way data transmission, uses detector without lens

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4633522A (en) * 1984-01-24 1986-12-30 Sony Corporation Apparatus for emitting and receiving light signals, more particularly infrared signals
US5930808A (en) * 1996-05-30 1999-07-27 Matsushita Electric Industrial Co., Ltd. Data conversion apparatus for data communication system
US6025946A (en) * 1996-08-30 2000-02-15 Sony Corporation Transmission device and transmission method
US20030035556A1 (en) * 1997-11-18 2003-02-20 Jerry Curtis Audio distribution system
US6907013B1 (en) * 1997-12-17 2005-06-14 Infracom, Ltd. Network communications link
US6529189B1 (en) * 2000-02-08 2003-03-04 International Business Machines Corporation Touch screen stylus with IR-coupled selection buttons
US7216082B2 (en) * 2001-03-27 2007-05-08 Sony Corporation Action teaching apparatus and action teaching method for robot system, and storage medium
US7072475B1 (en) * 2001-06-27 2006-07-04 Sprint Spectrum L.P. Optically coupled headset and microphone
US6785539B2 (en) * 2001-12-05 2004-08-31 Disney Enterprises, Inc. System and method of wirelessly triggering portable devices
US20040030561A1 (en) * 2002-08-09 2004-02-12 Heng-Chien Chen Method and apparatus for digital signal communication between computer-based multi-channel audio controller and surround sound systems
US6904977B2 (en) * 2002-10-18 2005-06-14 Andreas Stihl Ag & Co. Kg Portable handheld work apparatus
US20040172166A1 (en) * 2003-02-26 2004-09-02 Paul Lapstun Robot
US20040218766A1 (en) * 2003-05-02 2004-11-04 Angell Daniel Keith 360 Degree infrared transmitter module
US6811267B1 (en) * 2003-06-09 2004-11-02 Hewlett-Packard Development Company, L.P. Display system with nonvisible data projection
US7137710B2 (en) * 2003-07-28 2006-11-21 Hewlett-Packard Development Company, L.P. Projection system
US20070009268A1 (en) * 2003-09-29 2007-01-11 Koninklijke Philips Electronics N.V. System and method for transmitting data in a video signal by modulating a video signal brightness level
US20050245302A1 (en) * 2004-04-29 2005-11-03 Microsoft Corporation Interaction between objects and a virtual environment display
US20060149495A1 (en) * 2005-01-05 2006-07-06 Massachusetts Institute Of Technology Method for object identification and sensing in a bounded interaction space
US7760897B2 (en) * 2005-06-27 2010-07-20 Hewlett-Packard Development Company, L.P. Communicating audio data

Also Published As

Publication number Publication date
US20060291802A1 (en) 2006-12-28
US7760897B2 (en) 2010-07-20

Similar Documents

Publication Publication Date Title
US10481734B2 (en) Computing device, apparatus and system for display and integrated projection
JP7254949B2 (en) Photoelectric fingerprint identification device, terminal and fingerprint identification method
US20190037329A1 (en) Portable terminal, hearing aid, and method of indicating positions of sound sources in the portable terminal
EP3396593A1 (en) Organic light emitting diode display module and control method thereof
US20200329303A1 (en) Electronic device including acoustic duct having a vibratable sheet
CN109078319B (en) Game interface display method and terminal
CN108038405A (en) Barcode scanning light compensation method, mobile terminal and computer-readable recording medium
US20150177865A1 (en) Alternative input device for press/release simulations
JP2001306254A (en) Inputting function by slapping sound detection
WO2016197697A1 (en) Gesture control method, device and system
US9819915B2 (en) Smart laser phone
CN111445901B (en) Audio data acquisition method and device, electronic equipment and storage medium
CN103999452A (en) Dual mode proximity sensor
WO2021129776A1 (en) Imaging processing method, and electronic device
WO2021147583A1 (en) Method, apparatus and system for determining relative angle between smart devices, and smart device
CN108989494A (en) A kind of electronic equipment
EP3673360A1 (en) Voice-controlled multimedia device and universal remote
US20100245599A1 (en) Communicating Audio Data
WO2019165999A1 (en) Ultrasonic fingerprint collection precision control processing method, storage medium and mobile terminal
CN115943621A (en) Control method applied to electronic equipment and electronic equipment
CN107888758B (en) Screen color adjusting method, mobile terminal and computer readable storage medium
CN114079691A (en) Equipment identification method and related device
EP3435283A1 (en) Method and device for optical fingerprint recognition, and computer-readable storage medium
US10122448B2 (en) Mobile terminal and control method therefor
WO2022143310A1 (en) Double-channel screen projection method and electronic device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION