US20100240470A1 - Golf ball having a stiff tpu inner cover and a cast thermoset outer cover - Google Patents

Golf ball having a stiff tpu inner cover and a cast thermoset outer cover Download PDF

Info

Publication number
US20100240470A1
US20100240470A1 US12/408,949 US40894909A US2010240470A1 US 20100240470 A1 US20100240470 A1 US 20100240470A1 US 40894909 A US40894909 A US 40894909A US 2010240470 A1 US2010240470 A1 US 2010240470A1
Authority
US
United States
Prior art keywords
shore
cover layer
hardness
diisocyanate
golf ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/408,949
Inventor
Michael J. Sullivan
Brian Comeau
Mark L. Binette
David A. Bulpett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acushnet Co
Original Assignee
Acushnet Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acushnet Co filed Critical Acushnet Co
Priority to US12/408,949 priority Critical patent/US20100240470A1/en
Assigned to ACUSHNET COMPANY reassignment ACUSHNET COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BINETTE, MARK L., BULPETT, DAVID A., COMEAU, BRIAN, SULLIVAN, MICHAEL J.
Publication of US20100240470A1 publication Critical patent/US20100240470A1/en
Assigned to KOREA DEVELOPMENT BANK, NEW YORK BRANCH reassignment KOREA DEVELOPMENT BANK, NEW YORK BRANCH SECURITY AGREEMENT Assignors: ACUSHNET COMPANY
Assigned to ACUSHNET COMPANY reassignment ACUSHNET COMPANY RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (027346/0222) Assignors: KOREA DEVELOPMENT BANK, NEW YORK BRANCH
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/004Physical properties
    • A63B37/0045Thickness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/0039Intermediate layers, e.g. inner cover, outer core, mantle characterised by the material
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/004Physical properties
    • A63B37/0043Hardness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/007Characteristics of the ball as a whole
    • A63B37/0077Physical properties
    • A63B37/0092Hardness distribution amongst different ball layers
    • A63B37/00922Hardness distribution amongst different ball layers whereby hardness of the cover is lower than hardness of the intermediate layers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/02Special cores
    • A63B37/04Rigid cores
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/12Special coverings, i.e. outer layer material
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0023Covers
    • A63B37/0024Materials other than ionomers or polyurethane
    • A63B37/0027Polyurea
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0023Covers
    • A63B37/0029Physical properties
    • A63B37/0031Hardness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0023Covers
    • A63B37/0029Physical properties
    • A63B37/0033Thickness

Definitions

  • This invention relates generally to golf balls, and more specifically, to a golf ball having a two-layer cover, the inner cover layer being formed from a stiff, thermoplastic polyurethane or polyurea material.
  • Solid golf balls include one-piece, two-piece, and multi-layer golf balls.
  • One-piece golf balls are inexpensive and easy to construct, but have limited playing characteristics and their use is, at best, confined to the driving range.
  • Two-piece golf balls are generally constructed with a solid polybutadiene core and a cover and are typically the most popular with recreational golfers because they are very durable and provide good distance. These golf balls are also relatively inexpensive and easy to manufacture, but are regarded by top players as having limited playing characteristics.
  • Multi-layer golf balls are comprised of a solid core and a cover, either of which may be formed of one or more layers. These balls are regarded as having an extended range of playing characteristics, but are more expensive and difficult to manufacture than are one- and two-piece golf balls.
  • Wound golf balls which typically included a fluid-filled center surrounded by a layer of tensioned elastomeric material and a cover, were preferred for their spin and “feel” characteristics but were more difficult and expensive to manufacture than solid golf balls. Manufacturers are continuously striving to produce a solid ball that concurrently includes the beneficial characteristics of a wound ball.
  • Golf ball playing characteristics such as compression, velocity, and spin can be adjusted and optimized by manufacturers to suit players having a wide variety of playing abilities. For example, manufacturers can alter any or all of these properties by changing the materials and/or the physical construction of each or all of the various golf ball components (i.e., centers, cores, inner layer(s), and covers). Finding the right combination of core and layer materials and the ideal ball construction to produce a golf ball suited for a predetermined set of performance criteria is a challenging task.
  • Efforts to construct a multi-layer golf ball have generally focused on the use of two cover layers formed of a stiff thermoplastic material and a castable thermoset material.
  • it is desirable, therefore, to construct a golf ball including a castable thermosetting polyurethane or polyurea outer cover layer, a stiff, thermoplastic polyurethane or polyurea inner cover layer, and a singe or dual core.
  • the present invention is directed to a golf ball formed from a core and a cover.
  • the cover is a two-piece cover including a stiff thermoplastic polyurethane or polyurea inner cover layer having a hardness of 45 to 80 Shore D and an outer cover layer having a hardness of 40 to 65 Shore D, as measured on the curved surface.
  • the outer cover layer is formed from a polyurethane, a polyurea, or a urethane-urea blend.
  • the inner cover layer hardness is preferably greater than the outer cover layer hardness by at least 5 Shore D, more preferably by at least 10 Shore D, most preferably by at least 15 Shore D.
  • the inner cover layer hardness is 61 Shore D to 75 Shore D, more preferably 64 Shore D to 72 Shore D.
  • the outer cover layer hardness is typically from 52 Shore D to 62 Shore D.
  • the polyurethane, polyurea, or urethane-urea blend of the outer cover layer is preferably a castable thermoset or reaction injection moldable thermoset.
  • the outer cover may specifically be a castable thermoset polyurea and the inner cover layer, while preferably a polycarbonate-polyurethane, may also be a polycarbonate-polyurea, or a polycarbonate blend with polyurethane or polyurea.
  • the core may be a dual core formed from a center and an outer core layer.
  • the center is a solid layer formed from a single homogeneous composition.
  • the inner cover layer may further include a polycarbonate, an acrylonitrile-butadiene-styrene block copolymer, a polyamide, a polyolefin, or a mixture thereof.
  • a combination of the inner cover and the outer cover have a total thickness of 0.090 inches or less, preferably 0.085 inches or less, more preferably 0.075 inches or less.
  • the present invention is also directed to a golf ball comprising a core and a cover disposed about the core, the cover consisting of an inner cover layer comprising a thermoplastic polycarbonate-polyurethane copolymer and having a hardness from 50 Shore D to 80 Shore D; and an outer cover layer comprising a castable thermoset polyurea and having a hardness from 45 Shore D to 65 Shore D, wherein the inner cover layer hardness is greater than the outer cover layer hardness by at least 5 Shore D.
  • the present invention is further directed to a golf ball comprising a core and a cover disposed about the core, the cover consisting of an inner cover layer comprising a thermoplastic polycarbonate-polyurethane copolymer and having a hardness from 55 Shore D to 68 Shore D; and an outer cover layer comprising a castable thermoset polyurea and having a hardness from 45 Shore D to 55 Shore D, wherein the inner cover layer hardness is greater than the outer cover layer hardness by at least 5 Shore D, the inner cover layer has a thickness of 0.035 inches to 0.050 inches, and the outer cover layer has a thickness of 0.025 inches to 0.035 inches.
  • a golf ball of the present invention includes a core and a cover including an outer cover and an inner cover layer.
  • the golf ball cores of the present invention may be formed with a variety of constructions.
  • the core may include a plurality of layers, such as a center and an outer core layer.
  • the core while preferably solid, may comprise a liquid, foam, gel, or hollow center.
  • the golf ball may also include a layer of tensioned elastomeric material, for example, located between the core and double cover.
  • the core is a solid core.
  • Materials for solid cores include compositions having a base rubber, a filler, an initiator agent, and a crosslinking agent.
  • the base rubber typically includes natural or synthetic rubber, such as polybutadiene rubber.
  • a preferred base rubber is 1,4-polybutadiene having a cis-structure of at least 40%.
  • the solid core is formed of a resilient rubber-based component comprising a high-Mooney-viscosity rubber and a crosslinking agent.
  • trans-polybutadiene Another suitable rubber from which to form cores of the present invention is trans-polybutadiene.
  • This polybutadiene isomer is formed by converting the cis-isomer of the polybutadiene to the trans-isomer during a molding cycle.
  • Various combinations of polymers, cis-to-trans catalysts, fillers, crosslinkers, and a source of free radicals, may be used.
  • a variety of methods and materials for performing the cis-to-trans conversion have been disclosed in U.S. Pat. Nos. 6,162,135; 6,465,578; 6,291,592; and 6,458,895, each of which are incorporated herein, in their entirety, by reference.
  • vinyl-polybutadiene a low amount of 1,2-polybutadiene isomer (“vinyl-polybutadiene”) is preferable in the initial polybutadiene to be converted to the trans-isomer.
  • the vinyl polybutadiene isomer content is less than about 7 percent, more preferably less than about 4 percent, and most preferably, less than about 2 percent.
  • Fillers added to one or more portions of the golf ball typically include processing aids or compounds to affect rheological and mixing properties, the specific gravity (i.e., density-modifying fillers), the modulus, the tear strength, reinforcement, and the like.
  • the fillers are generally inorganic, and suitable fillers include numerous metals or metal oxides, such as zinc oxide and tin oxide, as well as barium sulfate, zinc sulfate, calcium carbonate, barium carbonate, clay, tungsten, tungsten carbide, an array of silicas, and mixtures thereof.
  • Fillers may also include various foaming agents or blowing agents, zinc carbonate, regrind (recycled core material typically ground to about 30 mesh or less particle size), high-Mooney-viscosity rubber regrind, and the like.
  • Polymeric, ceramic, metal, and glass microspheres may be solid or hollow, and filled or unfilled. Fillers are typically also added to one or more portions of the golf ball to modify the density thereof to conform to uniform golf ball standards. Fillers may also be used to modify the weight of the center or any or all core and cover layers, if present.
  • the initiator agent can be any known polymerization initiator which decomposes during the cure cycle.
  • Suitable initiators include peroxide compounds such as dicumyl peroxide, 1,1-di(t-butylperoxy) 3,3,5-trimethyl cyclohexane, a-a bis(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5 di(t-butylperoxy)hexane or di-t-butyl peroxide and mixtures thereof.
  • Crosslinkers are included to increase the hardness and resilience of the reaction product.
  • the crosslinking agent includes a metal salt of an unsaturated fatty acid such as a zinc salt or a magnesium salt of an unsaturated fatty acid having 3 to 8 carbon atoms such as acrylic or methacrylic acid.
  • Suitable cross linking agents include metal salt diacrylates, dimethacrylates and monomethacrylates wherein the metal is magnesium, calcium, zinc, aluminum, sodium, lithium or nickel.
  • Preferred acrylates include zinc acrylate, zinc diacrylate, zinc methacrylate, and zinc dimethacrylate, and mixtures thereof.
  • the crosslinking agent must be present in an amount sufficient to crosslink a portion of the chains of polymers in the resilient polymer component. This may be achieved, for example, by altering the type and amount of crosslinking agent, a method well-known to those of ordinary skill in the art.
  • the crosslinking agent is present in an amount from about 15 to about 40 parts per hundred, more preferably from about 30 to about 38 parts per hundred, and most preferably about 37 parts per hundred.
  • the core comprises a solid center and at least one outer core layer.
  • the center preferably comprises a high-Mooney-viscosity rubber and a crosslinking agent present in an amount from about 10 to about 30 parts per hundred of the rubber, preferably from about 19 to about 25 parts per hundred of the rubber, and most preferably from about 20 to 24 parts crosslinking agent per hundred of rubber.
  • Suitable commercially-available polybutadiene rubbers include, but are not limited to, CB23, CB22, Taktene® 220, and Taktene® 221, from Lanxess Corp.; Neodene® 40 and Neodene® 45 from Karbochem Ltd.; LG1208 from LG Corp.
  • the unvulcanized rubber such as polybutadiene
  • Mooney viscosity is typically measured according to ASTM D-1646.
  • the polymers, free-radical initiators, filler, crosslinking agents, and any other materials used in forming either the golf ball center or any portion of the core, in accordance with invention may be combined to form a mixture by any type of mixing known to one of ordinary skill in the art. Suitable types of mixing include single pass and multi-pass mixing, and the like.
  • the crosslinking agent, and any other optional additives used to modify the characteristics of the golf ball center or additional layer(s), may similarly be combined by any type of mixing.
  • a single-pass mixing process where ingredients are added sequentially is preferred, as this type of mixing tends to increase efficiency and reduce costs for the process.
  • the preferred mixing cycle is single step wherein the polymer, cis-to-trans catalyst, filler, zinc diacrylate, and peroxide are added sequentially.
  • the cover of the golf ball is a multi-layer cover, preferably comprised of at least two layers, such as an inner cover layer and an outer cover layer. While the various cover layers of the present invention may be of any individual thickness, it is preferred that the combination of cover layer thicknesses be no greater than about 0.090 inches, more preferably, no greater than about 0.085 inches, and most preferably, no greater than about 0.075 inches.
  • the inner cover layers of the golf balls of the present invention are preferably formed from stiff thermoplastic polyurethanes or polyureas.
  • the molecular structure of a typical thermoplastic urethane (TPU) consists of alternating high-melting “hard” urethane segments and liquid-like “soft” segments.
  • Hard segments are typically the reaction product of an aromatic or aliphatic diisocyanate and a low molecular weight, chain-extending dialcohol or diol.
  • Suitable diisocyanates include alkyl diisocyanates, arylalkyl diisocyanates, cycloalkylalkyl diisocyanates, alkylaryl diisocyanates, cycoalkyl diisicyanates, arly diisocyanates, cycloalkylaryl diisocyanates, all of which may be further substituted with oxygen, and mixtures thereof.
  • the chain extender of the hard segment used in the preparation of the copolymers may be an aliphatic polyol or an aliphatic or aromatic polyamine such as known for preparing polyurethanes and polyureas.
  • the polyol for the hard segment may be alkylene, cycloalkylene, arylene diols, triols, tetraalcohols and pentaalcohols, and mixtures thereof.
  • the polyamine of the hard segment may be alkyl, cycloalkyl, and aryl amines that may be further substituted with nitrogen, oxygen, halogen, complexes thereof with alkali metal salts and mixtures thereof.
  • the hard segment can be either aromatic or aliphatic.
  • Aromatic TPUs are commonly based on methylene diphenyl 4,4′-diisocyanate (“MDI”) while aliphatic TPUs are commonly based on dicyclohexylmethane diisocyanate (“H 12 MDI”).
  • Soft segments may be built from polyols with terminal hydroxyl (—OH) groups.
  • the hydroxyl creates a urethane group, while the reaction between isocyanates and existing urethane groups will form allophanate groups that can produce minor amounts of covalent cross-linking in TPUs.
  • the hydrogen-bonded hard segments and any allophanate cross-links both of which hold the polymer together at its use temperature, dissociate to allow the polymer to melt and flow. Dissolution in a polar solvent can also disrupt the hydrogen bonds that hold together the hard segments on adjacent chains. Once these virtual cross-links are broken, the polymer can be fabricated into golf balls.
  • the hard segments Upon cooling or solvent evaporation, the hard segments de-mix from the soft segments to re-associate by hydrogen bonding. This restores the original mechanical properties of the polyurethane elastomer.
  • Polyether and polycarbonate TPUs generally have excellent physical properties, combining high elongation and high tensile strength, albeit having fairly high-modulus. Varying the hard segment of a TPU during synthesis can produce a whole family of polymers of related chemistry but with a wide range of hardness, modulus, tensile-strength properties and elongation. In the fabrication of golf balls, the use of TPUs of different hardness values within a single family provides considerable versatility in manufacturing.
  • the molecular structure of a generic thermoplastic polyurea consists of a rigid “hard segment” and a flexible “soft segment.
  • the hard segments are typically formed from the reaction product of an aromatic or aliphatic diisocyanate with an aromatic or aliphatic chain-extending diamine to form urea linkages.
  • the soft segment may be built from amine-terminated polyethers, polyesters, polycaprolactones, polycarbonates, or other suitable long chain backbone.
  • the reaction product of the soft segment with the hard segment i.e., diisocyanates, produces urea linkages.
  • TPUs include, but are not limited to, silicone-urethane materials such as an aromatic or aliphatic urethane hard segment with a silicone based soft segment to create a thermoplastic silicone-urethane copolymer, combining the above hard and soft segments with a polycarbonate to form a thermoplastic silicone-polycarbonate urethane copolymer, or combining the above hard and soft segments with a polyethylene oxide to form a thermoplastic silicone-polyethyleneoxide urethane copolymer.
  • silicone-urethane materials such as an aromatic or aliphatic urethane hard segment with a silicone based soft segment to create a thermoplastic silicone-urethane copolymer
  • combining the above hard and soft segments with a polycarbonate to form a thermoplastic silicone-polycarbonate urethane copolymer or combining the above hard and soft segments with a polyethylene oxide to form a thermoplastic silicone-polyethyleneoxide urethane copolymer.
  • Thermoplastic silicone-polyether urethane copolymers available today include PurSilTM; silicone-polycarbonate urethane copolymers available include CarboSilTM; and silicone-polyethylene oxide urethane copolymers include HydrosilTM.
  • PurSilTM silicone-polyether urethane copolymers available today
  • silicone-polycarbonate urethane copolymers available include CarboSilTM
  • silicone-polyethylene oxide urethane copolymers include HydrosilTM.
  • the thermoplastic elastomers containing silicone in the soft segment, such as PurSilTM are prepared through a multi-step bulk synthesis.
  • the hard segment is an aromatic urethane MDI (4,4′-diphenylmethane diisocynanate-butanediol) with a low molecular weight glycol extender butanediol and the soft segment is comprised of polytetramethylene oxide including polydimethylsiloxane.
  • MDI 4,4′-diphenylmethane diisocynanate-butanediol
  • the soft segment is comprised of polytetramethylene oxide including polydimethylsiloxane.
  • Suitable surface-modifying end groups include hydrocarbons, fluorocarbons, fluorinated polyethers, polyalkylene oxides, various sulphonated groups, and the like.
  • Surface-modifying end groups are surface-active oligomers covalently bonded to the base polymer during synthesis. When the aromatic or aliphatic urethane hard segment is combined with a hydrocarbon soft segment surface-modifying end group, a hydrocarbon-polyurethane is produced and has excellent properties for use in golf balls.
  • thermoplastic polycarbonate-urethane copolymers are also suitable materials for the inner cover layers of the present invention and have good oxidative stability, excellent mechanical strength, and abrasion resistance.
  • thermoplastic polycarbonate-polyurethane TPUs include, but are not limited to, Bionate® polycarbonate-urethanes, such as Bioante® 55D and 75D produced by the Polymer Technology Group of Berkeley, Calif.
  • Bionate® polycarbonate-urethane is a thermoplastic elastomer formed as the reaction product of a hydroxyl terminated polycarbonate, an aromatic diisocyanate, and a low molecular weight glycol used as a chain extender.
  • polycarbonate glycol intermediate poly(1,6-hexyl-1,2-ethyl carbonate)diol
  • poly(1,6-hexyl-1,2-ethyl carbonate)diol is the condensation product of 1,6-hexanediol with cyclic ethylene carbonate.
  • the polycarbonate macroglycol is reacted with aromatic isocyanate, 4,4′-methylene bisphenyl diisocyanate, and chain extended with 1,4-butanediol.
  • Ultimate tensile strengths for Bionate® compounds can exceed 10,000 psi.
  • the ultimate elongation of the present invention is about 20 to 1000% with a preferred elongation of at least about 400 to about 800%.
  • the initial modulus of the materials suitable for the present invention is about 300 to 150,000 psi, and preferably between about 10,000 and about 80,000 psi.
  • TPUs include the E-Series TPUs, such as D 60 E 4024 from Huntsman Polyurethanes of Germany, and TPUs sold under the tradenames of Texin® 250, Texin® 255, Texin® 260, Texin® 270, Texin® 950U, Texin® DP7-1202, Texin® 970U, Texin® 3203, Texin® 4203, Texin® 4206, Texin® 4210, Texin® 4215, and Texin® 3215, and Desmopan® 453 from Bayer of Pittsburgh, Pa.
  • E-Series TPUs such as D 60 E 4024 from Huntsman Polyurethanes of Germany
  • thermoplastic polyurethanes and thermoplastic polyureas are also readily blended with other thermoplastic polymers, such as polycarbonates, polyvinyl chlorides, acrylonitrile-butadiene-styrenes, and polyamides.
  • TPU blend, alloy or copolymer is also suitable for the inner cover layers of the invention, such as TPU/polycarbonates; TPU/ABS; TPU/SMA (styrene-maleic anhydride); TPU/styrene-butadiene or styrene-ethylene-butadiene block copolymers; TPU/polyolefins, such as polypropylene, polyethylene, ethylene-propylene rubber (“EPR”), ethylene-propylene-diene monomer (“EPDM”), and ethylene-vinyl acetate; or TPU/modified polyolefins, such as DuPont Fusabond® functionalized (typically by maleic anhydride grafting) metallocene-catalyzed polyolefins or any other polar-group modified ethylene copolymer, such as Dow Amplify® IO, GR, or EA grade polymers.
  • TPU/polycarbonates such as TPU/AB
  • inventive golf ball may be formed from a variety of differing cover materials
  • preferred outer cover layer materials include, but are not limited to, (1) polyurethanes, such as those prepared from polyols or polyamines and diisocyanates or polyisocyanates and/or their prepolymers, and those disclosed in U.S. Pat. Nos. 5,334,673 and 6,506,851; (2) polyureas, such as those disclosed in U.S. Pat. Nos.
  • polyurethane-urea hybrids, blends or copolymers comprising urethane or urea segments; and (4) other suitable polyurethane compositions comprising a reaction product of at least one polyisocyanate and at least one curing agent are disclosed in U.S. Pat. Nos. 7,105,610 and 7,491,787, all of which are incorporated herein by reference.
  • Suitable polyurethane compositions comprise a reaction product of at least one polyisocyanate and at least one curing agent.
  • the curing agent can include, for example, one or more polyamines, one or more polyols, or a combination thereof.
  • the polyisocyanate can be combined with one or more polyols to form a prepolymer, which is then combined with the at least one curing agent.
  • the polyols described herein are suitable for use in one or both components of the polyurethane material, i.e., as part of a prepolymer and in the curing agent.
  • Suitable polyurethanes are described in U.S. Pat. No. 7,331,878, which is incorporated by reference in its entirety.
  • Exemplary polyisocyanates suitable for use in the outer cover layers of the invention include, but are not limited to, 4,4′-diphenylmethane diisocyanate (MDI); polymeric MDI; carbodiimide-modified liquid MDI; 4,4′-dicyclohexylmethane diisocyanate (H12MDI); p-phenylene diisocyanate (PPDI); m-phenylene diisocyanate (MPDI); toluene diisocyanate (TDI); 3,3′-dimethyl-4,4′-biphenylene diisocyanate; isophoronediisocyanate; 1,6-hexamethylene diisocyanate (HDI); naphthalene diisocyanate; xylene diisocyanate; p-tetramethylxylene diisocyanate; m-tetramethylxylene diisocyanate; ethylene diisocyanate; propylene-1,2-di
  • Polyisocyanates are known to those of ordinary skill in the art as having more than one isocyanate group, e.g., di-isocyanate, tri-isocyanate, and tetra-isocyanate.
  • the polyisocyanate includes MDI, PPDI, TDI, or a mixture thereof, and more preferably, the polyisocyanate includes MDI.
  • MDI includes 4,4′-diphenylmethane diisocyanate, polymeric MDI, carbodiimide-modified liquid MDI, and mixtures thereof and, additionally, that the diisocyanate employed may be “low free monomer,” understood by one of ordinary skill in the art to have lower levels of “free” monomer isocyanate groups, typically less than about 0.1% free monomer isocyanate groups.
  • low free monomer diisocyanates include, but are not limited to Low Free Monomer MDI, Low Free Monomer TDI, and Low Free Monomer PPDI.
  • the at least one polyisocyanate should have less than about 14% unreacted NCO groups.
  • the at least one polyisocyanate has no greater than about 8.0% NCO, more preferably no greater than about 7.8%, and most preferably no greater than about 7.5% NCO with a level of NCO of about 7.2 or 7.0, or 6.5% NCO commonly used.
  • any polyol available to one of ordinary skill in the art is suitable for use according to the invention.
  • Exemplary polyols include, but are not limited to, polyether polyols, hydroxy-terminated polybutadiene (including partially/fully hydrogenated derivatives), polyester polyols, polycaprolactone polyols, and polycarbonate polyols.
  • the polyol includes polyether polyol. Examples include, but are not limited to, polytetramethylene ether glycol (PTMEG), polyethylene propylene glycol, polyoxypropylene glycol, and mixtures thereof.
  • PTMEG polytetramethylene ether glycol
  • the hydrocarbon chain can have saturated or unsaturated bonds and substituted or unsubstituted aromatic and cyclic groups.
  • the polyol of the present invention includes PTMEG.
  • polyester polyols are included in the polyurethane material.
  • Suitable polyester polyols include, but are not limited to, polyethylene adipate glycol; polybutylene adipate glycol; polyethylene propylene adipate glycol; o-phthalate-1,6-hexanediol; poly(hexamethylene adipate)glycol; and mixtures thereof.
  • the hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
  • polycaprolactone polyols are included in the materials of the invention.
  • Suitable polycaprolactone polyols include, but are not limited to, 1,6-hexanediol-initiated polycaprolactone, diethylene glycol initiated polycaprolactone, trimethylol propane initiated polycaprolactone, neopentyl glycol initiated polycaprolactone, 1,4-butanediol-initiated polycaprolactone, and mixtures thereof.
  • the hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
  • polycarbonate polyols are included in the polyurethane material of the invention.
  • Suitable polycarbonates include, but are not limited to, polyphthalate carbonate and poly(hexamethylene carbonate)glycol.
  • the hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
  • the molecular weight of the polyol is from about 200 to about 4000.
  • Polyamine curatives are also suitable for use in the polyurethane composition of the invention and have been found to improve cut, shear, and impact resistance of the resultant balls.
  • Preferred polyamine curatives include, but are not limited to, 3,5-dimethylthio-2,4-toluenediamine and isomers thereof; 3,5-diethyltoluene-2,4-diamine and isomers thereof, such as 3,5-diethyltoluene-2,6-diamine; 4,4′-bis-(sec-butylamino)-diphenylmethane; 1,4-bis-(sec-butylamino)-benzene, 4,4′-methylene-bis-(2-chloroaniline); 4,4′-methylene-bis-(3-chloro-2,6-diethylaniline); polytetramethyleneoxide-di-p-aminobenzoate; N,N′-dialkyldiamino diphenyl methane; p,
  • the curing agent of the present invention includes 3,5-dimethylthio-2,4-toluenediamine and isomers thereof, such as ETHACURE® 300, commercially available from Albermarle Corporation of Baton Rouge, La.
  • Suitable polyamine curatives which include both primary and secondary amines, preferably have molecular weights ranging from about 64 to about 2000.
  • At least one of a diol, triol, tetraol, or hydroxy-terminated curatives may be added to the aforementioned polyurethane composition.
  • Suitable diol, triol, and tetraol groups include ethylene glycol; diethylene glycol; polyethylene glycol; propylene glycol; polypropylene glycol; lower molecular weight polytetramethylene ether glycol; 1,3-bis(2-hydroxyethoxy)benzene; 1,3-bis-[2-(2-hydroxyethoxy)ethoxy]benzene; 1,3-bis- ⁇ 2-[2-(2-hydroxyethoxy)ethoxy]ethoxy ⁇ benzene; 1,4-butanediol; 1,5-pentanediol; 1,6-hexanediol; resorcinol-di-( ⁇ -hydroxyethyl)ether; hydroquinone-di-( ⁇ -hydroxyethyl)ether; and mixtures thereof.
  • Preferred hydroxy-terminated curatives include 1,3-bis(2-hydroxyethoxy)benzene; 1,3-bis-[2-(2-hydroxyethoxy)ethoxy]benzene; 1,3-bis- ⁇ 2-[2-(2-hydroxyethoxy)ethoxy]ethoxy ⁇ benzene; 1,4-butanediol, and mixtures thereof.
  • the hydroxy-terminated curatives have molecular weights ranging from about 48 to 2000. It should be understood that molecular weight, as used herein, is the absolute weight average molecular weight and would be understood as such by one of ordinary skill in the art.
  • Both the hydroxy-terminated and amine curatives can include one or more saturated, unsaturated, aromatic, and cyclic groups. Additionally, the hydroxy-terminated and amine curatives can include one or more halogen groups.
  • the polyurethane composition can be formed with a blend or mixture of curing agents. If desired, however, the polyurethane composition may be formed with a single curing agent.
  • saturated polyurethanes are used to form one or more of the cover layers, preferably the outer cover layer, and may be selected from among both castable thermoset and thermoplastic polyurethanes.
  • the saturated polyurethanes of the present invention are substantially free of aromatic groups or moieties.
  • Saturated polyurethanes suitable for use in the invention are a product of a reaction between at least one polyurethane prepolymer and at least one saturated curing agent.
  • the polyurethane prepolymer is a product formed by a reaction between at least one saturated polyol and at least one saturated diisocyanate.
  • a catalyst may be employed to promote the reaction between the curing agent and the isocyanate and polyol, or the curing agent and the prepolymer.
  • Saturated diisocyanates which can be used include, without limitation, ethylene diisocyanate; propylene-1,2-diisocyanate; tetramethylene-1,4-diisocyanate; 1,6-hexamethylene-diisocyanate (HDI); 2,2,4-trimethylhexamethylene diisocyanate; 2,4,4-trimethylhexamethylene diisocyanate; dodecane-1,12-diisocyanate; dicyclohexylmethane diisocyanate; cyclobutane-1,3-diisocyanate; cyclohexane-1,3-diisocyanate; cyclohexane-1,4-diisocyanate; 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane; isophorone diisocyanate; methyl cyclohexylene diisocyanate; triisocyanate of HDI; triiso
  • Saturated polyols which are appropriate for use in this invention include without limitation polyether polyols such as polytetramethylene ether glycol and poly(oxypropylene)glycol.
  • Suitable saturated polyester polyols include polyethylene adipate glycol, polyethylene propylene adipate glycol, polybutylene adipate glycol, polycarbonate polyol and ethylene oxide-capped polyoxypropylene diols.
  • Saturated polycaprolactone polyols which are useful in the invention include diethylene glycol-initiated polycaprolactone, 1,4-butanediol-initiated polycaprolactone, 1,6-hexanediol-initiated polycaprolactone; trimethylol propane-initiated polycaprolactone, neopentyl glycol initiated polycaprolactone, and polytetramethylene ether glycol-initiated polycaprolactone.
  • the most preferred saturated polyols are polytetramethylene ether glycol and PTMEG-initiated polycaprolactone.
  • Suitable saturated curatives include 1,4-butanediol, ethylene glycol, diethylene glycol, polytetramethylene ether glycol, propylene glycol; trimethanolpropane; tetra-(2-hydroxypropyl)-ethylenediamine; isomers and mixtures of isomers of cyclohexyldimethylol, isomers and mixtures of isomers of cyclohexane bis(methylamine); triisopropanolamine; ethylene diamine; diethylene triamine; triethylene tetramine; tetraethylene pentamine; 4,4′-dicyclohexylmethane diamine; 2,2,4-trimethyl-1,6-hexanediamine; 2,4,4-trimethyl-1,6-hexanediamine; diethyleneglycol di-(aminopropyl)ether; 4,4′-bis-(sec-butylamino)-dicyclohexylmethane; 1,2-bis-(sec-butyla
  • polystyrene-butadiene-styrene polystyrene-ethylene-propylene-styrene
  • styrene-ethylene-butylene-styrene polystyrene-ethylene-butylene-styrene, and the like, and blends thereof.
  • Thermosetting polyurethanes or polyureas are suitable for the outer cover layers of the golf balls of the present invention.
  • polyurethane can be replaced with or blended with a polyurea material.
  • Polyureas are distinctly different from polyurethane compositions, but also result in desirable aerodynamic and aesthetic characteristics when used in golf ball components.
  • the polyurea-based compositions are preferably saturated in nature.
  • the polyurea compositions of this invention may be formed from the reaction product of an isocyanate and polyamine prepolymer crosslinked with a curing agent.
  • polyurea-based compositions of the invention may be prepared from at least one isocyanate, at least one polyether amine, and at least one diol curing agent or at least one diamine curing agent.
  • polyether amines are particularly suitable for use in the prepolymer.
  • polyether amines refer to at least polyoxyalkyleneamines containing primary amino groups attached to the terminus of a polyether backbone. Due to the rapid reaction of isocyanate and amine, and the insolubility of many urea products, however, the selection of diamines and polyether amines is limited to those allowing the successful formation of the polyurea prepolymers.
  • the polyether backbone is based on tetramethylene, propylene, ethylene, trimethylolpropane, glycerin, and mixtures thereof.
  • Suitable polyether amines include, but are not limited to, methyldiethanolamine; polyoxyalkylenediamines such as, polytetramethylene ether diamines, polyoxypropylenetriamine, and polyoxypropylene diamines; poly(ethylene oxide capped oxypropylene)ether diamines; propylene oxide-based triamines; triethyleneglycoldiamines; trimethylolpropane-based triamines; glycerin-based triamines; and mixtures thereof.
  • the polyether amine used to form the prepolymer is JEFFAMINE® D2000 (manufactured by Huntsman Chemical Co. of Austin, Tex.).
  • the molecular weight of the polyether amine for use in the polyurea prepolymer may range from about 100 to about 5000. In one embodiment, the polyether amine molecular weight is about 200 or greater, preferably about 230 or greater. In another embodiment, the molecular weight of the polyether amine is about 4000 or less. In yet another embodiment, the molecular weight of the polyether amine is about 600 or greater. In still another embodiment, the molecular weight of the polyether amine is about 3000 or less. In yet another embodiment, the molecular weight of the polyether amine is between about 1000 and about 3000, and more preferably is between about 1500 to about 2500. Because lower molecular weight polyether amines may be prone to forming solid polyureas, a higher molecular weight oligomer, such as JEFFAMINE® D2000, is preferred.
  • a higher molecular weight oligomer such as JEFFAMINE® D2000
  • Suitable castable polyurea compositions for use in the golf balls of the present invention include those formed from the reaction product of a prepolymer formed from an isocyanate and an amine-terminated polytetramethylene ether glycol and an amine-terminated curing agent, and those formed from the reaction product of a polyurea prepolymer cured with an amine-terminated polytetramethylene ether glycol. In either scenario, the amine-terminated polytetramethylene ether glycol is terminated with secondary amines.
  • the amine-terminated polytetramethylene ether glycol may be a copolymer with polypropylene glycol, wherein the polytetramethylene ether glycol is end-capped with one or more propylene glycol units to form the copolymer.
  • Another suitable composition includes a prepolymer including the reaction product of an isocyanate-containing component and an amine-terminated component, wherein the amine-terminated component includes a copolymer of polytetramethylene ether glycol and polypropylene glycol including at least one terminal amino group; and an amine-terminated curing agent.
  • the prepolymer may includes about 4 percent to about 9 percent NCO groups by weight of the prepolymer.
  • the at least one terminal amino group includes secondary amines. In another embodiment, the at least one terminal amino group includes a terminal secondary amino group at both ends of the copolymer. In yet another embodiment, the amine-terminated curing agent includes a secondary diamine.
  • the polyureas of the present invention also include a polyurea composition formed from a prepolymer formed from the reaction product of an isocyanate-containing compound and an isocyanate-reactive compound, wherein the isocyanate-reactive compound includes polytetramethylene ether glycol homopolymer having a molecular weight of about 1800 to about 2200 and terminal secondary amino groups; and an amine-terminated curing agent.
  • the prepolymer may include about 6 percent to about 8 percent NCO groups by weight of the prepolymer.
  • the PTMEG homopolymer may have a molecular weight of about 1900 to about 2100.
  • the amine-terminated curing agent includes a secondary diamine.
  • the polyalkylene glycol includes polypropylene glycol, polyethylene glycol, and copolymers or mixtures thereof.
  • the amino groups include secondary amino groups.
  • the amine-terminated curing agent may include an amine-terminated polytetramethylene ether glycol.
  • the amine-terminated polytetramethylene ether glycol includes at least one terminal secondary amino group.
  • Conventional aromatic polyurethane/urethane elastomers and polyurethane/urea elastomers are generally prepared by curing a prepolymer of diisocyanate and long chain polyol with at least one diol curing agent or at least one diamine curing agent, respectively.
  • the use of a long chain amine-terminated compound to form a polyurea prepolymer has been shown to improve shear, cut, and resiliency, as well as adhesion to other components.
  • an amine-terminated polytetramethylene ether glycol (PTMEG) and/or an amine-terminated copolymer of PTMEG and polypropylene glycol (PPG) in the prepolymer or as a curing agent provide enhanced shear, cut, and resiliency as compared to conventional polyurea elastomers.
  • the compositions of the invention have improved durability and performance characteristics over that of a polyurea composition formed with amine-terminated PPG.
  • the polyurea-based compositions of this invention may be formed in several ways: a) from a prepolymer that is the reaction product of an isocyanate-containing component and amine-terminated PTMEG chain extended with a curing agent; b) from a prepolymer that is the reaction product of an isocyanate-containing component and an amine-terminated copolymer of PTMEG and PPG chain extended with a curing agent; c) from a prepolymer that is the reaction product of a polyurea-based prepolymer chain extended with an amine-terminated PTMEG; and d) from a prepolymer that is the reaction product of a polyurea-based prepolymer chain extended with an amine-terminated copolymer of PTMEG and PPG.
  • compositions of the invention may be prepared from at least one isocyanate-containing component, at least one amine-terminated copolymer of PTMEG and PPG, preferably a secondary diamine, and at least one amine-terminated curing agent, preferably a secondary aliphatic diamine or primary aromatic diamine curing agent.
  • PTMEG polymethyl methacrylate
  • PPG polymethyl methacrylate
  • curing agent preferably a secondary aliphatic diamine or primary aromatic diamine curing agent.
  • amine-terminated PTMEG and/or copolymer of PTMEG and PPG include those sold by Huntsman Chemical under the tradenames XTJ-559, XTG-604, XTG-605, and XTG-653.
  • amines may be unsuitable for reaction with the isocyanate because of the rapid reaction between the two components.
  • shorter chain amines are fast reacting.
  • a hindered secondary diamine may be suitable for use in the prepolymer.
  • an amine with a high level of stearic hindrance e.g., a tertiary butyl group on the nitrogen atom, has a slower reaction rate than an amine with no hindrance or a low level of hindrance.
  • 4,4′-bis-(sec-butylamino)-dicyclohexylmethane (CLEARLINK® 1000) may be suitable for use in combination with an isocyanate to form the polyurea prepolymer.
  • Isocyanates for use with the present invention include aliphatic, cycloaliphatic, araliphatic, aromatic, any derivatives thereof, and combinations of these compounds having two or more isocyanate (NCO) groups per molecule.
  • the isocyanates may be organic polyisocyanate-terminated prepolymers.
  • the isocyanate-containing reactable component may also include any isocyanate-functional monomer, dimer, trimer, or multimeric adduct thereof, prepolymer, quasi-prepolymer, or mixtures thereof.
  • Isocyanate-functional compounds may include monoisocyanates or polyisocyanates that include any isocyanate functionality of two or more.
  • Suitable isocyanate-containing components include diisocyanates having the generic structure: O ⁇ C ⁇ N—R—N ⁇ C ⁇ O, where R is preferably a cyclic, aromatic, or linear or branched hydrocarbon moiety containing from about 1 to about 20 carbon atoms.
  • the diisocyanate may also contain one or more cyclic groups or one or more phenyl groups. When multiple cyclic or aromatic groups are present, linear and/or branched hydrocarbons containing from about 1 to about 10 carbon atoms can be present as spacers between the cyclic or aromatic groups.
  • the cyclic or aromatic group(s) may be substituted at the 2-, 3-, and/or 4-positions, or at the ortho-, meta-, and/or para-positions, respectively.
  • Substituted groups may include, but are not limited to, halogens, primary, secondary, or tertiary hydrocarbon groups, or a mixture thereof.
  • Copolymeric isocyanates such as Bayer Desmodur® HL, which is a copolymer of TDI and HDI, are preferred.
  • diisocyanates examples include, but are not limited to, substituted and isomeric mixtures including 2,2′-, 2,4′-, and 4,4′-diphenylmethane diisocyanate; 3,3′-dimethyl-4,4′-biphenylene diisocyanate; toluene diisocyanate; polymeric MDI; carbodiimide-modified liquid 4,4′-diphenylmethane diisocyanate; para-phenylene diisocyanate; meta-phenylene diisocyanate; triphenyl methane-4,4′- and triphenyl methane-4,4′-triisocyanate; naphthylene-1,5-diisocyanate; 2,4′-, 4,4′-, and 2,2-biphenyl diisocyanate; polyphenyl polymethylene polyisocyanate; mixtures of MDI and PMDI; mixtures of PMDI and TDI; ethylene di
  • saturated diisocyanates examples include, but are not limited to, ethylene diisocyanate; propylene-1,2-diisocyanate; tetramethylene diisocyanate; tetramethylene-1,4-diisocyanate; 1,6-hexamethylene-diisocyanate; octamethylene diisocyanate; decamethylene diisocyanate; 2,2,4-trimethylhexamethylene diisocyanate; 2,4,4-trimethylhexamethylene diisocyanate; dodecane-1,12-diisocyanate; cyclobutane-1,3-diisocyanate; cyclohexane-1,2-diisocyanate; cyclohexane-1,3-diisocyanate; cyclohexane-1,4-diisocyanate; methyl-cyclohexylene diisocyanate; 2,4-methylcyclohexane diisocyanate
  • Aromatic aliphatic isocyanates may also be used to form light stable materials.
  • isocyanates include 1,2-, 1,3-, and 1,4-xylene diisocyanate; meta-tetramethylxylene diisocyanate; para-tetramethylxylene diisocyanate; trimerized isocyanurate of any polyisocyanate, such as isocyanurate of toluene diisocyanate, trimer of diphenylmethane diisocyanate, trimer of tetramethylxylene diisocyanate, isocyanurate of hexamethylene diisocyanate, isocyanurate of isophorone diisocyanate, and mixtures thereof; dimerized uredione of any polyisocyanate, such as uretdione of toluene diisocyanate, uretdione of hexamethylene diisocyanate, and mixtures thereof; modified polyisocyanate derived from the above is
  • the number of unreacted NCO groups in the polyurea prepolymer of isocyanate and polyether amine may be varied to control such factors as the speed of the reaction, the resultant hardness of the composition, and the like.
  • the number of unreacted NCO groups in the polyurea prepolymer of isocyanate and polyether amine may be less than about 14 percent.
  • the polyurea prepolymer has from about 5 percent to about 11 percent unreacted NCO groups, and even more preferably has from about 6 to about 9.5 percent unreacted NCO groups.
  • the percentage of unreacted NCO groups is about 3 percent to about 9 percent.
  • the percentage of unreacted NCO groups in the polyurea prepolymer may be about 7.5 percent or less, and more preferably, about 7 percent or less.
  • the unreacted NCO content is from about 2.5 percent to about 7.5 percent, and more preferably from about 4 percent to about 6.5 percent.
  • polyurea prepolymers When formed, polyurea prepolymers may contain about 10 percent to about 20 percent by weight of the prepolymer of free isocyanate monomer. Thus, in one embodiment, the polyurea prepolymer may be stripped of the free isocyanate monomer. For example, after stripping, the prepolymer may contain about 1 percent or less free isocyanate monomer. In another embodiment, the prepolymer contains about 0.5 percent by weight or less of free isocyanate monomer.
  • the polyether amine may be blended with additional polyols to formulate copolymers that are reacted with excess isocyanate to form the polyurea prepolymer. In one embodiment, less than about 30 percent polyol by weight of the copolymer is blended with the saturated polyether amine. In another embodiment, less than about 20 percent polyol by weight of the copolymer, preferably less than about 15 percent by weight of the copolymer, is blended with the polyether amine.
  • polyether polyols e.g., polyether polyols, polycaprolactone polyols, polyester polyols, polycarbonate polyols, hydrocarbon polyols, other polyols, and mixtures thereof
  • polyether amine e.g., polyether polyols, polycaprolactone polyols, polyester polyols, polycarbonate polyols, hydrocarbon polyols, other polyols, and mixtures thereof
  • the molecular weight of these polymers may be from about 200 to about 4000, but also may be from about 1000 to about 3000, and more preferably are from about 1500 to about 2500.
  • the polyurea composition can be formed by crosslinking the polyurea prepolymer with a single curing agent or a blend of curing agents.
  • the curing agent of the invention is preferably an amine-terminated curing agent, more preferably a secondary diamine curing agent so that the composition contains only urea linkages.
  • the amine-terminated curing agent may have a molecular weight of about 64 or greater. In another embodiment, the molecular weight of the amine-curing agent is about 2000 or less.
  • certain amine-terminated curing agents may be modified with a compatible amine-terminated freezing point depressing agent or mixture of compatible freezing point depressing agents.
  • Suitable amine-terminated curing agents include, but are not limited to, ethylene diamine; hexamethylene diamine; 1-methyl-2,6-cyclohexyl diamine; tetrahydroxypropylene ethylene diamine; 2,2,4- and 2,4,4-trimethyl-1,6-hexanediamine; 4,4′-bis-(sec-butylamino)-dicyclohexylmethane; 1,4-bis-(sec-butylamino)-cyclohexane; 1,2-bis-(sec-butylamino)-cyclohexane; derivatives of 4,4′-bis-(sec-butylamino)-dicyclohexylmethane; 4,4′-dicyclohexylmethane diamine; 1,4-cyclohexane-bis-(methylamine); 1,3-cyclohexane-bis-(methylamine); diethylene glycol di-(aminopropyl)ether; 2-methylpentamethylene-di
  • Suitable saturated amine-terminated curing agents include, but are not limited to, ethylene diamine; hexamethylene diamine; 1-methyl-2,6-cyclohexyl diamine; tetrahydroxypropylene ethylene diamine; 2,2,4- and 2,4,4-trimethyl-1,6-hexanediamine; 4,4′-bis-(sec-butylamino)-dicyclohexylmethane; 1,4-bis-(sec-butylamino)-cyclohexane; 1,2-bis-(sec-butylamino)-cyclohexane; derivatives of 4,4′-bis-(sec-butylamino)-dicyclohexylmethane; 4,4′-dicyclohexylmethane diamine; 4,4′-methylenebis-(2,6-diethylaminocyclohexane; 1,4-cyclohexane-bis-(methylamine); 1,3-cyclohexane-bis-(methylamine
  • any of the above inner or outer cover layer materials may also comprise additives known in the art, such as anti-oxidants, dyes, pigments, colorants, stabilizers, flame retardants, drip retardants, crystallization nucleators, metal salts, antistatic agents, plasticizers, lubricants, and combinations comprising two or more of the foregoing additives.
  • Effective amounts are typically less than 5 wt %, based on the total weight of the composition, preferably 0.25 wt % to 2 wt %.
  • the layer compositions may also comprise fillers, including reinforcing fillers.
  • Exemplary fillers include small particle minerals (e.g., clay, mica, talc, and the like), glass fibers, nanoparticles, organoclay, and the like and combinations comprising one or more of the foregoing fillers. Fillers are typically used in amounts of 5 wt % to 50 wt %, based on the total weight of the composition.
  • An optional filler component may be chosen to impart additional density to blends of the previously described components.
  • the selection of such filler(s) is dependent upon the type of golf ball desired (i.e., one-piece, two-piece multi-component, or wound).
  • useful fillers include zinc oxide, barium sulfate, calcium oxide, calcium carbonate and silica, as well as the other well known corresponding salts and oxides thereof.
  • Additives, such as nanoparticles, glass spheres, and various metals, such as titanium and tungsten can be added to the polyurethane compositions of the present invention, in amounts as needed, for their well-known purposes.
  • Additional components which can be added to the polyurethane composition include UV stabilizers and other dyes, as well as optical brighteners and fluorescent pigments and dyes. Such additional ingredients may be added in any amounts that will achieve their desired purpose.
  • any method known to one of ordinary skill in the art may be used to combine the polyisocyanate, polyol, and curing agent of the present invention.
  • One commonly employed method known in the art as a one-shot method, involves concurrent mixing of the polyisocyanate, polyol, and curing agent. This method results in a mixture that is inhomogenous (more random) and affords the manufacturer less control over the molecular structure of the resultant composition.
  • a preferred method of mixing is known as a prepolymer method. In this method, the polyisocyanate and the polyol are mixed separately prior to addition of the curing agent. This method affords a more homogeneous mixture resulting in a more consistent polymer composition.
  • the castable, reactive liquid employed to form the urethane elastomer material can be applied over the core using a variety of application techniques such as spraying, dipping, spin coating, or flow coating methods which are well known in the art.
  • An example of a suitable coating technique is that which is disclosed in U.S. Pat. No. 5,733,428, the disclosure of which is hereby incorporated by reference in its entirety by reference thereto.
  • the outer cover is preferably formed around the core and inner cover layer by mixing and introducing the material in the mold halves. It is important that the viscosity be measured over time, so that the subsequent steps of filling each mold half, introducing the core into one half and closing the mold can be properly timed for accomplishing centering of the core cover halves fusion and achieving overall uniformity.
  • Suitable viscosity range of the curing urethane mix for introducing cores into the mold halves is determined to be approximately between about 2,000 cP and about 30,000 cP, with the preferred range of about 8,000 cP to about 15,000 cP.
  • top preheated mold halves are filled and placed in fixture units using pins moving into holes in each mold. After the reacting materials have resided in top mold halves for about 40 to about 80 seconds, a core is lowered at a controlled speed into the gelling reacting mixture. At a later time, a bottom mold half or a series of bottom mold halves have similar mixture amounts introduced into the cavity.
  • a ball cup holds the ball core through reduced pressure (or partial vacuum).
  • reduced pressure or partial vacuum
  • the vacuum is released allowing core to be released.
  • the mold halves, with core and solidified cover half thereon, are removed from the centering fixture unit, inverted and mated with other mold halves which, at an appropriate time earlier, have had a selected quantity of reacting polyurethane prepolymer and curing agent introduced therein to commence gelling.
  • U.S. Pat. Nos. 5,006,297 and 5,334,673 both disclose suitable molding techniques which may be utilized to apply the castable reactive liquids employed in the present invention.
  • U.S. Pat. Nos. 6,180,040 and 6,180,722 disclose methods of preparing dual core golf balls. The disclosures of these patents are hereby incorporated by reference in their entirety.
  • reaction injection molding where two liquid components are injected into a mold holding a pre-positioned core.
  • the liquid components react to form a solid, thermoset polymeric composition, typically a polyurethane or polyurea.
  • the golf balls of the present invention typically have a COR of greater than about 0.775, preferably greater than about 0.795, and more preferably greater than about 0.800.
  • the golf balls also typically have an Atti compression of at least about 40, preferably from about 50 to 120, and more preferably from about 60 to 110.
  • Atti compression is defined as the deflection of an object or material relative to the deflection of a calibrated spring, as measured with an Atti Compression Gauge, that is commercially available from Atti Engineering Corp. of Union City, N.J. Atti compression is typically used to measure the compression of a golf ball. When the Atti Gauge is used to measure cores having a diameter of less than 1.680 inches, it should be understood that a metallic or other suitable shim is used to normalize the diameter of the measured object to 1.680 inches.
  • material hardness is defined by the procedure set forth in ASTM-D2240 and generally involves measuring the hardness of a flat “slab” or “button” formed of the material of which the hardness is to be measured. Hardness, when measured directly on a golf ball (or other spherical surface) is a different measurement and, therefore, many times produces a different hardness value.
  • the two measurement techniques are not linearly related and, therefore, one hardness value cannot easily be correlated to the other.
  • hardness refers to hardness measured on the curved surface of the layer being measured (i.e., sphere including core+inner cover or sphere including core+inner cover+outer cover).
  • the inner cover layer has a hardness of about 45 to 80 Shore D, preferably about 50 to 68 Shore D, and more preferably about 55 to 65 Shore D. In preferred embodiments, the inner cover layer preferably has a hardness of 55 to 60 Shore D, more preferably 56 to 59 Shore D, most preferably 57 to 58 Shore D. Alternatively, the inner cover layer has a hardness of about 55 to 100 Shore C, preferably about 66 to 95 Shore C, and more preferably about 74 to 86 Shore C. In preferred embodiments, the inner cover layer preferably has a hardness of 76 to 85 Shore C, more preferably 78 to 84 Shore C, most preferably 80 to 83 Shore C.
  • the outer cover layer has a hardness of about 35 to 65 Shore D, preferably about 40 to 55 Shore D, and more preferably about 45 to 50 Shore D. In preferred embodiments, the outer cover layer preferably has a hardness of 55 to 60 Shore D, more preferably 56 to 59 Shore D, most preferably 57 to 58 Shore D. Alternatively, the outer cover layer has a hardness of about 55 to 90 Shore C, preferably about 62 to 86 Shore C, and more preferably about 68 to 82 Shore C. In preferred embodiments, the outer cover layer preferably has a hardness of 76 to 85 Shore C, more preferably 78 to 84 Shore C, most preferably 80 to 83 Shore C.
  • a golf ball is formed from a core, an inner cover layer and an outer cover layer.
  • the core is a single, solid core having an outer diameter of about 1.52 inches.
  • the inner cover layer is formed from a thermoplastic polyurethane or a thermoplastic polyurea and has a thickness of about 0.035 inches and a hardness of about 58 Shore D. Alternatively, the inner cover layer has a hardness of about 82 Shore C.
  • the outer cover layer is formed from a thermosetting polyurea and has a thickness of about 0.030 inches and a hardness of about 57 Shore D. Alternatively, the outer cover layer has a hardness of about 80 Shore C.
  • the relationship between the inner cover layer and the outer cover layer is also important to the golf ball of the present invention.
  • the outer cover layer has a first hardness and the inner cover layer has a second hardness.
  • the second hardness is greater than the first hardness.
  • the second hardness is at least 5 Shore D greater than the first hardness, preferably at least 10 Shore D greater than the first hardness, more preferably at least 15 Shore D greater than the first hardness, and most preferably at least 20 Shore D greater than the first hardness.
  • the core of the present invention has an Atti compression of between about 50 and about 90, more preferably, between about 60 and about 85, and most preferably, between about 70 and about 80.
  • the outer diameter of the core is about 1.45 inches to 1.58 inches, more preferably about 1.50 inches to 1.56 inches, most preferably about 1.51 inches to 1.55 inches.
  • the thickness of the inner cover layer is preferably about 0.010 inches to 0.075 inches, more preferably about 0.030 inches to 0.060 inches, most preferably about 0.035 inches to 0.050 inches.
  • the thickness of the outer cover layer is preferably about 0.005 inches to 0.045 inches, more preferably about 0.020 inches to 0.040 inches, and most preferably about 0.025 inches to 0.035 inches.
  • the golf ball can have an overall diameter of any size. While the United States Golf Association limits the minimum size of a golf ball to 1.680 inches, there is no maximum diameter.
  • the golf ball diameter is preferably about 1.68 inches to 1.74 inches, more preferably about 1.68 inches to about 1.70 inches, and most preferably about 1.68 inches.
  • a preferred number of dimples is 252 to 456, and more preferably is 330 to 392.
  • the dimples may comprise any width, depth, and edge angle disclosed in the prior art and the patterns may comprises multitudes of dimples having different widths, depths and edge angles. Typical dimple coverage is greater than about 60%, preferably greater than about 65%, and more preferably greater than about 75%.
  • the parting line configuration of said pattern may be either a straight line or a staggered wave parting line (SWPL). Most preferably the dimple number is 330, 332, or 392 and comprises 5 to 7 dimples sizes and the parting line is a SWPL.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

A golf ball including a core and a cover disposed about the core, the cover including a stiff thermoplastic polyurethane or polyurea inner cover layer disposed directly about the core and having a hardness from 45 Shore D to 80 Shore D; and an outer cover layer having a hardness from 40 Shore D to 65 Shore D. The cover outer cover layer is formed from a polyurethane, a polyurea, or a urethane-urea blend and the inner cover layer hardness is preferably greater than the outer cover layer hardness by at least 5 Shore D.

Description

    FIELD OF THE INVENTION
  • This invention relates generally to golf balls, and more specifically, to a golf ball having a two-layer cover, the inner cover layer being formed from a stiff, thermoplastic polyurethane or polyurea material.
  • BACKGROUND OF THE INVENTION
  • The majority of golf balls commercially available today are of a solid construction. Solid golf balls include one-piece, two-piece, and multi-layer golf balls. One-piece golf balls are inexpensive and easy to construct, but have limited playing characteristics and their use is, at best, confined to the driving range. Two-piece golf balls are generally constructed with a solid polybutadiene core and a cover and are typically the most popular with recreational golfers because they are very durable and provide good distance. These golf balls are also relatively inexpensive and easy to manufacture, but are regarded by top players as having limited playing characteristics. Multi-layer golf balls are comprised of a solid core and a cover, either of which may be formed of one or more layers. These balls are regarded as having an extended range of playing characteristics, but are more expensive and difficult to manufacture than are one- and two-piece golf balls.
  • Wound golf balls, which typically included a fluid-filled center surrounded by a layer of tensioned elastomeric material and a cover, were preferred for their spin and “feel” characteristics but were more difficult and expensive to manufacture than solid golf balls. Manufacturers are continuously striving to produce a solid ball that concurrently includes the beneficial characteristics of a wound ball.
  • Golf ball playing characteristics, such as compression, velocity, and spin can be adjusted and optimized by manufacturers to suit players having a wide variety of playing abilities. For example, manufacturers can alter any or all of these properties by changing the materials and/or the physical construction of each or all of the various golf ball components (i.e., centers, cores, inner layer(s), and covers). Finding the right combination of core and layer materials and the ideal ball construction to produce a golf ball suited for a predetermined set of performance criteria is a challenging task.
  • Efforts to construct a multi-layer golf ball have generally focused on the use of two cover layers formed of a stiff thermoplastic material and a castable thermoset material. In particular, it is desirable, therefore, to construct a golf ball including a castable thermosetting polyurethane or polyurea outer cover layer, a stiff, thermoplastic polyurethane or polyurea inner cover layer, and a singe or dual core.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to a golf ball formed from a core and a cover. The cover is a two-piece cover including a stiff thermoplastic polyurethane or polyurea inner cover layer having a hardness of 45 to 80 Shore D and an outer cover layer having a hardness of 40 to 65 Shore D, as measured on the curved surface. The outer cover layer is formed from a polyurethane, a polyurea, or a urethane-urea blend. The inner cover layer hardness is preferably greater than the outer cover layer hardness by at least 5 Shore D, more preferably by at least 10 Shore D, most preferably by at least 15 Shore D.
  • In one embodiment, the inner cover layer hardness is 61 Shore D to 75 Shore D, more preferably 64 Shore D to 72 Shore D. The outer cover layer hardness is typically from 52 Shore D to 62 Shore D. The polyurethane, polyurea, or urethane-urea blend of the outer cover layer is preferably a castable thermoset or reaction injection moldable thermoset. The outer cover may specifically be a castable thermoset polyurea and the inner cover layer, while preferably a polycarbonate-polyurethane, may also be a polycarbonate-polyurea, or a polycarbonate blend with polyurethane or polyurea.
  • The core may be a dual core formed from a center and an outer core layer. In a preferred embodiment, the center is a solid layer formed from a single homogeneous composition. The inner cover layer may further include a polycarbonate, an acrylonitrile-butadiene-styrene block copolymer, a polyamide, a polyolefin, or a mixture thereof.
  • A combination of the inner cover and the outer cover have a total thickness of 0.090 inches or less, preferably 0.085 inches or less, more preferably 0.075 inches or less.
  • The present invention is also directed to a golf ball comprising a core and a cover disposed about the core, the cover consisting of an inner cover layer comprising a thermoplastic polycarbonate-polyurethane copolymer and having a hardness from 50 Shore D to 80 Shore D; and an outer cover layer comprising a castable thermoset polyurea and having a hardness from 45 Shore D to 65 Shore D, wherein the inner cover layer hardness is greater than the outer cover layer hardness by at least 5 Shore D.
  • The present invention is further directed to a golf ball comprising a core and a cover disposed about the core, the cover consisting of an inner cover layer comprising a thermoplastic polycarbonate-polyurethane copolymer and having a hardness from 55 Shore D to 68 Shore D; and an outer cover layer comprising a castable thermoset polyurea and having a hardness from 45 Shore D to 55 Shore D, wherein the inner cover layer hardness is greater than the outer cover layer hardness by at least 5 Shore D, the inner cover layer has a thickness of 0.035 inches to 0.050 inches, and the outer cover layer has a thickness of 0.025 inches to 0.035 inches.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A golf ball of the present invention includes a core and a cover including an outer cover and an inner cover layer. The golf ball cores of the present invention may be formed with a variety of constructions. For example, the core may include a plurality of layers, such as a center and an outer core layer. The core, while preferably solid, may comprise a liquid, foam, gel, or hollow center. The golf ball may also include a layer of tensioned elastomeric material, for example, located between the core and double cover. In a preferred embodiment, the core is a solid core.
  • Materials for solid cores include compositions having a base rubber, a filler, an initiator agent, and a crosslinking agent. The base rubber typically includes natural or synthetic rubber, such as polybutadiene rubber. A preferred base rubber is 1,4-polybutadiene having a cis-structure of at least 40%. Most preferably, however, the solid core is formed of a resilient rubber-based component comprising a high-Mooney-viscosity rubber and a crosslinking agent.
  • Another suitable rubber from which to form cores of the present invention is trans-polybutadiene. This polybutadiene isomer is formed by converting the cis-isomer of the polybutadiene to the trans-isomer during a molding cycle. Various combinations of polymers, cis-to-trans catalysts, fillers, crosslinkers, and a source of free radicals, may be used. A variety of methods and materials for performing the cis-to-trans conversion have been disclosed in U.S. Pat. Nos. 6,162,135; 6,465,578; 6,291,592; and 6,458,895, each of which are incorporated herein, in their entirety, by reference.
  • Additionally, without wishing to be bound by any particular theory, it is believed that a low amount of 1,2-polybutadiene isomer (“vinyl-polybutadiene”) is preferable in the initial polybutadiene to be converted to the trans-isomer. Typically, the vinyl polybutadiene isomer content is less than about 7 percent, more preferably less than about 4 percent, and most preferably, less than about 2 percent.
  • Fillers added to one or more portions of the golf ball typically include processing aids or compounds to affect rheological and mixing properties, the specific gravity (i.e., density-modifying fillers), the modulus, the tear strength, reinforcement, and the like. The fillers are generally inorganic, and suitable fillers include numerous metals or metal oxides, such as zinc oxide and tin oxide, as well as barium sulfate, zinc sulfate, calcium carbonate, barium carbonate, clay, tungsten, tungsten carbide, an array of silicas, and mixtures thereof. Fillers may also include various foaming agents or blowing agents, zinc carbonate, regrind (recycled core material typically ground to about 30 mesh or less particle size), high-Mooney-viscosity rubber regrind, and the like. Polymeric, ceramic, metal, and glass microspheres may be solid or hollow, and filled or unfilled. Fillers are typically also added to one or more portions of the golf ball to modify the density thereof to conform to uniform golf ball standards. Fillers may also be used to modify the weight of the center or any or all core and cover layers, if present.
  • The initiator agent can be any known polymerization initiator which decomposes during the cure cycle. Suitable initiators include peroxide compounds such as dicumyl peroxide, 1,1-di(t-butylperoxy) 3,3,5-trimethyl cyclohexane, a-a bis(t-butylperoxy)diisopropylbenzene, 2,5-dimethyl-2,5 di(t-butylperoxy)hexane or di-t-butyl peroxide and mixtures thereof.
  • Crosslinkers are included to increase the hardness and resilience of the reaction product. The crosslinking agent includes a metal salt of an unsaturated fatty acid such as a zinc salt or a magnesium salt of an unsaturated fatty acid having 3 to 8 carbon atoms such as acrylic or methacrylic acid. Suitable cross linking agents include metal salt diacrylates, dimethacrylates and monomethacrylates wherein the metal is magnesium, calcium, zinc, aluminum, sodium, lithium or nickel. Preferred acrylates include zinc acrylate, zinc diacrylate, zinc methacrylate, and zinc dimethacrylate, and mixtures thereof.
  • The crosslinking agent must be present in an amount sufficient to crosslink a portion of the chains of polymers in the resilient polymer component. This may be achieved, for example, by altering the type and amount of crosslinking agent, a method well-known to those of ordinary skill in the art.
  • When the core is formed of a single solid layer comprising a high-Mooney-viscosity rubber, the crosslinking agent is present in an amount from about 15 to about 40 parts per hundred, more preferably from about 30 to about 38 parts per hundred, and most preferably about 37 parts per hundred.
  • In another embodiment of the present invention, the core comprises a solid center and at least one outer core layer. When the optional outer core layer is present, the center preferably comprises a high-Mooney-viscosity rubber and a crosslinking agent present in an amount from about 10 to about 30 parts per hundred of the rubber, preferably from about 19 to about 25 parts per hundred of the rubber, and most preferably from about 20 to 24 parts crosslinking agent per hundred of rubber. Suitable commercially-available polybutadiene rubbers include, but are not limited to, CB23, CB22, Taktene® 220, and Taktene® 221, from Lanxess Corp.; Neodene® 40 and Neodene® 45 from Karbochem Ltd.; LG1208 from LG Corp. of Korea; and Cissamer® 1220 from Basstech Corp. of India. Other rubbers, such as butyl rubber, chloro or bromyl butyl rubber, styrene butadiene rubber, or trans polyisoprene may be added to the polybutadiene for property or processing modification.
  • Additionally, the unvulcanized rubber, such as polybutadiene, typically has a Mooney viscosity of between about 40 and about 80, more preferably, between about 40 and about 60, and most preferably, between about 40 and about 55. Mooney viscosity is typically measured according to ASTM D-1646.
  • The polymers, free-radical initiators, filler, crosslinking agents, and any other materials used in forming either the golf ball center or any portion of the core, in accordance with invention, may be combined to form a mixture by any type of mixing known to one of ordinary skill in the art. Suitable types of mixing include single pass and multi-pass mixing, and the like. The crosslinking agent, and any other optional additives used to modify the characteristics of the golf ball center or additional layer(s), may similarly be combined by any type of mixing. A single-pass mixing process where ingredients are added sequentially is preferred, as this type of mixing tends to increase efficiency and reduce costs for the process. The preferred mixing cycle is single step wherein the polymer, cis-to-trans catalyst, filler, zinc diacrylate, and peroxide are added sequentially.
  • The cover of the golf ball is a multi-layer cover, preferably comprised of at least two layers, such as an inner cover layer and an outer cover layer. While the various cover layers of the present invention may be of any individual thickness, it is preferred that the combination of cover layer thicknesses be no greater than about 0.090 inches, more preferably, no greater than about 0.085 inches, and most preferably, no greater than about 0.075 inches.
  • The inner cover layers of the golf balls of the present invention are preferably formed from stiff thermoplastic polyurethanes or polyureas. The molecular structure of a typical thermoplastic urethane (TPU) consists of alternating high-melting “hard” urethane segments and liquid-like “soft” segments.
  • Hard segments are typically the reaction product of an aromatic or aliphatic diisocyanate and a low molecular weight, chain-extending dialcohol or diol. Suitable diisocyanates include alkyl diisocyanates, arylalkyl diisocyanates, cycloalkylalkyl diisocyanates, alkylaryl diisocyanates, cycoalkyl diisicyanates, arly diisocyanates, cycloalkylaryl diisocyanates, all of which may be further substituted with oxygen, and mixtures thereof. The chain extender of the hard segment used in the preparation of the copolymers may be an aliphatic polyol or an aliphatic or aromatic polyamine such as known for preparing polyurethanes and polyureas. The polyol for the hard segment may be alkylene, cycloalkylene, arylene diols, triols, tetraalcohols and pentaalcohols, and mixtures thereof. The polyamine of the hard segment may be alkyl, cycloalkyl, and aryl amines that may be further substituted with nitrogen, oxygen, halogen, complexes thereof with alkali metal salts and mixtures thereof.
  • The hard segment can be either aromatic or aliphatic. Aromatic TPUs are commonly based on methylene diphenyl 4,4′-diisocyanate (“MDI”) while aliphatic TPUs are commonly based on dicyclohexylmethane diisocyanate (“H12MDI”).
  • Soft segments may be built from polyols with terminal hydroxyl (—OH) groups. The hydroxyl creates a urethane group, while the reaction between isocyanates and existing urethane groups will form allophanate groups that can produce minor amounts of covalent cross-linking in TPUs. When a TPU is heated, the hydrogen-bonded hard segments and any allophanate cross-links, both of which hold the polymer together at its use temperature, dissociate to allow the polymer to melt and flow. Dissolution in a polar solvent can also disrupt the hydrogen bonds that hold together the hard segments on adjacent chains. Once these virtual cross-links are broken, the polymer can be fabricated into golf balls. Upon cooling or solvent evaporation, the hard segments de-mix from the soft segments to re-associate by hydrogen bonding. This restores the original mechanical properties of the polyurethane elastomer. Polyether and polycarbonate TPUs generally have excellent physical properties, combining high elongation and high tensile strength, albeit having fairly high-modulus. Varying the hard segment of a TPU during synthesis can produce a whole family of polymers of related chemistry but with a wide range of hardness, modulus, tensile-strength properties and elongation. In the fabrication of golf balls, the use of TPUs of different hardness values within a single family provides considerable versatility in manufacturing.
  • The molecular structure of a generic thermoplastic polyurea consists of a rigid “hard segment” and a flexible “soft segment. The hard segments are typically formed from the reaction product of an aromatic or aliphatic diisocyanate with an aromatic or aliphatic chain-extending diamine to form urea linkages. The soft segment may be built from amine-terminated polyethers, polyesters, polycaprolactones, polycarbonates, or other suitable long chain backbone. The reaction product of the soft segment with the hard segment, i.e., diisocyanates, produces urea linkages.
  • Other suitable TPUs include, but are not limited to, silicone-urethane materials such as an aromatic or aliphatic urethane hard segment with a silicone based soft segment to create a thermoplastic silicone-urethane copolymer, combining the above hard and soft segments with a polycarbonate to form a thermoplastic silicone-polycarbonate urethane copolymer, or combining the above hard and soft segments with a polyethylene oxide to form a thermoplastic silicone-polyethyleneoxide urethane copolymer.
  • Thermoplastic silicone-polyether urethane copolymers available today include PurSil™; silicone-polycarbonate urethane copolymers available include CarboSil™; and silicone-polyethylene oxide urethane copolymers include Hydrosil™. U.S. Pat. Nos. 5,863,627 and 5,530,083, which are incorporated by reference herein in their entirety, describe how PurSil™, CarboSil™ and Hydrosil™ are processed. The thermoplastic elastomers containing silicone in the soft segment, such as PurSil™, are prepared through a multi-step bulk synthesis. In this synthesis the hard segment is an aromatic urethane MDI (4,4′-diphenylmethane diisocynanate-butanediol) with a low molecular weight glycol extender butanediol and the soft segment is comprised of polytetramethylene oxide including polydimethylsiloxane.
  • In addition to polydimethylsiloxane, other suitable surface-modifying end groups, which may be used alone or in combination with one another, include hydrocarbons, fluorocarbons, fluorinated polyethers, polyalkylene oxides, various sulphonated groups, and the like. Surface-modifying end groups are surface-active oligomers covalently bonded to the base polymer during synthesis. When the aromatic or aliphatic urethane hard segment is combined with a hydrocarbon soft segment surface-modifying end group, a hydrocarbon-polyurethane is produced and has excellent properties for use in golf balls.
  • Thermoplastic polycarbonate-urethane copolymers are also suitable materials for the inner cover layers of the present invention and have good oxidative stability, excellent mechanical strength, and abrasion resistance. Commercially-available thermoplastic polycarbonate-polyurethane TPUs include, but are not limited to, Bionate® polycarbonate-urethanes, such as Bioante® 55D and 75D produced by the Polymer Technology Group of Berkeley, Calif.
  • Bionate® polycarbonate-urethane is a thermoplastic elastomer formed as the reaction product of a hydroxyl terminated polycarbonate, an aromatic diisocyanate, and a low molecular weight glycol used as a chain extender. In a preferred embodiment, polycarbonate glycol intermediate, poly(1,6-hexyl-1,2-ethyl carbonate)diol, is the condensation product of 1,6-hexanediol with cyclic ethylene carbonate. The polycarbonate macroglycol is reacted with aromatic isocyanate, 4,4′-methylene bisphenyl diisocyanate, and chain extended with 1,4-butanediol.
  • Ultimate tensile strengths for Bionate® compounds can exceed 10,000 psi. The ultimate elongation of the present invention is about 20 to 1000% with a preferred elongation of at least about 400 to about 800%. The initial modulus of the materials suitable for the present invention is about 300 to 150,000 psi, and preferably between about 10,000 and about 80,000 psi.
  • Other suitable commercially-available TPUs include the E-Series TPUs, such as D 60 E 4024 from Huntsman Polyurethanes of Germany, and TPUs sold under the tradenames of Texin® 250, Texin® 255, Texin® 260, Texin® 270, Texin® 950U, Texin® DP7-1202, Texin® 970U, Texin® 3203, Texin® 4203, Texin® 4206, Texin® 4210, Texin® 4215, and Texin® 3215, and Desmopan® 453 from Bayer of Pittsburgh, Pa.
  • U.S. Pat. Nos. 6,855,793, 6,739,987, and 7,037,217 disclose preferred polycarbonate-polyurethane copolymers, silicone-polyurethane copolymers, and silicone-polyurethanes, respectively, the disclosures of which are incorporated herein in their entirety by reference thereto.
  • The TPUs (both thermoplastic polyurethanes and thermoplastic polyureas) of the invention are also readily blended with other thermoplastic polymers, such as polycarbonates, polyvinyl chlorides, acrylonitrile-butadiene-styrenes, and polyamides. Any TPU blend, alloy or copolymer, is also suitable for the inner cover layers of the invention, such as TPU/polycarbonates; TPU/ABS; TPU/SMA (styrene-maleic anhydride); TPU/styrene-butadiene or styrene-ethylene-butadiene block copolymers; TPU/polyolefins, such as polypropylene, polyethylene, ethylene-propylene rubber (“EPR”), ethylene-propylene-diene monomer (“EPDM”), and ethylene-vinyl acetate; or TPU/modified polyolefins, such as DuPont Fusabond® functionalized (typically by maleic anhydride grafting) metallocene-catalyzed polyolefins or any other polar-group modified ethylene copolymer, such as Dow Amplify® IO, GR, or EA grade polymers.
  • While the inventive golf ball may be formed from a variety of differing cover materials, preferred outer cover layer materials include, but are not limited to, (1) polyurethanes, such as those prepared from polyols or polyamines and diisocyanates or polyisocyanates and/or their prepolymers, and those disclosed in U.S. Pat. Nos. 5,334,673 and 6,506,851; (2) polyureas, such as those disclosed in U.S. Pat. Nos. 5,484,870 and 6,835,794; (3) polyurethane-urea hybrids, blends or copolymers comprising urethane or urea segments; and (4) other suitable polyurethane compositions comprising a reaction product of at least one polyisocyanate and at least one curing agent are disclosed in U.S. Pat. Nos. 7,105,610 and 7,491,787, all of which are incorporated herein by reference.
  • Suitable polyurethane compositions comprise a reaction product of at least one polyisocyanate and at least one curing agent. The curing agent can include, for example, one or more polyamines, one or more polyols, or a combination thereof. The polyisocyanate can be combined with one or more polyols to form a prepolymer, which is then combined with the at least one curing agent. Thus, the polyols described herein are suitable for use in one or both components of the polyurethane material, i.e., as part of a prepolymer and in the curing agent. Suitable polyurethanes are described in U.S. Pat. No. 7,331,878, which is incorporated by reference in its entirety.
  • Exemplary polyisocyanates suitable for use in the outer cover layers of the invention include, but are not limited to, 4,4′-diphenylmethane diisocyanate (MDI); polymeric MDI; carbodiimide-modified liquid MDI; 4,4′-dicyclohexylmethane diisocyanate (H12MDI); p-phenylene diisocyanate (PPDI); m-phenylene diisocyanate (MPDI); toluene diisocyanate (TDI); 3,3′-dimethyl-4,4′-biphenylene diisocyanate; isophoronediisocyanate; 1,6-hexamethylene diisocyanate (HDI); naphthalene diisocyanate; xylene diisocyanate; p-tetramethylxylene diisocyanate; m-tetramethylxylene diisocyanate; ethylene diisocyanate; propylene-1,2-diisocyanate; tetramethylene-1,4-diisocyanate; cyclohexyl diisocyanate; dodecane-1,12-diisocyanate; cyclobutane-1,3-diisocyanate; cyclohexane-1,3-diisocyanate; cyclohexane-1,4-diisocyanate; 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane; methyl cyclohexylene diisocyanate; triisocyanate of HDI; triisocyanate of 2,4,4-trimethyl-1,6-hexane diisocyanate; tetracene diisocyanate; napthalene diisocyanate; anthracene diisocyanate; isocyanurate of toluene diisocyanate; uretdione of hexamethylene diisocyanate; and mixtures thereof. Polyisocyanates are known to those of ordinary skill in the art as having more than one isocyanate group, e.g., di-isocyanate, tri-isocyanate, and tetra-isocyanate. Preferably, the polyisocyanate includes MDI, PPDI, TDI, or a mixture thereof, and more preferably, the polyisocyanate includes MDI. It should be understood that, as used herein, the term MDI includes 4,4′-diphenylmethane diisocyanate, polymeric MDI, carbodiimide-modified liquid MDI, and mixtures thereof and, additionally, that the diisocyanate employed may be “low free monomer,” understood by one of ordinary skill in the art to have lower levels of “free” monomer isocyanate groups, typically less than about 0.1% free monomer isocyanate groups. Examples of “low free monomer” diisocyanates include, but are not limited to Low Free Monomer MDI, Low Free Monomer TDI, and Low Free Monomer PPDI.
  • The at least one polyisocyanate should have less than about 14% unreacted NCO groups. Preferably, the at least one polyisocyanate has no greater than about 8.0% NCO, more preferably no greater than about 7.8%, and most preferably no greater than about 7.5% NCO with a level of NCO of about 7.2 or 7.0, or 6.5% NCO commonly used.
  • Any polyol available to one of ordinary skill in the art is suitable for use according to the invention. Exemplary polyols include, but are not limited to, polyether polyols, hydroxy-terminated polybutadiene (including partially/fully hydrogenated derivatives), polyester polyols, polycaprolactone polyols, and polycarbonate polyols. In one preferred embodiment, the polyol includes polyether polyol. Examples include, but are not limited to, polytetramethylene ether glycol (PTMEG), polyethylene propylene glycol, polyoxypropylene glycol, and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds and substituted or unsubstituted aromatic and cyclic groups. Preferably, the polyol of the present invention includes PTMEG.
  • In another embodiment, polyester polyols are included in the polyurethane material. Suitable polyester polyols include, but are not limited to, polyethylene adipate glycol; polybutylene adipate glycol; polyethylene propylene adipate glycol; o-phthalate-1,6-hexanediol; poly(hexamethylene adipate)glycol; and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
  • In another embodiment, polycaprolactone polyols are included in the materials of the invention. Suitable polycaprolactone polyols include, but are not limited to, 1,6-hexanediol-initiated polycaprolactone, diethylene glycol initiated polycaprolactone, trimethylol propane initiated polycaprolactone, neopentyl glycol initiated polycaprolactone, 1,4-butanediol-initiated polycaprolactone, and mixtures thereof. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
  • In yet another embodiment, polycarbonate polyols are included in the polyurethane material of the invention. Suitable polycarbonates include, but are not limited to, polyphthalate carbonate and poly(hexamethylene carbonate)glycol. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups. In one embodiment, the molecular weight of the polyol is from about 200 to about 4000.
  • Polyamine curatives are also suitable for use in the polyurethane composition of the invention and have been found to improve cut, shear, and impact resistance of the resultant balls. Preferred polyamine curatives include, but are not limited to, 3,5-dimethylthio-2,4-toluenediamine and isomers thereof; 3,5-diethyltoluene-2,4-diamine and isomers thereof, such as 3,5-diethyltoluene-2,6-diamine; 4,4′-bis-(sec-butylamino)-diphenylmethane; 1,4-bis-(sec-butylamino)-benzene, 4,4′-methylene-bis-(2-chloroaniline); 4,4′-methylene-bis-(3-chloro-2,6-diethylaniline); polytetramethyleneoxide-di-p-aminobenzoate; N,N′-dialkyldiamino diphenyl methane; p,p′-methylene dianiline; m-phenylenediamine; 4,4′-methylene-bis-(2-chloroaniline); 4,4′-methylene-bis-(2,6-diethylaniline); 4,4′-methylene-bis-(2,3-dichloroaniline); 4,4′-diamino-3,3′-diethyl-5,5′-dimethyl diphenylmethane; 2,2′,3,3′-tetrachloro diamino diphenylmethane; trimethylene glycol di-p-aminobenzoate; and mixtures thereof. Preferably, the curing agent of the present invention includes 3,5-dimethylthio-2,4-toluenediamine and isomers thereof, such as ETHACURE® 300, commercially available from Albermarle Corporation of Baton Rouge, La. Suitable polyamine curatives, which include both primary and secondary amines, preferably have molecular weights ranging from about 64 to about 2000.
  • At least one of a diol, triol, tetraol, or hydroxy-terminated curatives may be added to the aforementioned polyurethane composition. Suitable diol, triol, and tetraol groups include ethylene glycol; diethylene glycol; polyethylene glycol; propylene glycol; polypropylene glycol; lower molecular weight polytetramethylene ether glycol; 1,3-bis(2-hydroxyethoxy)benzene; 1,3-bis-[2-(2-hydroxyethoxy)ethoxy]benzene; 1,3-bis-{2-[2-(2-hydroxyethoxy)ethoxy]ethoxy}benzene; 1,4-butanediol; 1,5-pentanediol; 1,6-hexanediol; resorcinol-di-(β-hydroxyethyl)ether; hydroquinone-di-(β-hydroxyethyl)ether; and mixtures thereof. Preferred hydroxy-terminated curatives include 1,3-bis(2-hydroxyethoxy)benzene; 1,3-bis-[2-(2-hydroxyethoxy)ethoxy]benzene; 1,3-bis-{2-[2-(2-hydroxyethoxy)ethoxy]ethoxy}benzene; 1,4-butanediol, and mixtures thereof. Preferably, the hydroxy-terminated curatives have molecular weights ranging from about 48 to 2000. It should be understood that molecular weight, as used herein, is the absolute weight average molecular weight and would be understood as such by one of ordinary skill in the art.
  • Both the hydroxy-terminated and amine curatives can include one or more saturated, unsaturated, aromatic, and cyclic groups. Additionally, the hydroxy-terminated and amine curatives can include one or more halogen groups. The polyurethane composition can be formed with a blend or mixture of curing agents. If desired, however, the polyurethane composition may be formed with a single curing agent.
  • In a preferred embodiment of the present invention, saturated polyurethanes are used to form one or more of the cover layers, preferably the outer cover layer, and may be selected from among both castable thermoset and thermoplastic polyurethanes. In this embodiment, the saturated polyurethanes of the present invention are substantially free of aromatic groups or moieties. Saturated polyurethanes suitable for use in the invention are a product of a reaction between at least one polyurethane prepolymer and at least one saturated curing agent. The polyurethane prepolymer is a product formed by a reaction between at least one saturated polyol and at least one saturated diisocyanate. As is well known in the art, that a catalyst may be employed to promote the reaction between the curing agent and the isocyanate and polyol, or the curing agent and the prepolymer.
  • Saturated diisocyanates which can be used include, without limitation, ethylene diisocyanate; propylene-1,2-diisocyanate; tetramethylene-1,4-diisocyanate; 1,6-hexamethylene-diisocyanate (HDI); 2,2,4-trimethylhexamethylene diisocyanate; 2,4,4-trimethylhexamethylene diisocyanate; dodecane-1,12-diisocyanate; dicyclohexylmethane diisocyanate; cyclobutane-1,3-diisocyanate; cyclohexane-1,3-diisocyanate; cyclohexane-1,4-diisocyanate; 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane; isophorone diisocyanate; methyl cyclohexylene diisocyanate; triisocyanate of HDI; triisocyanate of 2,2,4-trimethyl-1,6-hexane diisocyanate. The most preferred saturated diisocyanates are 4,4′-dicyclohexylmethane diisocyanate and isophorone diisocyanate.
  • Saturated polyols which are appropriate for use in this invention include without limitation polyether polyols such as polytetramethylene ether glycol and poly(oxypropylene)glycol. Suitable saturated polyester polyols include polyethylene adipate glycol, polyethylene propylene adipate glycol, polybutylene adipate glycol, polycarbonate polyol and ethylene oxide-capped polyoxypropylene diols. Saturated polycaprolactone polyols which are useful in the invention include diethylene glycol-initiated polycaprolactone, 1,4-butanediol-initiated polycaprolactone, 1,6-hexanediol-initiated polycaprolactone; trimethylol propane-initiated polycaprolactone, neopentyl glycol initiated polycaprolactone, and polytetramethylene ether glycol-initiated polycaprolactone. The most preferred saturated polyols are polytetramethylene ether glycol and PTMEG-initiated polycaprolactone.
  • Suitable saturated curatives include 1,4-butanediol, ethylene glycol, diethylene glycol, polytetramethylene ether glycol, propylene glycol; trimethanolpropane; tetra-(2-hydroxypropyl)-ethylenediamine; isomers and mixtures of isomers of cyclohexyldimethylol, isomers and mixtures of isomers of cyclohexane bis(methylamine); triisopropanolamine; ethylene diamine; diethylene triamine; triethylene tetramine; tetraethylene pentamine; 4,4′-dicyclohexylmethane diamine; 2,2,4-trimethyl-1,6-hexanediamine; 2,4,4-trimethyl-1,6-hexanediamine; diethyleneglycol di-(aminopropyl)ether; 4,4′-bis-(sec-butylamino)-dicyclohexylmethane; 1,2-bis-(sec-butylamino)cyclohexane; 1,4-bis-(sec-butylamino)cyclohexane; isophorone diamine; hexamethylene diamine; propylene diamine; 1-methyl-2,4-cyclohexyl diamine; 1-methyl-2,6-cyclohexyl diamine; 1,3-diaminopropane; dimethylamino propylamine; diethylamino propylamine; imido-bis-propylamine; isomers and mixtures of isomers of diaminocyclohexane; monoethanolamine; diethanolamine; triethanolamine; monoisopropanolamine; and diisopropanolamine. The most preferred saturated curatives are 1,4-butanediol, 1,4-cyclohexyldimethylol and 4,4′-bis-(sec-butylamino)-dicyclohexylmethane.
  • Alternatively, other suitable polymers include partially or fully neutralized ionomer, metallocene, or other single-site catalyzed polymer, polyester, polyamide, non-ionomeric thermoplastic elastomer, copolyether-esters, copolyether-amides, polycarbonate, polybutadiene, polyisoprene, polystryrene block copolymers (such as styrene-butadiene-styrene), styrene-ethylene-propylene-styrene, styrene-ethylene-butylene-styrene, and the like, and blends thereof. Thermosetting polyurethanes or polyureas are suitable for the outer cover layers of the golf balls of the present invention.
  • Additionally, polyurethane can be replaced with or blended with a polyurea material. Polyureas are distinctly different from polyurethane compositions, but also result in desirable aerodynamic and aesthetic characteristics when used in golf ball components. The polyurea-based compositions are preferably saturated in nature.
  • Without being bound to any particular theory, it is now believed that substitution of the long chain polyol segment in the polyurethane prepolymer with a long chain polyamine oligomer soft segment to form a polyurea prepolymer, improves shear, cut, and resiliency, as well as adhesion to other components. Thus, the polyurea compositions of this invention may be formed from the reaction product of an isocyanate and polyamine prepolymer crosslinked with a curing agent. For example, polyurea-based compositions of the invention may be prepared from at least one isocyanate, at least one polyether amine, and at least one diol curing agent or at least one diamine curing agent.
  • Any polyamine available to one of ordinary skill in the art is suitable for use in the polyurea prepolymer. Polyether amines are particularly suitable for use in the prepolymer. As used herein, “polyether amines” refer to at least polyoxyalkyleneamines containing primary amino groups attached to the terminus of a polyether backbone. Due to the rapid reaction of isocyanate and amine, and the insolubility of many urea products, however, the selection of diamines and polyether amines is limited to those allowing the successful formation of the polyurea prepolymers. In one embodiment, the polyether backbone is based on tetramethylene, propylene, ethylene, trimethylolpropane, glycerin, and mixtures thereof.
  • Suitable polyether amines include, but are not limited to, methyldiethanolamine; polyoxyalkylenediamines such as, polytetramethylene ether diamines, polyoxypropylenetriamine, and polyoxypropylene diamines; poly(ethylene oxide capped oxypropylene)ether diamines; propylene oxide-based triamines; triethyleneglycoldiamines; trimethylolpropane-based triamines; glycerin-based triamines; and mixtures thereof. In one embodiment, the polyether amine used to form the prepolymer is JEFFAMINE® D2000 (manufactured by Huntsman Chemical Co. of Austin, Tex.).
  • The molecular weight of the polyether amine for use in the polyurea prepolymer may range from about 100 to about 5000. In one embodiment, the polyether amine molecular weight is about 200 or greater, preferably about 230 or greater. In another embodiment, the molecular weight of the polyether amine is about 4000 or less. In yet another embodiment, the molecular weight of the polyether amine is about 600 or greater. In still another embodiment, the molecular weight of the polyether amine is about 3000 or less. In yet another embodiment, the molecular weight of the polyether amine is between about 1000 and about 3000, and more preferably is between about 1500 to about 2500. Because lower molecular weight polyether amines may be prone to forming solid polyureas, a higher molecular weight oligomer, such as JEFFAMINE® D2000, is preferred.
  • Other suitable castable polyurea compositions for use in the golf balls of the present invention include those formed from the reaction product of a prepolymer formed from an isocyanate and an amine-terminated polytetramethylene ether glycol and an amine-terminated curing agent, and those formed from the reaction product of a polyurea prepolymer cured with an amine-terminated polytetramethylene ether glycol. In either scenario, the amine-terminated polytetramethylene ether glycol is terminated with secondary amines. In addition, the amine-terminated polytetramethylene ether glycol may be a copolymer with polypropylene glycol, wherein the polytetramethylene ether glycol is end-capped with one or more propylene glycol units to form the copolymer.
  • Another suitable composition includes a prepolymer including the reaction product of an isocyanate-containing component and an amine-terminated component, wherein the amine-terminated component includes a copolymer of polytetramethylene ether glycol and polypropylene glycol including at least one terminal amino group; and an amine-terminated curing agent. In this aspect of the invention the prepolymer may includes about 4 percent to about 9 percent NCO groups by weight of the prepolymer.
  • In one embodiment, the at least one terminal amino group includes secondary amines. In another embodiment, the at least one terminal amino group includes a terminal secondary amino group at both ends of the copolymer. In yet another embodiment, the amine-terminated curing agent includes a secondary diamine.
  • The polyureas of the present invention also include a polyurea composition formed from a prepolymer formed from the reaction product of an isocyanate-containing compound and an isocyanate-reactive compound, wherein the isocyanate-reactive compound includes polytetramethylene ether glycol homopolymer having a molecular weight of about 1800 to about 2200 and terminal secondary amino groups; and an amine-terminated curing agent. In this aspect of the invention, the prepolymer may include about 6 percent to about 8 percent NCO groups by weight of the prepolymer. In addition, the PTMEG homopolymer may have a molecular weight of about 1900 to about 2100. In one embodiment, the amine-terminated curing agent includes a secondary diamine.
  • In one embodiment, the polyalkylene glycol includes polypropylene glycol, polyethylene glycol, and copolymers or mixtures thereof. In another embodiment, the amino groups include secondary amino groups. The amine-terminated curing agent may include an amine-terminated polytetramethylene ether glycol. In one embodiment, the amine-terminated polytetramethylene ether glycol includes at least one terminal secondary amino group.
  • Conventional aromatic polyurethane/urethane elastomers and polyurethane/urea elastomers are generally prepared by curing a prepolymer of diisocyanate and long chain polyol with at least one diol curing agent or at least one diamine curing agent, respectively. In contrast, the use of a long chain amine-terminated compound to form a polyurea prepolymer has been shown to improve shear, cut, and resiliency, as well as adhesion to other components.
  • Without being bound to any particular theory, it has now been discovered that the use of an amine-terminated polytetramethylene ether glycol (PTMEG) and/or an amine-terminated copolymer of PTMEG and polypropylene glycol (PPG) in the prepolymer or as a curing agent provide enhanced shear, cut, and resiliency as compared to conventional polyurea elastomers. For example, the compositions of the invention have improved durability and performance characteristics over that of a polyurea composition formed with amine-terminated PPG.
  • The polyurea-based compositions of this invention may be formed in several ways: a) from a prepolymer that is the reaction product of an isocyanate-containing component and amine-terminated PTMEG chain extended with a curing agent; b) from a prepolymer that is the reaction product of an isocyanate-containing component and an amine-terminated copolymer of PTMEG and PPG chain extended with a curing agent; c) from a prepolymer that is the reaction product of a polyurea-based prepolymer chain extended with an amine-terminated PTMEG; and d) from a prepolymer that is the reaction product of a polyurea-based prepolymer chain extended with an amine-terminated copolymer of PTMEG and PPG.
  • For example, the compositions of the invention may be prepared from at least one isocyanate-containing component, at least one amine-terminated copolymer of PTMEG and PPG, preferably a secondary diamine, and at least one amine-terminated curing agent, preferably a secondary aliphatic diamine or primary aromatic diamine curing agent. The presence of PTMEG in the backbone provides better shear resistance as compared to a backbone including only PPG.
  • Commercially-available amine-terminated PTMEG and/or copolymer of PTMEG and PPG include those sold by Huntsman Chemical under the tradenames XTJ-559, XTG-604, XTG-605, and XTG-653.
  • As briefly discussed above, some amines may be unsuitable for reaction with the isocyanate because of the rapid reaction between the two components. In particular, shorter chain amines are fast reacting. In one embodiment, however, a hindered secondary diamine may be suitable for use in the prepolymer. Without being bound to any particular theory, it is believed that an amine with a high level of stearic hindrance, e.g., a tertiary butyl group on the nitrogen atom, has a slower reaction rate than an amine with no hindrance or a low level of hindrance. For example, 4,4′-bis-(sec-butylamino)-dicyclohexylmethane (CLEARLINK® 1000) may be suitable for use in combination with an isocyanate to form the polyurea prepolymer.
  • Any isocyanate available to one of ordinary skill in the art is suitable for use in the polyurea prepolymer. Isocyanates for use with the present invention include aliphatic, cycloaliphatic, araliphatic, aromatic, any derivatives thereof, and combinations of these compounds having two or more isocyanate (NCO) groups per molecule. The isocyanates may be organic polyisocyanate-terminated prepolymers. The isocyanate-containing reactable component may also include any isocyanate-functional monomer, dimer, trimer, or multimeric adduct thereof, prepolymer, quasi-prepolymer, or mixtures thereof. Isocyanate-functional compounds may include monoisocyanates or polyisocyanates that include any isocyanate functionality of two or more.
  • Suitable isocyanate-containing components include diisocyanates having the generic structure: O═C═N—R—N═C═O, where R is preferably a cyclic, aromatic, or linear or branched hydrocarbon moiety containing from about 1 to about 20 carbon atoms. The diisocyanate may also contain one or more cyclic groups or one or more phenyl groups. When multiple cyclic or aromatic groups are present, linear and/or branched hydrocarbons containing from about 1 to about 10 carbon atoms can be present as spacers between the cyclic or aromatic groups. In some cases, the cyclic or aromatic group(s) may be substituted at the 2-, 3-, and/or 4-positions, or at the ortho-, meta-, and/or para-positions, respectively. Substituted groups may include, but are not limited to, halogens, primary, secondary, or tertiary hydrocarbon groups, or a mixture thereof. Copolymeric isocyanates, such as Bayer Desmodur® HL, which is a copolymer of TDI and HDI, are preferred.
  • Examples of diisocyanates that can be used with the present invention include, but are not limited to, substituted and isomeric mixtures including 2,2′-, 2,4′-, and 4,4′-diphenylmethane diisocyanate; 3,3′-dimethyl-4,4′-biphenylene diisocyanate; toluene diisocyanate; polymeric MDI; carbodiimide-modified liquid 4,4′-diphenylmethane diisocyanate; para-phenylene diisocyanate; meta-phenylene diisocyanate; triphenyl methane-4,4′- and triphenyl methane-4,4′-triisocyanate; naphthylene-1,5-diisocyanate; 2,4′-, 4,4′-, and 2,2-biphenyl diisocyanate; polyphenyl polymethylene polyisocyanate; mixtures of MDI and PMDI; mixtures of PMDI and TDI; ethylene diisocyanate; propylene-1,2-diisocyanate; tetramethylene-1,2-diisocyanate; tetramethylene-1,3-diisocyanate; tetramethylene-1,4-diisocyanate; 1,6-hexamethylene-diisocyanate; octamethylene diisocyanate; decamethylene diisocyanate; 2,2,4-trimethylhexamethylene diisocyanate; 2,4,4-trimethylhexamethylene diisocyanate; dodecane-1,12-diisocyanate; cyclobutane-1,3-diisocyanate; cyclohexane-1,2-diisocyanate; cyclohexane-1,3-diisocyanate; cyclohexane-1,4-diisocyanate; methyl-cyclohexylene diisocyanate; 2,4-methylcyclohexane diisocyanate; 2,6-methylcyclohexane diisocyanate; 4,4′-dicyclohexyl diisocyanate; 2,4′-dicyclohexyl diisocyanate; 1,3,5-cyclohexane triisocyanate; isocyanatomethylcyclohexane isocyanate; 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane; isocyanatoethylcyclohexane isocyanate; bis(isocyanatomethyl)-cyclohexane diisocyanate; 4,4′-bis(isocyanatomethyl)dicyclohexane; 2,4′-bis(isocyanatomethyl)dicyclohexane; isophorone diisocyanate; triisocyanate of HDI; triisocyanate of 2,2,4-trimethyl-1,6-hexane diisocyanate; 4,4′ dicyclohexylmethane diisocyanate; 2,4-hexahydrotoluene diisocyanate; 2,6-hexahydrotoluene diisocyanate; 1,2-, 1,3-, and 1,4-phenylene diisocyanate; aromatic aliphatic isocyanate, such as 1,2-, 1,3-, and 1,4-xylene diisocyanate; meta-tetramethylxylene diisocyanate; para-tetramethylxylene diisocyanate; trimerized isocyanurate of any polyisocyanate, such as isocyanurate of toluene diisocyanate, trimer of diphenylmethane diisocyanate, trimer of tetramethylxylene diisocyanate, isocyanurate of hexamethylene diisocyanate, isocyanurate of isophorone diisocyanate, and mixtures thereof; dimerized uredione of any polyisocyanate, such as uretdione of toluene diisocyanate, uretdione of hexamethylene diisocyanate, and mixtures thereof; modified polyisocyanate derived from the above isocyanates and polyisocyanates; and mixtures thereof.
  • Examples of saturated diisocyanates that can be used with the present invention include, but are not limited to, ethylene diisocyanate; propylene-1,2-diisocyanate; tetramethylene diisocyanate; tetramethylene-1,4-diisocyanate; 1,6-hexamethylene-diisocyanate; octamethylene diisocyanate; decamethylene diisocyanate; 2,2,4-trimethylhexamethylene diisocyanate; 2,4,4-trimethylhexamethylene diisocyanate; dodecane-1,12-diisocyanate; cyclobutane-1,3-diisocyanate; cyclohexane-1,2-diisocyanate; cyclohexane-1,3-diisocyanate; cyclohexane-1,4-diisocyanate; methyl-cyclohexylene diisocyanate; 2,4-methylcyclohexane diisocyanate; 2,6-methylcyclohexane diisocyanate; 4,4′-dicyclohexyl diisocyanate; 2,4′-dicyclohexyl diisocyanate; 1,3,5-cyclohexane triisocyanate; isocyanatomethylcyclohexane isocyanate; 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane; isocyanatoethylcyclohexane isocyanate; bis(isocyanatomethyl)-cyclohexane diisocyanate; 4,4′-bis(isocyanatomethyl)dicyclohexane; 2,4′-bis(isocyanatomethyl)dicyclohexane; isophorone diisocyanate; triisocyanate of HDI; triisocyanate of 2,2,4-trimethyl-1,6-hexane diisocyanate; 4,4′ dicyclohexylmethane diisocyanate; 2,4-hexahydrotoluene diisocyanate; 2,6-hexahydrotoluene diisocyanate; and mixtures thereof. Aromatic aliphatic isocyanates may also be used to form light stable materials. Examples of such isocyanates include 1,2-, 1,3-, and 1,4-xylene diisocyanate; meta-tetramethylxylene diisocyanate; para-tetramethylxylene diisocyanate; trimerized isocyanurate of any polyisocyanate, such as isocyanurate of toluene diisocyanate, trimer of diphenylmethane diisocyanate, trimer of tetramethylxylene diisocyanate, isocyanurate of hexamethylene diisocyanate, isocyanurate of isophorone diisocyanate, and mixtures thereof; dimerized uredione of any polyisocyanate, such as uretdione of toluene diisocyanate, uretdione of hexamethylene diisocyanate, and mixtures thereof; modified polyisocyanate derived from the above isocyanates and polyisocyanates; and mixtures thereof. In addition, the aromatic aliphatic isocyanates may be mixed with any of the saturated isocyanates listed above for the purposes of this invention.
  • The number of unreacted NCO groups in the polyurea prepolymer of isocyanate and polyether amine may be varied to control such factors as the speed of the reaction, the resultant hardness of the composition, and the like. For instance, the number of unreacted NCO groups in the polyurea prepolymer of isocyanate and polyether amine may be less than about 14 percent. In one embodiment, the polyurea prepolymer has from about 5 percent to about 11 percent unreacted NCO groups, and even more preferably has from about 6 to about 9.5 percent unreacted NCO groups. In one embodiment, the percentage of unreacted NCO groups is about 3 percent to about 9 percent. Alternatively, the percentage of unreacted NCO groups in the polyurea prepolymer may be about 7.5 percent or less, and more preferably, about 7 percent or less. In another embodiment, the unreacted NCO content is from about 2.5 percent to about 7.5 percent, and more preferably from about 4 percent to about 6.5 percent.
  • When formed, polyurea prepolymers may contain about 10 percent to about 20 percent by weight of the prepolymer of free isocyanate monomer. Thus, in one embodiment, the polyurea prepolymer may be stripped of the free isocyanate monomer. For example, after stripping, the prepolymer may contain about 1 percent or less free isocyanate monomer. In another embodiment, the prepolymer contains about 0.5 percent by weight or less of free isocyanate monomer.
  • The polyether amine may be blended with additional polyols to formulate copolymers that are reacted with excess isocyanate to form the polyurea prepolymer. In one embodiment, less than about 30 percent polyol by weight of the copolymer is blended with the saturated polyether amine. In another embodiment, less than about 20 percent polyol by weight of the copolymer, preferably less than about 15 percent by weight of the copolymer, is blended with the polyether amine. The polyols listed above with respect to the polyurethane prepolymer, e.g., polyether polyols, polycaprolactone polyols, polyester polyols, polycarbonate polyols, hydrocarbon polyols, other polyols, and mixtures thereof, are also suitable for blending with the polyether amine. The molecular weight of these polymers may be from about 200 to about 4000, but also may be from about 1000 to about 3000, and more preferably are from about 1500 to about 2500.
  • The polyurea composition can be formed by crosslinking the polyurea prepolymer with a single curing agent or a blend of curing agents. The curing agent of the invention is preferably an amine-terminated curing agent, more preferably a secondary diamine curing agent so that the composition contains only urea linkages. In one embodiment, the amine-terminated curing agent may have a molecular weight of about 64 or greater. In another embodiment, the molecular weight of the amine-curing agent is about 2000 or less. As discussed above, certain amine-terminated curing agents may be modified with a compatible amine-terminated freezing point depressing agent or mixture of compatible freezing point depressing agents.
  • Suitable amine-terminated curing agents include, but are not limited to, ethylene diamine; hexamethylene diamine; 1-methyl-2,6-cyclohexyl diamine; tetrahydroxypropylene ethylene diamine; 2,2,4- and 2,4,4-trimethyl-1,6-hexanediamine; 4,4′-bis-(sec-butylamino)-dicyclohexylmethane; 1,4-bis-(sec-butylamino)-cyclohexane; 1,2-bis-(sec-butylamino)-cyclohexane; derivatives of 4,4′-bis-(sec-butylamino)-dicyclohexylmethane; 4,4′-dicyclohexylmethane diamine; 1,4-cyclohexane-bis-(methylamine); 1,3-cyclohexane-bis-(methylamine); diethylene glycol di-(aminopropyl)ether; 2-methylpentamethylene-diamine; diaminocyclohexane; diethylene triamine; triethylene tetramine; tetraethylene pentamine; propylene diamine; 1,3-diaminopropane; dimethylamino propylamine; diethylamino propylamine; dipropylene triamine; imido-bis-propylamine; monoethanolamine, diethanolamine; triethanolamine; monoisopropanolamine, diisopropanolamine; isophoronediamine; 4,4′-methylenebis-(2-chloroaniline); 3,5;dimethylthio-2,4-toluenediamine; 3,5-dimethylthio-2,6-toluenediamine; 3,5-diethylthio-2,4-toluenediamine; 3,5;diethylthio-2,6-toluenediamine; 4,4′-bis-(sec-butylamino)-diphenylmethane and derivatives thereof; 1,4-bis-(sec-butylamino)-benzene; 1,2-bis-(sec-butylamino)-benzene; N,N′-dialkylamino-diphenylmethane; N,N,N′,N′-tetrakis(2-hydroxypropyl)ethylene diamine; trimethyleneglycol-di-p-aminobenzoate; polytetramethyleneoxide-di-p-aminobenzoate; 4,4′-methylenebis-(3-chloro-2,6-diethyleneaniline); 4,4′-methylenebis-(2,6-diethylaniline); meta-phenylenediamine; paraphenylenediamine; and mixtures thereof. In one embodiment, the amine-terminated curing agent is 4,4′-bis-(sec-butylamino)-dicyclohexylmethane.
  • Suitable saturated amine-terminated curing agents include, but are not limited to, ethylene diamine; hexamethylene diamine; 1-methyl-2,6-cyclohexyl diamine; tetrahydroxypropylene ethylene diamine; 2,2,4- and 2,4,4-trimethyl-1,6-hexanediamine; 4,4′-bis-(sec-butylamino)-dicyclohexylmethane; 1,4-bis-(sec-butylamino)-cyclohexane; 1,2-bis-(sec-butylamino)-cyclohexane; derivatives of 4,4′-bis-(sec-butylamino)-dicyclohexylmethane; 4,4′-dicyclohexylmethane diamine; 4,4′-methylenebis-(2,6-diethylaminocyclohexane; 1,4-cyclohexane-bis-(methylamine); 1,3-cyclohexane-bis-(methylamine); diethylene glycol di-(aminopropyl)ether; 2-methylpentamethylene-diamine; diaminocyclohexane; diethylene triamine; triethylene tetramine; tetraethylene pentamine; propylene diamine; 1,3-diaminopropane; dimethylamino propylamine; diethylamino propylamine; imido-bis-propylamine; monoethanolamine, diethanolamine; triethanolamine; monoisopropanolamine, diisopropanolamine; isophoronediamine; triisopropanolamine; and mixtures thereof. In addition, any of the polyether amines listed above may be used as curing agents to react with the polyurea prepolymers.
  • Any of the above inner or outer cover layer materials may also comprise additives known in the art, such as anti-oxidants, dyes, pigments, colorants, stabilizers, flame retardants, drip retardants, crystallization nucleators, metal salts, antistatic agents, plasticizers, lubricants, and combinations comprising two or more of the foregoing additives. Effective amounts are typically less than 5 wt %, based on the total weight of the composition, preferably 0.25 wt % to 2 wt %.
  • The layer compositions may also comprise fillers, including reinforcing fillers. Exemplary fillers include small particle minerals (e.g., clay, mica, talc, and the like), glass fibers, nanoparticles, organoclay, and the like and combinations comprising one or more of the foregoing fillers. Fillers are typically used in amounts of 5 wt % to 50 wt %, based on the total weight of the composition.
  • An optional filler component may be chosen to impart additional density to blends of the previously described components. The selection of such filler(s) is dependent upon the type of golf ball desired (i.e., one-piece, two-piece multi-component, or wound). Examples of useful fillers include zinc oxide, barium sulfate, calcium oxide, calcium carbonate and silica, as well as the other well known corresponding salts and oxides thereof. Additives, such as nanoparticles, glass spheres, and various metals, such as titanium and tungsten, can be added to the polyurethane compositions of the present invention, in amounts as needed, for their well-known purposes. Additional components which can be added to the polyurethane composition include UV stabilizers and other dyes, as well as optical brighteners and fluorescent pigments and dyes. Such additional ingredients may be added in any amounts that will achieve their desired purpose.
  • Any method known to one of ordinary skill in the art may be used to combine the polyisocyanate, polyol, and curing agent of the present invention. One commonly employed method, known in the art as a one-shot method, involves concurrent mixing of the polyisocyanate, polyol, and curing agent. This method results in a mixture that is inhomogenous (more random) and affords the manufacturer less control over the molecular structure of the resultant composition. A preferred method of mixing is known as a prepolymer method. In this method, the polyisocyanate and the polyol are mixed separately prior to addition of the curing agent. This method affords a more homogeneous mixture resulting in a more consistent polymer composition.
  • Due to the very thin nature, it has been found by the present invention that the use of a castable, reactive material, which is applied in a fluid form, makes it possible to obtain very thin outer cover layers on golf balls. Specifically, it has been found that castable, reactive liquids, which react to form a urethane elastomer material, provide desirable very thin outer cover layers.
  • The castable, reactive liquid employed to form the urethane elastomer material can be applied over the core using a variety of application techniques such as spraying, dipping, spin coating, or flow coating methods which are well known in the art. An example of a suitable coating technique is that which is disclosed in U.S. Pat. No. 5,733,428, the disclosure of which is hereby incorporated by reference in its entirety by reference thereto.
  • The outer cover is preferably formed around the core and inner cover layer by mixing and introducing the material in the mold halves. It is important that the viscosity be measured over time, so that the subsequent steps of filling each mold half, introducing the core into one half and closing the mold can be properly timed for accomplishing centering of the core cover halves fusion and achieving overall uniformity. Suitable viscosity range of the curing urethane mix for introducing cores into the mold halves is determined to be approximately between about 2,000 cP and about 30,000 cP, with the preferred range of about 8,000 cP to about 15,000 cP.
  • To start the outer cover formation, mixing of the prepolymer and curative is accomplished in a motorized mixer including mixing head by feeding through lines metered amounts of curative and prepolymer. Top preheated mold halves are filled and placed in fixture units using pins moving into holes in each mold. After the reacting materials have resided in top mold halves for about 40 to about 80 seconds, a core is lowered at a controlled speed into the gelling reacting mixture. At a later time, a bottom mold half or a series of bottom mold halves have similar mixture amounts introduced into the cavity.
  • A ball cup holds the ball core through reduced pressure (or partial vacuum). Upon location of the coated core in the halves of the mold after gelling for about 40 to about 80 seconds, the vacuum is released allowing core to be released. The mold halves, with core and solidified cover half thereon, are removed from the centering fixture unit, inverted and mated with other mold halves which, at an appropriate time earlier, have had a selected quantity of reacting polyurethane prepolymer and curing agent introduced therein to commence gelling.
  • Similarly, U.S. Pat. Nos. 5,006,297 and 5,334,673 both disclose suitable molding techniques which may be utilized to apply the castable reactive liquids employed in the present invention. Further, U.S. Pat. Nos. 6,180,040 and 6,180,722 disclose methods of preparing dual core golf balls. The disclosures of these patents are hereby incorporated by reference in their entirety.
  • Other methods of molding include reaction injection molding (RIM) where two liquid components are injected into a mold holding a pre-positioned core. The liquid components react to form a solid, thermoset polymeric composition, typically a polyurethane or polyurea.
  • The golf balls of the present invention typically have a COR of greater than about 0.775, preferably greater than about 0.795, and more preferably greater than about 0.800. The golf balls also typically have an Atti compression of at least about 40, preferably from about 50 to 120, and more preferably from about 60 to 110. As used herein, the term “Atti compression” is defined as the deflection of an object or material relative to the deflection of a calibrated spring, as measured with an Atti Compression Gauge, that is commercially available from Atti Engineering Corp. of Union City, N.J. Atti compression is typically used to measure the compression of a golf ball. When the Atti Gauge is used to measure cores having a diameter of less than 1.680 inches, it should be understood that a metallic or other suitable shim is used to normalize the diameter of the measured object to 1.680 inches.
  • It should be understood that there is a fundamental difference between ‘material hardness’ and ‘hardness’ (as measured directly on a curved surface, such as a golf ball). Material hardness is defined by the procedure set forth in ASTM-D2240 and generally involves measuring the hardness of a flat “slab” or “button” formed of the material of which the hardness is to be measured. Hardness, when measured directly on a golf ball (or other spherical surface) is a different measurement and, therefore, many times produces a different hardness value. This difference results from a number of factors including, but not limited to, ball construction (i.e., core type, number of core and/or cover layers, etc.), ball (or sphere) diameter, and the material composition of adjacent layers (especially measuring soft, very thin layers over a layer from a harder material). It should also be understood that the two measurement techniques are not linearly related and, therefore, one hardness value cannot easily be correlated to the other. As used herein, the term “hardness” refers to hardness measured on the curved surface of the layer being measured (i.e., sphere including core+inner cover or sphere including core+inner cover+outer cover).
  • The inner cover layer has a hardness of about 45 to 80 Shore D, preferably about 50 to 68 Shore D, and more preferably about 55 to 65 Shore D. In preferred embodiments, the inner cover layer preferably has a hardness of 55 to 60 Shore D, more preferably 56 to 59 Shore D, most preferably 57 to 58 Shore D. Alternatively, the inner cover layer has a hardness of about 55 to 100 Shore C, preferably about 66 to 95 Shore C, and more preferably about 74 to 86 Shore C. In preferred embodiments, the inner cover layer preferably has a hardness of 76 to 85 Shore C, more preferably 78 to 84 Shore C, most preferably 80 to 83 Shore C.
  • The outer cover layer has a hardness of about 35 to 65 Shore D, preferably about 40 to 55 Shore D, and more preferably about 45 to 50 Shore D. In preferred embodiments, the outer cover layer preferably has a hardness of 55 to 60 Shore D, more preferably 56 to 59 Shore D, most preferably 57 to 58 Shore D. Alternatively, the outer cover layer has a hardness of about 55 to 90 Shore C, preferably about 62 to 86 Shore C, and more preferably about 68 to 82 Shore C. In preferred embodiments, the outer cover layer preferably has a hardness of 76 to 85 Shore C, more preferably 78 to 84 Shore C, most preferably 80 to 83 Shore C.
  • In a particularly preferred embodiment, a golf ball is formed from a core, an inner cover layer and an outer cover layer. The core is a single, solid core having an outer diameter of about 1.52 inches. The inner cover layer is formed from a thermoplastic polyurethane or a thermoplastic polyurea and has a thickness of about 0.035 inches and a hardness of about 58 Shore D. Alternatively, the inner cover layer has a hardness of about 82 Shore C. The outer cover layer is formed from a thermosetting polyurea and has a thickness of about 0.030 inches and a hardness of about 57 Shore D. Alternatively, the outer cover layer has a hardness of about 80 Shore C.
  • The relationship between the inner cover layer and the outer cover layer is also important to the golf ball of the present invention. The outer cover layer has a first hardness and the inner cover layer has a second hardness. The second hardness is greater than the first hardness. The second hardness is at least 5 Shore D greater than the first hardness, preferably at least 10 Shore D greater than the first hardness, more preferably at least 15 Shore D greater than the first hardness, and most preferably at least 20 Shore D greater than the first hardness.
  • The core of the present invention has an Atti compression of between about 50 and about 90, more preferably, between about 60 and about 85, and most preferably, between about 70 and about 80. The outer diameter of the core is about 1.45 inches to 1.58 inches, more preferably about 1.50 inches to 1.56 inches, most preferably about 1.51 inches to 1.55 inches.
  • The thickness of the inner cover layer is preferably about 0.010 inches to 0.075 inches, more preferably about 0.030 inches to 0.060 inches, most preferably about 0.035 inches to 0.050 inches. The thickness of the outer cover layer is preferably about 0.005 inches to 0.045 inches, more preferably about 0.020 inches to 0.040 inches, and most preferably about 0.025 inches to 0.035 inches.
  • The golf ball can have an overall diameter of any size. While the United States Golf Association limits the minimum size of a golf ball to 1.680 inches, there is no maximum diameter. The golf ball diameter is preferably about 1.68 inches to 1.74 inches, more preferably about 1.68 inches to about 1.70 inches, and most preferably about 1.68 inches.
  • While any of the embodiments herein may have any known dimple number and pattern, a preferred number of dimples is 252 to 456, and more preferably is 330 to 392. The dimples may comprise any width, depth, and edge angle disclosed in the prior art and the patterns may comprises multitudes of dimples having different widths, depths and edge angles. Typical dimple coverage is greater than about 60%, preferably greater than about 65%, and more preferably greater than about 75%. The parting line configuration of said pattern may be either a straight line or a staggered wave parting line (SWPL). Most preferably the dimple number is 330, 332, or 392 and comprises 5 to 7 dimples sizes and the parting line is a SWPL.
  • Other than in the operating examples, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials and others in the specification may be read as if prefaced by the word “about” even though the term “about” may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
  • Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements. Furthermore, when numerical ranges of varying scope are set forth herein, it is contemplated that any combination of these values inclusive of the recited values may be used.
  • While it is apparent that the illustrative embodiments of the invention disclosed herein fulfill the objective stated above, it is appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments, which would come within the spirit and scope of the present invention.

Claims (16)

1. A golf ball comprising:
a core; and
a cover disposed about the core, the cover consisting of:
an inner cover layer comprising a stiff thermoplastic polyurethane or polyurea and having a hardness from 45 Shore D to 80 Shore D; and
an outer cover layer having a hardness from 40 Shore D to 65 Shore D;
wherein the outer cover layer comprises a polyurethane, a polyurea, or a urethane-urea blend and the inner cover layer hardness is greater than the outer cover layer hardness by at least 5 Shore D.
2. The golf ball of claim 1, wherein the inner layer hardness is greater than the outer cover layer hardness by at least 10 Shore D.
3. The golf ball of claim 2, wherein the inner layer hardness is greater than the outer cover layer hardness by at least 15 Shore D.
4. The golf ball of claim 1, wherein the inner cover layer hardness is 61 Shore D to 75 Shore D.
5. The golf ball of claim 4, wherein the inner cover layer hardness is 64 Shore D to 72 Shore D.
6. The golf ball of claim 5, wherein the outer cover layer hardness is from 52 Shore D to 62 Shore D.
7. The golf ball of claim 1, wherein the polyurethane, polyurea, or urethane-urea of the outer cover layer is a castable thermoset or reaction injection moldable thermoset.
8. The golf ball of claim 1, wherein the outer cover comprises is a polyurea that is a castable thermoset material and the inner cover layer is a polyurethane comprising a polycarbonate-polyurethane.
9. The golf ball of claim 1, wherein the core comprises a center and at least one outer core layer.
10. The golf ball of claim 1, wherein the center is a single solid layer formed from a homogeneous composition.
11. The golf ball of claim 1, wherein the inner cover layer further comprises a polycarbonate, an acrylonitrile-butadiene-styrene block copolymer, a polyamide, a polyolefin, or a mixture thereof.
12. The golf ball of claim 1, wherein a combination of the inner cover and the outer cover have a total thickness of 0.090 inches or less.
13. The golf ball of claim 12, wherein the total thickness is 0.085 inches or less.
14. The golf ball of claim 13, wherein the total thickness is 0.075 inches or less.
15. A golf ball comprising:
a core; and
a cover disposed about the core, the cover consisting of:
an inner cover layer comprising a thermoplastic polycarbonate-polyurethane copolymer and having a hardness from 50 Shore D to 80 Shore D; and
an outer cover layer comprising a castable thermoset polyurea and having a hardness from 45 Shore D to 65 Shore D;
wherein the inner cover layer hardness is greater than the outer cover layer hardness by at least 5 Shore D.
16. A golf ball comprising:
a core; and
a cover disposed about the core, the cover consisting of:
an inner cover layer comprising a thermoplastic polycarbonate-polyurethane copolymer and having a hardness from 55 Shore D to 68 Shore D; and
an outer cover layer comprising a castable thermoset polyurea and having a hardness from 45 Shore D to 55 Shore D;
wherein the inner cover layer hardness is greater than the outer cover layer hardness by at least 5 Shore D, the inner cover layer has a thickness of 0.035 inches to 0.050 inches, and the outer cover layer has a thickness of 0.025 inches to 0.035 inches.
US12/408,949 2009-03-23 2009-03-23 Golf ball having a stiff tpu inner cover and a cast thermoset outer cover Abandoned US20100240470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/408,949 US20100240470A1 (en) 2009-03-23 2009-03-23 Golf ball having a stiff tpu inner cover and a cast thermoset outer cover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/408,949 US20100240470A1 (en) 2009-03-23 2009-03-23 Golf ball having a stiff tpu inner cover and a cast thermoset outer cover

Publications (1)

Publication Number Publication Date
US20100240470A1 true US20100240470A1 (en) 2010-09-23

Family

ID=42738138

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/408,949 Abandoned US20100240470A1 (en) 2009-03-23 2009-03-23 Golf ball having a stiff tpu inner cover and a cast thermoset outer cover

Country Status (1)

Country Link
US (1) US20100240470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123633A (en) * 2014-12-26 2016-07-11 ダンロップスポーツ株式会社 Golf ball

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2A (en) * 1826-12-15 1836-07-29 mode of manufacturing wool or other fibrous materials
US5334673A (en) * 1990-07-20 1994-08-02 Acushnet Co. Polyurethane golf ball
US5484870A (en) * 1993-06-28 1996-01-16 Acushnet Company Polyurea composition suitable for a golf ball cover
US5530083A (en) * 1994-07-21 1996-06-25 General Electric Company Silicone-polycarbonate block copolymers and polycarbonate blends having reduced haze, and method for making
US5863627A (en) * 1997-08-26 1999-01-26 Cardiotech International, Inc. Hydrolytically-and proteolytically-stable polycarbonate polyurethane silicone copolymers
US6056650A (en) * 1997-07-30 2000-05-02 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US6117025A (en) * 1995-06-15 2000-09-12 Spalding Sports Worldwide, Inc. Golf ball with cover having at least three layers
US6129640A (en) * 1998-03-16 2000-10-10 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US6135898A (en) * 1998-03-16 2000-10-24 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US6231460B1 (en) * 1998-03-16 2001-05-15 Bridgestone Sports Co., Ltd. Multilayer structure solid golf ball
US6506851B2 (en) * 1999-12-17 2003-01-14 Acushnet Company Golf ball comprising saturated polyurethanes and methods of making same
US20030078343A1 (en) * 2001-10-22 2003-04-24 Harris Kevin M. Golf balls with segmented polyurethane
US20030078341A1 (en) * 2001-10-22 2003-04-24 Harris Kevin M. Golf balls with thermoplastic polycarbonate-urethane copolymers
US6561928B2 (en) * 1993-04-28 2003-05-13 Spalding Sports Worldwide, Inc. Golf ball with multi-layer cover
US6677401B2 (en) * 1995-01-24 2004-01-13 Acushnet Company Multi-layer golf ball with a thin, castable outer layer
US6685579B2 (en) * 2001-04-10 2004-02-03 Acushnet Company Multi-layer cover polyurethane golf ball
US6685580B2 (en) * 2001-03-23 2004-02-03 Acushnet Company Three-layer cover for a golf ball including a thin dense layer
US6705956B1 (en) * 1998-12-28 2004-03-16 Sumitomo Rubber Industries, Ltd. Four-piece solid golf ball
US6736737B2 (en) * 2000-12-25 2004-05-18 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US6739987B2 (en) * 2001-10-22 2004-05-25 Acushnet Company Golf balls with thermoplastic silicone-urethane copolymers
US6743122B2 (en) * 1998-08-20 2004-06-01 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US20040162161A1 (en) * 2003-02-13 2004-08-19 Satoshi Iwami Multi-piece solid golf ball
US6835794B2 (en) * 1999-12-17 2004-12-28 Acushnet Company Golf balls comprising light stable materials and methods of making the same
US6855074B2 (en) * 2002-08-23 2005-02-15 Sumitomo Rubber Industries, Ltd. Multi-piece solid golf ball
US6872774B2 (en) * 2001-11-16 2005-03-29 Acushnet Company Golf ball with non-ionomeric layer
US6910974B2 (en) * 2002-03-08 2005-06-28 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US6996849B2 (en) * 2000-03-20 2006-02-14 Lomedico Philip R Batting pad for protecting a batter's hand
US7005479B2 (en) * 1997-05-27 2006-02-28 Acushnet Company Golf ball with rigid intermediate layer
US7131915B2 (en) * 2001-04-10 2006-11-07 Acushnet Company Three-layer-cover golf ball
US7331878B2 (en) * 2004-02-06 2008-02-19 Acushnet Company Multi-layer golf ball having velocity gradient from slower center to faster cover
US7358305B2 (en) * 1995-06-07 2008-04-15 Acushnet Company Golf balls containing impact modified non-ionic thermoplastic polycarbonate/polyester copolymers or blends
US20080161136A1 (en) * 2006-12-27 2008-07-03 Sri Sports Limited Golf ball
US7427243B2 (en) * 2002-06-13 2008-09-23 Acushnet Company Golf ball with multiple cover layers

Patent Citations (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2A (en) * 1826-12-15 1836-07-29 mode of manufacturing wool or other fibrous materials
US5334673A (en) * 1990-07-20 1994-08-02 Acushnet Co. Polyurethane golf ball
US6561928B2 (en) * 1993-04-28 2003-05-13 Spalding Sports Worldwide, Inc. Golf ball with multi-layer cover
US5484870A (en) * 1993-06-28 1996-01-16 Acushnet Company Polyurea composition suitable for a golf ball cover
US5530083A (en) * 1994-07-21 1996-06-25 General Electric Company Silicone-polycarbonate block copolymers and polycarbonate blends having reduced haze, and method for making
US6677401B2 (en) * 1995-01-24 2004-01-13 Acushnet Company Multi-layer golf ball with a thin, castable outer layer
US7358305B2 (en) * 1995-06-07 2008-04-15 Acushnet Company Golf balls containing impact modified non-ionic thermoplastic polycarbonate/polyester copolymers or blends
US6394914B1 (en) * 1995-06-15 2002-05-28 Spalding Sports Worldwide, Inc. Golf ball with cover having at least three layers
US6117025A (en) * 1995-06-15 2000-09-12 Spalding Sports Worldwide, Inc. Golf ball with cover having at least three layers
US6152834A (en) * 1995-06-15 2000-11-28 Spalding Sports Worldwide, Inc. Multi-layer golf ball
US7005479B2 (en) * 1997-05-27 2006-02-28 Acushnet Company Golf ball with rigid intermediate layer
US6056650A (en) * 1997-07-30 2000-05-02 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US5863627A (en) * 1997-08-26 1999-01-26 Cardiotech International, Inc. Hydrolytically-and proteolytically-stable polycarbonate polyurethane silicone copolymers
US6231460B1 (en) * 1998-03-16 2001-05-15 Bridgestone Sports Co., Ltd. Multilayer structure solid golf ball
US6135898A (en) * 1998-03-16 2000-10-24 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US6129640A (en) * 1998-03-16 2000-10-10 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US6743122B2 (en) * 1998-08-20 2004-06-01 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US6705956B1 (en) * 1998-12-28 2004-03-16 Sumitomo Rubber Industries, Ltd. Four-piece solid golf ball
US6506851B2 (en) * 1999-12-17 2003-01-14 Acushnet Company Golf ball comprising saturated polyurethanes and methods of making same
US6835794B2 (en) * 1999-12-17 2004-12-28 Acushnet Company Golf balls comprising light stable materials and methods of making the same
US6996849B2 (en) * 2000-03-20 2006-02-14 Lomedico Philip R Batting pad for protecting a batter's hand
US6736737B2 (en) * 2000-12-25 2004-05-18 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US6685580B2 (en) * 2001-03-23 2004-02-03 Acushnet Company Three-layer cover for a golf ball including a thin dense layer
US7131915B2 (en) * 2001-04-10 2006-11-07 Acushnet Company Three-layer-cover golf ball
US6685579B2 (en) * 2001-04-10 2004-02-03 Acushnet Company Multi-layer cover polyurethane golf ball
US7037217B2 (en) * 2001-10-22 2006-05-02 Acushnet Company Golf balls with thermoplastic silicone-urethane copolymers
US6855793B2 (en) * 2001-10-22 2005-02-15 Acushnet Company Golf balls with thermoplastic polycarbonate-urethane copolymers
US6739987B2 (en) * 2001-10-22 2004-05-25 Acushnet Company Golf balls with thermoplastic silicone-urethane copolymers
US20030078341A1 (en) * 2001-10-22 2003-04-24 Harris Kevin M. Golf balls with thermoplastic polycarbonate-urethane copolymers
US20030078343A1 (en) * 2001-10-22 2003-04-24 Harris Kevin M. Golf balls with segmented polyurethane
US6872774B2 (en) * 2001-11-16 2005-03-29 Acushnet Company Golf ball with non-ionomeric layer
US6910974B2 (en) * 2002-03-08 2005-06-28 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US7427243B2 (en) * 2002-06-13 2008-09-23 Acushnet Company Golf ball with multiple cover layers
US6855074B2 (en) * 2002-08-23 2005-02-15 Sumitomo Rubber Industries, Ltd. Multi-piece solid golf ball
US20040162161A1 (en) * 2003-02-13 2004-08-19 Satoshi Iwami Multi-piece solid golf ball
US7331878B2 (en) * 2004-02-06 2008-02-19 Acushnet Company Multi-layer golf ball having velocity gradient from slower center to faster cover
US20080161136A1 (en) * 2006-12-27 2008-07-03 Sri Sports Limited Golf ball

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bionate thermoplastic polycarbonate-urethane material data sheet *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016123633A (en) * 2014-12-26 2016-07-11 ダンロップスポーツ株式会社 Golf ball

Similar Documents

Publication Publication Date Title
US7157512B2 (en) Golf balls comprising highly-neutralized acid polymers
US7458905B2 (en) Functionalized, crosslinked, rubber nanoparticles for use in golf ball cores
US6685579B2 (en) Multi-layer cover polyurethane golf ball
US7357735B2 (en) Fully-neutralized ionomers for use in golf ball having a large core and a thin, dense layer
US9211444B2 (en) Methods for making polyurea polymer and golf balls prepared therefrom
US8992343B2 (en) Multi-layer cover golf ball having thermoset rubber intermediate cover layer
US8430767B2 (en) Multi-layer cover golf ball having non-ionomeric intermediate cover layer
US20080234070A1 (en) Functionalized, Crosslinked, Rubber Nanoparticles for Use in Golf Ball Intermediate Layers
US8834301B2 (en) Golf ball with a non-ionomeric inner cover, stiff TPU intermediate cover, and cast thermoset outer cover
US7897671B2 (en) Method for forming a golf ball from a poly(dimethyl siloxane) ionomer
US8870685B2 (en) Golf ball having a thermosetting intermediate and outer cover and a thermoplastic inner cover
US9327168B2 (en) Methods for making polyurea and polyurethane polymers and golf balls prepared therefrom
US7465241B2 (en) Functionalized, crosslinked, rubber nanoparticles for use in golf ball castable thermoset layers
US8262510B2 (en) Golf ball with an ionomeric inner cover, stiff TPU intermediate cover, and cast thermoset outer cover
US20100240470A1 (en) Golf ball having a stiff tpu inner cover and a cast thermoset outer cover
US20150045149A1 (en) Golf ball having a thermosetting intermediate and outer cover and a thermoplastic inner cover
US10427005B2 (en) Golf balls incorporating polycyclopentene rubber

Legal Events

Date Code Title Description
AS Assignment

Owner name: ACUSHNET COMPANY, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SULLIVAN, MICHAEL J.;COMEAU, BRIAN;BINETTE, MARK L.;AND OTHERS;SIGNING DATES FROM 20090320 TO 20090323;REEL/FRAME:022434/0459

AS Assignment

Owner name: KOREA DEVELOPMENT BANK, NEW YORK BRANCH, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ACUSHNET COMPANY;REEL/FRAME:027346/0222

Effective date: 20111031

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ACUSHNET COMPANY, MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (027346/0222);ASSIGNOR:KOREA DEVELOPMENT BANK, NEW YORK BRANCH;REEL/FRAME:039939/0181

Effective date: 20160728