US20100180990A1 - Impact beam comprising precipitation hardenable stainless steel - Google Patents

Impact beam comprising precipitation hardenable stainless steel Download PDF

Info

Publication number
US20100180990A1
US20100180990A1 US12/664,121 US66412108A US2010180990A1 US 20100180990 A1 US20100180990 A1 US 20100180990A1 US 66412108 A US66412108 A US 66412108A US 2010180990 A1 US2010180990 A1 US 2010180990A1
Authority
US
United States
Prior art keywords
impact
impact beam
max
stainless steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/664,121
Inventor
Carl-Johan Irander
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sandvik Intellectual Property AB
Original Assignee
Sandvik Intellectual Property AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Intellectual Property AB filed Critical Sandvik Intellectual Property AB
Assigned to SANDVIK INTELLECTUAL PROPERTY AB reassignment SANDVIK INTELLECTUAL PROPERTY AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IRANDER, CARL-JOHAN
Publication of US20100180990A1 publication Critical patent/US20100180990A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D21/00Understructures, i.e. chassis frame on which a vehicle body may be mounted
    • B62D21/15Understructures, i.e. chassis frame on which a vehicle body may be mounted having impact absorbing means, e.g. a frame designed to permanently or temporarily change shape or dimension upon impact with another body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/04Doors arranged at the vehicle sides
    • B60J5/042Reinforcement elements
    • B60J5/0422Elongated type elements, e.g. beams, cables, belts or wires
    • B60J5/0423Elongated type elements, e.g. beams, cables, belts or wires characterised by position in the lower door structure
    • B60J5/0426Elongated type elements, e.g. beams, cables, belts or wires characterised by position in the lower door structure the elements being arranged at the beltline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/04Doors arranged at the vehicle sides
    • B60J5/042Reinforcement elements
    • B60J5/0422Elongated type elements, e.g. beams, cables, belts or wires
    • B60J5/0423Elongated type elements, e.g. beams, cables, belts or wires characterised by position in the lower door structure
    • B60J5/0429Elongated type elements, e.g. beams, cables, belts or wires characterised by position in the lower door structure the elements being arranged diagonally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/04Doors arranged at the vehicle sides
    • B60J5/042Reinforcement elements
    • B60J5/0422Elongated type elements, e.g. beams, cables, belts or wires
    • B60J5/0438Elongated type elements, e.g. beams, cables, belts or wires characterised by the type of elongated elements
    • B60J5/0443Beams
    • B60J5/0444Beams characterised by a special cross section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/007Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of special steel or specially treated steel, e.g. stainless steel or locally surface hardened steel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Definitions

  • the present invention relates to an impact beam for use in a vehicle. More specifically, the invention relates to an impact beam and related assembly, the impact beam comprising precipitation hardenable stainless steel, and a method of producing such a beam.
  • Impact beams can, for example, be designed to protect passengers in the vehicle by absorbing impact energy in a collision, through plastic and/or elastic deformation. Furthermore, impact beams can also be designed to protect objects outside the vehicle, such as pedestrians or animals. In a collision between two or more vehicles, for example in a head-on collision, an impact beam can limit the damage caused by the colliding vehicle to the oncoming vehicle, resulting in less risk of passengers in the oncoming vehicle being seriously injured. Impact beams can also be used to prevent vital machinery inside the vehicle from being damaged. In addition to absorbing impact energy an impact beam can also be designed to transmit impact energy to the vehicle frame, i.e. the chassis without the running gear, and/or the vehicle body structure, such as a door, or another impact beam.
  • Running gear in this context includes, inter alia, engine, drive shaft, transmission and suspension.
  • High strength carbon steel (tensile strength ⁇ 800 MPa) is commonly used for vehicle components designed for crash protection due to physical properties, such as high strength, good formability, and inherent capability to absorb impact energy in a crash situation.
  • ultra-high strength carbon steels tensile strength>800 MPa
  • boron steels can be used.
  • ultra-high strength carbon steels may involve formability problems as well as low ductility, which can lead to brittle cracking.
  • An example of an impact beam is disclosed in EP 1520741, wherein the beam is described as an automobile strength member comprising a rectangular steel tube.
  • Brittle cracking is identified as a problem, which arises for high strength members having tensile strengths exceeding 1470 MPa.
  • the preferred production methods include e.g. drawing, rolling or extrusion.
  • WO 02/064390 manufacturing of a lightweight vehicle door, comprising a supportive door frame that includes at least one impact beam, by hot forming particularly hot stamping, is disclosed.
  • Tensile strengths of over 1000 MPa up to 1500 MPa are expected when using boron steel.
  • one object of the present invention is to provide an impact beam for use in vehicles, which provides improved impact absorbing properties per unit of weight, wherein the impact beam can be formed by conventional hot forming techniques.
  • the stated object is achieved by the present invention in accordance with claim 1 .
  • the impact beam according to the invention, comprises precipitation hardenable stainless steel, wherein the steel has a composition, all in percent by weight, of:
  • a precipitation hardenable stainless steel in an impact beam, provides a vehicle component with improved impact absorbing properties per unit of weight, which may for example facilitate significant weight reduction of the impact beam while preserving the same energy absorption properties.
  • the present invention also relates to a method of producing an impact beam, comprising said precipitation hardenable stainless steel by hot forming, such as for example hot stamping or press hardening.
  • Press hardening is a manufacturing process for low weight, ultra-high strength components, in which simultaneous forming and quenching is utilized.
  • press hardening formation of complex geometries is made possible due to the high formability of the hot steel, and the quenching results in a component with very high yield and tensile strength, as well as high dimensional accuracy.
  • new design opportunities are available and complex designs are enabled, which, for example, may lead to space savings when assembling the vehicle body.
  • the design can also aim at controlling the absorption of the impact energy, by controlling the deformation of the beam.
  • FIG. 1 illustrates examples of impact beams in an automobile, which can comprise precipitation hardenable stainless steel, according to the present invention.
  • FIG. 2 illustrates a vehicle door with a waist rail reinforcement beam and a side impact beam.
  • FIG. 3 illustrates a cross section having two intersecting tangents.
  • FIG. 4 illustrates examples of cross section geometries for impact beams.
  • FIG. 5 illustrates examples of complex cross section geometries for impact beams.
  • FIG. 6 illustrates the setup used in the FEA (Finite Element Analysis) for a beam with circular cross section.
  • FIG. 7 illustrates the setup used in the FEA for a beam with C-shaped cross section.
  • FIG. 8 illustrates results from FEA comparing steel according to the present invention to boron steel of type Mat. No. 1.5528, using a beam with circular cross section and a wall thickness of 1.5 mm.
  • FIG. 9 illustrates results from FEA comparing steel according to the present invention to boron steel of type Mat. No. 1.5529, using a beam with circular cross section and a wall thickness of 1.5 mm.
  • the impact beam should comprise steel with ultra-high strength (>1000 MPa).
  • Ultra-high strength precipitation hardenable stainless steel provides high tensile strength combined with excellent impact absorbing properties, and is an alternative to ultra-high strength carbon steel.
  • the amount of material in the component can be reduced due to the improved energy absorbing capacity per unit of weight. Thereby, the total weight of the component, and in the end the weight of the vehicle, is reduced. This can be achieved by for example reducing the wall thickness of the impact beam.
  • an increase of strength can be achieved by manufacturing an impact beam using an ultra-high strength steel, with preserved amount of impact absorbing material.
  • An impact beam designed for crash protection can be used in several types of vehicles, such as automobiles, motorcycles, buses, trucks, caterpillars, crawlers, and tractors.
  • the beam can be joined to, or be a part of, the vehicle frame, i.e. the chassis without the running gear, or the vehicle body structure.
  • the impact beam can also be used in other types of vehicles such as motorboats, snowmobiles, or airborne vehicles such as helicopters or airplanes.
  • impact beams are important components in the floor structure of helicopters.
  • FIG. 1 illustrates examples of impact beams in an automobile.
  • the following components are identified in the figure: bumper beam 1 , side member 2 , A-pillar reinforcement 3 , front header 4 , roof beam 5 , B-pillar reinforcement 6 , floor beam 7 , door beam 8 , cross member 9 and waist rail reinforcement 10 .
  • Impact beams which are situated in more than one location for example side members 2 and A-pillar reinforcements 3 , are normally placed at corresponding sides in the vehicle and are therefore not indicated in FIG. 1 .
  • Examples of impact beams in a vehicle door 21 comprising a waist rail 22 and a side impact beam 23 are illustrated in FIG. 2 .
  • a beam is considered as a structure comprising a cross section with at least two intersecting tangents, illustrated in FIGS. 3 as t 1 and t 2 for an angle beam 31 , and t 1 ′ and t 2 ′ for beam with a circular cross section 32 , wherein the tangents define a two-dimensional plane, and wherein the structure is extended in a direction essentially perpendicular to the plane.
  • the beam can be designed in a number of different shapes and sizes.
  • FIG. 4 shows some examples of basic cross sectional shapes of impact beams: circular 41 , elliptical 42 , U-shaped 43 , C-shaped 44 or hat shaped 45 .
  • the cross section can also be of essentially square shape, essentially triangular shape, essentially tetragonal shape, essentially pentagonal shape, as well as of irregular shapes.
  • the cross section of the beam can contain one or more open sections, such as the open area A defined by t 1 and t 2 in FIG. 3 , and/or one or more closed sections, such as the area B in FIG. 3 .
  • the shape and/or the size of the cross section can either be identical or vary throughout the extension of the beam.
  • the impact beam can be adapted so as to absorb impact energy, through controlled deformation of the beam.
  • the impact beam can also be adapted so as to transmit impact energy to other parts of the vehicle frame and/or the vehicle body structure, thus directing the impact energy away from the impact zone.
  • FIG. 5 examples of complex geometrical forms of cross sections of impact beams are illustrated.
  • the cross sections illustrated in FIG. 5 are examples of a floor beam 51 , a waist rail in a vehicle door 52 , a side impact beam in a vehicle door 53 and a roof bow 54 .
  • the precipitation hardenable stainless steel should be suitable for hot forming.
  • not all precipitation hardenable stainless steels can be formed by hot forming techniques without becoming too hard during the process. If the hardness of the steel increases too much during the hot forming process, it can lead to detrimental brittle fractures and poor impact absorbing properties, which is not desirable in an impact beam.
  • precipitation hardenable stainless steels that meet the requirements stated above, inter alia excellent impact absorbing properties and possibility of hot forming are UNS S45500, UNS S45503 and UNS S46500.
  • the precipitation hardenable stainless steel is of UNS S45500 type.
  • Compositions of said precipitation hardenable stainless steels, in percent by weight, are displayed in Table 1. The balance is Fe and normally occurring impurities.
  • the precipitation hardenable stainless steel can be processed in the shape of a tube, sheet or bar, for further forming into various geometrical shapes.
  • the impact beam can either consist entirely of precipitation hardenable stainless steel, according to the invention, or comprise a member of a precipitation hardenable stainless steel in combination with another member of another material, for example other steel grades or carbon fiber.
  • the material strength is affected by the degree of processing and the conditions of any heat treatments performed.
  • the impact beam is manufactured by any conventional hot forming technique.
  • the temperature applied during hot forming is generally equal to, or exceeding, 750° C., typically around 900° C.
  • the hot forming technique is press hardening.
  • the press hardening can be followed by a precipitation hardening step.
  • the starting material for press hardening is usually in the form of a sheet, a tube or a strip, preferably the starting material is a steel sheet.
  • the impact beam may be shaped to fit an available space in the vehicle and/or shaped to provide the best impact absorption.
  • the impact beam can be a part of an impact beam assembly, wherein the impact beam is joined to at least a part of the vehicle frame, and/or the vehicle body structure, for example a vehicle door or another impact beam, by conventional techniques, for example, bolting, welding, gluing or seaming.
  • the surface of the beam is pre-treated to improve the shearing strength of an adhesive joining.
  • the surface can be ground and/or chemically treated to remove most of the native oxide scale and thereafter coated with a primer, such as a silicon based primer.
  • the primer will create a surface structure which interacts well with the glue and thereby strengthens the glued joint.
  • Surface pre-treatment using a primer is performed after hot forming.
  • results from the FE-analysis regarding beams with circular cross section and U-shaped cross section, comprising the precipitation hardenable stainless steel according to the invention and a beam comprising boron steel of the type Mat. No. 1.5528 are displayed in Table 6.
  • Results regarding the comparison with boron steel of the type Mat. No. 1.5529 for the above mentioned cross sectional shapes are displayed in Table 7.
  • FIG. 8 and FIG. 9 display results from the calculations using a beam with circular cross section, with a thickness of 1.5 mm, for the comparisons with Mat. No. 1.5528 type steel and with Mat. No. 1.5529 type steel, respectively.
  • the beam comprising the precipitation hardenable stainless steel according to the invention displays an increased energy absorption, in beams with both circular and U-shaped cross sections, by on average at least 20% compared to a beam comprising boron steel of the type Mat. No. 1.5528.
  • the beam according to the invention displays an increased energy absorption by on average at least 7%.
  • the true energy absorption may be even higher than suggested in these FE-analyses due to the large elongation to fracture in the beam according to the invention, compared to a beam comprising boron steel. Impact beams with lower fracture toughness can experience cracking when the beam is deformed, which locally leads to a considerable reduction of the ability to absorb energy.
  • an impact beam comprising precipitation hardenable stainless steel, according to the present invention which has up to 50% higher tensile strength than conventional steel types used for impact beams, a considerable weight reduction of at least 20% on average can be obtained for the final component.
  • High tensile and yield strengths, of the precipitation hardenable stainless steel used according to the invention, in combination with high ductility and high toughness, result in a superior ability to absorb impact energy in a collision, through plastic and/or elastic deformation, making the steel highly suitable for use in impact beams.
  • the high elongation at rupture, associated with this precipitation hardenable stainless steel results in less risk of cracking.
  • the precipitation hardenable stainless steel, used according to the invention is corrosion resistant there is no need for any additional corrosion protection throughout the expected life time of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

The present invention relates to an impact beam for use in a vehicle. More specifically, the invention relates to an impact beam comprising precipitation hardenable stainless steel, and a method of producing such a beam. The precipitation hardenable stainless steel has a composition, all in percent by weight, of: C max 0.07 Si max 1.2 Mn max 0.7 Cr 10-14 Mo max 1.5 Ni 7-12 Cu max 2.6 Ti 0.6-2.0 (Nb+Ta) max 0.7 balance Fe and normally occurring impurities. An impact beam comprising precipitation hardenable stainless steel, according to the invention, provides improved impact absorbing properties per unit of weight, and can be formed by conventional hot forming techniques.

Description

    FIELD OF INVENTION
  • The present invention relates to an impact beam for use in a vehicle. More specifically, the invention relates to an impact beam and related assembly, the impact beam comprising precipitation hardenable stainless steel, and a method of producing such a beam.
  • BACKGROUND
  • Increasing application demands and strict regulations regarding accidental safety and environmental impact have resulted in a need for manufacturers of vehicles, such as automobiles, buses and motorcycles, to reduce both cost and weight of components for crash protection with maintained safety. Lower weight provides several advantages in an environmental context, for example, decreased fuel consumption resulting in reduced emission of harmful exhaust gases. Consequently, the development of new, high strength materials for use in vehicle components, such as impact beams, is of vital importance.
  • Impact beams can, for example, be designed to protect passengers in the vehicle by absorbing impact energy in a collision, through plastic and/or elastic deformation. Furthermore, impact beams can also be designed to protect objects outside the vehicle, such as pedestrians or animals. In a collision between two or more vehicles, for example in a head-on collision, an impact beam can limit the damage caused by the colliding vehicle to the oncoming vehicle, resulting in less risk of passengers in the oncoming vehicle being seriously injured. Impact beams can also be used to prevent vital machinery inside the vehicle from being damaged. In addition to absorbing impact energy an impact beam can also be designed to transmit impact energy to the vehicle frame, i.e. the chassis without the running gear, and/or the vehicle body structure, such as a door, or another impact beam. Running gear in this context includes, inter alia, engine, drive shaft, transmission and suspension.
  • High strength carbon steel (tensile strength<800 MPa) is commonly used for vehicle components designed for crash protection due to physical properties, such as high strength, good formability, and inherent capability to absorb impact energy in a crash situation.
  • Components manufactured from high strength carbon steel are heavy, which results in a heavy vehicle and thereby accompanying drawbacks, such as high fuel consumption. When high strength in combination with low weight is required ultra-high strength carbon steels (tensile strength>800 MPa), for example boron steels, can be used. However, ultra-high strength carbon steels may involve formability problems as well as low ductility, which can lead to brittle cracking.
  • An example of an impact beam is disclosed in EP 1520741, wherein the beam is described as an automobile strength member comprising a rectangular steel tube. Brittle cracking is identified as a problem, which arises for high strength members having tensile strengths exceeding 1470 MPa. The preferred production methods include e.g. drawing, rolling or extrusion.
  • In WO 02/064390, manufacturing of a lightweight vehicle door, comprising a supportive door frame that includes at least one impact beam, by hot forming particularly hot stamping, is disclosed. Tensile strengths of over 1000 MPa up to 1500 MPa are expected when using boron steel.
  • Conventional manufacturing processes of vehicle components generally use hot forming. To avoid additional costs connected to exchanging the machinery in the production units, it is a considerable advantage if the components can be manufactured by conventional hot forming techniques. Consequently, one object of the present invention is to provide an impact beam for use in vehicles, which provides improved impact absorbing properties per unit of weight, wherein the impact beam can be formed by conventional hot forming techniques.
  • SUMMARY OF THE INVENTION
  • The stated object is achieved by the present invention in accordance with claim 1. The impact beam, according to the invention, comprises precipitation hardenable stainless steel, wherein the steel has a composition, all in percent by weight, of:
  • C  max 0.07
    Si max 1.2
    Mn max 0.7
    Cr 10-14
    Mo max 1.5
    Ni  7-12
    Cu max 2.6
    Ti 0.6-2.0
    (Nb + Ta) max 0.7
    balance Fe and normally occurring impurities.
  • Use of a precipitation hardenable stainless steel, according to the present invention, in an impact beam, provides a vehicle component with improved impact absorbing properties per unit of weight, which may for example facilitate significant weight reduction of the impact beam while preserving the same energy absorption properties.
  • The present invention also relates to a method of producing an impact beam, comprising said precipitation hardenable stainless steel by hot forming, such as for example hot stamping or press hardening. Press hardening is a manufacturing process for low weight, ultra-high strength components, in which simultaneous forming and quenching is utilized. By using press hardening formation of complex geometries is made possible due to the high formability of the hot steel, and the quenching results in a component with very high yield and tensile strength, as well as high dimensional accuracy. Furthermore, new design opportunities are available and complex designs are enabled, which, for example, may lead to space savings when assembling the vehicle body. The design can also aim at controlling the absorption of the impact energy, by controlling the deformation of the beam.
  • By using conventional manufacturing techniques, such as press hardening, additional costs connected to exchanging the machinery in the production units, can be avoided.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates examples of impact beams in an automobile, which can comprise precipitation hardenable stainless steel, according to the present invention.
  • FIG. 2 illustrates a vehicle door with a waist rail reinforcement beam and a side impact beam.
  • FIG. 3 illustrates a cross section having two intersecting tangents.
  • FIG. 4 illustrates examples of cross section geometries for impact beams.
  • FIG. 5 illustrates examples of complex cross section geometries for impact beams.
  • FIG. 6 illustrates the setup used in the FEA (Finite Element Analysis) for a beam with circular cross section.
  • FIG. 7 illustrates the setup used in the FEA for a beam with C-shaped cross section.
  • FIG. 8 illustrates results from FEA comparing steel according to the present invention to boron steel of type Mat. No. 1.5528, using a beam with circular cross section and a wall thickness of 1.5 mm.
  • FIG. 9 illustrates results from FEA comparing steel according to the present invention to boron steel of type Mat. No. 1.5529, using a beam with circular cross section and a wall thickness of 1.5 mm.
  • The figures should not be considered drawn to scale, since some features may have been exaggerated in order to clearly illustrate the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • To achieve a substantial weight reduction, while strength and energy absorption is sustained, the impact beam should comprise steel with ultra-high strength (>1000 MPa). Ultra-high strength precipitation hardenable stainless steel provides high tensile strength combined with excellent impact absorbing properties, and is an alternative to ultra-high strength carbon steel. When using steel with higher strength, the amount of material in the component can be reduced due to the improved energy absorbing capacity per unit of weight. Thereby, the total weight of the component, and in the end the weight of the vehicle, is reduced. This can be achieved by for example reducing the wall thickness of the impact beam.
  • Instead of obtaining reduced weight while impact absorbing properties remain unchanged, an increase of strength can be achieved by manufacturing an impact beam using an ultra-high strength steel, with preserved amount of impact absorbing material.
  • An impact beam designed for crash protection, as described in the present disclosure, can be used in several types of vehicles, such as automobiles, motorcycles, buses, trucks, caterpillars, crawlers, and tractors. The beam can be joined to, or be a part of, the vehicle frame, i.e. the chassis without the running gear, or the vehicle body structure. The impact beam can also be used in other types of vehicles such as motorboats, snowmobiles, or airborne vehicles such as helicopters or airplanes. For example, impact beams are important components in the floor structure of helicopters.
  • FIG. 1 illustrates examples of impact beams in an automobile. The following components are identified in the figure: bumper beam 1, side member 2, A-pillar reinforcement 3, front header 4, roof beam 5, B-pillar reinforcement 6, floor beam 7, door beam 8, cross member 9 and waist rail reinforcement 10. Impact beams, which are situated in more than one location for example side members 2 and A-pillar reinforcements 3, are normally placed at corresponding sides in the vehicle and are therefore not indicated in FIG. 1. Examples of impact beams in a vehicle door 21 comprising a waist rail 22 and a side impact beam 23 are illustrated in FIG. 2.
  • In this context a beam is considered as a structure comprising a cross section with at least two intersecting tangents, illustrated in FIGS. 3 as t1 and t2 for an angle beam 31, and t1′ and t2′ for beam with a circular cross section 32, wherein the tangents define a two-dimensional plane, and wherein the structure is extended in a direction essentially perpendicular to the plane. The beam can be designed in a number of different shapes and sizes. FIG. 4 shows some examples of basic cross sectional shapes of impact beams: circular 41, elliptical 42, U-shaped 43, C-shaped 44 or hat shaped 45. The cross section can also be of essentially square shape, essentially triangular shape, essentially tetragonal shape, essentially pentagonal shape, as well as of irregular shapes.
  • The cross section of the beam can contain one or more open sections, such as the open area A defined by t1 and t2 in FIG. 3, and/or one or more closed sections, such as the area B in FIG. 3. Moreover, the shape and/or the size of the cross section can either be identical or vary throughout the extension of the beam.
  • By using a specific design, such as a specific cross section, the impact beam can be adapted so as to absorb impact energy, through controlled deformation of the beam. The impact beam can also be adapted so as to transmit impact energy to other parts of the vehicle frame and/or the vehicle body structure, thus directing the impact energy away from the impact zone.
  • In FIG. 5 examples of complex geometrical forms of cross sections of impact beams are illustrated. The cross sections illustrated in FIG. 5 are examples of a floor beam 51, a waist rail in a vehicle door 52, a side impact beam in a vehicle door 53 and a roof bow 54.
  • To avoid additional costs, associated with investments to modify the existing manufacturing process, the precipitation hardenable stainless steel should be suitable for hot forming. However, not all precipitation hardenable stainless steels can be formed by hot forming techniques without becoming too hard during the process. If the hardness of the steel increases too much during the hot forming process, it can lead to detrimental brittle fractures and poor impact absorbing properties, which is not desirable in an impact beam.
  • Three examples of precipitation hardenable stainless steels that meet the requirements stated above, inter alia excellent impact absorbing properties and possibility of hot forming are UNS S45500, UNS S45503 and UNS S46500. According to a preferred embodiment the precipitation hardenable stainless steel is of UNS S45500 type. Compositions of said precipitation hardenable stainless steels, in percent by weight, are displayed in Table 1. The balance is Fe and normally occurring impurities.
  • TABLE 1
    Element UNS S45500 UNS S45503 UNS S46500
    C  max 0.050  max 0.010  max 0.020
    Si max 0.50 max 1.00 max 0.25
    Mn max 0.50 max 0.50 max 0.25
    Cr 11.0-12.5 11.0-12.5 11.0-12.5
    Mo max 0.50 max 0.50 0.75-1.25
    Ni 7.50-9.50 7.50-9.50 10.75-11.25
    Cu 1.50-2.50 1.25-1.75 0
    Ti 0.80-1.40 1.00-1.35 1.50-1.80
    Nb + Ta 0.01-0.05 0.10-0.50 max 0.01
  • The precipitation hardenable stainless steel, according to the invention can be processed in the shape of a tube, sheet or bar, for further forming into various geometrical shapes. Furthermore, the impact beam can either consist entirely of precipitation hardenable stainless steel, according to the invention, or comprise a member of a precipitation hardenable stainless steel in combination with another member of another material, for example other steel grades or carbon fiber.
  • In Table 2, materials currently used in impact beams are compared with the precipitation hardenable stainless steel used according to the invention, in terms of properties, which are important for the intended use of the impact beam. Commonly used stainless steel in this application is for example AISI 301 type, and commonly used boron steel is, for example, material number (Mat. No.) 1.5528 or Mat. No. 15529.
  • TABLE 2
    Precipitation hardenable
    Stainless Boron stainless steel used
    Properties steel type steel type according to the invention
    Tensile <1300 MPa <1400 MPa <1700 MPa
    strength
    Ductility 5-10% 5-10% <5-10%
    Formability Medium Medium Medium
    Weldability/ Good Good Good
    Joinability
    Corrosion Good Poor Good
    resistance
    Energy Medium Medium Excellent
    absorption
  • As is commonly known the material strength is affected by the degree of processing and the conditions of any heat treatments performed.
  • In an embodiment of the invention the impact beam is manufactured by any conventional hot forming technique. The temperature applied during hot forming is generally equal to, or exceeding, 750° C., typically around 900° C. Preferably the hot forming technique is press hardening. Preferably, the press hardening can be followed by a precipitation hardening step. The starting material for press hardening is usually in the form of a sheet, a tube or a strip, preferably the starting material is a steel sheet. The impact beam may be shaped to fit an available space in the vehicle and/or shaped to provide the best impact absorption.
  • The impact beam can be a part of an impact beam assembly, wherein the impact beam is joined to at least a part of the vehicle frame, and/or the vehicle body structure, for example a vehicle door or another impact beam, by conventional techniques, for example, bolting, welding, gluing or seaming.
  • In an embodiment of the invention, at least a part of the surface of the beam is pre-treated to improve the shearing strength of an adhesive joining. For example, the surface can be ground and/or chemically treated to remove most of the native oxide scale and thereafter coated with a primer, such as a silicon based primer. The primer will create a surface structure which interacts well with the glue and thereby strengthens the glued joint. Surface pre-treatment using a primer is performed after hot forming.
  • Example 1
  • Energy absorption in an impact beam comprising precipitation hardenable stainless steel, according to the invention, was studied using finite element analysis (FEA). An impact beam comprising precipitation hardenable stainless steel of the type UNS S45500 was used in the calculations, and the chemical composition of the steel is displayed in Table 1. The results were compared to FE-analyses performed for beams comprising two different conventional boron steels: Mat. No. 1.5528 and Mat. No. 1.5529. Compositions of said boron steels, in percent by weight, are displayed in Table 3. The balance is Fe and normally occurring impurities.
  • TABLE 3
    Element Mat. No.* 1.5528 Mat. No. 1.5529
    C 0.19-0.25 0.25-0.30
    Si ≦0.40 ≦0.40
    Mn 1.10-1.40 1.10-1.30
    P 0.025 0.025
    S 0.015 0.025
    Cr 0.15-0.35 ≦0.50
    Al 0.020-0.060 ≧0.020
    Ti 0.0020-0.0050 0.020-0.050
    B 0.0008-0.0050 0.0008-0.0050
    *Mat. No. = Material number, also known as Werkstoff number.
  • Calculations were performed for beams with two different shapes: circular 41 and U-shape 43. The cross sections were identical throughout extension of the beam. Table 4 displays the input dimensions of the beams. In FIG. 6 the setup used in the calculation for a beam 61 with a circular cross section is shown and in FIG. 7 the setup used for a beam 71 with a U-shaped cross section is shown. The force was applied perpendicular to the extension of the beams, using a solid body 62, 72 with circular cross section, wherein the beams were fixed at the ends. Table 5 displays the material input data, wherein the precipitation hardenable stainless steel and the boron steel are in precipitation hardened state and hardened state, respectively.
  • TABLE 4
    Circular U-shape
    Length (mm) 1000 Length (mm) 1000
    Diameter (mm) 100 Height (mm) 100
    Width (mm) 100
    Weight at wall 2.43 Weight at wall 2.44
    thickness 1.0 mm (kg) thickness 1.0 mm (kg)
  • TABLE 5
    Input Data UNS S45500 Mat. No. 1.5528 Mat. No. 1.5529
    E (GPa) 200 200 200
    Rp0.2 (MPa) 1600 1150 1350
    Rm (MPa) 1800 1550 1700
    A80 (%) 10 9 6
  • For each cross sectional shape, calculations were performed for three different material thicknesses. When comparing a beam comprising precipitation hardenable stainless steel according to the invention, and a beam comprising boron steel of type Mat. No. 1.5528, material thicknesses of 0.8 mm, 1.0 mm and 1.5 mm were used, see Table 6. When comparing a beam comprising precipitation hardenable stainless steel according to the invention, and a beam comprising boron steel of type Mat. No. 1.5529, material thicknesses of 1.0 mm, 1.5 mm and 2.0 mm were used, see Table 7. All steel types used in the FEA have approximately the same density, which means that the result can be used to estimate the weight savings of the final component.
  • The results from the FE-analysis regarding beams with circular cross section and U-shaped cross section, comprising the precipitation hardenable stainless steel according to the invention and a beam comprising boron steel of the type Mat. No. 1.5528 are displayed in Table 6. Results regarding the comparison with boron steel of the type Mat. No. 1.5529 for the above mentioned cross sectional shapes are displayed in Table 7. FIG. 8 and FIG. 9 display results from the calculations using a beam with circular cross section, with a thickness of 1.5 mm, for the comparisons with Mat. No. 1.5528 type steel and with Mat. No. 1.5529 type steel, respectively.
  • TABLE 6
    Circular U-shape
    Energy absorbed in Energy absorbed in
    structure (Nm, J) Differ- structure (Nm, J) Differ-
    Thickness UNS Mat. No. ence UNS Mat. No. ence
    (mm) S45500 1.5528 (%) S45500 1.5528 (%)
    0.80 614 520 18% 896 812 10%
    1.00 972 809 20% 1262 926 36%
    1.50 2259 1810 25% 2582 2068 25%
  • TABLE 7
    Circular U-shape
    Energy absorbed in Energy absorbed in
    structure (Nm, J) Differ- structure (Nm, J) Differ-
    Thickness UNS Mat. No. ence UNS Mat. No. ence
    (mm) S45500 1.5529 (%) S45500 1.5529 (%)
    1.00 993 957 4% 993 938 6%
    1.50 2315 2177 6% 2191 2016 9%
    2.0 3939 3653 8% 3876 3512 10% 
  • The results show that the beam comprising the precipitation hardenable stainless steel according to the invention, displays an increased energy absorption, in beams with both circular and U-shaped cross sections, by on average at least 20% compared to a beam comprising boron steel of the type Mat. No. 1.5528. Compared to a beam comprising boron steel of the type Mat. No. 1.5529, the beam according to the invention displays an increased energy absorption by on average at least 7%. The true energy absorption may be even higher than suggested in these FE-analyses due to the large elongation to fracture in the beam according to the invention, compared to a beam comprising boron steel. Impact beams with lower fracture toughness can experience cracking when the beam is deformed, which locally leads to a considerable reduction of the ability to absorb energy.
  • Example 2
  • Energy absorption in an impact beam with C-shaped cross section 44, comprising precipitation hardenable stainless steel of UNS S44500 type and conventional boron steel of type Mat. No. 1.5529 was studied by FEA. The material input data and experimental setup were the same as described in Example 1. The input dimensions of the C-shaped beam were:
      • Length: 1000 mm
      • Height: 100 mm
      • Width: 100 mm
      • Weight at wall thickness 1.0 mm: 2.45 kg.
  • Results are displayed in Table 8.
  • TABLE 8
    C-shape
    Energy absorbed in
    structure (Nm, J)
    Thickness UNS Mat. No. Difference
    (mm) S45500 1.5529 (%)
    1.00 1017 924 10%
    1.50 1731 1272 36%
    2.0 3203 2780 15%
  • By using an impact beam comprising precipitation hardenable stainless steel, according to the present invention, which has up to 50% higher tensile strength than conventional steel types used for impact beams, a considerable weight reduction of at least 20% on average can be obtained for the final component. High tensile and yield strengths, of the precipitation hardenable stainless steel used according to the invention, in combination with high ductility and high toughness, result in a superior ability to absorb impact energy in a collision, through plastic and/or elastic deformation, making the steel highly suitable for use in impact beams. Also, the high elongation at rupture, associated with this precipitation hardenable stainless steel, results in less risk of cracking. Furthermore, since the precipitation hardenable stainless steel, used according to the invention, is corrosion resistant there is no need for any additional corrosion protection throughout the expected life time of the vehicle.

Claims (16)

1. Impact beam comprising precipitation hardenable stainless steel, wherein the steel has a composition, all in percent by weight, of:
C  max 0.07 Si max 1.2 Mn max 0.7 Cr 10-14 Mo max 1.5 Ni  7-12 Cu max 2.6 Ti 0.6-2.0 (Nb + Ta) max 0.7 balance Fe and normally occurring impurities
2. Impact beam, according to claim 1, wherein the beam is adapted so as to absorb impact energy through deformation of the beam.
3. Impact beam, according to claim 1, wherein the beam is adapted so as to transmit impact energy to an adjacent structure.
4. Impact beam according to claim 1, wherein the stainless steel is UNS S45500.
5. Impact beam according to claim 1, wherein the stainless steel is UNS S45503.
6. Impact beam according to claim 1, wherein the stainless steel is UNS S46500.
7. Impact beam according to claim 1, wherein the steel is precipitation hardened.
8. Impact beam according to claim 1, wherein the beam structure comprises a cross section with at least two intersecting tangents defining a two-dimensional plane, wherein the structure is extended in a direction essentially perpendicular to the plane.
9. Impact beam assembly, comprising an impact beam according to claim 1, and at least one part of a vehicle frame and/or a vehicle body structure.
10. Impact beam assembly according to claim 9, wherein the impact beam is joined to at least one part of a vehicle frame and/or a vehicle body structure, by any technique.
11. Method of producing an impact beam according to claim 1, wherein the impact beam is manufactured by hot forming.
12. Method according to claim 11, wherein the impact beam is manufactured at a temperature equal to, or exceeding, 750° C., typically around 900° C.
13. Method according to claim 11, wherein the hot forming technique is press hardening.
14. Method according to claim 11, wherein the beam is subjected to precipitation hardening after hot forming
15. Method according to claim 11, wherein at least a part of the surface of the beam is coated with a primer, such as a silicon based primer.
16. Method according to claim 12, wherein the hot forming technique is press hardening
US12/664,121 2007-06-12 2008-05-29 Impact beam comprising precipitation hardenable stainless steel Abandoned US20100180990A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE0701436-8 2007-06-12
SE0701436A SE531252C2 (en) 2007-06-12 2007-06-12 Impact hardened steel beam
PCT/SE2008/050630 WO2008153480A1 (en) 2007-06-12 2008-05-29 Impact beam comprising precipitation hardenable stainless steel

Publications (1)

Publication Number Publication Date
US20100180990A1 true US20100180990A1 (en) 2010-07-22

Family

ID=40129951

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/664,121 Abandoned US20100180990A1 (en) 2007-06-12 2008-05-29 Impact beam comprising precipitation hardenable stainless steel

Country Status (4)

Country Link
US (1) US20100180990A1 (en)
EP (1) EP2158340A4 (en)
SE (1) SE531252C2 (en)
WO (1) WO2008153480A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170028825A1 (en) * 2015-07-30 2017-02-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Door impact beam
US20170189996A1 (en) * 2014-07-03 2017-07-06 Autotech Engineering A.I.E. Reinforced structural components
US20170210474A1 (en) * 2016-01-21 2017-07-27 Ami Industries, Inc. Energy attenuating mounting foot for a cabin attendant seat
CN108664701A (en) * 2018-04-04 2018-10-16 江苏理工学院 A kind of collision prevention girders structural optimization method based on B-spline
US20220371091A1 (en) * 2021-05-19 2022-11-24 Ford Global Technologies, Llc Directed energy deposition (ded) reinforcements on body structures and visible sheet metal surfaces

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009030489A1 (en) * 2009-06-24 2010-12-30 Thyssenkrupp Nirosta Gmbh A method of producing a hot press hardened component, using a steel product for the manufacture of a hot press hardened component, and hot press hardened component
DE102010019992A1 (en) 2010-05-10 2011-11-10 Volkswagen Ag Body structure, in particular floor structure, for a motor vehicle
US20160138123A1 (en) * 2013-08-08 2016-05-19 Erwen Huang Precipitation-hardened stainless steel alloys

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855844A (en) * 1995-09-25 1999-01-05 Crs Holdings, Inc. High-strength, notch-ductile precipitation-hardening stainless steel alloy and method of making
US6238455B1 (en) * 1999-10-22 2001-05-29 Crs Holdings, Inc. High-strength, titanium-bearing, powder metallurgy stainless steel article with enhanced machinability
US20050146162A1 (en) * 2003-12-19 2005-07-07 Daimlerchrysler Ag Stainless frame construction for motor vehicles
US20060290166A1 (en) * 2005-06-28 2006-12-28 Benteler Automobiltechnik Gmbh Door structure for a motor vehicle
US20070107819A1 (en) * 2005-11-15 2007-05-17 Benteler Automobiltechnik Gmbh High-strength motor-vehicle frame part with targeted crash

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855844A (en) * 1995-09-25 1999-01-05 Crs Holdings, Inc. High-strength, notch-ductile precipitation-hardening stainless steel alloy and method of making
US6238455B1 (en) * 1999-10-22 2001-05-29 Crs Holdings, Inc. High-strength, titanium-bearing, powder metallurgy stainless steel article with enhanced machinability
US20050146162A1 (en) * 2003-12-19 2005-07-07 Daimlerchrysler Ag Stainless frame construction for motor vehicles
US20060290166A1 (en) * 2005-06-28 2006-12-28 Benteler Automobiltechnik Gmbh Door structure for a motor vehicle
US20070107819A1 (en) * 2005-11-15 2007-05-17 Benteler Automobiltechnik Gmbh High-strength motor-vehicle frame part with targeted crash

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170189996A1 (en) * 2014-07-03 2017-07-06 Autotech Engineering A.I.E. Reinforced structural components
US10792764B2 (en) * 2014-07-03 2020-10-06 Autotech Engineering S.L. Reinforced structural components
US20170028825A1 (en) * 2015-07-30 2017-02-02 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Door impact beam
US9873312B2 (en) * 2015-07-30 2018-01-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Door impact beam
US20170210474A1 (en) * 2016-01-21 2017-07-27 Ami Industries, Inc. Energy attenuating mounting foot for a cabin attendant seat
US10676196B2 (en) * 2016-01-21 2020-06-09 Ami Industries, Inc. Energy attenuating mounting foot for a cabin attendant seat
US10946968B2 (en) 2016-01-21 2021-03-16 Ami Industries, Inc. Energy attenuating mounting foot for a cabin attendant seat
CN108664701A (en) * 2018-04-04 2018-10-16 江苏理工学院 A kind of collision prevention girders structural optimization method based on B-spline
US20220371091A1 (en) * 2021-05-19 2022-11-24 Ford Global Technologies, Llc Directed energy deposition (ded) reinforcements on body structures and visible sheet metal surfaces

Also Published As

Publication number Publication date
SE531252C2 (en) 2009-02-03
EP2158340A4 (en) 2010-12-08
WO2008153480A1 (en) 2008-12-18
EP2158340A1 (en) 2010-03-03
SE0701436L (en) 2008-12-13

Similar Documents

Publication Publication Date Title
US20100180990A1 (en) Impact beam comprising precipitation hardenable stainless steel
EP3328643B1 (en) Motor vehicle component made of triple-layer laminated steel
DE102007039998B4 (en) Armor for a vehicle
DE102016114068B3 (en) Side member made of multilayer steel
US9981696B2 (en) Pillar for a motor vehicle and method for manufacturing a pillar
US20120319431A1 (en) B-pillar for a vehicle
JP2811226B2 (en) Steel pipe for body reinforcement
US20170274851A1 (en) Bumper-reinforcing system for motor vehicle
CN105270477B (en) Customize semifinished part and motor vehicle assemblies
JP6588972B2 (en) Reinforcing elements for automobiles, methods for manufacturing reinforcing elements and door assemblies
EP2060646B1 (en) Stainless steel sheet for structural members excellent in impact -absorbing characteristics
WO2013154114A1 (en) Vehicle body
EP3766762B1 (en) Automobile frame member
EP3386846B1 (en) Vehicle front body structure and method for manufacturing thereof
JP6540591B2 (en) Body side structure
WO2017098305A1 (en) Vehicle underbody structure comprising a transversal beam of varying resistance to plastic deformation
DE102014116695A1 (en) Bodywork or chassis component of a motor vehicle with corrosion protection and method for its production
EP3386847B1 (en) Vehicle underbody structure comprising a reinforcement element between a longitudinal beam and a lowerside sill part
US20190084273A1 (en) Semifinished part and method for producing a vehicle component, use of a semifinished part, and vehicle component
EP4168293B1 (en) Rocker reinforcement and rocker for a vehicle
JP2863611B2 (en) Steel pipe for body reinforcement
KR20160085979A (en) Bumper back beam for a vehicle and the method of manufacturing the same
CA2938182C (en) Skeletal component for automobile and front pillar lower including the same
KR102202098B1 (en) Seat cross member assembly for vehicles

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANDVIK INTELLECTUAL PROPERTY AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:IRANDER, CARL-JOHAN;REEL/FRAME:023885/0497

Effective date: 20091218

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION