US20100178373A1 - Apparatus and method for protecting lined concrete pipe during the manufacturing process - Google Patents

Apparatus and method for protecting lined concrete pipe during the manufacturing process Download PDF

Info

Publication number
US20100178373A1
US20100178373A1 US12/351,554 US35155409A US2010178373A1 US 20100178373 A1 US20100178373 A1 US 20100178373A1 US 35155409 A US35155409 A US 35155409A US 2010178373 A1 US2010178373 A1 US 2010178373A1
Authority
US
United States
Prior art keywords
core
liner
pipe
extending leg
leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/351,554
Other versions
US7832703B2 (en
Inventor
Jon A. Schmidgall
David E. Stoller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HawkeyePedershaab Concrete Technologies Inc
Original Assignee
Hawkeye Concrete Products Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hawkeye Concrete Products Co filed Critical Hawkeye Concrete Products Co
Priority to US12/351,554 priority Critical patent/US7832703B2/en
Assigned to HAWKEYE CONCRETE PRODUCTS CO. reassignment HAWKEYE CONCRETE PRODUCTS CO. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHMIDGALL, JON A., STOLLER, DAVID E.
Priority to CA2653292A priority patent/CA2653292C/en
Publication of US20100178373A1 publication Critical patent/US20100178373A1/en
Application granted granted Critical
Publication of US7832703B2 publication Critical patent/US7832703B2/en
Assigned to MADISON CAPITAL FUNDING LLC, AS ADMINISTRATIVE AGENT reassignment MADISON CAPITAL FUNDING LLC, AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: HAWKEYE CONCRETE PRODUCTS CO.
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS Assignors: HAWKEYEPEDERSHAAB CONCRETE TECHNOLOGIES, INC.
Assigned to HAWKEYE CONCRETE PRODUCTS CO. reassignment HAWKEYE CONCRETE PRODUCTS CO. TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS (PREVIOUSLY RECORDED NOVEMBER 21, 2011 REEL/FRAME 027259/0390) Assignors: MADISON CAPITAL FUNDING LLC, AS AGENT
Assigned to HAWKEYEPEDERSHAAB CONCRETE TECHNOLOGIES, INC. reassignment HAWKEYEPEDERSHAAB CONCRETE TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAWKEYE CONCRETE PRODUCTS CO.
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS Assignors: HAWKEYEPEDERSHAAB CONCRETE TECHNOLOGIES, INC.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B19/00Machines or methods for applying the material to surfaces to form a permanent layer thereon
    • B28B19/0038Machines or methods for applying the material to surfaces to form a permanent layer thereon lining the outer wall of hollow objects, e.g. pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/08Producing shaped prefabricated articles from the material by vibrating or jolting
    • B28B1/081Vibration-absorbing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/76Moulds
    • B28B21/765Top or bottom rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/76Moulds
    • B28B21/82Moulds built-up from several parts; Multiple moulds; Moulds with adjustable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B21/00Methods or machines specially adapted for the production of tubular articles
    • B28B21/86Cores
    • B28B21/88Cores adjustable, collapsible or expansible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B5/00Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping
    • B28B5/06Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping in moulds on a turntable
    • B28B5/08Producing shaped articles from the material in moulds or on moulding surfaces, carried or formed by, in or on conveyors irrespective of the manner of shaping in moulds on a turntable intermittently rotated

Definitions

  • This invention relates to machines for producing concrete pipe and other similar concrete products.
  • a new pallet is then added to the jacket and the form is returned to the filling station and lowered over the core.
  • the common technique for making concrete pipe is known as dry cast which produces a pipe of excellent quality at much higher production rates than the wet cast process.
  • dry cast a dry mix is compacted and the pipe is removed promptly after the concrete is set but before the concrete is completely cured.
  • An example of dry cast techniques used in making concrete pipe is shown in Schmidgall et al U.S. Pat. No. 4,356,628.
  • Concrete pipe are sometimes manufactured with a plastic liner that provides increased resistance to corrosion and deterioration from various chemicals in and gases emitted from liquids flowing through the pipe.
  • the plastic material used for lining concrete pipe is extruded in a sheet form and is typically provided with T-shaped ribs that project outwardly from one side. These T-shaped ribs become embedded in the concrete during the pipe making process, and when the concrete is set, an excellent bond is created between the liner and the finished pipe.
  • T-shaped ribs of the liner it is not uncommon for the T-shaped ribs of the liner to pull out away from the concrete during the casting process. This occurs in the dry cast process because the concrete is set but not completely cured when the product is stripped from the core.
  • the core When collapsible cores are used, the core is collapsed to allow the liner to more easily be placed over the core after which the core is expanded and the pipe is cast. The core is then collapsed to permit easy removal of the finished concrete pipe.
  • An example of a pipe making machine for making lined pipe using a collapsible core of this type is shown in Schmidgall U.S. Pat. No. 5,720,993.
  • the core is placed on a pallet at a setup area, and the plastic liner is manually placed over the core.
  • the jacket is then lowered over the core with the liner in place.
  • this core-pallet-jacket module is transported to the pipe making machine to be filled with concrete.
  • the module is moved to the pressure heading station, where the pressure header is lowered to compact the concrete.
  • the header will bear against the core to center it with respect to the jacket.
  • the flap eliminates the necessity of an annular band requiring two edges to be welded to adjoining pipe sections.
  • the header must be guided over the liner to prevent snagging with resulting damage to the liner.
  • the header is guided over the liner by two or more production workers each using a tool, such as a trowel, to guide the header. Obviously, this requires additional labor and slows down the pipe making process. Therefore, there is a need for an improved way of protecting the liner from damage during the pressure heading step in the pipe making process.
  • the machine of the invention accomplishes the foregoing object by adding at the filling station the plastic liner and then putting in place a plurality of spaced-apart, removable L-shaped plates around the top edge of the core, one leg of the plates extending inside the core with the other leg extending downwardly over the top edge of the liner.
  • the plates are removably held in place by use of a clamping device, such as a vise-grip, for example.
  • a clamping device such as a vise-grip, for example.
  • the downwardly extending legs of the plates serve as ‘shoehorns’ to guide the pressure header over the top of the liner and prevent damage to it.
  • the plates will assist in centering the core within the jacket.
  • the pipe making machine of the invention thus provides for minimizing damage to the pipe liner during the pipe making process and simplifies the process resulting in increased production output with no increase in manpower.
  • the invention also provides for easy adaptation of existing machines to utilize the features of the invention.
  • FIG. 1 is a side elevational view, showing a typical pipe making machine that can utilize the principles of the invention
  • FIG. 2 is a top or plan view of the machine of FIG. 1 and illustrating the three stations for performing the steps of the pipe making operation;
  • FIG. 3 is a sectional view through an elevation of a form set shown at the pressure heading station and showing the jacket, pallet, core and base;
  • FIG. 4 is a view similar to FIG. 3 and illustrating the pressure header being lowered in place on top of the-form set;
  • FIG. 5 is a perspective view of a portion of the top of a form set showing the L-shaped plates and clamping devices around the top of the core and illustrating the header being lowered onto the form set;
  • FIG. 6 is a perspective view of the L-shaped plate.
  • FIG. 7 is a perspective view of the clamping device.
  • FIG. 1 and FIG. 2 there is shown a typical pipe making machine of the dry cast type.
  • the machine shown is a multi-station machine in which a form set is moved by a turntable around the three stations where the pipe making process takes place.
  • the form set can be stationary and the equipment for carrying out the process moved over the form set in proper sequence.
  • the operating stations of the machine are spaced around a turntable 10 mounted for rotation about a central support 12 in a pit 14 formed below the level of the floor 16 .
  • the pit 14 is usually covered with a removable cover 18 which has a plurality of openings in it and through which extend the forms that will be described in detail hereinafter.
  • Cover 18 is supported by and rotatable with turntable 10 in any suitable manner as is well known with existing conventional multi-station machines of this type.
  • the machine has a fill station 20 , a pressure-head station 22 and an offbear or stripping station 24 .
  • the machine also preferably includes an operator station 26 at which the controls are centralized so that one man can control operation of the machine.
  • the machine also includes a main vertical support 28 ( FIG. 1 ) and a side vertical support 30 that are interconnected to provide the necessary supporting structure for the pressure head unit 79 which is vertically movable at the pressure-head station 22 .
  • the pressure head function will be described in more detail hereinafter since the invention relates primarily to what occurs at the pressure head station 22 .
  • the complete pipe making machine has an overhead beam supported on a suitable overhead tram (not shown) so that the beam can be moved up and down and to different positions. This provides for placement of a form set in the filling station 20 and then removing it from the offbear station 24 and transferring it to a curing area.
  • Each form set has a suitable supporting base 36 which rests directly upon the turntable 10 .
  • Suitable means can be provided to secure the base 36 to the turntable so that it will rotate with it.
  • the base 36 is provided with a plurality of rubber isolators 44 secured beneath it and which rest directly upon the turntable 10 .
  • the form set when completed as described hereinafter, is thus not rigidly affixed to the turntable 10 so that the form set, after being filled with concrete, is free to be vibrated in a manner well know to those skilled in the art.
  • a setup area is provided where a wire cage of reinforcing steel (not shown) is first positioned around the core 40 which is resting on a pallet 38 .
  • Each core 40 consists of a vertical cylindrical tube 42 that is preferably hollow.
  • collapsible cores are used which allows a plastic liner 50 to more easily be placed over the tube 42 of the core 40 after which the tube is expanded and the pipe is cast.
  • An example of a collapsible core for a pipe making machine for making lined pipe is shown in Schmidgall U.S. Pat. No. 5,720,993. With the core 40 resting on the pallet 38 and in a collapsed condition inside the wire cage, the plastic liner 50 is then manually placed over the core 40 and the core 40 is expanded.
  • FIG. 5 a part of the top portion of a core 40 with the liner 50 in place.
  • a plurality of ‘shoehorn’ devices each indicated generally by the reference numeral 54 .
  • the devices 54 are affixed to the top edge 52 of each core 40 with the liner 50 in place around the core 40 .
  • Each device 54 is comprised of a removable L-shaped plate 56 and a clamping device 58 .
  • Each L-shaped plate 56 has a downwardly extending leg 60 that extends over the top of the plastic liner 50 that has been positioned over the core 40 .
  • Each L-shaped plate 56 also has an inwardly extending leg 62 that is held in place on the base 64 of the clamping device 58 .
  • the base 64 is permanently affixed in any suitable manner, such as by welding, to the inside of the core 40 and has affixed to it the clamping device 58 that has jaws 66 for releasably gripping the leg 62 of the L-shaped plate 56 .
  • the clamping device 58 illustrated in the drawings is similar to the commonly known vise grip, but any suitable clamping device can be used to hold the plate 56 in place and allow it to be removed and reinstalled.
  • the top edge of the L-shaped plate 56 also preferably has a pair of upwardly extending lugs 68 that have sloped edges.
  • the lugs 68 serve to guide the header 70 around the core 40 and over the plastic liner 50 so that the header 70 does not contact the liner 50 and damage it.
  • the lugs 68 also serve to assist in centering the core 40 with respect to the jacket 46 when the header 34 is pressure headed onto the core 40 .
  • the core 40 with liner 50 covering it and the shoehorn devices 54 in place, is now in a position to receive the jacket 46 as now described.
  • a jacket indicated generally by the reference numeral 46 , is provided to complete the form set.
  • Each jacket 46 is a hollow, generally cylindrical tube the inside diameter of which is greater than the outside diameter of the corresponding core 40 thus creating an annular space 32 between each jacket 46 and each corresponding core 40 that is the thickness of the wall of the pipe to be produced.
  • the attachment mechanism consists generally of releasable locking lugs 48 ( FIG. 3 ) that engage the bottom of the pallet 38 and thus positively position the jacket 46 relative to the core 40 and thereby accurately determining the wall thickness of the concrete pipe.
  • the pallet 38 also provides a part of the form that shapes the end of the pipe to the desired configuration.
  • the completed form assembly or module consisting of jacket 46 , the pallet 38 and core 42 with liner 50 is now ready to be filled with concrete, and the module is transported to the pipe making machine and positioned at the fill station 20 .
  • FIG. 1 there is shown the pressure-head extruder unit indicated generally by the reference numeral 79 .
  • This unit 79 is vertically-movable by a support 80 , and unit 79 includes the pressure header 34 and also contains an annular shaped pressure header 70 that applies pressure to compact the concrete contained between the jacket 46 and core 40 ( FIGS. 4 and 5 ).
  • the pressure header 34 also contains an extension ring 78 that engages the header 70 .
  • the lugs 68 and the legs 60 of the shoehorns 54 guide the header 70 to assure that the liner 50 is not damaged by contact with the header 70 .
  • the legs 60 of the shoehorns 54 each extend downwardly a sufficient distance to protect the liner 50 as the header 70 continues to move downwardly between the core 40 and the jacket 46 to compact the concrete.
  • Contact of the header 70 with the lugs 68 and the legs 60 of the shoehorn devices 54 serves to guide the core 40 over to the center to assure that the finished pipe is of uniform thickness.
  • vibrators may be actuated so that the concrete is fully compacted to form a high quality pipe.
  • the turntable 10 is rotated to move the module to the off bearing and stripping station 24 .
  • the module consisting of the pallet 38 , core 42 and jacket 46 together with the product, is then transported to the curing area where the pallet 38 are released from its connection to the jacket 46 , and the jacket 46 is then stripped from the now finished pipe and moved to the setup area for reuse.
  • the core 40 is collapsed and the jaws 66 of the clamping device 72 are released allowing removal of the L-shaped plates 56 .
  • Each plate 56 has a ring 82 ( FIG. 6 ) to which is attached one end of a cable 84 ( FIG. 5 ), the other end being attached to the base 64 of the clamping device 72 . This allows the plates 56 to remain suspended inside of the core 40 for use in making the next pipe.
  • the collapsed core 40 is then removed and transported to the setup area for reuse. The pipe will now sit in the curing area until the pipe is completely cured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)

Abstract

At the filling station of a dry cast pipe making machine for making pipe lined with a plastic liner, the liner is first placed over the core and then a plurality of spaced-apart, removable L-shaped plates are secured around the top edge of the core. One leg of each plate extends inside the core with the other leg extending downwardly over the top edge of the liner. The plates are removably held in place on the core by the use of a clamping device, such as a vise-grip, for example. Once the form is filled with concrete and ready for the pressure heading step, the downwardly extending legs of the plates serve as ‘shoehorns’ to guide the pressure header over the top of the liner and prevent damage to it. In addition, the plates will assist in centering the core within the jacket.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to machines for producing concrete pipe and other similar concrete products.
  • There are known and used in the industry numerous designs of machines for producing concrete pipe and other similar products. Some of these machines are single station machines, while others are multiple station machines. The latter type machines generally have three stations at which the basic cycles of filling, pressure-heading and stripping are simultaneously performed. At the first station, a jacket with a removable pallet secured to its lower end is lowered over a core, creating an annular space between the core and jacket which is then filled with concrete at the filling station. At the pressure heading station, a pressure head is lowered onto the top of the form to compact the concrete. At the third station, the jacket and pallet together with the now-formed concrete pipe is stripped form the core and moved to the curing area. The jacket is then released from the pallet and lifted from the now-formed pipe. A new pallet is then added to the jacket and the form is returned to the filling station and lowered over the core. The common technique for making concrete pipe is known as dry cast which produces a pipe of excellent quality at much higher production rates than the wet cast process. In dry cast, a dry mix is compacted and the pipe is removed promptly after the concrete is set but before the concrete is completely cured. An example of dry cast techniques used in making concrete pipe is shown in Schmidgall et al U.S. Pat. No. 4,356,628.
  • Concrete pipe are sometimes manufactured with a plastic liner that provides increased resistance to corrosion and deterioration from various chemicals in and gases emitted from liquids flowing through the pipe. The plastic material used for lining concrete pipe is extruded in a sheet form and is typically provided with T-shaped ribs that project outwardly from one side. These T-shaped ribs become embedded in the concrete during the pipe making process, and when the concrete is set, an excellent bond is created between the liner and the finished pipe. However, it is not uncommon for the T-shaped ribs of the liner to pull out away from the concrete during the casting process. This occurs in the dry cast process because the concrete is set but not completely cured when the product is stripped from the core. Not infrequently, this results in a bulge or pullout because of the friction that is created between the liner and the core when the core is removed. Moreover, when the dry cast process takes place using a rigid non-collapsing shape of core, it is also difficult to place the liner over the core because the liners are large and flexible and pre-formed into a tube that must fit tightly over the core. In an attempt to overcome the problems of pullout and bulging in the plastic liner that may occur when a rigid non-collapsible core is used, collapsible and expandable inner cores have been developed and are typically used in the dry cast method. When collapsible cores are used, the core is collapsed to allow the liner to more easily be placed over the core after which the core is expanded and the pipe is cast. The core is then collapsed to permit easy removal of the finished concrete pipe. An example of a pipe making machine for making lined pipe using a collapsible core of this type is shown in Schmidgall U.S. Pat. No. 5,720,993.
  • At the present time, the core is placed on a pallet at a setup area, and the plastic liner is manually placed over the core. The jacket is then lowered over the core with the liner in place. Then, this core-pallet-jacket module is transported to the pipe making machine to be filled with concrete. After being filled with concrete, the module is moved to the pressure heading station, where the pressure header is lowered to compact the concrete. As this step in the process is performed, the header will bear against the core to center it with respect to the jacket. However, during this pressure heading step, it is possible for the header to snag the plastic liner, and as the header is moved into position, the header may also scrape against the liner and damage it. If the damage is not repaired, the pipe will be defective, because when the pipe sections are assembled in the field, the interior concrete surface of the pipe at the point of the damage will be exposed to the chemicals in the liquid flowing through the pipe. Therefore, the damage must be repaired manually by hot air welding a plastic patch over the damaged area. Obviously, this type of repair is a time consuming and difficult process because a worker has to work inside the pipe to make the repair. In producing pipe with plastic liners, some pipe manufacturers use the same standard-size headers that are designed for producing pipe without plastic liners. In this case, the liner is not contacted by the header and must be cut short since the inside diameter of the header is too small to pass over the liner. When lined pipe produced in this manner are installed in the field, there is a gap in the liner where two sections of pipe are joined. This gap must be covered by a wide annular band of plastic that is hot-air welded around both edges of the liners of the adjoined pipe sections. This is a difficult job because a worker now has to crawl inside the pipe to the area where two sections are joined and apply the band. To make this job easier, many manufacturers will use headers having an inside diameter large enough to slip over the liner, the end of which will now extend through the header and beyond leaving a flap of the liner long enough to extend over the liner of an adjoining pipe section when they are assembled in the field. Although the liner must still be hot-air welded along one edge, the flap eliminates the necessity of an annular band requiring two edges to be welded to adjoining pipe sections. However, because the header must now pass over the end of the liner during the pressure heading step, the header must be guided over the liner to prevent snagging with resulting damage to the liner. At the present time, the header is guided over the liner by two or more production workers each using a tool, such as a trowel, to guide the header. Obviously, this requires additional labor and slows down the pipe making process. Therefore, there is a need for an improved way of protecting the liner from damage during the pressure heading step in the pipe making process.
  • It is therefore the principal object of the invention to provide a method and structure for protecting the plastic pipe liner during the pressure heading step of making the pipe, and thereby produce a finished product of higher quality while also increasing the productivity of the pipe making process and reducing the cost of producing the pipe.
  • SUMMARY OF THE INVENTION
  • The machine of the invention accomplishes the foregoing object by adding at the filling station the plastic liner and then putting in place a plurality of spaced-apart, removable L-shaped plates around the top edge of the core, one leg of the plates extending inside the core with the other leg extending downwardly over the top edge of the liner. The plates are removably held in place by use of a clamping device, such as a vise-grip, for example. During the pressure heading step, the downwardly extending legs of the plates serve as ‘shoehorns’ to guide the pressure header over the top of the liner and prevent damage to it. In addition, the plates will assist in centering the core within the jacket. When the pressure heading step is completed, a flap at the end of the liner will extend beyond the header, and when the pipe sections are assembled in the field, the flap will overlap the liner in the adjoining pipe section and simplify the completion of the joint. The pipe making machine of the invention thus provides for minimizing damage to the pipe liner during the pipe making process and simplifies the process resulting in increased production output with no increase in manpower. The invention also provides for easy adaptation of existing machines to utilize the features of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side elevational view, showing a typical pipe making machine that can utilize the principles of the invention;
  • FIG. 2 is a top or plan view of the machine of FIG. 1 and illustrating the three stations for performing the steps of the pipe making operation;
  • FIG. 3 is a sectional view through an elevation of a form set shown at the pressure heading station and showing the jacket, pallet, core and base;
  • FIG. 4 is a view similar to FIG. 3 and illustrating the pressure header being lowered in place on top of the-form set;
  • FIG. 5 is a perspective view of a portion of the top of a form set showing the L-shaped plates and clamping devices around the top of the core and illustrating the header being lowered onto the form set;
  • FIG. 6 is a perspective view of the L-shaped plate; and
  • FIG. 7 is a perspective view of the clamping device.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT OF THE INVENTION
  • In the drawings, there is shown a typical pipe making machine of the dry cast type. The machine shown is a multi-station machine in which a form set is moved by a turntable around the three stations where the pipe making process takes place. However, it should be understood that the form set can be stationary and the equipment for carrying out the process moved over the form set in proper sequence. Referring now to the drawings, and particularly to FIG. 1 and FIG. 2, the operating stations of the machine are spaced around a turntable 10 mounted for rotation about a central support 12 in a pit 14 formed below the level of the floor 16. The pit 14 is usually covered with a removable cover 18 which has a plurality of openings in it and through which extend the forms that will be described in detail hereinafter. Cover 18 is supported by and rotatable with turntable 10 in any suitable manner as is well known with existing conventional multi-station machines of this type.
  • As best seen in FIG. 2, the machine has a fill station 20, a pressure-head station 22 and an offbear or stripping station 24. The machine also preferably includes an operator station 26 at which the controls are centralized so that one man can control operation of the machine. The machine also includes a main vertical support 28 (FIG. 1) and a side vertical support 30 that are interconnected to provide the necessary supporting structure for the pressure head unit 79 which is vertically movable at the pressure-head station 22. The pressure head function will be described in more detail hereinafter since the invention relates primarily to what occurs at the pressure head station 22.
  • In addition to the foregoing components, as is well known to those skilled in the art, the complete pipe making machine has an overhead beam supported on a suitable overhead tram (not shown) so that the beam can be moved up and down and to different positions. This provides for placement of a form set in the filling station 20 and then removing it from the offbear station 24 and transferring it to a curing area.
  • Referring now to FIGS. 3, 4 and 5 as well as FIG. 1, the structure of a form set and related supporting structure will now be described. Each form set has a suitable supporting base 36 which rests directly upon the turntable 10. Suitable means (not shown) can be provided to secure the base 36 to the turntable so that it will rotate with it. The base 36 is provided with a plurality of rubber isolators 44 secured beneath it and which rest directly upon the turntable 10. The form set, when completed as described hereinafter, is thus not rigidly affixed to the turntable 10 so that the form set, after being filled with concrete, is free to be vibrated in a manner well know to those skilled in the art.
  • As is well known to those skilled in the art, in most instances, a setup area is provided where a wire cage of reinforcing steel (not shown) is first positioned around the core 40 which is resting on a pallet 38. Each core 40 consists of a vertical cylindrical tube 42 that is preferably hollow. When producing lined pipe, collapsible cores are used which allows a plastic liner 50 to more easily be placed over the tube 42 of the core 40 after which the tube is expanded and the pipe is cast. An example of a collapsible core for a pipe making machine for making lined pipe is shown in Schmidgall U.S. Pat. No. 5,720,993. With the core 40 resting on the pallet 38 and in a collapsed condition inside the wire cage, the plastic liner 50 is then manually placed over the core 40 and the core 40 is expanded.
  • Referring now to FIGS. 4, 5, 6, and 7, there is shown in FIG. 5 a part of the top portion of a core 40 with the liner 50 in place. Along the top edge 52 of the core 40 are positioned a plurality of ‘shoehorn’ devices, each indicated generally by the reference numeral 54. While the form set is still in the setup area, the devices 54 are affixed to the top edge 52 of each core 40 with the liner 50 in place around the core 40. Each device 54 is comprised of a removable L-shaped plate 56 and a clamping device 58. Each L-shaped plate 56 has a downwardly extending leg 60 that extends over the top of the plastic liner 50 that has been positioned over the core 40. Each L-shaped plate 56 also has an inwardly extending leg 62 that is held in place on the base 64 of the clamping device 58. The base 64 is permanently affixed in any suitable manner, such as by welding, to the inside of the core 40 and has affixed to it the clamping device 58 that has jaws 66 for releasably gripping the leg 62 of the L-shaped plate 56. The clamping device 58 illustrated in the drawings is similar to the commonly known vise grip, but any suitable clamping device can be used to hold the plate 56 in place and allow it to be removed and reinstalled. The top edge of the L-shaped plate 56 also preferably has a pair of upwardly extending lugs 68 that have sloped edges. As described hereinafter, during the pressure heading step, the lugs 68 serve to guide the header 70 around the core 40 and over the plastic liner 50 so that the header 70 does not contact the liner 50 and damage it. The lugs 68 also serve to assist in centering the core 40 with respect to the jacket 46 when the header 34 is pressure headed onto the core 40. The core 40, with liner 50 covering it and the shoehorn devices 54 in place, is now in a position to receive the jacket 46 as now described.
  • A jacket, indicated generally by the reference numeral 46, is provided to complete the form set. Each jacket 46 is a hollow, generally cylindrical tube the inside diameter of which is greater than the outside diameter of the corresponding core 40 thus creating an annular space 32 between each jacket 46 and each corresponding core 40 that is the thickness of the wall of the pipe to be produced. As is customary with machines of this type, the jacket 46 is lowered over the core 40 and attached to the pallet 38. The attachment mechanism consists generally of releasable locking lugs 48 (FIG. 3) that engage the bottom of the pallet 38 and thus positively position the jacket 46 relative to the core 40 and thereby accurately determining the wall thickness of the concrete pipe. The pallet 38 also provides a part of the form that shapes the end of the pipe to the desired configuration. The completed form assembly or module consisting of jacket 46, the pallet 38 and core 42 with liner 50 is now ready to be filled with concrete, and the module is transported to the pipe making machine and positioned at the fill station 20.
  • At the fill station 20, there is provided a hopper 72 and a conveyor 74 at the outer end of which is a fill chute 76 that can be moved into position over the completed form set during the filling cycle. Once the module has been filled with concrete, it is moved by the turntable 10 to the pressure head station 22 of the pipe making machine.
  • Referring now to FIG. 1, there is shown the pressure-head extruder unit indicated generally by the reference numeral 79. This unit 79 is vertically-movable by a support 80, and unit 79 includes the pressure header 34 and also contains an annular shaped pressure header 70 that applies pressure to compact the concrete contained between the jacket 46 and core 40 (FIGS. 4 and 5). The pressure header 34 also contains an extension ring 78 that engages the header 70. As the pressure header 70 is lowered onto the top of the form, the lugs 68 and the legs 60 of the shoehorns 54 guide the header 70 to assure that the liner 50 is not damaged by contact with the header 70. The legs 60 of the shoehorns 54 each extend downwardly a sufficient distance to protect the liner 50 as the header 70 continues to move downwardly between the core 40 and the jacket 46 to compact the concrete. Contact of the header 70 with the lugs 68 and the legs 60 of the shoehorn devices 54 serves to guide the core 40 over to the center to assure that the finished pipe is of uniform thickness. As is well know to those skilled in the art, during the pressure-head cycle, vibrators (not shown) may be actuated so that the concrete is fully compacted to form a high quality pipe.
  • After the pressure heading step is completed, the turntable 10 is rotated to move the module to the off bearing and stripping station 24. The module, consisting of the pallet 38, core 42 and jacket 46 together with the product, is then transported to the curing area where the pallet 38 are released from its connection to the jacket 46, and the jacket 46 is then stripped from the now finished pipe and moved to the setup area for reuse. After an adequate time for the concrete pipe to set, the core 40 is collapsed and the jaws 66 of the clamping device 72 are released allowing removal of the L-shaped plates 56. Each plate 56 has a ring 82 (FIG. 6) to which is attached one end of a cable 84 (FIG. 5), the other end being attached to the base 64 of the clamping device 72. This allows the plates 56 to remain suspended inside of the core 40 for use in making the next pipe. The collapsed core 40 is then removed and transported to the setup area for reuse. The pipe will now sit in the curing area until the pipe is completely cured.
  • Having thus described the invention in connection with the preferred embodiments thereof, it will be evident to those skilled in the art that various revisions can be made to the preferred embodiments described herein without departing from the spirit and scope of the invention. It is our intention, however, that all such revisions and modifications that are evident to those skilled in the art will be included within the scope of the following claims.

Claims (20)

1. An apparatus for use with dry cast pipe making machines for making concrete pipe lined with a plastic liner, the pipe being cast using a jacket and a hollow core with liner in place and the core having a top edge, said apparatus comprising:
a plurality of spaced-apart, generally L-shaped plates having legs and adapted to be secured the top edge of the core, one leg of each plate extending inwardly inside the core with the other leg being joined to the one leg and extending downwardly over the top edge of the liner when the plates are secured to the core;
and a clamping device for removably securing the plates to the core.
2. The apparatus of claim 1 in which the clamping device includes a pair of jaws releaseably gripping the inwardly extending leg.
3. The apparatus of claim 1 in which the clamping device includes a base, the base being affixed to the inside of the core.
4. The apparatus of claim 1 in which there is a lug extending upwardly from the inwardly extending leg at the point where the inwardly extending leg is joined to the downwardly extending leg.
5. An apparatus for use with a core with liner in place and a jacket that provide the concrete pipe form for a dry cast pipe making machine, said apparatus comprising:
an inwardly extending leg,
a downwardly extending leg adapted to extend over the edge of the plastic liner when the apparatus is in place on the core,
the inwardly extending leg connected to the downwardly extending leg,
the inwardly extending leg having a top edge,
the top edge containing at least one upwardly extending lug.
6. The apparatus of claim 5 wherein the top edge contains two upwardly extending lugs, the two upwardly extending lugs spaced a distance apart from one another.
7. The apparatus of claim 5 wherein the inwardly extending leg is provided with a ring, the ring selectively attachable to a cable.
8. The apparatus of claim 5 wherein the inwardly extending leg and the downwardly extending leg form an L-shape.
9. An apparatus for use with dry cast pipe making machines for making concrete pipe lined with a plastic liner, the pipe being cast using a jacket and a core with liner in place, said apparatus comprising:
a base attachable to the core,
a clamping device attached to the base,
the clamping device comprising jaws,
the jaws being selectively adjustable.
10. The apparatus of claim 9 wherein the base is permanently affixed to the core.
11. The apparatus of claim 9 wherein the clamping device comprises vice grips.
12. The apparatus of claim 10 wherein the base is welded to the core.
13. An apparatus for use with dry cast pipe making machines for making concrete pipe lined with a plastic liner, the pipe being cast using a jacket and a core with liner in place, said apparatus comprising:
an inwardly extending leg,
a downwardly extending leg adapted to extend over the edge of the plastic liner when the apparatus is in place on the core,
the inwardly extending leg connected to the downwardly extending leg,
the inwardly extending leg having a top edge,
the top edge containing at least one upwardly extending lug,
a base attachable to the core,
a clamping device attached to the base,
the clamping device comprising jaws,
the jaws selectively attachable to the inwardly extending leg.
14. The apparatus of claim 13 wherein the top edge contains two upwardly extending lugs.
15. The apparatus of claim 13 wherein the there is a cable attached to the base and the inwardly extending leg includes a ring, the ring selectively attachable to the cable.
16. The apparatus of claim 13 wherein the inwardly extending leg and the downwardly extending leg form an L-shape.
17. The apparatus of claim 13 wherein the base is permanently affixed to the core.
18. The apparatus of claim 13 wherein the clamping device comprises vice grips.
19. The apparatus of claim 17 wherein the base is welded to the core.
20. The method of making concrete pipe having a plastic liner using the dry cast method comprising the steps of:
placing a core on a pallet;
collapsing the core to more easily accommodate a plastic liner;
placing a plastic liner over the core;
expanding the core into the liner;
securing a plurality of shoehorn devices along the top edge of the core, each device having a portion extending over the plastic liner;
placing a jacket over the core to form a module with an annular space to receive concrete;
filling the annular space with concrete;
moving a pressure header into the annular space by engaging the shoehorn devices;
continuing to move the pressure header through to compact the concrete;
removing the pressure header;
stripping the jacket from the module to leave the concrete pipe to set;
collapsing the core and removing the shoehorn devices; and
removing the core and allowing the concrete pipe to cure.
US12/351,554 2009-01-09 2009-01-09 Apparatus and method for protecting lined concrete pipe during the manufacturing process Active US7832703B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/351,554 US7832703B2 (en) 2009-01-09 2009-01-09 Apparatus and method for protecting lined concrete pipe during the manufacturing process
CA2653292A CA2653292C (en) 2009-01-09 2009-02-09 Apparatus and method for protecting lined concrete pipe during the manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/351,554 US7832703B2 (en) 2009-01-09 2009-01-09 Apparatus and method for protecting lined concrete pipe during the manufacturing process

Publications (2)

Publication Number Publication Date
US20100178373A1 true US20100178373A1 (en) 2010-07-15
US7832703B2 US7832703B2 (en) 2010-11-16

Family

ID=42315989

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/351,554 Active US7832703B2 (en) 2009-01-09 2009-01-09 Apparatus and method for protecting lined concrete pipe during the manufacturing process

Country Status (2)

Country Link
US (1) US7832703B2 (en)
CA (1) CA2653292C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104227842A (en) * 2013-06-18 2014-12-24 谢伟藩 High pressure gypsum slurry seam filling machine
DE102014211030A1 (en) * 2014-06-10 2015-12-17 Bfs Betonfertigteilesysteme Gmbh Method and device for producing a sewer pipe element
AT517916A1 (en) * 2015-10-16 2017-05-15 Ulrich Schlüsselbauer Method for producing concrete pipes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10493656B2 (en) 2017-01-31 2019-12-03 William M. Del Zotto Devices and processes for making concrete articles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900179A (en) * 1973-01-12 1975-08-19 Waco Scaffold & Shoring Co Column roll out support
US3967806A (en) * 1975-03-17 1976-07-06 Strickland Systems Inc. Adjustable apparatus for supporting concrete formwork
US4708621A (en) * 1985-12-27 1987-11-24 Hawkeye Concrete Products Co. Concrete pipe making machine
US5005801A (en) * 1989-08-18 1991-04-09 Giarrocco Iii Martin A Jack hanging apparatus
US5522579A (en) * 1992-11-06 1996-06-04 Osterreichische Doka Schalungstechnik Gmbh Apparatus for supporting a form member extending perpendicularly to the longitudinal axis of a form carrier
US5720993A (en) * 1996-11-06 1998-02-24 Hawkeye Concrete Products Co. Collapsible core for concrete pipe making apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3900179A (en) * 1973-01-12 1975-08-19 Waco Scaffold & Shoring Co Column roll out support
US3967806A (en) * 1975-03-17 1976-07-06 Strickland Systems Inc. Adjustable apparatus for supporting concrete formwork
US4708621A (en) * 1985-12-27 1987-11-24 Hawkeye Concrete Products Co. Concrete pipe making machine
US5005801A (en) * 1989-08-18 1991-04-09 Giarrocco Iii Martin A Jack hanging apparatus
US5522579A (en) * 1992-11-06 1996-06-04 Osterreichische Doka Schalungstechnik Gmbh Apparatus for supporting a form member extending perpendicularly to the longitudinal axis of a form carrier
US5720993A (en) * 1996-11-06 1998-02-24 Hawkeye Concrete Products Co. Collapsible core for concrete pipe making apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104227842A (en) * 2013-06-18 2014-12-24 谢伟藩 High pressure gypsum slurry seam filling machine
DE102014211030A1 (en) * 2014-06-10 2015-12-17 Bfs Betonfertigteilesysteme Gmbh Method and device for producing a sewer pipe element
US10603818B2 (en) 2014-06-10 2020-03-31 Bfs Betonfertigteilsysteme Gmbh Method and apparatus for producing a sewer pipe element
AT517916A1 (en) * 2015-10-16 2017-05-15 Ulrich Schlüsselbauer Method for producing concrete pipes

Also Published As

Publication number Publication date
CA2653292C (en) 2016-06-07
US7832703B2 (en) 2010-11-16
CA2653292A1 (en) 2010-07-09

Similar Documents

Publication Publication Date Title
US5028368A (en) Method of forming lined pipe
US7832703B2 (en) Apparatus and method for protecting lined concrete pipe during the manufacturing process
US8500429B2 (en) Method and means of lining a manhole
US11511460B2 (en) Devices and processes for making concrete articles
US4708621A (en) Concrete pipe making machine
CN104141351A (en) Sealing method for reserved paying-off hole and paying-off hole mold
WO2004049081A1 (en) Production evaluation managing system and managing method
JP5424727B2 (en) Tire manufacturing method and apparatus
US2839440A (en) Method of making an air cushion assembly
RU2769634C1 (en) Device for making hollow concrete products, a method for making hollow concrete products and a hollow concrete structure
US1810583A (en) Method and apparatus for making concrete pipe
EP1644144B1 (en) Method of and apparatus for forming a refractory lining in a coreless furnace
US4039642A (en) Method of making concrete pipe
US1624191A (en) Mold for cementitious conduits
US4578235A (en) Method for lining pipe
US5139404A (en) Apparatus for making lined pipe
KR200170139Y1 (en) Apparatus for stopping end of moving concrete mold to construct tunnel lining
CN102493643B (en) Method for constructing circular hole of anchor bolt reserved by equipment foundation
US4400149A (en) Concrete pipe making machine with redensification apparatus
CN109317618B (en) Pipe fitting anti-deformation tool suitable for lost foam casting process and pipe fitting casting process
US10220583B2 (en) Method and device for manufacturing tire vulcanization bladder assembly
US2832107A (en) Core blowing machine
US20050269747A1 (en) Press head assembly for concrete pipe making machine
CN212642754U (en) Simple mould structure for secondary lining end of tunnel
CN118208259B (en) Negative ring pipe piece of embedded sleeve and construction method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: HAWKEYE CONCRETE PRODUCTS CO., IOWA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHMIDGALL, JON A.;STOLLER, DAVID E.;REEL/FRAME:022084/0849

Effective date: 20090106

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: MADISON CAPITAL FUNDING LLC, AS ADMINISTRATIVE AGE

Free format text: SECURITY AGREEMENT;ASSIGNOR:HAWKEYE CONCRETE PRODUCTS CO.;REEL/FRAME:027259/0390

Effective date: 20111117

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, MISSOURI

Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:HAWKEYEPEDERSHAAB CONCRETE TECHNOLOGIES, INC.;REEL/FRAME:040084/0702

Effective date: 20160916

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, MI

Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:HAWKEYEPEDERSHAAB CONCRETE TECHNOLOGIES, INC.;REEL/FRAME:040084/0702

Effective date: 20160916

Owner name: HAWKEYE CONCRETE PRODUCTS CO., MISSOURI

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS (PREVIOUSLY RECORDED NOVEMBER 21, 2011 REEL/FRAME 027259/0390);ASSIGNOR:MADISON CAPITAL FUNDING LLC, AS AGENT;REEL/FRAME:040084/0950

Effective date: 20160916

AS Assignment

Owner name: HAWKEYEPEDERSHAAB CONCRETE TECHNOLOGIES, INC., MISSOURI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAWKEYE CONCRETE PRODUCTS CO.;REEL/FRAME:040104/0374

Effective date: 20160916

Owner name: HAWKEYEPEDERSHAAB CONCRETE TECHNOLOGIES, INC., MIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAWKEYE CONCRETE PRODUCTS CO.;REEL/FRAME:040104/0374

Effective date: 20160916

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552)

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 12

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA

Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNOR:HAWKEYEPEDERSHAAB CONCRETE TECHNOLOGIES, INC.;REEL/FRAME:061940/0538

Effective date: 20221115