US20100157765A1 - Collection of readback signal modulation data - Google Patents

Collection of readback signal modulation data Download PDF

Info

Publication number
US20100157765A1
US20100157765A1 US12/339,256 US33925608A US2010157765A1 US 20100157765 A1 US20100157765 A1 US 20100157765A1 US 33925608 A US33925608 A US 33925608A US 2010157765 A1 US2010157765 A1 US 2010157765A1
Authority
US
United States
Prior art keywords
data
control loop
loop data
timing control
gain control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/339,256
Inventor
Bruce Douglas Emo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Priority to US12/339,256 priority Critical patent/US20100157765A1/en
Assigned to SEAGATE TECHNOLOGY LLC reassignment SEAGATE TECHNOLOGY LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMO, BRUCE D.
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT AND SECOND PRIORITY REPRESENTATIVE, JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT AND FIRST PRIORITY REPRESENTATIVE reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT AND SECOND PRIORITY REPRESENTATIVE SECURITY AGREEMENT Assignors: MAXTOR CORPORATION, SEAGATE TECHNOLOGY INTERNATIONAL, SEAGATE TECHNOLOGY LLC
Publication of US20100157765A1 publication Critical patent/US20100157765A1/en
Assigned to SEAGATE TECHNOLOGY INTERNATIONAL, SEAGATE TECHNOLOGY LLC, SEAGATE TECHNOLOGY HDD HOLDINGS, MAXTOR CORPORATION reassignment SEAGATE TECHNOLOGY INTERNATIONAL RELEASE Assignors: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT
Assigned to THE BANK OF NOVA SCOTIA, AS ADMINISTRATIVE AGENT reassignment THE BANK OF NOVA SCOTIA, AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: SEAGATE TECHNOLOGY LLC
Priority to US13/861,976 priority patent/US8947814B2/en
Assigned to SEAGATE TECHNOLOGY LLC, SEAGATE TECHNOLOGY US HOLDINGS, INC., SEAGATE TECHNOLOGY INTERNATIONAL, EVAULT INC. (F/K/A I365 INC.) reassignment SEAGATE TECHNOLOGY LLC TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS Assignors: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT AND SECOND PRIORITY REPRESENTATIVE
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/02Driving or moving of heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/40Protective measures on heads, e.g. against excessive temperature 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • G11B19/04Arrangements for preventing, inhibiting, or warning against double recording on the same blank or against other recording or reproducing malfunctions
    • G11B19/048Testing of disk drives, e.g. to detect defects or prevent sudden failure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/455Arrangements for functional testing of heads; Measuring arrangements for heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/596Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following on disks
    • G11B5/59605Circuits
    • G11B5/59622Gain control; Filters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6011Control of flying height
    • G11B5/6029Measurement using values derived from the data signal read from the disk
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6011Control of flying height
    • G11B5/6076Detecting head-disk contact

Definitions

  • the present embodiments relate generally to data storage systems and more particularly, but not by way of limitation, to the collection of readback signal modulation data in a data storage system.
  • Mass storage devices are one of many components of modern computers.
  • One type of mass storage device is a disc drive.
  • disc drives read and write information along concentric tracks formed on discs.
  • a magnetic disc drive which is a particular type of disc drive, includes one or more magnetic discs mounted for rotation on a hub or spindle.
  • a typical magnetic disc drive also includes heads that communicate with the magnetic discs. Each head is carried by a slider which is designed to “fly” just over the surface of the rotating disc. An actuator moves the slider radially over the disc surface for track seek operations and holds the head directly over a track on the disc surface for track following operations.
  • Information is typically stored in concentric tracks on the surface of a magnetic disc by providing a write signal to the head to encode flux reversals on the surface of the magnetic disc representing the data to be stored.
  • the drive controller controls the actuator so that the head flies above the magnetic disc, sensing the flux reversals on the magnetic disc, and generating a readback signal based on those flux reversals.
  • the readback signal is typically conditioned and then decoded by a drive read channel to recover data represented by flux reversals stored on the magnetic disc.
  • disc drives typically use embedded servo fields on the disc.
  • a typical disc format comprises “pie-shaped” wedges of servo information interweaved between sections of data.
  • the embedded servo fields are utilized by a servo sub-system to position a head over a particular track.
  • An aspect of the disclosure relates to collecting modulation data, such as gain control loop data and timing control loop data, from a readback signal in a data storage device.
  • a test mode and a normal operation mode are established in a read channel of a data storage device.
  • Gain control loop data and/or timing control loop data are collected from a readback signal during operation of the read channel in the test mode.
  • a data storage system having a read channel configured to function in a normal operation mode and a test mode.
  • the read channel In the normal operation mode, the read channel is configured to decode a readback signal to obtain data bits.
  • the read channel is configured to extract gain control loop data and/or timing control loop data from the readback signal.
  • gain control loop data and/or timing control loop data are extracted from a readback signal obtained while reading user data stored on a data storage medium.
  • the extracted gain control loop data and/or timing control loop data from the readback signal obtained while reading user data stored on a data storage medium is transferred via a data transfer bus.
  • the extracted gain control loop data and/or timing control loop data is obtained via the data transfer bus and stored.
  • FIG. 1A is a simplified block diagram of a data storage system in accordance with one embodiment.
  • FIG. 1B is a diagrammatic illustration of a surface of a data storage medium.
  • FIG. 2 is a block diagram of a disc drive in accordance with one embodiment.
  • FIG. 3 is a block diagram of an exemplary read channel that can be employed in the disc drive of FIG. 2 .
  • FIG. 1A is a simplified block diagram of a data storage system 100 in accordance with one exemplary embodiment.
  • Data storage system 100 includes a data storage medium 102 , which is rotated with the help of spindle motor 104 .
  • a head 106 communicates with the data storage medium 102 .
  • Head 106 is operably coupled to an actuator 108 .
  • Data storage system 100 reads and writes information along concentric tracks formed on data storage medium 102 with the help of head 106 , which includes a readback sensor 107 and a write transducer 109 .
  • an analog readback signal produced by the readback sensor 107 is processed by read channel circuitry 116 , which is configured to function in a normal operation mode and a test mode. These operation modes are described further below.
  • FIG. 1B shows a surface of data storage medium 102 , which is in the form of a disc that includes concentric tracks 110 with data fields 112 and servo fields 114 , for example.
  • FIG. 1B only two tracks are shown in the interest of simplification.
  • a typical disc surface includes a very large number of closely spaced tracks.
  • the servo field and data field boundaries are, in the interest of simplification, marked by straight lines in FIG. 1B
  • a typical disc surface has curved servo field and data filed boundary lines. The curved boundary lines follow an arc of a head pivoting around an actuator pivot.
  • the embedded servo fields 114 are utilized by a servo sub-system (not shown) to position head 106 over a particular track.
  • a servo sub-system not shown
  • servo information sensed by head 106 is demodulated to generate a position error signal (PES) which provides an indication of the distance between the head and the track center.
  • PES position error signal
  • the PES is then converted into an actuator control signal, which is used to control actuator 108 , which positions head 106 .
  • read channel circuitry 116 is configured to function in a normal operation mode and a test mode.
  • read channel 116 produces decoded bit estimates from the analog readback signal.
  • test mode read channel 116 extracts at least one of gain control loop data and timing control loop data from the readback signal. Since the above embodiment relates to operating the read channel in a test mode and a normal operation mode, the above teachings also apply to systems which do not carry out write operations and therefore do not include a write head, such as 109 , but only include a read head such as 107 . Details regarding the collection of gain control loop data and/or timing control loop data in a disc drive are described below in connection with FIGS. 2 and 3 .
  • Disc drive 200 includes a PCBA 202 and a head stack assembly (HSA) 204 .
  • PCBA 202 includes circuitry and processors, which provide a target interface controller for communicating between a host system 206 and HSA 204 .
  • Host system 206 can include a microprocessor-based data processing system such as a personal computer or other system capable of performing a sequence of logical operations. Data is transmitted between host system 206 and PCBA 202 via a host bus connector 208 .
  • HSA 204 includes an actuator assembly 210 , a preamplifier 212 , and a disc assembly 214 .
  • Disc assembly 214 includes a plurality of media discs 102 , stacked on a spindle assembly 218 .
  • Spindle assembly 218 is mechanically coupled to a spindle motor 220 for rotating the discs at a high rate of speed.
  • Actuator assembly 210 includes a voice coil motor (VCM), and multiple actuator arms 108 . Located at the end of each actuator arm are heads 106 , which are associated with a respective disc surface. Heads 106 communicate with disc controller circuit board 202 via a cable assembly 224 connected to preamplifier 212 for reading and writing data to the head's associated disc surface. Preamplifier 212 provides an amplified signal to a read/write channel 226 of PCBA 202 . Read/write channel 226 performs encoding and decoding of data written to and read from the disc.
  • VCM voice coil motor
  • a servo processor 246 provides intelligent control of actuator assembly 110 and spindle motor 220 through a servo controller 248 .
  • VCM driver 250 is coupled to move actuator assembly 210 and spindle motor driver 252 is coupled to maintain a constant spin rate of spindle motor 220 .
  • PCBA 202 includes a host interface disc controller (HIDC) application-specific integrated circuit (ASIC) 228 .
  • ASIC 228 includes a host interface 230 , a buffer controller 232 , and a disc controller 234 .
  • Host interface 230 communicates with host system 206 via host bus connector 208 by receiving commands and data from and transmitting status and data back to host system 206 .
  • a command cueing engine (CQE) 258 is incorporated in host interface 230 .
  • Buffer controller 232 controls a buffer memory 236 , which can be a non-volatile memory, for example.
  • HDIC 228 and read/write channel 226 communicate via a data transfer bus 227 .
  • Disc controller 234 tracks the timing of data sectors passing under a currently selected head and accordingly sends data to and receives data from read/write channel 226 . Disc controller 234 also provides for and error detection error correction on data transmitted to and read from discs 102 .
  • An interface processor 238 manages a cue of commands received from host 206 with the assistance of the CQE 258 embedded in host interface 230 .
  • Interface processor 238 interfaces with functional elements of PCBA 202 over a bus 240 , for transfer of commands, data, and status.
  • Disc system operational programs may be stored in read-only memory (ROM) 254 , and are loaded into random access memory (RAM) or program loading memory 256 for execution by interface processor 238 .
  • ROM read-only memory
  • RAM random access memory
  • servo processor 246 may have integrated or separate memory 260 for storage of servo programs.
  • the disc drive read channel within block 226 is configured to operate in a test mode and a normal operation mode.
  • the gain control loop data and/or timing control loop data is routed from the read channel within block 226 through servo controller 248 and is stored in RAM 256 .
  • Disc drive 200 is configured, for example, such that this path limits the collection of gain control loop and/or timing control loop data to one data sample per servo wedge.
  • the gain control loop data and/or timing control loop data from the read channel 226 is routed to the buffer memory 236 via the data transfer bus 227 , the HDIC 228 and the buffer controller 232 .
  • buffer memory 236 serves as a common memory that stores the gain control loop data and/or timing control loop data in the test mode and stores data bits in the normal operation mode.
  • Gain control loop data and/or timing control loop data collected in buffer memory 236 can be used, for example, by a proximity computation component 237 , which calculates whether any proximity (contact and near-contact events) occurred between the head(s) 106 and the disc(s) 102 .
  • Read channel 300 passes the amplified readback signal from preamplifier 212 through a series of processing blocks that are arranged in cascade to provide a read channel output at 315 .
  • the cascaded processing blocks in the read channel 300 include a variable gain amplifier (VGA) 302 that receives the preamplifier output, an adjustable low pass filter (LPF) 304 that receives the variable gain amplifier output, a finite impulse response (FIR) filter 306 that receives the low pass filter output, an analog-to-digital converter (ADC) 308 that receives the FIR filter output, and a Viterbi detector 310 that receives the ADC output and, in turn, provides the read channel output 315 .
  • VGA variable gain amplifier
  • LPF adjustable low pass filter
  • FIR finite impulse response
  • ADC analog-to-digital converter
  • Viterbi detector 310 that receives the ADC output and, in turn, provides the read channel output 315 .
  • Read channel 300 also includes a gain and timing control component 312 that reads the ADC output and provides an output that controls timing and other functions of the ADC 308 .
  • timing control loop data can include phase control loop data and/or frequency control loop data.
  • the gain and timing control 312 also controls a gain of VGA 302 .
  • a modulation extraction component 314 is configured to receive instructions to operate the read channel in a test mode or a normal operation.
  • all the processing blocks (including timing control component 312 and modulation extraction component 314 ) in the read channel 300 can be modeled as state machines and may be implemented using software, hardware or firmware and may include one or more storage units or memories that store program code, computation results, etc.
  • the processing blocks in the read channel can include one or more processors that execute program code, commands, etc.
  • component 314 disables the output of data bits from Viterbi detector 310 (for example, by suitably controlling a multiplexer (MUX) 316 by sending a select-test-mode control signal via control line 318 ) and instead provides extracted gain control loop data and/or timing control loop data for each symbol of data during a read operation.
  • MUX multiplexer
  • the output of data bits from Viterbi detector 310 is enabled (for example, by sending a select normal-operation-mode control signal via control line 318 to switch 316 ) and no gain control loop data and/or timing control loop data for each symbol of user data is provided.
  • any data for example, data bits from Viterbi detector 310 or gain control loop data and/or timing control loop data
  • data transfer bus 227 any data (for example, data bits from Viterbi detector 310 or gain control loop data and/or timing control loop data) output by read channel 300 is provided through data transfer bus 227 .
  • gain control loop data and/or timing control loop data collected in buffer memory 236 can be used, for example, by proximity computation component 237 , which calculates whether any proximity (contact and near-contact events) occurred between the head(s) 106 and the disc(s) 102 .
  • proximity computation component 237 comprises its own internal memory (not shown) that includes instructions to read the gain control loop data and/or timing control loop data collected in buffer memory 236 and to compute the proximity from the gain control loop data and/or timing control loop data read from buffer memory 236 .
  • the instructions stored in the internal memory are executed by a processor (not shown) that is, for example, within component 237 or by other components in the disc drive such as disc controller 228 .
  • the proximity computation results can be stored in the internal memory of component 237 or in any other suitable memory within, or external to, the disc drive.

Landscapes

  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

A data storage system having a read channel configured to function in a normal operation mode and a test mode. In the normal operation mode, the read channel is configured to decode a readback signal to obtain data bits. In the test mode, the read channel is configured to extract gain control loop data and/or timing control loop data from the readback signal.

Description

    BACKGROUND
  • The present embodiments relate generally to data storage systems and more particularly, but not by way of limitation, to the collection of readback signal modulation data in a data storage system.
  • Mass storage devices are one of many components of modern computers. One type of mass storage device is a disc drive. In general, disc drives read and write information along concentric tracks formed on discs. A magnetic disc drive, which is a particular type of disc drive, includes one or more magnetic discs mounted for rotation on a hub or spindle. A typical magnetic disc drive also includes heads that communicate with the magnetic discs. Each head is carried by a slider which is designed to “fly” just over the surface of the rotating disc. An actuator moves the slider radially over the disc surface for track seek operations and holds the head directly over a track on the disc surface for track following operations.
  • Information is typically stored in concentric tracks on the surface of a magnetic disc by providing a write signal to the head to encode flux reversals on the surface of the magnetic disc representing the data to be stored. In retrieving data from the disc, the drive controller controls the actuator so that the head flies above the magnetic disc, sensing the flux reversals on the magnetic disc, and generating a readback signal based on those flux reversals. The readback signal is typically conditioned and then decoded by a drive read channel to recover data represented by flux reversals stored on the magnetic disc.
  • To locate a particular track on a disc, disc drives typically use embedded servo fields on the disc. Thus, a typical disc format comprises “pie-shaped” wedges of servo information interweaved between sections of data. The embedded servo fields are utilized by a servo sub-system to position a head over a particular track.
  • As the density of data recorded on magnetic discs continues to increase, it is becoming necessary for the spacing between the head carried by the slider and the disc to decrease to very small distances. Spacings of well below 10 nanometers (nm) are required in some applications. In disc drive systems having such small slider-disc spacing, the possibility of contact between the slider and the disc is relatively high, due to factors such as slider manufacturing process limitations and limited air-bearing modeling capabilities. A promising method to detect such contacts is to examine modulation in a readback signal produced by the head during a read operation, for example. However, current disc drives are not configured for collection of readback signal modulation data that is suitable for use in providing relatively accurate slider-disc contact detection, for example.
  • The present embodiments address these problems and offers other advantages over the prior art.
  • SUMMARY
  • An aspect of the disclosure relates to collecting modulation data, such as gain control loop data and timing control loop data, from a readback signal in a data storage device.
  • In one method embodiment, a test mode and a normal operation mode are established in a read channel of a data storage device. Gain control loop data and/or timing control loop data are collected from a readback signal during operation of the read channel in the test mode.
  • In an apparatus embodiment, a data storage system having a read channel configured to function in a normal operation mode and a test mode is provided. In the normal operation mode, the read channel is configured to decode a readback signal to obtain data bits. In the test mode, the read channel is configured to extract gain control loop data and/or timing control loop data from the readback signal.
  • In another method embodiment, gain control loop data and/or timing control loop data are extracted from a readback signal obtained while reading user data stored on a data storage medium. The extracted gain control loop data and/or timing control loop data from the readback signal obtained while reading user data stored on a data storage medium is transferred via a data transfer bus. The extracted gain control loop data and/or timing control loop data is obtained via the data transfer bus and stored.
  • These and various other features and advantages will become apparent upon reading the following detailed description and upon reviewing the associated drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A is a simplified block diagram of a data storage system in accordance with one embodiment.
  • FIG. 1B is a diagrammatic illustration of a surface of a data storage medium.
  • FIG. 2 is a block diagram of a disc drive in accordance with one embodiment.
  • FIG. 3 is a block diagram of an exemplary read channel that can be employed in the disc drive of FIG. 2.
  • DETAILED DESCRIPTION
  • FIG. 1A is a simplified block diagram of a data storage system 100 in accordance with one exemplary embodiment. Data storage system 100 includes a data storage medium 102, which is rotated with the help of spindle motor 104. A head 106 communicates with the data storage medium 102. Head 106 is operably coupled to an actuator 108. Data storage system 100 reads and writes information along concentric tracks formed on data storage medium 102 with the help of head 106, which includes a readback sensor 107 and a write transducer 109. During a read operation, an analog readback signal produced by the readback sensor 107 is processed by read channel circuitry 116, which is configured to function in a normal operation mode and a test mode. These operation modes are described further below.
  • To locate a particular track on data storage medium 102, data storage system 100 uses embedded servo fields on the disc. FIG. 1B shows a surface of data storage medium 102, which is in the form of a disc that includes concentric tracks 110 with data fields 112 and servo fields 114, for example. In FIG. 1B, only two tracks are shown in the interest of simplification. However, a typical disc surface includes a very large number of closely spaced tracks. Also, although the servo field and data field boundaries are, in the interest of simplification, marked by straight lines in FIG. 1B, a typical disc surface has curved servo field and data filed boundary lines. The curved boundary lines follow an arc of a head pivoting around an actuator pivot. The embedded servo fields 114 are utilized by a servo sub-system (not shown) to position head 106 over a particular track. During track following, servo information sensed by head 106 is demodulated to generate a position error signal (PES) which provides an indication of the distance between the head and the track center. The PES is then converted into an actuator control signal, which is used to control actuator 108, which positions head 106.
  • As noted above, read channel circuitry 116 is configured to function in a normal operation mode and a test mode. In the normal operation mode, read channel 116 produces decoded bit estimates from the analog readback signal. In the test mode, read channel 116 extracts at least one of gain control loop data and timing control loop data from the readback signal. Since the above embodiment relates to operating the read channel in a test mode and a normal operation mode, the above teachings also apply to systems which do not carry out write operations and therefore do not include a write head, such as 109, but only include a read head such as 107. Details regarding the collection of gain control loop data and/or timing control loop data in a disc drive are described below in connection with FIGS. 2 and 3.
  • Referring now to FIG. 2, a simplified block diagram of a disc drive that collects gain control loop data and/or timing control loop data, is shown. The same reference numerals are used in FIG. 2 for elements that are similar to those included in FIG. 1. Disc drive 200 includes a PCBA 202 and a head stack assembly (HSA) 204. PCBA 202 includes circuitry and processors, which provide a target interface controller for communicating between a host system 206 and HSA 204. Host system 206 can include a microprocessor-based data processing system such as a personal computer or other system capable of performing a sequence of logical operations. Data is transmitted between host system 206 and PCBA 202 via a host bus connector 208. HSA 204 includes an actuator assembly 210, a preamplifier 212, and a disc assembly 214. Disc assembly 214 includes a plurality of media discs 102, stacked on a spindle assembly 218. Spindle assembly 218 is mechanically coupled to a spindle motor 220 for rotating the discs at a high rate of speed.
  • Actuator assembly 210 includes a voice coil motor (VCM), and multiple actuator arms 108. Located at the end of each actuator arm are heads 106, which are associated with a respective disc surface. Heads 106 communicate with disc controller circuit board 202 via a cable assembly 224 connected to preamplifier 212 for reading and writing data to the head's associated disc surface. Preamplifier 212 provides an amplified signal to a read/write channel 226 of PCBA 202. Read/write channel 226 performs encoding and decoding of data written to and read from the disc.
  • A servo processor 246 provides intelligent control of actuator assembly 110 and spindle motor 220 through a servo controller 248. By commands issued to servo controller 248 by servo processor 246, VCM driver 250 is coupled to move actuator assembly 210 and spindle motor driver 252 is coupled to maintain a constant spin rate of spindle motor 220.
  • PCBA 202 includes a host interface disc controller (HIDC) application-specific integrated circuit (ASIC) 228. ASIC 228 includes a host interface 230, a buffer controller 232, and a disc controller 234. Host interface 230 communicates with host system 206 via host bus connector 208 by receiving commands and data from and transmitting status and data back to host system 206. A command cueing engine (CQE) 258 is incorporated in host interface 230. Buffer controller 232 controls a buffer memory 236, which can be a non-volatile memory, for example. HDIC 228 and read/write channel 226 communicate via a data transfer bus 227.
  • Disc controller 234 tracks the timing of data sectors passing under a currently selected head and accordingly sends data to and receives data from read/write channel 226. Disc controller 234 also provides for and error detection error correction on data transmitted to and read from discs 102.
  • An interface processor 238 manages a cue of commands received from host 206 with the assistance of the CQE 258 embedded in host interface 230. Interface processor 238 interfaces with functional elements of PCBA 202 over a bus 240, for transfer of commands, data, and status.
  • Disc system operational programs may be stored in read-only memory (ROM) 254, and are loaded into random access memory (RAM) or program loading memory 256 for execution by interface processor 238. Suitably, servo processor 246 may have integrated or separate memory 260 for storage of servo programs.
  • As indicated earlier, the disc drive read channel within block 226 is configured to operate in a test mode and a normal operation mode. In the normal operation mode, the gain control loop data and/or timing control loop data is routed from the read channel within block 226 through servo controller 248 and is stored in RAM 256. Disc drive 200 is configured, for example, such that this path limits the collection of gain control loop and/or timing control loop data to one data sample per servo wedge. In the test mode, the gain control loop data and/or timing control loop data from the read channel 226 is routed to the buffer memory 236 via the data transfer bus 227, the HDIC 228 and the buffer controller 232. This path, in the test mode, is capable of recording the gain control loop data and/or timing control loop data for each symbol of data during a read operation. However, in the normal operation mode, this path is used to obtain data bits instead of the gain control loop data and/or timing control loop data. Thus, buffer memory 236 serves as a common memory that stores the gain control loop data and/or timing control loop data in the test mode and stores data bits in the normal operation mode. Gain control loop data and/or timing control loop data collected in buffer memory 236 can be used, for example, by a proximity computation component 237, which calculates whether any proximity (contact and near-contact events) occurred between the head(s) 106 and the disc(s) 102.
  • To provide a better understanding of the collection of readback signal modulation data within block 226, read channel components within block 226 in accordance with one embodiment are shown in FIG. 3. The same reference numerals are used in FIG. 3 for elements that are similar to those included in FIGS. 1 and 2. Read channel 300 passes the amplified readback signal from preamplifier 212 through a series of processing blocks that are arranged in cascade to provide a read channel output at 315. The cascaded processing blocks in the read channel 300 include a variable gain amplifier (VGA) 302 that receives the preamplifier output, an adjustable low pass filter (LPF) 304 that receives the variable gain amplifier output, a finite impulse response (FIR) filter 306 that receives the low pass filter output, an analog-to-digital converter (ADC) 308 that receives the FIR filter output, and a Viterbi detector 310 that receives the ADC output and, in turn, provides the read channel output 315.
  • Read channel 300 also includes a gain and timing control component 312 that reads the ADC output and provides an output that controls timing and other functions of the ADC 308. It should be noted that timing control loop data can include phase control loop data and/or frequency control loop data. The gain and timing control 312 also controls a gain of VGA 302. A modulation extraction component 314 is configured to receive instructions to operate the read channel in a test mode or a normal operation. It should be noted that all the processing blocks (including timing control component 312 and modulation extraction component 314) in the read channel 300 can be modeled as state machines and may be implemented using software, hardware or firmware and may include one or more storage units or memories that store program code, computation results, etc. Also, the processing blocks in the read channel can include one or more processors that execute program code, commands, etc.
  • If instructed to operate in the test mode, component 314 disables the output of data bits from Viterbi detector 310 (for example, by suitably controlling a multiplexer (MUX) 316 by sending a select-test-mode control signal via control line 318) and instead provides extracted gain control loop data and/or timing control loop data for each symbol of data during a read operation. In the normal operation mode, the output of data bits from Viterbi detector 310 is enabled (for example, by sending a select normal-operation-mode control signal via control line 318 to switch 316) and no gain control loop data and/or timing control loop data for each symbol of user data is provided. As can be seen in FIG. 3, any data (for example, data bits from Viterbi detector 310 or gain control loop data and/or timing control loop data) output by read channel 300 is provided through data transfer bus 227.
  • Referring back to FIG. 2, as noted above, gain control loop data and/or timing control loop data collected in buffer memory 236 can be used, for example, by proximity computation component 237, which calculates whether any proximity (contact and near-contact events) occurred between the head(s) 106 and the disc(s) 102. In one embodiment, proximity computation component 237 comprises its own internal memory (not shown) that includes instructions to read the gain control loop data and/or timing control loop data collected in buffer memory 236 and to compute the proximity from the gain control loop data and/or timing control loop data read from buffer memory 236. The instructions stored in the internal memory are executed by a processor (not shown) that is, for example, within component 237 or by other components in the disc drive such as disc controller 228. The proximity computation results can be stored in the internal memory of component 237 or in any other suitable memory within, or external to, the disc drive.
  • It is to be understood that even though numerous characteristics and advantages of various embodiments have been set forth in the foregoing description, together with details of the structure and function of various embodiments, this detailed description is illustrative only, and changes may be made in detail, especially in matters of structure and arrangements of parts within the principles of the present disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed. For example, the particular elements may vary depending on the particular type of data storage system in which the read channel is used without departing from the spirit and scope of the present disclosure.

Claims (20)

1. A method comprising:
establishing a test mode and a normal operation mode in a read channel of a data storage device; and
collecting at least one of gain control loop data or timing control loop data from a readback signal during operation of the read channel in the test mode.
2. The method of claim 1 wherein collecting at least one of gain control loop data or timing control loop data from the readback signal during operation of the read channel in the test mode comprises extracting at least one of gain control loop data or timing control loop data from the readback signal while reading user data stored on a data storage medium in the data storage system in the test mode.
3. The method of claim 2 wherein collecting at least one of gain control loop data or timing control loop data from the readback signal during operation of the read channel in the test mode further comprises transferring the extracted at least one of gain control loop data or timing control loop data over a data transfer bus.
4. The method of claim 3 wherein collecting at least one of gain control loop data or timing control loop data from the readback signal during operation of the read channel in the test mode further comprises receiving the extracted at least one of gain control loop data or timing control loop data from the data transfer bus and storing, on a data storage medium, the extracted at least one of gain control loop data or timing control loop data.
5. The method of claim 4 and further comprising providing a common memory that stores the at least one of gain control loop data or timing control loop data, received from the data transfer bus, in the test mode, and stores data bits, received from the data transfer bus, in the normal operation mode.
6. The method of claim 5 wherein the readback signal is generated by a head that communicates with the data storage medium.
7. The method of claim 6 and further comprising reading the at least one of gain control loop data or timing control loop data from the common memory and computing a proximity between the head and the data storage medium as a function of the at least one of gain control loop data or timing control loop data read from the common memory, wherein the reading and computing are carried out by a processor that executes stored instructions.
8. The method of claim 1 wherein the timing control loop data comprises at least one of frequency control loop data or phase control loop data.
9. A data storage system comprising:
a read channel comprising:
a normal operation mode in which the read channel is configured to decode a readback signal to obtain data bits; and
a test mode in which the read channel is configured to extract at least one of gain control loop data or timing control loop data from the readback signal.
10. The data storage system of claim 9 and further comprising a memory configured receive, via a data transfer bus, the at least one of the gain control loop data or timing control loop data in the test mode, and configured to store the at least one of the gain control loop data or timing control loop data in the test mode.
11. The data storage system of claim 10 wherein the memory is configured to receive, via the data transfer bus, data bits in the normal operation mode, and configured to store the data bits in the normal operation mode.
12. The data storage system of claim 11 wherein the memory is a non-volatile buffer memory.
13. The data storage system of claim 9 wherein the timing control loop data comprises at least one of frequency control loop data or phase control loop data.
14. The data storage system of claim 9 and further comprising a head that communicates with a data storage medium, and wherein the readback signal is generated by the head.
15. The data storage system of claim 14 and further comprising a proximity computation component that computes a proximity between the head and the data storage medium as a function of the at least one of gain control loop data or timing control loop data.
16. A method comprising:
extracting at least one of gain control loop data or timing control loop data from a readback signal obtained while reading user data stored on a data storage medium;
transferring, via a data transfer bus, the extracted at least one of gain control loop data or timing control loop data from a readback signal obtained while reading user data stored on a data storage medium; and
storing the transferred at least one of gain control loop data or timing control loop data obtained via the data transfer bus.
17. The method of claim 16 wherein the data storage medium is a part of a data storage system having a read channel that operates in either a test mode or a normal operation mode, and wherein the extracting at least one of gain control loop data or timing control loop data from the readback signal obtained while reading user data stored on the data storage medium is carried out while the read channel is operating in the test mode.
18. The method of claim 17 and further comprising providing a common memory that stores the at least one of gain control loop data or timing control loop data, received from the data transfer bus, in the test mode, and stores data bits, received from the data transfer bus, in the normal operation mode.
19. The method of claim 16 wherein the readback signal is generated by a head that communicates with the data storage medium.
20. The method of claim 19 and further comprising reading the at least one of gain control loop data or timing control loop data from the common memory and computing a proximity between the head and the data storage medium as a function of the at least one of gain control loop data or timing control loop data read from the common memory, wherein the reading and computing are carried out by a processor that executes stored instructions.
US12/339,256 2008-12-19 2008-12-19 Collection of readback signal modulation data Abandoned US20100157765A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/339,256 US20100157765A1 (en) 2008-12-19 2008-12-19 Collection of readback signal modulation data
US13/861,976 US8947814B2 (en) 2008-12-19 2013-04-12 Collection of readback signal modulation data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/339,256 US20100157765A1 (en) 2008-12-19 2008-12-19 Collection of readback signal modulation data

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/861,976 Continuation US8947814B2 (en) 2008-12-19 2013-04-12 Collection of readback signal modulation data

Publications (1)

Publication Number Publication Date
US20100157765A1 true US20100157765A1 (en) 2010-06-24

Family

ID=42265875

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/339,256 Abandoned US20100157765A1 (en) 2008-12-19 2008-12-19 Collection of readback signal modulation data
US13/861,976 Active US8947814B2 (en) 2008-12-19 2013-04-12 Collection of readback signal modulation data

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/861,976 Active US8947814B2 (en) 2008-12-19 2013-04-12 Collection of readback signal modulation data

Country Status (1)

Country Link
US (2) US20100157765A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11841396B1 (en) * 2021-03-22 2023-12-12 Marvell Asia Pte Ltd United states test controller for system-on-chip validation

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691857A (en) * 1995-09-29 1997-11-25 Quantum Corporation Method using matched filters for determining head positioner micro-jog in hard disk drive employing magneto-resistive heads
US20030002199A1 (en) * 1999-12-01 2003-01-02 Au Hoan Andrew Method and apparatus for testing mr head instability using a criterion that removes normal head fluctuation from consideration
US7038875B2 (en) * 2003-07-31 2006-05-02 Seagate Technology Llc Dynamic measurement of head media spacing modulation
US20060139789A1 (en) * 2004-12-28 2006-06-29 Samsung Electronics Co., Ltd. Apparatus, medium, and method controlling flying height of a magnetic head of a disk drive
US7215495B1 (en) * 2005-12-27 2007-05-08 Hitachi Global Storage Technologies Netherlands B.V. System and method for determining head-disk contact in a magnetic recording disk drive
US7292401B2 (en) * 2006-03-14 2007-11-06 Hitachi Global Storage Technologies Netherlands B.V. System and method for determining head-disk contact in a magnetic recording disk drive by magnetoresistive signal amplitude
US7310294B2 (en) * 2001-02-15 2007-12-18 Benq Corporation Optical power calibration at the outer edge of an optical storage carrier
US7310194B1 (en) * 2004-04-08 2007-12-18 Maxtor Corporation System for monitoring and dynamically adjusting head-to-disk spacing in a disk drive
US20080273260A1 (en) * 2007-05-01 2008-11-06 Seagate Technology Llc Method and apparatus for detecting proximity contact between a transducer and a medium
US7518813B1 (en) * 2004-06-07 2009-04-14 Maxtor Corporation Methods and structure for detecting anomalous events in a disk drive using VGA variance
US20090147390A1 (en) * 2007-12-10 2009-06-11 Samsung Electronics Co., Ltd. Detecting head/disk contact using timing jitter
US20100033860A1 (en) * 2008-08-06 2010-02-11 Tomita Craig L Proximity Detection Method For Magnetic Head And Recording Medium
US20100080101A1 (en) * 2008-09-30 2010-04-01 Rochat Daniel D System and method for analyzing magnetic media surfaces for thermal erasures and other characteristics

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6519715B1 (en) * 1998-05-22 2003-02-11 Hitachi, Ltd. Signal processing apparatus and a data recording and reproducing apparatus including local memory processor
US6862152B2 (en) 2003-02-25 2005-03-01 Seagate Technology Llc Adjustment of pole frequency and boost settings of a filter in a channel
US7768732B2 (en) * 2005-04-12 2010-08-03 Stmicroelectronics, Inc. Gain controller for a gain loop of a read channel and related gain loops, read channels, systems, and methods
JP5308799B2 (en) * 2008-12-04 2013-10-09 エイチジーエスティーネザーランドビーブイ Disk drive and servo control method for the head
US8077427B2 (en) * 2010-04-12 2011-12-13 Lsi Corporation Fly-height control using asynchronous sampling
US7916420B1 (en) * 2010-05-14 2011-03-29 Western Digital Technologies, Inc. Disk drive employing comb filter for repeatable fly height compensation

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691857A (en) * 1995-09-29 1997-11-25 Quantum Corporation Method using matched filters for determining head positioner micro-jog in hard disk drive employing magneto-resistive heads
US20030002199A1 (en) * 1999-12-01 2003-01-02 Au Hoan Andrew Method and apparatus for testing mr head instability using a criterion that removes normal head fluctuation from consideration
US7310294B2 (en) * 2001-02-15 2007-12-18 Benq Corporation Optical power calibration at the outer edge of an optical storage carrier
US7038875B2 (en) * 2003-07-31 2006-05-02 Seagate Technology Llc Dynamic measurement of head media spacing modulation
US7310194B1 (en) * 2004-04-08 2007-12-18 Maxtor Corporation System for monitoring and dynamically adjusting head-to-disk spacing in a disk drive
US7518813B1 (en) * 2004-06-07 2009-04-14 Maxtor Corporation Methods and structure for detecting anomalous events in a disk drive using VGA variance
US20060139789A1 (en) * 2004-12-28 2006-06-29 Samsung Electronics Co., Ltd. Apparatus, medium, and method controlling flying height of a magnetic head of a disk drive
US7215495B1 (en) * 2005-12-27 2007-05-08 Hitachi Global Storage Technologies Netherlands B.V. System and method for determining head-disk contact in a magnetic recording disk drive
US7292401B2 (en) * 2006-03-14 2007-11-06 Hitachi Global Storage Technologies Netherlands B.V. System and method for determining head-disk contact in a magnetic recording disk drive by magnetoresistive signal amplitude
US20080273260A1 (en) * 2007-05-01 2008-11-06 Seagate Technology Llc Method and apparatus for detecting proximity contact between a transducer and a medium
US20090147390A1 (en) * 2007-12-10 2009-06-11 Samsung Electronics Co., Ltd. Detecting head/disk contact using timing jitter
US20100033860A1 (en) * 2008-08-06 2010-02-11 Tomita Craig L Proximity Detection Method For Magnetic Head And Recording Medium
US20100080101A1 (en) * 2008-09-30 2010-04-01 Rochat Daniel D System and method for analyzing magnetic media surfaces for thermal erasures and other characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11841396B1 (en) * 2021-03-22 2023-12-12 Marvell Asia Pte Ltd United states test controller for system-on-chip validation

Also Published As

Publication number Publication date
US8947814B2 (en) 2015-02-03
US20130222937A1 (en) 2013-08-29

Similar Documents

Publication Publication Date Title
US8937782B1 (en) Hard disk drive assembly including a NVSM to store configuration data for controlling disk drive operations
US8755141B1 (en) Hard disk drive assembly including a NVSM located within a preamplifier to store configuration data for controlling disk drive operations
US8310775B1 (en) Disk drive implementing a read channel optimization process
US6735033B1 (en) Method for recovering from shock events occurring to a disk drive during data write operations to improve data reliability
CN101000788B (en) Disk drive and disk drive control method
US6226140B1 (en) Shock detector in a disk drive servo control system
EP2372708B1 (en) Systems and methods for detecting head contact
US7602574B2 (en) Storage apparatus, storage medium, and control method and program of storage apparatus
US20070226411A1 (en) Disk drive write method
US7885025B2 (en) Generating PES using readback signal distortion
US5784216A (en) Method and apparatus for recording defective track identification information in a disk drive
US7894151B2 (en) “Flat analog” AFE coupled with an all digital architecture compensation read channel
US7143202B2 (en) Dual serial port data acquisition interface assembly for a data storage device
US20090257142A1 (en) Head assembly in a depopulated configuration
JPH07220210A (en) Magnetic disk device
US8947814B2 (en) Collection of readback signal modulation data
US7920350B2 (en) Adaptive data recovery procedure based on radial positioning
US20150116860A1 (en) System and methods for combining multiple offset read-backs
US6335840B1 (en) Thermal asperity pointer for servo sector
JP3708064B2 (en) Disk storage device, disk controller, and error correction method applied to the same
US20160358621A1 (en) Self-Servo Write Non-Reference Head Position Measuring
JP2001134905A (en) Dual element head having radial direction offset optimized for minimum write-to-read track error
KR100594264B1 (en) Method for controlling retry process in data storage system and disc drive using the same
US7548393B2 (en) HDD track following control apparatus and method
US8553349B2 (en) Servo routine for track seeking in a hard disk drive and hard disk drive for performing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: SEAGATE TECHNOLOGY LLC,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EMO, BRUCE D.;REEL/FRAME:022054/0514

Effective date: 20081208

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: SECURITY AGREEMENT;ASSIGNORS:MAXTOR CORPORATION;SEAGATE TECHNOLOGY LLC;SEAGATE TECHNOLOGY INTERNATIONAL;REEL/FRAME:022757/0017

Effective date: 20090507

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATE

Free format text: SECURITY AGREEMENT;ASSIGNORS:MAXTOR CORPORATION;SEAGATE TECHNOLOGY LLC;SEAGATE TECHNOLOGY INTERNATIONAL;REEL/FRAME:022757/0017

Effective date: 20090507

AS Assignment

Owner name: SEAGATE TECHNOLOGY LLC, CALIFORNIA

Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:025662/0001

Effective date: 20110114

Owner name: SEAGATE TECHNOLOGY INTERNATIONAL, CALIFORNIA

Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:025662/0001

Effective date: 20110114

Owner name: SEAGATE TECHNOLOGY HDD HOLDINGS, CALIFORNIA

Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:025662/0001

Effective date: 20110114

Owner name: MAXTOR CORPORATION, CALIFORNIA

Free format text: RELEASE;ASSIGNOR:JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:025662/0001

Effective date: 20110114

AS Assignment

Owner name: THE BANK OF NOVA SCOTIA, AS ADMINISTRATIVE AGENT,

Free format text: SECURITY AGREEMENT;ASSIGNOR:SEAGATE TECHNOLOGY LLC;REEL/FRAME:026010/0350

Effective date: 20110118

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: SEAGATE TECHNOLOGY LLC, CALIFORNIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT AND SECOND PRIORITY REPRESENTATIVE;REEL/FRAME:030833/0001

Effective date: 20130312

Owner name: SEAGATE TECHNOLOGY US HOLDINGS, INC., CALIFORNIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT AND SECOND PRIORITY REPRESENTATIVE;REEL/FRAME:030833/0001

Effective date: 20130312

Owner name: EVAULT INC. (F/K/A I365 INC.), CALIFORNIA

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT AND SECOND PRIORITY REPRESENTATIVE;REEL/FRAME:030833/0001

Effective date: 20130312

Owner name: SEAGATE TECHNOLOGY INTERNATIONAL, CAYMAN ISLANDS

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT AND SECOND PRIORITY REPRESENTATIVE;REEL/FRAME:030833/0001

Effective date: 20130312