US20100115796A1 - Heel construction for footwear - Google Patents

Heel construction for footwear Download PDF

Info

Publication number
US20100115796A1
US20100115796A1 US12/267,450 US26745008A US2010115796A1 US 20100115796 A1 US20100115796 A1 US 20100115796A1 US 26745008 A US26745008 A US 26745008A US 2010115796 A1 US2010115796 A1 US 2010115796A1
Authority
US
United States
Prior art keywords
heel
shoe
footwear
channels
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/267,450
Inventor
Kyle Pulli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pony International LLC
Original Assignee
Pony International LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pony International LLC filed Critical Pony International LLC
Priority to US12/267,450 priority Critical patent/US20100115796A1/en
Assigned to PONY INTERNATIONAL LLC reassignment PONY INTERNATIONAL LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PULLI, KYLE
Publication of US20100115796A1 publication Critical patent/US20100115796A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/16Pieced soles
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/141Soles; Sole-and-heel integral units characterised by the constructive form with a part of the sole being flexible, e.g. permitting articulation or torsion
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/22Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer
    • A43B13/24Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer by use of insertions
    • A43B13/26Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer by use of insertions projecting beyond the sole surface
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B21/00Heels; Top-pieces or top-lifts
    • A43B21/24Heels; Top-pieces or top-lifts characterised by the constructive form

Definitions

  • shoes and other footwear provide adequate shock absorption and ability, as well as maneuverability.
  • Conventional articles of footwear include an upper structure and a sole structure.
  • the upper structure can form the portion of the footwear for receiving a foot.
  • a sole structure can include an insole, a midsole and an outsole.
  • An insole is typically adjacent to the lower surface of the foot.
  • a midsole forms the middle layer of the sole structure and can serve a variety of purposes, which may include controlling foot motions and attenuating ground reaction forces.
  • An outsole forms a resistive surface that may come into contact with the ground.
  • Outsoles have been developed to provide cushioning and stability to the foot of the wearer.
  • soles are articulated, as disclosed by U.S. Pat. No. 7,290,357, which is hereby incorporated by reference in its entirety. Such articulation has been provided in a direction to provide additional flexibility to a sole structure when used for running in a relatively straight line.
  • the invention provides an article of footwear with an articulated heel portion.
  • Various aspects of the invention described herein may be applied to any of the particular applications set forth below or for other types of footwear or shoes.
  • the invention may be applied as a standalone system or method, or as part of an application, such as various articulation mechanisms or configurations. It shall be understood that different aspects of the invention can be appreciated individually, collectively, or in combination with each other.
  • the invention provides an athletic shoe for improved cornering performance, or to accommodate severe changes in direction, twisting, or maneuvering.
  • the athletic shoe may include a heel portion with a defined longitudinal axis that is formed with at least one pair of substantially linear intersecting channels that facilitate articulation of the heel portion.
  • Each intersecting channel may be oriented substantially non-parallel and non-perpendicular with respect to the longitudinal axis of the heel portion.
  • the intersecting channels may form an X configuration. In some cases, the intersecting channels may have a diagonal orientation with respect to the longitudinal axis of the heel portion.
  • the channels may provide a degree of freedom to the heel portion while separating a plurality of articulated heel regions.
  • the channels may enable one or more of the articulated heel regions to contact the ground while the shoe is being used for cornering or turning, and the rest of the shoe may be flexing or turning.
  • the articulated heel regions may move harmoniously with the movement of the foot. A substantial portion of one or more articulated regions may contact the ground and prevent slip.
  • additional parts of the shoes may include channels that provide flexibility, or other design features that may provide texture.
  • the sole of a shoe may include one or more texturing features, such as ridges, that may provide added traction. Additionally, the sole of the shoe may include protrusions, such as cleats, which may also provide additional grip to the shoe to prevent sliding.
  • the shoe may be an athletic shoe, such as a baseball cleat. In other embodiments, any of the features may be applied to any article of footwear.
  • FIG. 1 shows a bottom view of an article of footwear with an X-shaped heel design.
  • FIG. 2 shows a bottom view of an article of footwear with an X-shaped heel design and additional elements.
  • FIG. 3 shows a bottom view of an article of footwear with an X-shaped heel design and cleats.
  • FIG. 4A shows a side view of a sole design.
  • FIG. 4B shows a bottom view of a sole design.
  • FIG. 4C shows a side view of a sole design.
  • FIG. 5 shows how an article of footwear can behave during cornering.
  • FIG. 6 shows an article of footwear with an articulated heel.
  • FIG. 7 shows how cornering can be improved using an article of footwear with X-shaped articulated heel.
  • the following discussion and accompanying figures disclose an article of footwear in accordance with various aspects of the present invention.
  • the footwear discussed and shown below may have a configuration that is suitable for athletic activities, particularly cornering.
  • the concepts disclosed with respect to footwear may, however, be applied to footwear styles that are specifically designed for a wide range of various athletic activities, including basketball, baseball, football, soccer, golf, running, walking, and hiking, for example, and may also be applied to various non-athletic footwear styles. Accordingly, one skilled in the relevant art will recognize that the concepts disclosed herein may be applied to a wide range of footwear styles and are not limited to the specific embodiments discussed below and depicted in the figures.
  • FIG. 1 shows a bottom view of an article of footwear with an X-shaped heel design in accordance with one aspect of the invention.
  • the outline of the bottom of the footwear is provided by way of example only, and any shape or configuration for a bottom of an article of footwear may be applied with the heel design.
  • the heel design may be applied to any article of footwear or shoe.
  • the X-shaped heel design may provide an articulated heel.
  • the articulation of the heel may be provided by a plurality of channels 10 a , 10 b or grooves in the heel surface.
  • the channels may be intersecting to provide an X.
  • two channels may intersect to form an X-shaped articulation for the heel.
  • multiple channels may intersect with one another to form one or more crosses where the channels may intersect.
  • the channels may be substantially linear.
  • the channels may curve, bend, or have any other sort of configuration or combination of configurations.
  • a heel portion of an article of footwear may have a defined longitudinal axis that may be oriented along the length of the footwear. At least one pair of intersecting channels may be oriented such that each intersecting channel is oriented substantially non-parallel and non-perpendicular with respect to the longitudinal axis of the heel portion. The pair of intersecting channels oriented in such a manner may be substantially linear. An articulation provided by such channels 10 a , 10 b may form an X as oriented with respect to the longitudinal axis.
  • Intersecting channels may intersect one another at any angle.
  • the intersecting channels may be perpendicular to one another, such that the opposing angles are 90 degrees.
  • the intersecting channels cross at an intersection formed with opposing angles that are not equal to 90 degrees.
  • the opposing angles formed on a medial or lateral side, with respect to the heel portion, of the intersecting channels may be greater than the angles formed on a rear or front side.
  • intersecting angles may cross to form a 30 to 90 degree angle.
  • additional intersecting channels may be provided that may also be oriented substantially non-parallel and non-perpendicular with respect to the longitudinal axis, while in alternate cases, only one or more pair of intersecting channels are oriented substantially non-parallel and non-perpendicular with respect to the longitudinal axis while one or more pair intersecting channels are oriented such that a channel may be parallel or perpendicular with respect to the longitudinal axis.
  • channels may intersect at a common point, in accordance with an alternate embodiment of the invention. For instance, two, three, four, six, eight, or ten channels may intersect at a common intersection. Such channels may be oriented such that they are evenly spaced apart, or may be oriented in an uneven manner. In some embodiments, channels may intersect at a middle portion, e.g., two channels intersecting to form an X. In some other embodiments, channels may intersect at an endpoint, rather than in a middle portion of the channel. For example, three channels may intersect at their endpoint to form a Y configuration.
  • the channels may have various sizes, lengths, thicknesses, depths, or profile shapes.
  • the channels may be about 6 to 25 mm thick.
  • the channels may have an extremely small thickness, comparable to forming a slit in the heel portion.
  • the intersecting channels may have the same thicknesses.
  • the thicknesses of channels may vary such that one or more channels may have different thicknesses, or that the thicknesses of a channel may vary along its length.
  • channels may range from about 40 to 120 mm in length, although the lengths of the channels may vary.
  • the lengths of a plurality of channels may be substantially the same, or may vary.
  • channels may have depths that can fall into a preferable range of 4 to 15 mm in depth, although the channels may have any depth.
  • the depths of the channels may be the same.
  • the depth of the channels may vary such that one or more channel may have different depths, or that the depth of a channel may vary along its length.
  • the depths of the channels may decrease where the channels intersect, such that the channels are more shallow at the center part of an X.
  • the variance of the depth of the channels may occur gradually or abruptly.
  • Channels may have any profile shape, including, but not limited to, rectangular channels, circular or rounded channels, triangular channels, trapezoidal channels, or extremely narrow channels, like slits in a sole.
  • the various profile shapes may alter as the article of footwear flexes in use.
  • a profile shape may remain the same or may vary along the length of the channel.
  • Each channel may provide a degree of freedom to the heel portion of the shoe.
  • a channel may provide a degree of freedom in a direction perpendicular to the orientation of the channel.
  • a channel may allow for articulation of the heel portion along the channel, which may provide flexibility to the heel portion. The articulation may occur upon impact during running, walking, cornering, or twisting.
  • FIG. 2 shows a bottom view of a shoe with an X-shaped heel design and additional elements in accordance with one embodiment of the invention.
  • the outline of the shoe bottom is provided by way of example only, and any shape or configuration for a shoe bottom may be applied with the design for the bottom of the shoe.
  • the shoe bottom design may be applied to any shoe or article of footwear.
  • a shoe may include a sole structure.
  • a sole structure may have a structure that can cooperatively articulate, flex, stretch, or otherwise move when an individual walks, runs, turns, pivots, or corners. That is, a sole structure can be configured to complement the natural motion of the foot during running, walking, cornering or other activities. In contrast with barefoot running, however, a sole structure may attenuate ground reaction forces to decrease the overall stress upon the foot. In some alternate embodiments, a sole structure may have a relatively stiff or inflexible construction that inhibits the natural motion of the foot.
  • a shoe may be divided into three general regions: a forefoot region 20 , a midfoot region 21 , and a heel region 22 .
  • Such regions may not be intended to demarcate precise areas of footwear. Rather, the regions can represent general areas of footwear that provide a frame of reference during the following discussion. Although the regions apply generally to footwear, references to regions may also apply specifically the sole structure.
  • a shoe sole structure may include an insole, a midsole, and/or an outsole.
  • An insole may be positioned adjacent to a lower surface of the foot and may enhance the comfort of footwear.
  • a midsole may be secured to a lower portion of upper portion of a shoe and may be positioned to extend under the foot during use.
  • a midsole may attenuate ground reaction forces when walking, running, or cornering.
  • a midsole may be made of any materials known in the art, which may include, but are not limited to any of the conventional polymer foams that are utilized in footwear midsoles, including ethylvinylacetate and polyurethane foam.
  • a midsole may also be formed from a relatively lightweight polyurethane foam.
  • An outsole may be secured to a lower surface of midsole to provide wear-resistance, and/or may be recessed within a midsole.
  • Suitable materials for an outsole may include, but are not limited to, any of the conventional rubber materials that are utilized in footwear outsoles, such as carbon black rubber compound.
  • a sole structure may have an articulated structure that may impart relatively high flexibility and articulation.
  • the articulation may be provided by a midsole and/or outsole of a sole structure.
  • the articulation may defined by grooves in a midsole and/or outsole.
  • a heel region of a sole structure can include one or more heel surface elements 23 a , 23 b , 23 c .
  • a heel surface element may be configured to come into contact with the ground when the shoe is worn. Heel surface elements may be spaced between or separated by grooves 24 a , 24 b .
  • the grooves separating the heel surface elements may be shallow, such that heel surface elements may only be defined on an outsole.
  • the grooves separating the heel surface elements may be deeper, such that heel surface elements, may also be defined as part of a midsole.
  • the grooves separating the heel surface elements may be so deep that heel surface elements may be defined by the entirety of the midsole, such that midsole and/or outsole may be divided into separate elements.
  • the thickness of portion of the sole structure including grooves may vary along the longitudinal length of the sole structure, or along the lateral or medial sides of the sole structure.
  • a heel region may include a plurality of heel surface elements spaced between or separated by a plurality of substantially linear non-parallel grooves wherein the grooves are not formed laterally between a medial side and lateral side of the heel region.
  • the grooves may not be oriented laterally, but may have any other orientation.
  • the grooves may be substantially linear.
  • the grooves 24 a , 24 b may intersect at the heel region to form a cross-shape.
  • the cross-shape may have any orientation, including one such that an X is formed with respect to a longitudinal axis defined by the length of the sole.
  • the grooves may have any orientation that may allow heel surface elements of the shoe to aid in cornering.
  • the grooves may be contained within the heel region.
  • the grooves may start and end within the heel region of a sole structure.
  • the grooves may extend to the ends of the heel region, all the way to an outer heel boundary.
  • a groove may extend past a heel region into a midfoot region, and cross a midfoot boundary.
  • a heel region may include at least three heel surface elements 23 a , 23 b , 23 c that may be separated by a pair of intersecting grooves 24 a , 24 b .
  • the grooves may enable the heel surface elements to move relative to one another.
  • a sole may bend at its heel region along a groove, which may enable heel surface elements on either side of the groove to move relative to one another.
  • the grooves may form flexion lines in the sole structure, and may have an effect upon the directions of flex in the sole.
  • the sole structure may flex or articulate in various manners as a result of the grooves.
  • the heel surface elements may move harmoniously with the movement of a foot, such as when the wearer of the shoe is cornering or making a sharp turn.
  • the heel surface elements may have any shape, as defined by grooves separating the heel surface elements.
  • heel surface elements may have a roughly triangular configuration, wherein a triangle may have a curved edge, similar to a pie slice.
  • Heel surface elements may also have quadrilateral shapes, such as rectangular or trapezoidal shapes, or may have curved shapes. Any number of heel surface elements may be provided, including, but not limited to, 1, 2, 3, 4, 6, 8, 12, or 20 heel surface elements.
  • a heel surface element may be defined by an outsole, a midsole, or a combination thereof.
  • a heel surface element may include an outsole portion with ridges 25 a , 25 b , 25 c that may provide texture to the heel surface element.
  • ridges may take the form of concentric or annular rings.
  • the concentric or annular rings may have a shape that may conform to the shape of the heel surface element. For instance, if a heel surface element has a roughly triangular shape, the ridges may have a roughly triangular shape as well. The ridges may or may not have a more curved configuration than the heel surface element.
  • the ridges may have any configuration to provide texturing to a heel surface element.
  • the ridges may form zig-zagging patterns, honeycomb structures, geometric shapes, curved lines, or parallel lines.
  • other texturing features may be used, including but not limited to bumps, holes, spikes, or various protrusions. Any features may be provided to increase traction of a heel element.
  • a forefoot region of a sole structure may include a design that may provide additional flexibility to the forefoot region.
  • a design 26 may curve across a forefoot region substantially laterally.
  • a forefoot region may have a groove going across substantially laterally. The groove may be curved. Such a groove may permit upward flexing of a sole structure, which may provide further traction during a running a cycle.
  • a groove may be used to provide articulation to a forefoot region.
  • the design may define a frontal forefoot region 27 .
  • the frontal forefoot region may include one or more additional designs 28 , such as grooves.
  • a frontal forefoot region may have a curved groove that may intersect with the lateral groove that may define a medial toe region 29 a and a lateral toe region 29 b .
  • Such a groove may provide lateral flexibility to the sole.
  • Such grooves may have similar or different characteristics to the grooves that define the heel surface elements.
  • the grooves in the forefoot region may be wider and shallower than the grooves in the heel region.
  • the designs in the forefoot region may not be grooves, but may be other surface features. Such surface features may or may not provide flexibility to the forefoot region.
  • the surface features may be used to provide a form of traction to the forefoot region.
  • the surface features may include ridges of various patterns.
  • the surface features may also be used to define regions of a sole, which may or may not have different thicknesses, materials, or features included.
  • FIG. 3 shows a bottom view of an article of footwear with an X-shaped heel design and cleats.
  • the article of footwear may be an athletic shoe.
  • the athletic shoe may be designed to aid in cornering, twisting, or severe changes in direction.
  • the athletic shoe may be a baseball cleat, soccer cleat, or other shoe that incorporates cleats.
  • an article of footwear may include a sole structure comprising one or more surface elements.
  • a heel region 30 of the footwear may comprise three surface elements 31 a , 31 b , 31 c and a forefoot region 32 of the footwear may comprise two surface elements 33 a , 33 b , while a midfoot region 34 of the footwear may comprise one surface element 35 .
  • a surface of a sole may include one or more protrusions 36 a - 36 g , such as cleats.
  • a surface element may include one or more protrusions.
  • some surface elements may include no protrusions, while other surface elements may include one or more protrusions.
  • the protrusions may all be of the same length, or may have different lengths. Some of the protrusions may be more recessed than others. The protrusions may also have various shapes or orientations.
  • surface elements of a heel region of a footwear may each include one cleat.
  • Surface elements of a frontal forefoot region of a foot may also each include one cleat.
  • a midfoot surface element may include two cleats. Cleats may be placed to provide desired stability and gripping. Any number or arrangement of cleats may be provided.
  • the cleats may be formed of any material known in the art, which may include, but are not limited to, rubber, plastic, metal, which may or may not be the same material used to form a surface or a portion of the surface of a surface element.
  • the surface elements of a heel region may move relative to one another. Such movements may cause the relative orientation or positions of protrusions to change relative to one another. For example, when an athletic shoe is sued for cornering, the majority of the weight may be distributed to one or two heel elements. Any protrusions on the one or two heel elements may grip the ground while other protrusions on other heel elements may move relative to the gripping protrusions as the shoe may flex or twist.
  • FIG. 4A shows a side view of a sole design from a lateral side in accordance with one embodiment of the invention.
  • a midsole may include an upper surface 40 that may connect the midsole to an upper portion of a shoe.
  • the upper surface may be positioned adjacent to the upper portion of the shoe and may be secured directly to upper, thereby providing support for the foot.
  • the upper surface of the midsole may be contoured to conform to the natural, anatomical shape of a foot.
  • the area of an upper surface of the midsole that is positioned in heel 41 a region may have a greater elevation than the area of upper surface in forefoot region 41 b .
  • a sole may be thicker at a heel region than at a forefoot region.
  • an upper surface may form an arch support area in a midfoot region. Peripheral areas of upper surface may be generally raised to provide a depression for receiving and seating the foot.
  • an upper surface may have a non-contoured configuration.
  • a lower surface 42 of a sole structure may be configured to come into contact with the ground.
  • the lower surface may be contoured as well.
  • a portion of a lower sole structure at the midfoot region 43 a may be slightly elevated or curved along the arch of the foot.
  • Indentations 43 b may also be provided along a lower surface of a sole structure, which may provide traction or flexibility.
  • Areas of the sole that exhibit a relatively thin thickness will, in general, possess more flexibility than areas of the sole that exhibit a greater thickness. Variations in the thickness of the sole may, therefore, be utilized to modify the flexibility of sole structure in specific areas.
  • a forefoot region may be configured to have relatively high flexibility by forming a lateral design feature with a lesser thickness.
  • a relatively low flexibility may be imparted to a midfoot region by forming a sole with a greater thickness to provide support.
  • an intermediate flexibility may be imparted to a heel region by forming a sole with a thickness that is between the thicknesses of the forefoot region and the midfoot region.
  • an intermediate flexibility may be imparted to a heel region even if the sole has a greater thickness than the midfoot region by providing channels that may provide an articulated heel.
  • variations in the thickness of the sole may be utilized in conjunction with articulation to provide desired flexibility and support for various parts of the shoe sole.
  • Portions of the shoe sole may have locally thicker outsole features 44 a - 44 d .
  • Such outsole features may be pad-like features that provide a local bump from along the lower surface of the sole.
  • Such outsole features may or may not be made of the same material as the rest of the sole. In some instances, the outsole features may be made of a more flexible or elastic materials.
  • a protrusion 45 a - 45 d such as a cleat, may be provided. Additional protrusions 46 , or cleats may be provided along the lower surface of the sole structure.
  • FIG. 4B shows a bottom view of a sole design in accordance with one embodiment of the invention.
  • the sole design may include a heel region 47 which may be defined by an outer heel boundary 48 a and a midfoot boundary 48 b .
  • the heel region may have a longitudinal axis, which may be provided along the length of the sole.
  • the heel region may be formed with articulated segments 49 a , 49 b , 49 c between the outer heel and midfoot boundaries of the heel region.
  • the articulated segments may provide the heel region with at least two angles of articulation. At least two angles of articulation may be substantially non-parallel and non-perpendicular with respect to the longitudinal axis of the heel region. For instance, one angle of articulation may have a diagonal orientation with respect to the longitudinal axis, while another angle of articulation may have another diagonal orientation, that is substantially the mirror image of the first diagonal orientation with respect to the longitudinal axis.
  • a first articulated segment may include a back heel surface 49 b as well as a lateral heel surface 49 a
  • a second articulated segment may include a back heel surface 49 b as well as a medial heel surface 49 c.
  • Any number or orientation of articulated segments may be provided, as defined by angles of articulation defined by the sole structure.
  • a bottom surface of a sole may provide texturing elements, which may provide traction to the bottom of the footwear.
  • the texturing elements may include features, such as bumps, ridges, lines, holes, protrusions, or any combination thereof.
  • Different regions of a sole may include different texturing features.
  • a heel surface region may include concentric ridges 401 on a heel pad that may protrude from the sole, along with a cleat 402 at the center of the concentric ridges.
  • a medial forefoot region 403 may include a toe pad that may protrude from the sole, along with a cleat at the center of the pad 404 .
  • a lateral forefoot region 405 may have a comb-like texture and may include one or more protrusions of varying shapes and sizes 406 a , 406 b , 406 c .
  • a midfoot region may include various protrusions 407 a - 407 e or pads 408 a , 408 b .
  • a logo 409 may be incorporated into the bottom of the sole, such as a midfoot region.
  • FIG. 4C shows a side view of a sole design from a medial side in accordance with one embodiment of the invention.
  • the lateral and medial sides of a sole may be substantially similar.
  • the lateral and medial sides may be different.
  • one side may be more reinforced than another due to the weight distribution of the foot during a common use of the shoe.
  • a lateral or medial side may be thicker and/or may provide greater elevation to one side of the foot.
  • a lateral or medial side may be have greater flexibility, or may be more cushioned.
  • a lateral or medial side may be designed to be more durable or to withstand more fatigue.
  • FIG. 5 shows how an article of footwear can behave during cornering and/or a severe turn in accordance with one aspect of the invention.
  • an article of footwear can include an upper section 50 a , 50 b .
  • the upper section may form the portion of footwear for receiving the foot.
  • an upper section may be formed from various material elements that can be stitched or adhesively-bonded together to form an interior void that may comfortably receive a foot and secure the position of the foot relative to the sole structure 51 a , 51 b .
  • Other examples of upper sections may be provided by upper sections for cleats, other athletic shoes, or any form of footwear known in the art.
  • the sole structure may be secured to a lower portion of upper section and may provide a durable, wear-resistant component for attenuating ground reaction forces as the footwear impacts the ground.
  • the sole may include one or more channels that may define articulated regions of the sole 52 a - 52 f.
  • the positions and orientations of the channels may be selected to complement the natural motion of the foot during the running cycle and/or cornering.
  • the motion of the foot during cornering proceeds as follows: Initially, the heel may strike the ground, followed by the ball of the foot. The heel may strike the ground unevenly, depending on the direction of cornering. As the heel leaves the ground, the foot may roll forward so that the toes make contact, and finally the entire foot leaves the ground to begin another cycle.
  • the foot may be angled to allow for cornering. For example, if a runner is cornering to the left much of the runner's weight may be distributed to the left side of the shoe. For a left shoe, that would mean more weight would be distributed to the lateral (outer) side of the shoe, for a right shoe, that would mean more weight would be distributed to the medial (inner) side of the shoe.
  • Articulated regions may improve cornering.
  • articulated regions may be provided on a heel such that there may be a hind articulated region, a lateral articulated region, and a medial articulated region.
  • the articulated regions may enable much of the weight to be distributed to two of the articulated regions during cornering. For example, if a runner is making a sharp turn to the left, while the heel is striking the ground during a running cycle, the left shoe may have more weight on a hind articulated region 52 e and a lateral articulated region 52 f.
  • the right shoe may have more weight on a hind articulated region 52 b and a medial articulated region 52 c.
  • the articulation may allow the heel to flex such that the specified articulated regions are substantially parallel to the ground, or such that the specified articulated regions have increased contact with the ground to increase friction and decrease sliding.
  • the channels defining the articulated regions may have be intersecting to provide an X configuration on the heel.
  • the angles of the channels forming the X may be determined to optimize or regulate toward an optimum cornering configuration. For example, if a runner is pivoting or making a sharp turn to the right, the heel of the sole may flex along a channel that allows articulated regions to the rear and to the left of the channel (when viewed from below the sole) to have increased ground contact.
  • FIG. 6 shows a shoe with an articulated heel in accordance with one aspect of the invention.
  • the shoe can include a hindfoot region 63 comprising at least one pair of intersecting channels 60 a , 60 b that provide at least two hinged or pivotal sections, such as an inner section 61 a , 61 b and an outer section 61 b , 61 c .
  • the intersecting channels may be substantially linear and may have any orientation. For instance, the intersecting channels may be oriented such that neither of them are substantially parallel or substantially perpendicular to a lateral axis of the shoe.
  • Such intersecting channels 60 a , 60 b may be oriented substantially diagonally with respect to the lateral axis of the article of footwear.
  • the hinged or pivotal sections may allow the negotiating of sharp turns.
  • the hinged or pivotal sections may allow a surface of the various sections to remain in contact with a ground while the rest of the shoe may have some degree of freedom. For instance, when negotiating a left turn, an inner section 61 a , 61 b may be in firm contact with the ground, while the rest of the shoe may flex upwards or downwards, may roll from side to side, or may pivot about the inner section from right to left. This may allow a shoe to remain firmly in place without slipping, while providing the flexibility to allow rapid cornering.
  • a hindfoot region may include a plurality of cleats 62 a, 62 b, 62 c.
  • an inner section 61 a , 61 b and an outer section 61 b , 61 c can include one or more cleats.
  • various sections 61 a , 61 b , 61 c of the hindfoot region may each include one cleat.
  • the cleats may be oriented or placed on the sections as desired. The cleats may assist with keeping sections of the shoes firmly in place and to prevent slipping during cornering, twisting, sharp turns, or other forms of maneuvering.
  • the shoe may also include a forefoot region 64 .
  • the forefoot region may also include one or more cleats 62 d, 62 e, 62 f .
  • the forefoot region may also include any various protrusions 65 . Such protrusions or cleats may assist with keeping a section of the shoe firmly in place while the forefoot region is in contact with the ground during a running cycle.
  • FIG. 7 shows how cornering can be improved using an article of footwear with X-shaped articulated heel.
  • a runner may follow an outer path 70 provided around the bases.
  • a runner may be able to negotiate a sharper turn, and thereby, follow the inner path 71 provided around the bases, thereby saving time and improving performance in a baseball game.
  • the X-shaped articulated heel may be applied to a baseball cleat for improved pivoting and turning around the bases. This may enable a runner to situate one's foot in a position to round basis quicker and with less fatigue on the runner.
  • a baseball cleat may be reinforced to provide greater support or greater durability for when a runner turns left, in anticipation of increased wear from running the bases.
  • the articulated heel may be applied to any other athletic shoe.
  • cornering performance may be beneficial in sports such as soccer, football, rugby, lacrosse, or field hockey.
  • Articulated heels may be applied to other athletic shoes, such as running shoes, hiking shoes, walking shoes, tennis shoes, basketball shoes, or golf shoes.
  • articulated heels may be useful for certain types of dance shoes.
  • the articulated heel may be applied to any article of footwear.

Abstract

The invention provides an article of footwear that includes an outsole. The outsole can include an articulated heel region, which can have an X-shaped heel articulation. The articulation can be provided by a plurality of intersecting channels or grooves. The article of footwear can be an athletic shoe, and may include cleats.

Description

    BACKGROUND OF THE INVENTION
  • An increase in the popularity of exercise, as well as everyday walking and standing, provides a need to alleviate and relieve stress on a person's feet and legs. It is important that shoes and other footwear provide adequate shock absorption and ability, as well as maneuverability. Conventional articles of footwear include an upper structure and a sole structure. The upper structure can form the portion of the footwear for receiving a foot.
  • A sole structure can include an insole, a midsole and an outsole. An insole is typically adjacent to the lower surface of the foot. A midsole forms the middle layer of the sole structure and can serve a variety of purposes, which may include controlling foot motions and attenuating ground reaction forces. An outsole forms a resistive surface that may come into contact with the ground. Outsoles have been developed to provide cushioning and stability to the foot of the wearer. In some cases, soles are articulated, as disclosed by U.S. Pat. No. 7,290,357, which is hereby incorporated by reference in its entirety. Such articulation has been provided in a direction to provide additional flexibility to a sole structure when used for running in a relatively straight line.
  • Therefore, a need exists for an improved article of footwear which can allow for improved cornering, maneuvering, or severe changes in direction.
  • SUMMARY OF THE INVENTION
  • The invention provides an article of footwear with an articulated heel portion. Various aspects of the invention described herein may be applied to any of the particular applications set forth below or for other types of footwear or shoes. The invention may be applied as a standalone system or method, or as part of an application, such as various articulation mechanisms or configurations. It shall be understood that different aspects of the invention can be appreciated individually, collectively, or in combination with each other.
  • In accordance with one aspect of the invention, the invention provides an athletic shoe for improved cornering performance, or to accommodate severe changes in direction, twisting, or maneuvering. The athletic shoe may include a heel portion with a defined longitudinal axis that is formed with at least one pair of substantially linear intersecting channels that facilitate articulation of the heel portion. Each intersecting channel may be oriented substantially non-parallel and non-perpendicular with respect to the longitudinal axis of the heel portion. The intersecting channels may form an X configuration. In some cases, the intersecting channels may have a diagonal orientation with respect to the longitudinal axis of the heel portion.
  • The channels may provide a degree of freedom to the heel portion while separating a plurality of articulated heel regions. The channels may enable one or more of the articulated heel regions to contact the ground while the shoe is being used for cornering or turning, and the rest of the shoe may be flexing or turning. The articulated heel regions may move harmoniously with the movement of the foot. A substantial portion of one or more articulated regions may contact the ground and prevent slip.
  • In some embodiments of the invention, additional parts of the shoes may include channels that provide flexibility, or other design features that may provide texture. The sole of a shoe may include one or more texturing features, such as ridges, that may provide added traction. Additionally, the sole of the shoe may include protrusions, such as cleats, which may also provide additional grip to the shoe to prevent sliding. In a preferable embodiment of the invention, the shoe may be an athletic shoe, such as a baseball cleat. In other embodiments, any of the features may be applied to any article of footwear.
  • Other goals and advantages of the invention will be further appreciated and understood when considered in conjunction with the following description and accompanying drawings. While the following description may contain specific details describing particular embodiments of the invention, this should not be construed as limitations to the scope of the invention but rather as an exemplification of preferable embodiments. For each aspect of the invention, many variations are possible as suggested herein that are known to those of ordinary skill in the art. A variety of changes and modifications can be made within the scope of the invention without departing from the spirit thereof.
  • INCORPORATION BY REFERENCE
  • All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
  • FIG. 1 shows a bottom view of an article of footwear with an X-shaped heel design.
  • FIG. 2 shows a bottom view of an article of footwear with an X-shaped heel design and additional elements.
  • FIG. 3 shows a bottom view of an article of footwear with an X-shaped heel design and cleats.
  • FIG. 4A shows a side view of a sole design.
  • FIG. 4B shows a bottom view of a sole design.
  • FIG. 4C shows a side view of a sole design.
  • FIG. 5 shows how an article of footwear can behave during cornering.
  • FIG. 6 shows an article of footwear with an articulated heel.
  • FIG. 7 shows how cornering can be improved using an article of footwear with X-shaped articulated heel.
  • DETAILED DESCRIPTION OF THE INVENTION
  • While preferable embodiments of the invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention.
  • The following discussion and accompanying figures disclose an article of footwear in accordance with various aspects of the present invention. The footwear discussed and shown below may have a configuration that is suitable for athletic activities, particularly cornering. The concepts disclosed with respect to footwear may, however, be applied to footwear styles that are specifically designed for a wide range of various athletic activities, including basketball, baseball, football, soccer, golf, running, walking, and hiking, for example, and may also be applied to various non-athletic footwear styles. Accordingly, one skilled in the relevant art will recognize that the concepts disclosed herein may be applied to a wide range of footwear styles and are not limited to the specific embodiments discussed below and depicted in the figures.
  • FIG. 1 shows a bottom view of an article of footwear with an X-shaped heel design in accordance with one aspect of the invention. The outline of the bottom of the footwear is provided by way of example only, and any shape or configuration for a bottom of an article of footwear may be applied with the heel design. Furthermore, the heel design may be applied to any article of footwear or shoe.
  • The X-shaped heel design may provide an articulated heel. The articulation of the heel may be provided by a plurality of channels 10 a, 10 b or grooves in the heel surface. The channels may be intersecting to provide an X. In a preferable embodiment of the invention, two channels may intersect to form an X-shaped articulation for the heel. In other embodiments of the invention, multiple channels may intersect with one another to form one or more crosses where the channels may intersect. In some cases, the channels may be substantially linear. In other cases, the channels may curve, bend, or have any other sort of configuration or combination of configurations.
  • A heel portion of an article of footwear may have a defined longitudinal axis that may be oriented along the length of the footwear. At least one pair of intersecting channels may be oriented such that each intersecting channel is oriented substantially non-parallel and non-perpendicular with respect to the longitudinal axis of the heel portion. The pair of intersecting channels oriented in such a manner may be substantially linear. An articulation provided by such channels 10 a, 10 b may form an X as oriented with respect to the longitudinal axis.
  • Intersecting channels may intersect one another at any angle. In some cases, the intersecting channels may be perpendicular to one another, such that the opposing angles are 90 degrees. In other cases, the intersecting channels cross at an intersection formed with opposing angles that are not equal to 90 degrees. In some embodiments, the opposing angles formed on a medial or lateral side, with respect to the heel portion, of the intersecting channels may be greater than the angles formed on a rear or front side. In a preferable embodiment of the invention, intersecting angles may cross to form a 30 to 90 degree angle.
  • In some embodiments, additional intersecting channels may be provided that may also be oriented substantially non-parallel and non-perpendicular with respect to the longitudinal axis, while in alternate cases, only one or more pair of intersecting channels are oriented substantially non-parallel and non-perpendicular with respect to the longitudinal axis while one or more pair intersecting channels are oriented such that a channel may be parallel or perpendicular with respect to the longitudinal axis.
  • Any number of channels may intersect at a common point, in accordance with an alternate embodiment of the invention. For instance, two, three, four, six, eight, or ten channels may intersect at a common intersection. Such channels may be oriented such that they are evenly spaced apart, or may be oriented in an uneven manner. In some embodiments, channels may intersect at a middle portion, e.g., two channels intersecting to form an X. In some other embodiments, channels may intersect at an endpoint, rather than in a middle portion of the channel. For example, three channels may intersect at their endpoint to form a Y configuration.
  • The channels may have various sizes, lengths, thicknesses, depths, or profile shapes. For example, in a preferable embodiment, the channels may be about 6 to 25 mm thick. In some cases, the channels may have an extremely small thickness, comparable to forming a slit in the heel portion. In one embodiment, the intersecting channels may have the same thicknesses. The thicknesses of channels may vary such that one or more channels may have different thicknesses, or that the thicknesses of a channel may vary along its length.
  • In some cases, channels may range from about 40 to 120 mm in length, although the lengths of the channels may vary. The lengths of a plurality of channels may be substantially the same, or may vary. Similarly, channels may have depths that can fall into a preferable range of 4 to 15 mm in depth, although the channels may have any depth. In one embodiment, the depths of the channels may be the same. The depth of the channels may vary such that one or more channel may have different depths, or that the depth of a channel may vary along its length. In some embodiments, the depths of the channels may decrease where the channels intersect, such that the channels are more shallow at the center part of an X. In some cases, the variance of the depth of the channels may occur gradually or abruptly.
  • Channels may have any profile shape, including, but not limited to, rectangular channels, circular or rounded channels, triangular channels, trapezoidal channels, or extremely narrow channels, like slits in a sole. The various profile shapes may alter as the article of footwear flexes in use. A profile shape may remain the same or may vary along the length of the channel.
  • Each channel may provide a degree of freedom to the heel portion of the shoe. A channel may provide a degree of freedom in a direction perpendicular to the orientation of the channel. A channel may allow for articulation of the heel portion along the channel, which may provide flexibility to the heel portion. The articulation may occur upon impact during running, walking, cornering, or twisting.
  • FIG. 2 shows a bottom view of a shoe with an X-shaped heel design and additional elements in accordance with one embodiment of the invention. As discussed previously, the outline of the shoe bottom is provided by way of example only, and any shape or configuration for a shoe bottom may be applied with the design for the bottom of the shoe. Furthermore, the shoe bottom design may be applied to any shoe or article of footwear.
  • A shoe may include a sole structure. A sole structure may have a structure that can cooperatively articulate, flex, stretch, or otherwise move when an individual walks, runs, turns, pivots, or corners. That is, a sole structure can be configured to complement the natural motion of the foot during running, walking, cornering or other activities. In contrast with barefoot running, however, a sole structure may attenuate ground reaction forces to decrease the overall stress upon the foot. In some alternate embodiments, a sole structure may have a relatively stiff or inflexible construction that inhibits the natural motion of the foot.
  • For purposes of reference, a shoe may be divided into three general regions: a forefoot region 20, a midfoot region 21, and a heel region 22. Such regions may not be intended to demarcate precise areas of footwear. Rather, the regions can represent general areas of footwear that provide a frame of reference during the following discussion. Although the regions apply generally to footwear, references to regions may also apply specifically the sole structure.
  • A shoe sole structure may include an insole, a midsole, and/or an outsole. An insole may be positioned adjacent to a lower surface of the foot and may enhance the comfort of footwear. A midsole may be secured to a lower portion of upper portion of a shoe and may be positioned to extend under the foot during use. A midsole may attenuate ground reaction forces when walking, running, or cornering. A midsole may be made of any materials known in the art, which may include, but are not limited to any of the conventional polymer foams that are utilized in footwear midsoles, including ethylvinylacetate and polyurethane foam. A midsole may also be formed from a relatively lightweight polyurethane foam. An outsole may be secured to a lower surface of midsole to provide wear-resistance, and/or may be recessed within a midsole. Suitable materials for an outsole may include, but are not limited to, any of the conventional rubber materials that are utilized in footwear outsoles, such as carbon black rubber compound.
  • A sole structure may have an articulated structure that may impart relatively high flexibility and articulation. The articulation may be provided by a midsole and/or outsole of a sole structure. The articulation may defined by grooves in a midsole and/or outsole.
  • A heel region of a sole structure can include one or more heel surface elements 23 a, 23 b, 23 c. A heel surface element may be configured to come into contact with the ground when the shoe is worn. Heel surface elements may be spaced between or separated by grooves 24 a, 24 b. In some embodiments, the grooves separating the heel surface elements may be shallow, such that heel surface elements may only be defined on an outsole. In other embodiments, the grooves separating the heel surface elements may be deeper, such that heel surface elements, may also be defined as part of a midsole. In some cases, the grooves separating the heel surface elements may be so deep that heel surface elements may be defined by the entirety of the midsole, such that midsole and/or outsole may be divided into separate elements. The thickness of portion of the sole structure including grooves may vary along the longitudinal length of the sole structure, or along the lateral or medial sides of the sole structure.
  • In one example, a heel region may include a plurality of heel surface elements spaced between or separated by a plurality of substantially linear non-parallel grooves wherein the grooves are not formed laterally between a medial side and lateral side of the heel region. The grooves may not be oriented laterally, but may have any other orientation. In some embodiments, the grooves may be substantially linear. In a preferable embodiment, the grooves 24 a, 24 b may intersect at the heel region to form a cross-shape. The cross-shape may have any orientation, including one such that an X is formed with respect to a longitudinal axis defined by the length of the sole. The grooves may have any orientation that may allow heel surface elements of the shoe to aid in cornering.
  • In some embodiments, the grooves may be contained within the heel region. For example, the grooves may start and end within the heel region of a sole structure. In other examples, the grooves may extend to the ends of the heel region, all the way to an outer heel boundary. Or in another case, a groove may extend past a heel region into a midfoot region, and cross a midfoot boundary.
  • In a preferable embodiment, a heel region may include at least three heel surface elements 23 a, 23 b, 23 c that may be separated by a pair of intersecting grooves 24 a, 24 b. The grooves may enable the heel surface elements to move relative to one another. For example, a sole may bend at its heel region along a groove, which may enable heel surface elements on either side of the groove to move relative to one another. The grooves may form flexion lines in the sole structure, and may have an effect upon the directions of flex in the sole. The sole structure may flex or articulate in various manners as a result of the grooves. The heel surface elements may move harmoniously with the movement of a foot, such as when the wearer of the shoe is cornering or making a sharp turn.
  • The heel surface elements may have any shape, as defined by grooves separating the heel surface elements. For example, heel surface elements may have a roughly triangular configuration, wherein a triangle may have a curved edge, similar to a pie slice. Heel surface elements may also have quadrilateral shapes, such as rectangular or trapezoidal shapes, or may have curved shapes. Any number of heel surface elements may be provided, including, but not limited to, 1, 2, 3, 4, 6, 8, 12, or 20 heel surface elements.
  • A heel surface element may be defined by an outsole, a midsole, or a combination thereof. A heel surface element may include an outsole portion with ridges 25 a, 25 b, 25 c that may provide texture to the heel surface element. In one embodiment, such ridges may take the form of concentric or annular rings. The concentric or annular rings may have a shape that may conform to the shape of the heel surface element. For instance, if a heel surface element has a roughly triangular shape, the ridges may have a roughly triangular shape as well. The ridges may or may not have a more curved configuration than the heel surface element.
  • In other embodiments, the ridges may have any configuration to provide texturing to a heel surface element. For example, the ridges may form zig-zagging patterns, honeycomb structures, geometric shapes, curved lines, or parallel lines. Similarly, other texturing features may be used, including but not limited to bumps, holes, spikes, or various protrusions. Any features may be provided to increase traction of a heel element.
  • A forefoot region of a sole structure may include a design that may provide additional flexibility to the forefoot region. A design 26 may curve across a forefoot region substantially laterally. For example, a forefoot region may have a groove going across substantially laterally. The groove may be curved. Such a groove may permit upward flexing of a sole structure, which may provide further traction during a running a cycle. In some cases, a groove may be used to provide articulation to a forefoot region.
  • The design may define a frontal forefoot region 27. The frontal forefoot region may include one or more additional designs 28, such as grooves. For instance, a frontal forefoot region may have a curved groove that may intersect with the lateral groove that may define a medial toe region 29 a and a lateral toe region 29 b. Such a groove may provide lateral flexibility to the sole.
  • Such grooves may have similar or different characteristics to the grooves that define the heel surface elements. In some embodiments the grooves in the forefoot region may be wider and shallower than the grooves in the heel region.
  • In some embodiments, the designs in the forefoot region, may not be grooves, but may be other surface features. Such surface features may or may not provide flexibility to the forefoot region. In some embodiments, the surface features may be used to provide a form of traction to the forefoot region. For example, the surface features may include ridges of various patterns. The surface features may also be used to define regions of a sole, which may or may not have different thicknesses, materials, or features included.
  • FIG. 3 shows a bottom view of an article of footwear with an X-shaped heel design and cleats. In preferable embodiments of the invention, the article of footwear may be an athletic shoe. For instance, the athletic shoe may be designed to aid in cornering, twisting, or severe changes in direction. The athletic shoe may be a baseball cleat, soccer cleat, or other shoe that incorporates cleats.
  • For instance, an article of footwear may include a sole structure comprising one or more surface elements. For example, a heel region 30 of the footwear may comprise three surface elements 31 a, 31 b, 31 c and a forefoot region 32 of the footwear may comprise two surface elements 33 a, 33 b, while a midfoot region 34 of the footwear may comprise one surface element 35. A surface of a sole may include one or more protrusions 36 a-36 g, such as cleats. In some embodiments, a surface element may include one or more protrusions. In some embodiments, some surface elements may include no protrusions, while other surface elements may include one or more protrusions.
  • The protrusions may all be of the same length, or may have different lengths. Some of the protrusions may be more recessed than others. The protrusions may also have various shapes or orientations.
  • In a preferable embodiment of the invention, surface elements of a heel region of a footwear may each include one cleat. Surface elements of a frontal forefoot region of a foot may also each include one cleat. A midfoot surface element may include two cleats. Cleats may be placed to provide desired stability and gripping. Any number or arrangement of cleats may be provided.
  • The cleats may be formed of any material known in the art, which may include, but are not limited to, rubber, plastic, metal, which may or may not be the same material used to form a surface or a portion of the surface of a surface element.
  • The surface elements of a heel region may move relative to one another. Such movements may cause the relative orientation or positions of protrusions to change relative to one another. For example, when an athletic shoe is sued for cornering, the majority of the weight may be distributed to one or two heel elements. Any protrusions on the one or two heel elements may grip the ground while other protrusions on other heel elements may move relative to the gripping protrusions as the shoe may flex or twist.
  • FIG. 4A shows a side view of a sole design from a lateral side in accordance with one embodiment of the invention. A midsole may include an upper surface 40 that may connect the midsole to an upper portion of a shoe. The upper surface may be positioned adjacent to the upper portion of the shoe and may be secured directly to upper, thereby providing support for the foot. The upper surface of the midsole may be contoured to conform to the natural, anatomical shape of a foot.
  • In some embodiments, the area of an upper surface of the midsole that is positioned in heel 41 a region may have a greater elevation than the area of upper surface in forefoot region 41 b. In other words, a sole may be thicker at a heel region than at a forefoot region. In addition, an upper surface may form an arch support area in a midfoot region. Peripheral areas of upper surface may be generally raised to provide a depression for receiving and seating the foot. In alternate embodiments, an upper surface may have a non-contoured configuration.
  • A lower surface 42 of a sole structure may be configured to come into contact with the ground. The lower surface may be contoured as well. For instance, a portion of a lower sole structure at the midfoot region 43 a may be slightly elevated or curved along the arch of the foot. Indentations 43 b may also be provided along a lower surface of a sole structure, which may provide traction or flexibility.
  • Areas of the sole that exhibit a relatively thin thickness will, in general, possess more flexibility than areas of the sole that exhibit a greater thickness. Variations in the thickness of the sole may, therefore, be utilized to modify the flexibility of sole structure in specific areas. For example, a forefoot region may be configured to have relatively high flexibility by forming a lateral design feature with a lesser thickness. A relatively low flexibility may be imparted to a midfoot region by forming a sole with a greater thickness to provide support. Similarly, an intermediate flexibility may be imparted to a heel region by forming a sole with a thickness that is between the thicknesses of the forefoot region and the midfoot region. Alternatively, an intermediate flexibility may be imparted to a heel region even if the sole has a greater thickness than the midfoot region by providing channels that may provide an articulated heel. As such, variations in the thickness of the sole may be utilized in conjunction with articulation to provide desired flexibility and support for various parts of the shoe sole.
  • Portions of the shoe sole may have locally thicker outsole features 44 a-44 d. Such outsole features may be pad-like features that provide a local bump from along the lower surface of the sole. Such outsole features may or may not be made of the same material as the rest of the sole. In some instances, the outsole features may be made of a more flexible or elastic materials. For one or more of the outsole features, a protrusion 45 a-45 d, such as a cleat, may be provided. Additional protrusions 46, or cleats may be provided along the lower surface of the sole structure.
  • FIG. 4B shows a bottom view of a sole design in accordance with one embodiment of the invention. The sole design may include a heel region 47 which may be defined by an outer heel boundary 48 a and a midfoot boundary 48 b. The heel region may have a longitudinal axis, which may be provided along the length of the sole. The heel region may be formed with articulated segments 49 a, 49 b, 49 c between the outer heel and midfoot boundaries of the heel region.
  • In some embodiments, the articulated segments may provide the heel region with at least two angles of articulation. At least two angles of articulation may be substantially non-parallel and non-perpendicular with respect to the longitudinal axis of the heel region. For instance, one angle of articulation may have a diagonal orientation with respect to the longitudinal axis, while another angle of articulation may have another diagonal orientation, that is substantially the mirror image of the first diagonal orientation with respect to the longitudinal axis. A first articulated segment may include a back heel surface 49 b as well as a lateral heel surface 49 a, while a second articulated segment may include a back heel surface 49 b as well as a medial heel surface 49 c.
  • Any number or orientation of articulated segments may be provided, as defined by angles of articulation defined by the sole structure.
  • A bottom surface of a sole may provide texturing elements, which may provide traction to the bottom of the footwear. The texturing elements may include features, such as bumps, ridges, lines, holes, protrusions, or any combination thereof. Different regions of a sole may include different texturing features. For example, a heel surface region may include concentric ridges 401 on a heel pad that may protrude from the sole, along with a cleat 402 at the center of the concentric ridges. A medial forefoot region 403 may include a toe pad that may protrude from the sole, along with a cleat at the center of the pad 404. A lateral forefoot region 405 may have a comb-like texture and may include one or more protrusions of varying shapes and sizes 406 a, 406 b, 406 c. A midfoot region may include various protrusions 407 a-407 e or pads 408 a, 408 b. A logo 409 may be incorporated into the bottom of the sole, such as a midfoot region.
  • FIG. 4C shows a side view of a sole design from a medial side in accordance with one embodiment of the invention. In some implementations, the lateral and medial sides of a sole may be substantially similar. In other implementations, the lateral and medial sides may be different. For example, one side may be more reinforced than another due to the weight distribution of the foot during a common use of the shoe. In some implementations, a lateral or medial side may be thicker and/or may provide greater elevation to one side of the foot. In some embodiments, a lateral or medial side may be have greater flexibility, or may be more cushioned. Additionally, a lateral or medial side may be designed to be more durable or to withstand more fatigue.
  • FIG. 5 shows how an article of footwear can behave during cornering and/or a severe turn in accordance with one aspect of the invention. In addition to a sole structure, an article of footwear can include an upper section 50 a, 50 b. The upper section may form the portion of footwear for receiving the foot. For example, an upper section may be formed from various material elements that can be stitched or adhesively-bonded together to form an interior void that may comfortably receive a foot and secure the position of the foot relative to the sole structure 51 a, 51 b. Other examples of upper sections may be provided by upper sections for cleats, other athletic shoes, or any form of footwear known in the art. The sole structure may be secured to a lower portion of upper section and may provide a durable, wear-resistant component for attenuating ground reaction forces as the footwear impacts the ground.
  • The sole may include one or more channels that may define articulated regions of the sole 52 a-52 f. The positions and orientations of the channels may be selected to complement the natural motion of the foot during the running cycle and/or cornering. In general, the motion of the foot during cornering proceeds as follows: Initially, the heel may strike the ground, followed by the ball of the foot. The heel may strike the ground unevenly, depending on the direction of cornering. As the heel leaves the ground, the foot may roll forward so that the toes make contact, and finally the entire foot leaves the ground to begin another cycle.
  • During the time that the foot is in contact with the ground, the foot may be angled to allow for cornering. For example, if a runner is cornering to the left much of the runner's weight may be distributed to the left side of the shoe. For a left shoe, that would mean more weight would be distributed to the lateral (outer) side of the shoe, for a right shoe, that would mean more weight would be distributed to the medial (inner) side of the shoe.
  • Articulated regions may improve cornering. For example, articulated regions may be provided on a heel such that there may be a hind articulated region, a lateral articulated region, and a medial articulated region. The articulated regions may enable much of the weight to be distributed to two of the articulated regions during cornering. For example, if a runner is making a sharp turn to the left, while the heel is striking the ground during a running cycle, the left shoe may have more weight on a hind articulated region 52 e and a lateral articulated region 52 f. The right shoe may have more weight on a hind articulated region 52 b and a medial articulated region 52 c. The articulation may allow the heel to flex such that the specified articulated regions are substantially parallel to the ground, or such that the specified articulated regions have increased contact with the ground to increase friction and decrease sliding.
  • The channels defining the articulated regions may have be intersecting to provide an X configuration on the heel. The angles of the channels forming the X may be determined to optimize or regulate toward an optimum cornering configuration. For example, if a runner is pivoting or making a sharp turn to the right, the heel of the sole may flex along a channel that allows articulated regions to the rear and to the left of the channel (when viewed from below the sole) to have increased ground contact.
  • FIG. 6 shows a shoe with an articulated heel in accordance with one aspect of the invention. The shoe can include a hindfoot region 63 comprising at least one pair of intersecting channels 60 a, 60 b that provide at least two hinged or pivotal sections, such as an inner section 61 a, 61 b and an outer section 61 b, 61 c. The intersecting channels may be substantially linear and may have any orientation. For instance, the intersecting channels may be oriented such that neither of them are substantially parallel or substantially perpendicular to a lateral axis of the shoe. Such intersecting channels 60 a, 60 b may be oriented substantially diagonally with respect to the lateral axis of the article of footwear.
  • The hinged or pivotal sections may allow the negotiating of sharp turns. The hinged or pivotal sections may allow a surface of the various sections to remain in contact with a ground while the rest of the shoe may have some degree of freedom. For instance, when negotiating a left turn, an inner section 61 a, 61 b may be in firm contact with the ground, while the rest of the shoe may flex upwards or downwards, may roll from side to side, or may pivot about the inner section from right to left. This may allow a shoe to remain firmly in place without slipping, while providing the flexibility to allow rapid cornering.
  • A hindfoot region may include a plurality of cleats 62 a, 62 b, 62 c. For instance, an inner section 61 a, 61 b and an outer section 61 b, 61 c can include one or more cleats. In some instances, various sections 61 a, 61 b, 61 c of the hindfoot region may each include one cleat. The cleats may be oriented or placed on the sections as desired. The cleats may assist with keeping sections of the shoes firmly in place and to prevent slipping during cornering, twisting, sharp turns, or other forms of maneuvering.
  • The shoe may also include a forefoot region 64. The forefoot region may also include one or more cleats 62 d, 62 e, 62 f. The forefoot region may also include any various protrusions 65. Such protrusions or cleats may assist with keeping a section of the shoe firmly in place while the forefoot region is in contact with the ground during a running cycle.
  • FIG. 7 shows how cornering can be improved using an article of footwear with X-shaped articulated heel. Without an articulated heel, as described herein, a runner may follow an outer path 70 provided around the bases. However, with an articulated heel, a runner may be able to negotiate a sharper turn, and thereby, follow the inner path 71 provided around the bases, thereby saving time and improving performance in a baseball game. In preferable embodiments of the invention, the X-shaped articulated heel may be applied to a baseball cleat for improved pivoting and turning around the bases. This may enable a runner to situate one's foot in a position to round basis quicker and with less fatigue on the runner. In some alternate embodiments of the invention, a baseball cleat may be reinforced to provide greater support or greater durability for when a runner turns left, in anticipation of increased wear from running the bases.
  • The articulated heel may be applied to any other athletic shoe. For example, such cornering performance may be beneficial in sports such as soccer, football, rugby, lacrosse, or field hockey. Articulated heels may be applied to other athletic shoes, such as running shoes, hiking shoes, walking shoes, tennis shoes, basketball shoes, or golf shoes. Similarly, articulated heels may be useful for certain types of dance shoes. The articulated heel may be applied to any article of footwear.
  • It should be understood from the foregoing that, while particular implementations have been illustrated and described, various modifications can be made thereto and are contemplated herein. It is also not intended that the invention be limited by the specific examples provided within the specification. While the invention has been described with reference to the aforementioned specification, the descriptions and illustrations of the preferable embodiments herein are not meant to be construed in a limiting sense. Furthermore, it shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which depend upon a variety of conditions and variables. Various modifications in form and detail of the embodiments of the invention will be apparent to a person skilled in the art. It is therefore contemplated that the invention shall also cover any such modifications, variations and equivalents.

Claims (25)

1. An athletic shoe for improved cornering performance or configured to accommodate severe changes in direction while running comprising:
a heel portion with a defined longitudinal axis that is formed with at least one pair of substantially linear intersecting channels that facilitate articulation of the heel portion, wherein each intersecting channel is oriented substantially non-parallel and non-perpendicular with respect to the longitudinal axis of the heel portion.
2. The shoe of claim 1 wherein each channel provides a degree of freedom to the heel portion upon impact during running.
3. The shoe of claim 1 wherein the heel portion is articulated upon impact during running.
4. The shoe of claim 1 wherein the intersecting channels form an ‘X’ configuration.
5. The shoe of claim 4 wherein the intersecting channels cross at an intersection formed with opposing angles that are not equal to 90 degrees.
6. The shoe of claim 1 further comprising concentric or annular rings.
7. The shoe of claim 1 wherein the intersecting channels are more shallow at an intersection where the channels intersect.
8. A shoe heel for athletic activities on playing fields comprising:
a plurality of heel surface elements that are separated by a plurality of substantially linear non-parallel channels wherein the channels are not formed laterally between a medial side and lateral side of the shoe heel.
9. The shoe heel of claim 8 wherein a heel surface element forms at least a portion of a ground contacting surface of the shoe heel.
10. The shoe heel of claim 8 wherein a heel surface element includes a heel cleat.
11. The shoe heel of claim 8 wherein a heel surface element includes ridges that provide texturing to the heel surface element.
12. The shoe heel of claim 8 wherein the shoe heel comprises three heel surface elements.
13. The shoe heel of claim 12 wherein each heel surface element includes a heel cleat and ridges.
14. An article of footwear comprising:
a heel region defined by an outer heel boundary and a midfoot boundary, wherein the heel region has a defined longitudinal axis, and is formed with articulated segments in between the outer heel and midfoot boundaries for providing the heel region with at least two angles of articulation, wherein the at least two angles of articulation are substantially non-parallel and non-perpendicular with respect to the longitudinal axis of the heel region.
15. The article of footwear of claim 14 wherein the article of footwear is an athletic shoe.
16. The article of footwear of claim 14 wherein the article of footwear is a baseball cleat.
17. The article of footwear of claim 14 wherein the articulated segments have a textured surface.
18. The article of footwear of claim 14 wherein the spaces between the articulated segments form an ‘X’ configuration.
19. An outer sole for an article of footwear defined with a lateral axis comprising:
a hindfoot region comprising at least one pair of intersecting channels that provide at least two hinged sections for allowing negotiation of sharp turns, wherein neither intersecting channel is oriented substantially parallel or substantially perpendicular to the lateral axis of the article of footwear.
20. The outer sole of claim 19 wherein the hindfoot region further comprises a plurality of cleats.
21. The outer sole of claim 19 further comprising a forefoot region wherein the forefoot region comprises at least one cleat.
22. The outer sole of claim 21 wherein the forefoot region comprises ridges that provide texturing.
23. The outer sole of claim 22 wherein the ridges form a ‘Y’ configuration.
24. The outer sole of claim 19 wherein the intersecting channels are oriented substantially diagonally with respect to the lateral axis of the article of footwear.
25. The outer sole of claim 19 wherein the outer sole is flexible in a direction perpendicular to the orientation of the intersecting channels.
US12/267,450 2008-11-07 2008-11-07 Heel construction for footwear Abandoned US20100115796A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/267,450 US20100115796A1 (en) 2008-11-07 2008-11-07 Heel construction for footwear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/267,450 US20100115796A1 (en) 2008-11-07 2008-11-07 Heel construction for footwear

Publications (1)

Publication Number Publication Date
US20100115796A1 true US20100115796A1 (en) 2010-05-13

Family

ID=42163888

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/267,450 Abandoned US20100115796A1 (en) 2008-11-07 2008-11-07 Heel construction for footwear

Country Status (1)

Country Link
US (1) US20100115796A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015026729A1 (en) * 2013-08-20 2015-02-26 Nike, Inc. Cleated footwear with flexible cleats
US20150135558A1 (en) * 2012-05-10 2015-05-21 Asics Corporation Shoe Sole Having Diagonal Groove
USD734928S1 (en) * 2013-03-28 2015-07-28 Asics Corporation Footwear sole
USD734927S1 (en) * 2013-03-28 2015-07-28 Asics Corporation Footwear sole
USD752325S1 (en) * 2014-02-07 2016-03-29 New Balance Athletics, Inc. Shoe sole
USD754958S1 (en) * 2014-05-08 2016-05-03 Taylor Made Golf Company, Inc. Golf shoe
US20170042283A1 (en) * 2014-04-11 2017-02-16 Asics Corporation Shoe sole
KR101799579B1 (en) 2016-06-15 2017-11-20 신관호 Outsole Induced Corrigo Pattern
USD815402S1 (en) 2015-05-19 2018-04-17 Nike, Inc. Shoe
KR20180066271A (en) * 2013-03-15 2018-06-18 나이키 이노베이트 씨.브이. Flexible sole and upper for an article of footwear
USD838950S1 (en) * 2018-05-21 2019-01-29 Nike, Inc. Shoe
US10477918B2 (en) 2016-05-24 2019-11-19 Under Armour, Inc. Footwear sole structure with articulating plates
USD893150S1 (en) * 2018-01-18 2020-08-18 Puma SE Shoe sole
WO2020186311A1 (en) * 2019-03-21 2020-09-24 XBlades Sports Australia Pty Ltd A sole
USD956406S1 (en) * 2021-07-22 2022-07-05 Nike, Inc. Shoe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375346A (en) * 1993-04-02 1994-12-27 Energaire Corporation Thrust producing shoe sole and heel improved stability
US5628128A (en) * 1994-11-01 1997-05-13 American Sporting Goods Corp. Sole construction for footwear
US6973745B2 (en) * 2003-11-06 2005-12-13 Elan-Polo, Inc. Athletic shoe having an improved cleat arrangement
US20060254086A1 (en) * 1994-08-17 2006-11-16 Meschan David F Heel support for athletic shoe
US7290357B2 (en) * 2003-10-09 2007-11-06 Nike, Inc. Article of footwear with an articulated sole structure
USD575042S1 (en) * 2004-07-09 2008-08-19 Sasco Thomas F Heel and sole for shoe

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5375346A (en) * 1993-04-02 1994-12-27 Energaire Corporation Thrust producing shoe sole and heel improved stability
US20060254086A1 (en) * 1994-08-17 2006-11-16 Meschan David F Heel support for athletic shoe
US5628128A (en) * 1994-11-01 1997-05-13 American Sporting Goods Corp. Sole construction for footwear
US7290357B2 (en) * 2003-10-09 2007-11-06 Nike, Inc. Article of footwear with an articulated sole structure
US20080022553A1 (en) * 2003-10-09 2008-01-31 Nike, Inc. Article of footwear with an articulated sole structure
US6973745B2 (en) * 2003-11-06 2005-12-13 Elan-Polo, Inc. Athletic shoe having an improved cleat arrangement
USD575042S1 (en) * 2004-07-09 2008-08-19 Sasco Thomas F Heel and sole for shoe

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848142A4 (en) * 2012-05-10 2016-03-30 Asics Corp Shoe soles having inclined grooves
US20150135558A1 (en) * 2012-05-10 2015-05-21 Asics Corporation Shoe Sole Having Diagonal Groove
KR20180066271A (en) * 2013-03-15 2018-06-18 나이키 이노베이트 씨.브이. Flexible sole and upper for an article of footwear
USD734928S1 (en) * 2013-03-28 2015-07-28 Asics Corporation Footwear sole
USD734927S1 (en) * 2013-03-28 2015-07-28 Asics Corporation Footwear sole
KR20160045122A (en) * 2013-08-20 2016-04-26 나이키 이노베이트 씨.브이. Cleated footwear with flexible cleats
WO2015026729A1 (en) * 2013-08-20 2015-02-26 Nike, Inc. Cleated footwear with flexible cleats
US9700103B2 (en) 2013-08-20 2017-07-11 Nike, Inc. Cleated footwear with flexible cleats
US10932527B2 (en) 2013-08-20 2021-03-02 Nike, Inc. Cleated footwear with flexible cleats
EP3395191A1 (en) * 2013-08-20 2018-10-31 NIKE Innovate C.V. Cleated footwear with flexible cleats
KR101860242B1 (en) 2013-08-20 2018-06-27 나이키 이노베이트 씨.브이. Cleated footwear with flexible cleats
USD752325S1 (en) * 2014-02-07 2016-03-29 New Balance Athletics, Inc. Shoe sole
US20170042283A1 (en) * 2014-04-11 2017-02-16 Asics Corporation Shoe sole
US10548369B2 (en) * 2014-04-11 2020-02-04 Asics Corporation Shoe sole
USD754958S1 (en) * 2014-05-08 2016-05-03 Taylor Made Golf Company, Inc. Golf shoe
USD815823S1 (en) 2015-05-19 2018-04-24 Nike, Inc. Shoe
USD815819S1 (en) 2015-05-19 2018-04-24 Nike, Inc. Shoe
USD815816S1 (en) 2015-05-19 2018-04-24 Nike, Inc. Shoe
USD815824S1 (en) 2015-05-19 2018-04-24 Nike, Inc. Shoe
USD815818S1 (en) 2015-05-19 2018-04-24 Nike, Inc. Shoe
USD815822S1 (en) 2015-05-19 2018-04-24 Nike, Inc. Shoe
USD815817S1 (en) 2015-05-19 2018-04-24 Nike, Inc. Shoe
USD816311S1 (en) 2015-05-19 2018-05-01 Nike, Inc. Shoe
USD816959S1 (en) 2015-05-19 2018-05-08 Nike, Inc. Shoe
USD816960S1 (en) 2015-05-19 2018-05-08 Nike, Inc. Shoe
USD817615S1 (en) 2015-05-19 2018-05-15 Nike, Inc. Shoe
USD817614S1 (en) 2015-05-19 2018-05-15 Nike, Inc. Shoe
USD817616S1 (en) 2015-05-19 2018-05-15 Nike, Inc. Shoe
USD815821S1 (en) 2015-05-19 2018-04-24 Nike, Inc. Shoe
USD815820S1 (en) 2015-05-19 2018-04-24 Nike, Inc. Shoe
USD815403S1 (en) 2015-05-19 2018-04-17 Nike, Inc. Shoe
USD815402S1 (en) 2015-05-19 2018-04-17 Nike, Inc. Shoe
US10477918B2 (en) 2016-05-24 2019-11-19 Under Armour, Inc. Footwear sole structure with articulating plates
KR101799579B1 (en) 2016-06-15 2017-11-20 신관호 Outsole Induced Corrigo Pattern
USD893150S1 (en) * 2018-01-18 2020-08-18 Puma SE Shoe sole
USD938151S1 (en) 2018-01-18 2021-12-14 Puma SE Shoe sole
USD838950S1 (en) * 2018-05-21 2019-01-29 Nike, Inc. Shoe
WO2020186311A1 (en) * 2019-03-21 2020-09-24 XBlades Sports Australia Pty Ltd A sole
GB2596974A (en) * 2019-03-21 2022-01-12 XBlades Sports Australia Pty Ltd A sole
USD956406S1 (en) * 2021-07-22 2022-07-05 Nike, Inc. Shoe

Similar Documents

Publication Publication Date Title
US20100115796A1 (en) Heel construction for footwear
US20200390191A1 (en) Article Of Footwear With Banking Midsole With Embedded Resilient Plate
US8516723B2 (en) Midfoot insert construction
US11412812B2 (en) Articles of footwear with asymmetrical segmented plates
TWI629944B (en) Sole structures with regionally applied auxetic openings and siping
US9510645B2 (en) Article of footwear with multi-directional sole structure
US8356429B2 (en) Article of footwear with ball control portion
EP3216362B1 (en) Cut step traction element arrangement for an article of footwear
US8104197B2 (en) Article of footwear with vertical grooves
US8056267B2 (en) Article of footwear with cleated sole assembly
US9179738B2 (en) Golf shoes
US7913420B2 (en) Skateboard shoe with textured surface
CN107280128B (en) Sports footwear with ball control portion
US20140237852A1 (en) Sole assembly and footwear comprising a sole assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: PONY INTERNATIONAL LLC,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PULLI, KYLE;REEL/FRAME:022152/0359

Effective date: 20090106

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION