US20100108733A1 - Web conveyance controlling method, web slip amount measuring means, and web conveyance controlling device - Google Patents

Web conveyance controlling method, web slip amount measuring means, and web conveyance controlling device Download PDF

Info

Publication number
US20100108733A1
US20100108733A1 US12/595,972 US59597208A US2010108733A1 US 20100108733 A1 US20100108733 A1 US 20100108733A1 US 59597208 A US59597208 A US 59597208A US 2010108733 A1 US2010108733 A1 US 2010108733A1
Authority
US
United States
Prior art keywords
web
conveying
tension
slip amount
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/595,972
Inventor
Toshio Fuwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Assigned to TOYOTA JIDOSHA KABUSHIKI KAISHA reassignment TOYOTA JIDOSHA KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FUWA, TOSHIO
Publication of US20100108733A1 publication Critical patent/US20100108733A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/18Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web
    • B65H23/188Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in connection with running-web
    • B65H23/192Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in connection with running-web motor-controlled
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/18Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web
    • B65H23/188Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in connection with running-web
    • B65H23/1888Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in connection with running-web and controlling web tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/042Sensing the length of a web loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/18Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web
    • B65H23/188Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in connection with running-web
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H26/00Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms
    • B65H26/02Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms responsive to presence of irregularities in running webs
    • B65H26/04Warning or safety devices, e.g. automatic fault detectors, stop-motions, for web-advancing mechanisms responsive to presence of irregularities in running webs for variation in tension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2513/00Dynamic entities; Timing aspects
    • B65H2513/10Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/30Forces; Stresses
    • B65H2515/31Tensile forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2515/00Physical entities not provided for in groups B65H2511/00 or B65H2513/00
    • B65H2515/815Slip

Definitions

  • the present invention relates to a web conveying control method, a web slip amount measuring means, and a web conveying control device, more particularly to a technique of controlling the slip of the web with respect to the roll arranged in the conveying line for continuously conveying the web.
  • “Disturbance” such as misalignment of the rolls in the line and failure to control the speed causes the lateral shift of the web (in other words, the web slides to the wide direction to the conveying line).
  • high speed handling of the web is required, however, when the conveying speed becomes higher, the web is easy to slip with respect to the rolls.
  • JP-2000-143053 A discloses the technique, as to the tension of the web continuously conveyed, that the tension of the web from the dancer roll disposed in the bridle section is adjusted to be the tension where the tension cut ratio of the bridle roll in the bridle section is the same on the basis of the tension of the web in the adjacent sections.
  • the conventional control method is the method for preventing the slip of the web by means of controlling the tension of the web, however, in the condition that the “disturbance” changes the conveying speed, the slip of the web is not able to be prevented accurately with the tension control.
  • the lateral shift of the web with regard to the roll is susceptible to the conveying speed and tension of the web, so that when the “disturbance” changes the conveying speed, the prevention of the slip by means of the tension control fails to keep the performance of controlling the lateral position of the web.
  • the conveying line has guide rolls for controlling the lateral position of the web, and the guide rolls control the lateral position of the web with high-accuracy, so keeping the quality of the web during the conveyance.
  • the guide rolls are disposed at the midway of the line, adopted as the center-pivot type or end-pivot type depending on the disposed position, and the relative angles to the line are changeable pivoting around the axis thereof. Using such the guide rolls, when the serpentine web is conveyed to the guide rolls, the guide rolls changes the relative angles to the line such that the lateral shift caused by the “disturbance” is canceled and the error is corrected.
  • the conventional method of controlling the web-conveyance fails to control the slip when the “disturbance” changes the conveying speed, so that, in using the guide rolls for controlling the lateral position of the web, there occurs buckles on the web due to the high tension of the web, or there occurs slipping of the web due to the low tension of the web.
  • the present invention aims to provide a web conveying control method, a web slip amount measuring means, and a web conveying control device, in which the slip of the web is accurately controlled, thereby reducing the lateral shift of the web.
  • the first aspect of the present invention is a web conveying control method of controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously.
  • the method includes: a step of measuring a conveying speed and tension of the web during conveying; a step of calculating a slip amount of the web with respect to the roll using the measured conveying speed and tension of the web; and a step of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
  • the step of controlling includes: deciding whether a difference between the calculated slip amount and the target slip amount is within a preset threshold range; calculating, when deciding that the difference goes beyond the threshold range, an ideal conveying speed or an ideal tension of the web with regard to the target slip amount in case that the conveying speed or tension is constant; and controlling the conveying speed and/or the tension of the web so as to be the calculated ideal conveying speed or ideal tension.
  • the second aspect of the present invention is a web slip amount measuring method, which includes: a step of measuring a rotational speed of a guide roll; and a step of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured conveying speed of the web and the measured rotational speed of the guide roll.
  • the alternative embodiment of the second aspect is a web slip amount measuring method, which includes: a step of measuring a rotational speed of a drive roll which conveys the web; a step of measuring a rotational speed of a guide roll; and a step of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured rotational speed of the drive roll and the measured rotational speed of the guide roll.
  • the other embodiment of the second aspect is a web slip amount measuring method, which includes: a step of detecting a shifting amount of the web from a surface of the roll; and a step of measuring the slip amount of the web with respect to the roll on the basis of the shifting amount.
  • the third aspect of the present invention is a web conveying control device for controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously.
  • the device includes: means of measuring a conveying speed and tension of the web during conveying; means of calculating a slip amount of the web with respect to the roll using the measured conveying speed and tension of the web; and means of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
  • the means of controlling includes: means of deciding whether a difference between the calculated slip amount and the target slip amount is within a preset threshold range; and means of calculating, when deciding that the difference goes beyond the threshold range, an ideal conveying speed or an ideal tension of the web with regard to the target slip amount in case that the conveying speed or tension is constant, wherein the conveying speed and/or the tension of the web is controlled so as to be the calculated ideal conveying speed or ideal tension.
  • the advantageous embodiment of the third aspect includes: means of measuring a rotational speed of a guide roll; and means of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured conveying speed of the web and the measured rotational speed of the guide roll.
  • the alternative embodiment of the third aspect includes: means of measuring a rotational speed of a drive roll which conveys the web; means of measuring a rotational speed of a guide roll; and means of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured rotational speed of the drive roll and the measured rotational speed of the guide roll.
  • the other embodiment of the third aspect includes: means of detecting a shifting amount of the web from a surface of the roll; and means of measuring the slip amount of the web with respect to the roll on the basis of the shifting amount.
  • the slip of the web in controlling the web-conveyance, is accurately controlled, thereby lowering the lateral shift of the web.
  • the slip of the web in conveying control for the web, if the “disturbance” changes the conveying speed and tension of the web, the slip of the web is controlled with high accuracy; as a result, the shift (lateral shift) of the web with respect to the roll can be lowered.
  • FIG. 1 is a side view illustrating a conveying line provided with a conveying control device as a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the conveying control device.
  • FIG. 3 is a map drawing a correlation table (tension versus conveying speed).
  • FIG. 4 is a flowchart showing a conveying control method of the conveying control device.
  • FIG. 5 is a side view illustrating a conveying line provided with a conveying control device as a second embodiment of the present invention.
  • FIG. 6 is a side view illustrating a conveying line provided with a conveying control device as a third embodiment of the present invention.
  • the line 1 contains a start roll 10 arranged at the upstream side and a feed roll 11 arranged at the downstream side, and from the roll 10 to the roll 11 , there are guide rolls 12 , 13 , 14 , 15 , and a dancer roll 16 arranged in turn.
  • the web 2 is conveyed with being strained at these guide rolls at certain angles.
  • the rolls 10 , 11 have nip rolls 17 , 18 disposed thereon, respectively.
  • the rolls 17 , 18 are contacted and pressed to the rolls 10 , 11 by air-cylinders (not shown) or the like, for preventing slips of the web 2 on the rolls 10 , 11 .
  • the web 2 is fed synchronously with the rolls 10 , 11 .
  • the start roll 10 is connected to a motor 10 a, and the motor 10 a is connected to a control unit 30 .
  • the feed roll 11 is connected to a motor 11 a, which is connected to the control unit 30 .
  • Each of the bodies of the guide rolls 12 , 13 , 14 , 15 is pivoted on a rotation axis, thereby rotating in cooperated with the web 2 conveyed along the line 1 .
  • the roll 14 of these guide rolls 12 to 15 is disposed at the middle of the line 1 , in which a relative angle of a pivot axis (not shown) to the line 1 can change (“end-pivot type”). According to this roll 14 , when the web 2 is conveyed serpentinely to the roll 14 , the relative angle is changed so as to counteract the lateral shift of the web 2 , thereby controlling the lateral position of the web 2 and correcting the error.
  • the dancer roll 16 is disposed between a pair of fixed roll 19 , 19 and pivots on one end of an arm 16 a, which is swingably supported on a support point 16 b by the other end thereof.
  • the arm 16 a is connected to a motor 16 c, and the motor 16 c is connected to the control unit 30 for swing-control.
  • the web 2 is conveyed through the start roll 10 pressed by the nip roll 17 , the guide rolls 12 to 15 , the fixed roll 19 , the dancer roll 16 , the fixed roll 19 , and the feed roll 11 pressed by the nip roll 18 in sequence.
  • the control device 3 aims to stably convey the web 2 along the line 1 , controls the conveying speed of the web 2 by adjusting the drive of rolls 10 , 11 and controls the tension of the web 2 with respect to the dancer roller 16 by swinging the arm 16 a.
  • the control method of the control device 3 is based on the slip amount of the web 2 to the guide roll 14 in the line 1 , the conveying speed and tension are controlled to adjust the slip of the web 2 with respect to the roll 14 and to reduce the shift amount in the lateral direction.
  • the control device 3 includes the control unit 30 as a means for controlling the motor 10 a and the like to control the conveying speed and tension of the web 2 , an encoder 31 as a means for measuring the rotational speed of the start roll 10 , which conveys the web 2 , a speedometer 32 as a means for measuring the conveying speed of the web 2 , a tension meter 33 for measuring the tension of the web 2 , an encoder 34 as a means for measuring the rotational speed of the guide roll 14 , and a guide controller 36 for controlling the relative angle of the roll 14 to the line 1 .
  • the encoder 31 , speedometer 32 , tension meter 33 , encoder 34 and controller 36 are both connected to the control unit 30 .
  • the control unit 30 receives the signals from the encoder 31 and the like, and is composed of a CPU for processing, a memory for storing the processing program, an interface for input the operations for the CPU, a display such as CRT or LCD.
  • the control unit 30 includes a conveying speed control unit 30 a for controlling the conveying speed of the web 2 , a tension control unit 30 b for controlling the tension of the web 2 , a slip amount measuring unit 30 c as a means for measuring the slip amount of the web 2 , a slip amount calculating unit 30 d as a means for calculating the real slip amount of the web using the conveying speed and tension of the web 2 , a deciding unit 30 e as a means for deciding whether the difference is within the preset threshold range between the real slip amount of the web 2 calculated by the unit 30 d and the target slip amount set in advance, and a calculating unit 30 f as a means for calculating the ideal tension of the web 2 to the target slip amount in the case that the conveying speed of the web 2 is constant.
  • the conveying speed control unit 30 a adjusts the motors 10 a, 11 a, connected to the control unit 30 , to control the rotational speed of the rolls 10 , 11 to the target speed (target number of revolution) set in advance.
  • the encoder 31 is disposed at the drive shaft of the roll and detects the rotational speed (number of revolution) of the roll 10 .
  • the detected signal of the encoder 31 is transmitted to the unit 30 , the unit 30 a adjusts the motor 10 a such that the roll 10 rotates at the target speed on the basis of the received signal.
  • the unit 30 a also adjusts the roll 11 to rotate synchronously with the roll 10 .
  • the unit 30 a adjusts the rotations of the rolls 10 , 11 to control the conveying speed of the web 2 in the line 1 .
  • the tension control unit 30 b adjusts the motor 16 c of the arm 16 a connected to the unit 30 , to control the angle of the arm 16 a to “the predetermined angle ⁇ .”
  • the predetermined angle ⁇ means the angle ⁇ between the perpendicular from the point 16 b and the arm 16 a, and is set in advance such that the tension of the web 2 in the line 1 becomes the predetermined value in response to the angle of the arm 16 a (see FIG. 1 ).
  • an angle detection device (not shown) is provided near the point 16 b to detect the angle ⁇ between the perpendicular from the point 16 b and the arm 16 a, and the angle detection device is connected to the unit 30 to transmit the detect signal.
  • the unit 30 b adjusts the motor 16 c to control the angle ⁇ of the arm 16 a to the predetermined angle ⁇ on the basis of the received signal.
  • the unit 30 b changes the swinging of the arm 16 a to control the distance between the fixed rolls 19 and the dancer roll 16 , and the tension of the web 2 is set to the predetermined value (target tension).
  • the speedometer 32 (e.g. Doppler meter) measures the conveying speed of the web 2 adjusted by the unit 30 a as the real speed.
  • the tension meter 33 (e.g. tension sensor) measures the tension of the web 2 adjusted by the unit 30 b as the real tension.
  • the speedometer 32 for example the laser Doppler meter, is arranged near the guide roll 14 , facing the surface of the roll 14 through the web 2 .
  • the speedometer 32 is connected to the unit 30 and transmits the detected signal to the unit 30 .
  • the conveying speed of the web 2 measured by the speedometer 32 corresponds to the actual conveying speed (real speed) of the web 2 in the line 1 .
  • the tension meter 33 for example the contact-type tension sensor, is arranged near the guide roll 14 , contacting the web 2 in the line 1 .
  • the tension meter 33 is connected to the unit 30 and transmits the detected signal to the unit 30 .
  • the tension of the web 2 measured by the tension meter 33 corresponds to the actual tension (real tension).
  • the slip amount measuring unit 30 c measures the “slip amount of the web 2 ,” using the difference between the conveying speed of the web 2 measured by the speedometer 32 and the rotational speed of the guide roll 14 measured by the encoder 34 (see formula 1).
  • the conveying speed of the web 2 should be equal to the rotational speed of the roll 14 .
  • the difference between the conveying speed of the web 2 and the rotational speed of the roll 14 is estimated to be the slip amount of the web 2 .
  • the encoder 34 is disposed at the drive shaft of the guide roll 14 , detects the rotational speed (number of revolution) of the roll 14 and transmits the detected signal to the unit 30 .
  • the unit 30 measures the slip amount of the web 2 using the formula 1 on the basis of the detected signals from the speedometer 32 and encoder 34 .
  • the unit 30 c stores a correlation table 35 regarding the relationship between the slip amount W of the web 2 and the tension T of the web 2 in accordance with each of the conveying speeds V (constant) of the web 2 .
  • the correlation table 35 shows that when the conveying speed V of the web 2 is constant (for instance, see “v 2 ” in FIG. 3 ), the slip amount W lowers in response to the increase of the tension T of the web 2 , and that when the tension T of the web 2 is constant, the slip amount W lowers in response to the increase of the conveying speed V (v 1 ⁇ v 2 ⁇ v 3 ).
  • the correlation table 35 is drawn before conveying the web 2 in the line 1 and stored in the memory (not shown) of the unit 30 .
  • the correlation table 35 has a “target slip amount (see “w 1 ” in FIG. 3 )” as a slip amount, in which there does not occur the slip of the web 2 with respect to the guide roll 14 .
  • the units 30 a, 30 b control the conveying speed (target speed) and the tension (target tension) of the web 2 to match the target slip amount set in the unit 30 c.
  • the slip amount calculating unit 30 d calculates the actual slip amount (real slip amount) of the web 2 with respect to the roll 14 in such a way that the real conveying speed and tension measured by the speedometer 32 and tension meter 33 are substituted for the correlation table 35 stored in the unit 30 c.
  • the deciding unit 30 e decides whether or not the difference between the real slip amount of the web 2 calculated by the unit 30 d and the target slip amount set by the unit 30 c is within the threshold range.
  • the threshold range means the range where there does not occur the slip of the web 2 with respect to the roll 14 .
  • the calculating unit 30 f calculates the ideal tension of the web 2 in case that the conveying speed of the web 2 is constant when the unit 30 e decides the difference between the real slip amount and the target slip amount goes beyond the threshold range. Note that the unit 30 e decides the difference between the real slip amount and the target slip amount is within the threshold range, the ideal tension of the web 2 is not calculated.
  • the guide controller 36 controls the drive of the motor (not shown) of the guide roll 14 , swings the roll around the pivot axis and adjusts the relative angle of the roll to the line 1 .
  • the slip amount is adjusted by controlling the conveying speed and tension of the web 2 and furthermore the controller 36 changes the relative angle to the conveying line so as to cancel the lateral shift of the web 2 , thereby adjusting the lateral position of the web 2 .
  • the guide controller 36 may be included in the control unit 30 of the control device 3 .
  • the target conveying speed and target tension of the web 2 are replaced and given as feedback on the basis of the results from the units 30 e, 30 f.
  • the unit 30 e decides that the difference between the real slip amount and the target slip amount goes beyond the threshold range and the unit 30 f calculates the ideal tension
  • the ideal tension is set as the target tension and the unit 30 b control such that the tension of the web 2 becomes the target tension.
  • the unit 30 e decides that the difference between the real slip amount and the target slip amount is within the threshold range and the unit 30 f does not perform the calculation regarding the ideal tension
  • the setting of the target tension is kept and the unit 30 b continues to control the tension of the web 2 .
  • the unit 30 a continuously controls the conveying speed of the web 2 to the target speed.
  • the conveying control device 3 is used for controlling the slip of the web 2 with respect to the guide roll 14 in the line 1 and for conveying the web 2 continuously, the method includes the following steps.
  • the correlation table 35 is drawn, in advance, representing the relationship between the slip amount W of the web 2 and the tension T of the web 2 in accordance with each of the conveying speeds V (constant) of the web 2 .
  • the correlation table 35 is stored in the memory (not shown) of the control unit 30 .
  • the target speed is set constant (v 2 ), and when the target tension is (t 1 ), the target slip amount is (w 1 ).
  • the real speed and real tension of the web 2 are measured during conveying (S 100 ).
  • the results of measurement of the speedometer 32 and tension meter 33 are assumed to be the real speed v 3 (v 3 ⁇ v 2 ) and the real tension t 2 (t 2 ⁇ t 1 ).
  • the real slip amount w 2 of the web 2 is picked on the basis of the correlation table 35 (S 101 ).
  • next step it is decided whether the difference between the real slip amount w 2 of the web 2 and the target slip amount w 1 is within the threshold range or not (S 102 ). Deciding the difference between the real slip amount w 2 of the web 2 and the target slip amount w 1 goes beyond the threshold range, the ideal tension t 3 of the web 2 with respect to the target slip amount w 1 when setting the real speed of the web 2 to constant (v 3 ) is calculated (S 103 ).
  • the ideal tension (t 3 ) calculated in the above step is set as the target tension of the conveyed web 2 (S 104 ), controlling such that the tension of the conveyed web 2 becomes the ideal tension t 3 (S 106 ). Note that, at the same time, the conveying speed of the web 2 is adjusted to the target speed v 2 , and the web 2 is consequently conveyed at the target speed v 2 and target tension t 1 .
  • the guide controller 36 controls the relative angle of the guide roll 14 to the line 1 , adjusting the lateral position of the web 2 (S 107 ).
  • the conveying control method for the web 2 of the embodiment includes a web measurement step of measuring the conveying speed V and tension T of the web 2 in conveyed, a slip amount calculation step of calculating the slip amount W of the web 2 with respect to the guide roll 14 using the conveying speed V and tension T of the web 2 measured by the web measurement step, a web control step of controlling the tension of the web 2 in conveyed such that the slip amount W of the web 2 calculated in the slip amount calculation step becomes the target slip amount W 1 set in advance, so that the slip of the web 2 is accurately controlled and the lateral shift of the web 2 is lowered.
  • control method of the embodiment is to control the conveying speed and tension of the web 2 on the basis of the slip amount of the web 2 with respect to the guide roll 14 , accordingly, when the “disturbance” occurs and the conveying speed or tension of the web 2 change, the conveying speed and tension of the web 2 are controlled by using the slip amount of the web 2 with respect to the roll 14 , so that the slip of the web 2 is accurately controlled. Furthermore, the slip of the web 2 is controlled by above method; as a result, the shift (lateral shift) of the web 2 with respect to the roll 14 is prevented.
  • the operation of the guide roll 14 makes the control for the lateral position of the web 2 stable, which results in improvement in the accuracy of the lateral position of the web 2 .
  • the web control step is the step of deciding whether difference between the slip amount W calculated in the slip amount calculation step and the preset target slip amount W 1 is within the threshold range or not, and when decided the difference goes beyond the threshold range, calculating the ideal tension of the web 2 with regard to the target slip amount W 1 in case that the conveying speed of the web 2 is constant and controlling the tension of the web 2 to meet the calculated ideal tension, therefore, controlling the conveying speed or tension makes it easy to control the web 2 without slipping with respect to the guide roll 14 .
  • a step of measuring the rotational speed of the guide roll 14 is included and the slip amount W of the web 2 is measured on the basis of the difference between the conveying speed of the web 2 and the rotational speed of the drive shaft of the guide roll measured by the above-step.
  • Such a measurement method achieves the low relative-error between the conveying speed of the web 2 and the rotational speed of the guide roll 14 , thereby enhancing the accuracy such as the control of the slip of the web 2 .
  • the structures of the conveying control method of the web 2 and the conveying control device 3 are not limited to the above-described embodiment.
  • the slip amount measuring method of the first embodiment described before is based on the difference between the conveying speed of the web 2 and the rotational speed of the guide roll 14 measured by the suitable method of measuring the rotational speed of the guide roll, and in the second embodiment shown in FIG. 5 , the slip amount of the web 2 is measured on the basis of the difference between the rotational speed of the start roll 10 measured by the encoder 31 and that of the guide roll 14 measured by the encoder 34 as the measuring method (see formula 2).
  • the speedometer 32 may not be disposed for measuring the real speed of the web 2 with respect to the guide roll 14 .
  • the rolls of measurement objects may be selected as the guide roll 14 and the guide roll 13 disposed near the roll 14 , without limiting the selection of the guide roll 14 and the start roll 10 , and may be measured the difference of the rotational speeds of them.
  • the third embodiment shown in FIG. 6 provides a lifting amount detect sensor 132 for detecting the lifting amount of the web 2 from the surface of the guide roll 14 and the method of measuring the slip amount of the web 2 with regard to the guide roll 14 on the basis of the lifting amount of the web 2 (see formula 3).
  • the lifting amount detect sensor 132 is, for example, composed of a non-contact laser sensor, and detects the distance between the surface of the roll and the web 2 .
  • the distance between the surface of the roll and the web 2 relates to the “slip” of the web 2 on the guide roll 14 , and the distance between the surface of the roll and the web 2 goes beyond the given value, then the same phenomenon may occur as the slip of the web 2 with respect to the guide roll 14 .
  • the reason of changing the distance between the surface of the guide roll 14 and the web 2 is thought to be an air-entry into the space between the surface of the roll and the web 2 caused by quickening the conveying speed of the web 2 .
  • the encoder 34 may not be disposed for measuring the rotational speed of the guide roll 14 .
  • the conveying control device 3 stores the correlation table 35 showing the relationship between the slip amount W of the web 2 and the tension T of the web 2 in accordance with each of the conveying speeds V (constant) of the web 2 , however, the contents or the drawing method of the correlation table 35 is not limited.
  • the correlation table may show the relationship between the between the slip amount W of the web 2 and the conveying speed V of the web 2 in accordance with each of the tensions T (constant) of the web 2 .
  • the conveying control performs such that the tension of the web 2 becomes constant, the conveying speed is likewise adjusted to the target speed or ideal speed.
  • the structures of the rolls provided in the conveying line 1 may be nip rolls or bridle rolls. Further, the various measuring instruments may be employed for the above-described structure.
  • the web 2 conveyed in the line 1 is not limited to the electrode member (sheet) and may be a long work continuously conveyable.
  • the present invention is applicable to the conveying control when continuously conveying the long work (“web”), such as electrode member, using the rolls disposed in the conveying line.

Landscapes

  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)

Abstract

A method of controlling the conveyance of a web comprises a web measuring step of measuring the conveyance speed (V) and the tension force (T) of the web (2) during its conveyance, a slip amount calculation step of calculating the slip amount (W) of the web (2) relative to a guide roll (14) from the values of the conveying speed (V) and the tension force (T) of the web (2) measured in the web measuring step, and a web control step of controlling the tension force of the web (2) during its conveyance so that the slip amount (W) of the web (2) relative to the guide roll (14) calculated in the slip amount calculation step is equal to a preset target slip amount (W1). Consequently, the slip of the web is accurately controlled, whereby the lateral displacement of the web can be reduced.

Description

    TECHNICAL FIELD
  • The present invention relates to a web conveying control method, a web slip amount measuring means, and a web conveying control device, more particularly to a technique of controlling the slip of the web with respect to the roll arranged in the conveying line for continuously conveying the web.
  • BACKGROUND ART
  • Conventional conveying line continuously conveys a long work (“web”) such as electrode members used for secondary batteries and the control method thereof is well known. In such conveying line, various rolls disposed therein are adjusted for a feedback control of the conveying speed and tension of the web (“control of the conveying speed and tension of the web”), so the web is stably conveyed.
  • In the conveying line, “Disturbance” such as misalignment of the rolls in the line and failure to control the speed causes the lateral shift of the web (in other words, the web slides to the wide direction to the conveying line). Especially, in order to reduce the product costs, high speed handling of the web is required, however, when the conveying speed becomes higher, the web is easy to slip with respect to the rolls.
  • In view of preventing the web slip with respect to the roll, JP-2000-143053 A discloses the technique, as to the tension of the web continuously conveyed, that the tension of the web from the dancer roll disposed in the bridle section is adjusted to be the tension where the tension cut ratio of the bridle roll in the bridle section is the same on the basis of the tension of the web in the adjacent sections.
  • As disclosed in JP-2000-143053 A, the conventional control method is the method for preventing the slip of the web by means of controlling the tension of the web, however, in the condition that the “disturbance” changes the conveying speed, the slip of the web is not able to be prevented accurately with the tension control. Especially, the lateral shift of the web with regard to the roll is susceptible to the conveying speed and tension of the web, so that when the “disturbance” changes the conveying speed, the prevention of the slip by means of the tension control fails to keep the performance of controlling the lateral position of the web.
  • Generally, the conveying line has guide rolls for controlling the lateral position of the web, and the guide rolls control the lateral position of the web with high-accuracy, so keeping the quality of the web during the conveyance. The guide rolls are disposed at the midway of the line, adopted as the center-pivot type or end-pivot type depending on the disposed position, and the relative angles to the line are changeable pivoting around the axis thereof. Using such the guide rolls, when the serpentine web is conveyed to the guide rolls, the guide rolls changes the relative angles to the line such that the lateral shift caused by the “disturbance” is canceled and the error is corrected.
  • Unfortunately, in the technique of using the guide rolls for controlling the lateral position of the web, when the slip occurs, the change of the relative angle of the guide roll does not prevent the slip, so the control for the lateral position may fail. Further, the conventional method of controlling the web-conveyance fails to control the slip when the “disturbance” changes the conveying speed, so that, in using the guide rolls for controlling the lateral position of the web, there occurs buckles on the web due to the high tension of the web, or there occurs slipping of the web due to the low tension of the web.
  • The present invention aims to provide a web conveying control method, a web slip amount measuring means, and a web conveying control device, in which the slip of the web is accurately controlled, thereby reducing the lateral shift of the web.
  • DISCLOSURE OF INVENTION
  • The problems to be solved by the present invention is described above, the means of solving the problems will be followed.
  • The first aspect of the present invention is a web conveying control method of controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously. The method includes: a step of measuring a conveying speed and tension of the web during conveying; a step of calculating a slip amount of the web with respect to the roll using the measured conveying speed and tension of the web; and a step of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
  • Preferably, the step of controlling includes: deciding whether a difference between the calculated slip amount and the target slip amount is within a preset threshold range; calculating, when deciding that the difference goes beyond the threshold range, an ideal conveying speed or an ideal tension of the web with regard to the target slip amount in case that the conveying speed or tension is constant; and controlling the conveying speed and/or the tension of the web so as to be the calculated ideal conveying speed or ideal tension.
  • The second aspect of the present invention is a web slip amount measuring method, which includes: a step of measuring a rotational speed of a guide roll; and a step of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured conveying speed of the web and the measured rotational speed of the guide roll.
  • The alternative embodiment of the second aspect is a web slip amount measuring method, which includes: a step of measuring a rotational speed of a drive roll which conveys the web; a step of measuring a rotational speed of a guide roll; and a step of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured rotational speed of the drive roll and the measured rotational speed of the guide roll.
  • The other embodiment of the second aspect is a web slip amount measuring method, which includes: a step of detecting a shifting amount of the web from a surface of the roll; and a step of measuring the slip amount of the web with respect to the roll on the basis of the shifting amount.
  • The third aspect of the present invention is a web conveying control device for controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously. The device includes: means of measuring a conveying speed and tension of the web during conveying; means of calculating a slip amount of the web with respect to the roll using the measured conveying speed and tension of the web; and means of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
  • Preferably, the means of controlling includes: means of deciding whether a difference between the calculated slip amount and the target slip amount is within a preset threshold range; and means of calculating, when deciding that the difference goes beyond the threshold range, an ideal conveying speed or an ideal tension of the web with regard to the target slip amount in case that the conveying speed or tension is constant, wherein the conveying speed and/or the tension of the web is controlled so as to be the calculated ideal conveying speed or ideal tension.
  • The advantageous embodiment of the third aspect includes: means of measuring a rotational speed of a guide roll; and means of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured conveying speed of the web and the measured rotational speed of the guide roll.
  • The alternative embodiment of the third aspect includes: means of measuring a rotational speed of a drive roll which conveys the web; means of measuring a rotational speed of a guide roll; and means of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured rotational speed of the drive roll and the measured rotational speed of the guide roll.
  • The other embodiment of the third aspect includes: means of detecting a shifting amount of the web from a surface of the roll; and means of measuring the slip amount of the web with respect to the roll on the basis of the shifting amount.
  • According to the present invention, in controlling the web-conveyance, the slip of the web is accurately controlled, thereby lowering the lateral shift of the web. In other words, in conveying control for the web, if the “disturbance” changes the conveying speed and tension of the web, the slip of the web is controlled with high accuracy; as a result, the shift (lateral shift) of the web with respect to the roll can be lowered.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a side view illustrating a conveying line provided with a conveying control device as a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the conveying control device.
  • FIG. 3 is a map drawing a correlation table (tension versus conveying speed).
  • FIG. 4 is a flowchart showing a conveying control method of the conveying control device.
  • FIG. 5 is a side view illustrating a conveying line provided with a conveying control device as a second embodiment of the present invention.
  • FIG. 6 is a side view illustrating a conveying line provided with a conveying control device as a third embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • First of all, the whole structure of a conveying line 1 for a web 2 will be described below.
  • As shown in FIG. 1, the line 1 contains a start roll 10 arranged at the upstream side and a feed roll 11 arranged at the downstream side, and from the roll 10 to the roll 11, there are guide rolls 12, 13, 14, 15, and a dancer roll 16 arranged in turn. The web 2 is conveyed with being strained at these guide rolls at certain angles.
  • The rolls 10, 11 have nip rolls 17, 18 disposed thereon, respectively. The rolls 17, 18 are contacted and pressed to the rolls 10, 11 by air-cylinders (not shown) or the like, for preventing slips of the web 2 on the rolls 10, 11. The web 2 is fed synchronously with the rolls 10, 11.
  • The start roll 10 is connected to a motor 10 a, and the motor 10 a is connected to a control unit 30. The feed roll 11 is connected to a motor 11 a, which is connected to the control unit 30.
  • Each of the bodies of the guide rolls 12, 13, 14, 15 is pivoted on a rotation axis, thereby rotating in cooperated with the web 2 conveyed along the line 1. The roll 14 of these guide rolls 12 to 15 is disposed at the middle of the line 1, in which a relative angle of a pivot axis (not shown) to the line 1 can change (“end-pivot type”). According to this roll 14, when the web 2 is conveyed serpentinely to the roll 14, the relative angle is changed so as to counteract the lateral shift of the web 2, thereby controlling the lateral position of the web 2 and correcting the error.
  • The dancer roll 16 is disposed between a pair of fixed roll 19, 19 and pivots on one end of an arm 16 a, which is swingably supported on a support point 16 b by the other end thereof. The arm 16 a is connected to a motor 16 c, and the motor 16 c is connected to the control unit 30 for swing-control.
  • In the conveying line 1, the web 2 is conveyed through the start roll 10 pressed by the nip roll 17, the guide rolls 12 to 15, the fixed roll 19, the dancer roll 16, the fixed roll 19, and the feed roll 11 pressed by the nip roll 18 in sequence.
  • Next, a conveying control device 3 for the web 2 is described below as a first embodiment.
  • The control device 3 aims to stably convey the web 2 along the line 1, controls the conveying speed of the web 2 by adjusting the drive of rolls 10, 11 and controls the tension of the web 2 with respect to the dancer roller 16 by swinging the arm 16 a. Specifically, the control method of the control device 3 is based on the slip amount of the web 2 to the guide roll 14 in the line 1, the conveying speed and tension are controlled to adjust the slip of the web 2 with respect to the roll 14 and to reduce the shift amount in the lateral direction.
  • As shown in FIG. 1, the control device 3 includes the control unit 30 as a means for controlling the motor 10 a and the like to control the conveying speed and tension of the web 2, an encoder 31 as a means for measuring the rotational speed of the start roll 10, which conveys the web 2, a speedometer 32 as a means for measuring the conveying speed of the web 2, a tension meter 33 for measuring the tension of the web 2, an encoder 34 as a means for measuring the rotational speed of the guide roll 14, and a guide controller 36 for controlling the relative angle of the roll 14 to the line 1. The encoder 31, speedometer 32, tension meter 33, encoder 34 and controller 36 are both connected to the control unit 30.
  • The control unit 30 receives the signals from the encoder 31 and the like, and is composed of a CPU for processing, a memory for storing the processing program, an interface for input the operations for the CPU, a display such as CRT or LCD.
  • As shown in FIG. 2, the control unit 30 includes a conveying speed control unit 30 a for controlling the conveying speed of the web 2, a tension control unit 30 b for controlling the tension of the web 2, a slip amount measuring unit 30 c as a means for measuring the slip amount of the web 2, a slip amount calculating unit 30 d as a means for calculating the real slip amount of the web using the conveying speed and tension of the web 2, a deciding unit 30 e as a means for deciding whether the difference is within the preset threshold range between the real slip amount of the web 2 calculated by the unit 30 d and the target slip amount set in advance, and a calculating unit 30 f as a means for calculating the ideal tension of the web 2 to the target slip amount in the case that the conveying speed of the web 2 is constant.
  • The conveying speed control unit 30 a adjusts the motors 10 a, 11 a, connected to the control unit 30, to control the rotational speed of the rolls 10, 11 to the target speed (target number of revolution) set in advance. Especially, as to the start roll 10, the encoder 31 is disposed at the drive shaft of the roll and detects the rotational speed (number of revolution) of the roll 10. The detected signal of the encoder 31 is transmitted to the unit 30, the unit 30 a adjusts the motor 10 a such that the roll 10 rotates at the target speed on the basis of the received signal. In the embodiment, the unit 30 a also adjusts the roll 11 to rotate synchronously with the roll 10.
  • As described above, in the embodiment, the unit 30 a adjusts the rotations of the rolls 10, 11 to control the conveying speed of the web 2 in the line 1.
  • The tension control unit 30 b adjusts the motor 16 c of the arm 16 a connected to the unit 30, to control the angle of the arm 16 a to “the predetermined angle θ.” “The predetermined angle θ” means the angle θ between the perpendicular from the point 16 b and the arm 16 a, and is set in advance such that the tension of the web 2 in the line 1 becomes the predetermined value in response to the angle of the arm 16 a (see FIG. 1).
  • In detail, an angle detection device (not shown) is provided near the point 16 b to detect the angle θ between the perpendicular from the point 16 b and the arm 16 a, and the angle detection device is connected to the unit 30 to transmit the detect signal. The unit 30 b adjusts the motor 16 c to control the angle θ of the arm 16 a to the predetermined angle θ on the basis of the received signal.
  • As described above, in the embodiment, the unit 30 b changes the swinging of the arm 16 a to control the distance between the fixed rolls 19 and the dancer roll 16, and the tension of the web 2 is set to the predetermined value (target tension).
  • The speedometer 32 (e.g. Doppler meter) measures the conveying speed of the web 2 adjusted by the unit 30 a as the real speed. The tension meter 33 (e.g. tension sensor) measures the tension of the web 2 adjusted by the unit 30 b as the real tension.
  • In detail, the speedometer 32, for example the laser Doppler meter, is arranged near the guide roll 14, facing the surface of the roll 14 through the web 2. The speedometer 32 is connected to the unit 30 and transmits the detected signal to the unit 30. The conveying speed of the web 2 measured by the speedometer 32 corresponds to the actual conveying speed (real speed) of the web 2 in the line 1.
  • The tension meter 33, for example the contact-type tension sensor, is arranged near the guide roll 14, contacting the web 2 in the line 1. The tension meter 33 is connected to the unit 30 and transmits the detected signal to the unit 30. The tension of the web 2 measured by the tension meter 33 corresponds to the actual tension (real tension).
  • The slip amount measuring unit 30 c measures the “slip amount of the web 2,” using the difference between the conveying speed of the web 2 measured by the speedometer 32 and the rotational speed of the guide roll 14 measured by the encoder 34 (see formula 1). When the web 2 doesn't slip with regard to the roll 14, the conveying speed of the web 2 should be equal to the rotational speed of the roll 14. Actually, there exists air or the like between the web 2 and the roll 14, so that the speeds of them are not equal. So, in the embodiment, the difference between the conveying speed of the web 2 and the rotational speed of the roll 14 is estimated to be the slip amount of the web 2.

  • SLIP AMOUNT=|CONVEYING SPEED OF WEB−ROTATIONAL SPEED OF GUIDE ROLL|[Formula 1]
  • The encoder 34 is disposed at the drive shaft of the guide roll 14, detects the rotational speed (number of revolution) of the roll 14 and transmits the detected signal to the unit 30. The unit 30 measures the slip amount of the web 2 using the formula 1 on the basis of the detected signals from the speedometer 32 and encoder 34.
  • As shown in FIG. 3, the unit 30 c stores a correlation table 35 regarding the relationship between the slip amount W of the web 2 and the tension T of the web 2 in accordance with each of the conveying speeds V (constant) of the web 2. The correlation table 35 shows that when the conveying speed V of the web 2 is constant (for instance, see “v2” in FIG. 3), the slip amount W lowers in response to the increase of the tension T of the web 2, and that when the tension T of the web 2 is constant, the slip amount W lowers in response to the increase of the conveying speed V (v1<v2<v3). Note that the correlation table 35 is drawn before conveying the web 2 in the line 1 and stored in the memory (not shown) of the unit 30.
  • In the unit 30 c, the correlation table 35 has a “target slip amount (see “w1” in FIG. 3)” as a slip amount, in which there does not occur the slip of the web 2 with respect to the guide roll 14. Generally, the units 30 a, 30 b control the conveying speed (target speed) and the tension (target tension) of the web 2 to match the target slip amount set in the unit 30 c.
  • The slip amount calculating unit 30 d calculates the actual slip amount (real slip amount) of the web 2 with respect to the roll 14 in such a way that the real conveying speed and tension measured by the speedometer 32 and tension meter 33 are substituted for the correlation table 35 stored in the unit 30 c.
  • The deciding unit 30 e decides whether or not the difference between the real slip amount of the web 2 calculated by the unit 30 d and the target slip amount set by the unit 30 c is within the threshold range. The threshold range means the range where there does not occur the slip of the web 2 with respect to the roll 14.
  • The calculating unit 30 f calculates the ideal tension of the web 2 in case that the conveying speed of the web 2 is constant when the unit 30 e decides the difference between the real slip amount and the target slip amount goes beyond the threshold range. Note that the unit 30 e decides the difference between the real slip amount and the target slip amount is within the threshold range, the ideal tension of the web 2 is not calculated.
  • The guide controller 36 controls the drive of the motor (not shown) of the guide roll 14, swings the roll around the pivot axis and adjusts the relative angle of the roll to the line 1. In the embodiment, the slip amount is adjusted by controlling the conveying speed and tension of the web 2 and furthermore the controller 36 changes the relative angle to the conveying line so as to cancel the lateral shift of the web 2, thereby adjusting the lateral position of the web 2.
  • Note that the guide controller 36 may be included in the control unit 30 of the control device 3.
  • According to the above-described structure, in the conveying control device 3, the target conveying speed and target tension of the web 2 are replaced and given as feedback on the basis of the results from the units 30 e, 30 f. When the unit 30 e decides that the difference between the real slip amount and the target slip amount goes beyond the threshold range and the unit 30 f calculates the ideal tension, the ideal tension is set as the target tension and the unit 30 b control such that the tension of the web 2 becomes the target tension. On the other hand, when the unit 30 e decides that the difference between the real slip amount and the target slip amount is within the threshold range and the unit 30 f does not perform the calculation regarding the ideal tension, the setting of the target tension is kept and the unit 30 b continues to control the tension of the web 2. Thus, the unit 30 a continuously controls the conveying speed of the web 2 to the target speed.
  • Then, the conveying control method for the web 2 is described below.
  • As shown in FIGS. 3, 4, in the embodiment, the conveying control device 3 is used for controlling the slip of the web 2 with respect to the guide roll 14 in the line 1 and for conveying the web 2 continuously, the method includes the following steps.
  • Before the conveying control of the web 2, the correlation table 35 is drawn, in advance, representing the relationship between the slip amount W of the web 2 and the tension T of the web 2 in accordance with each of the conveying speeds V (constant) of the web 2. The correlation table 35 is stored in the memory (not shown) of the control unit 30. In the following explanation of the embodiment, the target speed is set constant (v2), and when the target tension is (t1), the target slip amount is (w1).
  • When the conveying of the web 2 is actually controlled, the real speed and real tension of the web 2 are measured during conveying (S100). Here, in this explanation, the results of measurement of the speedometer 32 and tension meter 33 are assumed to be the real speed v3 (v3<v2) and the real tension t2 (t2<t1). Then, using the measured value (the real speed v3 and the real tension t2), the real slip amount w2 of the web 2 is picked on the basis of the correlation table 35 (S101).
  • In the next step, it is decided whether the difference between the real slip amount w2 of the web 2 and the target slip amount w1 is within the threshold range or not (S102). Deciding the difference between the real slip amount w2 of the web 2 and the target slip amount w1 goes beyond the threshold range, the ideal tension t3 of the web 2 with respect to the target slip amount w1 when setting the real speed of the web 2 to constant (v3) is calculated (S103).
  • The ideal tension (t3) calculated in the above step is set as the target tension of the conveyed web 2 (S104), controlling such that the tension of the conveyed web 2 becomes the ideal tension t3 (S106). Note that, at the same time, the conveying speed of the web 2 is adjusted to the target speed v2, and the web 2 is consequently conveyed at the target speed v2 and target tension t1.
  • On the other hand, decided whether the difference between the real slip amount w2 of the web 2 and the target slip amount w1 is within the threshold range or not (S102), and the difference between the real slip amount w2 of the web 2 and the target slip amount w1 is decided to be within the threshold range and the and the target tension is set to the target tension t1 (S105), and controlling such that the tension of the web 2 becomes the target tension t1 (S106).
  • The guide controller 36 controls the relative angle of the guide roll 14 to the line 1, adjusting the lateral position of the web 2 (S107).
  • As described above, the conveying control method for the web 2 of the embodiment includes a web measurement step of measuring the conveying speed V and tension T of the web 2 in conveyed, a slip amount calculation step of calculating the slip amount W of the web 2 with respect to the guide roll 14 using the conveying speed V and tension T of the web 2 measured by the web measurement step, a web control step of controlling the tension of the web 2 in conveyed such that the slip amount W of the web 2 calculated in the slip amount calculation step becomes the target slip amount W1 set in advance, so that the slip of the web 2 is accurately controlled and the lateral shift of the web 2 is lowered.
  • More specifically, the control method of the embodiment is to control the conveying speed and tension of the web 2 on the basis of the slip amount of the web 2 with respect to the guide roll 14, accordingly, when the “disturbance” occurs and the conveying speed or tension of the web 2 change, the conveying speed and tension of the web 2 are controlled by using the slip amount of the web 2 with respect to the roll 14, so that the slip of the web 2 is accurately controlled. Furthermore, the slip of the web 2 is controlled by above method; as a result, the shift (lateral shift) of the web 2 with respect to the roll 14 is prevented. The operation of the guide roll 14 makes the control for the lateral position of the web 2 stable, which results in improvement in the accuracy of the lateral position of the web 2.
  • Especially, in the embodiment, the web control step is the step of deciding whether difference between the slip amount W calculated in the slip amount calculation step and the preset target slip amount W1 is within the threshold range or not, and when decided the difference goes beyond the threshold range, calculating the ideal tension of the web 2 with regard to the target slip amount W1 in case that the conveying speed of the web 2 is constant and controlling the tension of the web 2 to meet the calculated ideal tension, therefore, controlling the conveying speed or tension makes it easy to control the web 2 without slipping with respect to the guide roll 14.
  • Additionally, in the embodiment, as a slip amount measurement step for the web 2, a step of measuring the rotational speed of the guide roll 14 is included and the slip amount W of the web 2 is measured on the basis of the difference between the conveying speed of the web 2 and the rotational speed of the drive shaft of the guide roll measured by the above-step. Such a measurement method achieves the low relative-error between the conveying speed of the web 2 and the rotational speed of the guide roll 14, thereby enhancing the accuracy such as the control of the slip of the web 2.
  • The structures of the conveying control method of the web 2 and the conveying control device 3 are not limited to the above-described embodiment.
  • Note that in the following explanation, the same structures as above-described embodiment are given the same numerals and abridged.
  • The slip amount measuring method of the first embodiment described before is based on the difference between the conveying speed of the web 2 and the rotational speed of the guide roll 14 measured by the suitable method of measuring the rotational speed of the guide roll, and in the second embodiment shown in FIG. 5, the slip amount of the web 2 is measured on the basis of the difference between the rotational speed of the start roll 10 measured by the encoder 31 and that of the guide roll 14 measured by the encoder 34 as the measuring method (see formula 2).

  • SLIP AMOUNT=|ROTATIONAL SPEED OF START ROLL−ROTATIONAL SPEED OF GUIDE ROLL|  [Formula 2]
  • In this embodiment, the speedometer 32 may not be disposed for measuring the real speed of the web 2 with respect to the guide roll 14. In addition, the rolls of measurement objects may be selected as the guide roll 14 and the guide roll 13 disposed near the roll 14, without limiting the selection of the guide roll 14 and the start roll 10, and may be measured the difference of the rotational speeds of them.
  • Moreover, as the slip amount measurement method for the web 2, the third embodiment shown in FIG. 6 provides a lifting amount detect sensor 132 for detecting the lifting amount of the web 2 from the surface of the guide roll 14 and the method of measuring the slip amount of the web 2 with regard to the guide roll 14 on the basis of the lifting amount of the web 2 (see formula 3). The lifting amount detect sensor 132 is, for example, composed of a non-contact laser sensor, and detects the distance between the surface of the roll and the web 2.

  • SLIP AMOUNT=|LIFTING AMOUNT OF WEB|  [Formula 3]
  • The distance between the surface of the roll and the web 2 relates to the “slip” of the web 2 on the guide roll 14, and the distance between the surface of the roll and the web 2 goes beyond the given value, then the same phenomenon may occur as the slip of the web 2 with respect to the guide roll 14. In the case, the reason of changing the distance between the surface of the guide roll 14 and the web 2 is thought to be an air-entry into the space between the surface of the roll and the web 2 caused by quickening the conveying speed of the web 2. Furthermore, as to the embodiment, the encoder 34 may not be disposed for measuring the rotational speed of the guide roll 14.
  • The conveying control device 3 stores the correlation table 35 showing the relationship between the slip amount W of the web 2 and the tension T of the web 2 in accordance with each of the conveying speeds V (constant) of the web 2, however, the contents or the drawing method of the correlation table 35 is not limited. For example, the correlation table may show the relationship between the between the slip amount W of the web 2 and the conveying speed V of the web 2 in accordance with each of the tensions T (constant) of the web 2. In this case, the conveying control performs such that the tension of the web 2 becomes constant, the conveying speed is likewise adjusted to the target speed or ideal speed.
  • The structures of the rolls provided in the conveying line 1 may be nip rolls or bridle rolls. Further, the various measuring instruments may be employed for the above-described structure. The web 2 conveyed in the line 1 is not limited to the electrode member (sheet) and may be a long work continuously conveyable.
  • INDUSTRIAL APPLICABILITY
  • The present invention is applicable to the conveying control when continuously conveying the long work (“web”), such as electrode member, using the rolls disposed in the conveying line.

Claims (10)

1. A web conveying control method of controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously, comprising:
a step of measuring a conveying speed and tension of the web during conveying;
a step of calculating a slip amount of the web with respect to a guide roll using the measured conveying speed and tension of the web; and
a step of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
2. The method according to claim 1,
wherein the step of controlling comprises:
deciding whether a difference between the calculated slip amount and the target slip amount is within a preset threshold range;
calculating, when deciding that the difference goes beyond the threshold range, an ideal conveying speed or an ideal tension of the web with regard to the target slip amount in case that the conveying speed or tension is constant; and
controlling the conveying speed and/or the tension of the web so as to be the calculated ideal conveying speed or ideal tension.
3. A web conveying control method of controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously, comprising:
a step of measuring a conveying speed and tension of the web during conveying;
a step of measuring a rotational speed of a guide roll;
a step of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured conveying speed of the web and the measured rotational speed of the guide roll; and
a step of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
4. A web conveying control method of controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously, comprising:
a step of measuring a conveying speed and tension of the web during conveying;
a step of measuring a rotational speed of a drive roll which conveys the web;
a step of measuring a rotational speed of a guide roll;
a step of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured rotational speed of the drive roll and the measured rotational speed of the guide roll; and
a step of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
5. A web conveying control method of controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously, comprising:
a step of measuring a conveying speed and tension of the web during conveying;
a step of detecting a shifting amount of the web from a surface of the roll;
a step of measuring the slip amount of the web with respect to the roll on the basis of the shifting amount; and
a step of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
6. A web conveying control device for controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously, comprising:
means of measuring a conveying speed and tension of the web during conveying;
means of calculating a slip amount of the web with respect to a guide roll using the measured conveying speed and tension of the web; and
means of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
7. The device according to claim 1,
wherein the means of controlling comprises:
means of deciding whether a difference between the calculated slip amount and the target slip amount is within a preset threshold range; and
means of calculating, when deciding that the difference goes beyond the threshold range, an ideal conveying speed or an ideal tension of the web with regard to the target slip amount in case that the conveying speed or tension is constant,
wherein the conveying speed and/or the tension of the web is controlled so as to be the calculated ideal conveying speed or ideal tension.
8. A web conveying control device for controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously, comprising:
means of measuring a conveying speed and tension of the web during conveying;
means of measuring a rotational speed of a guide roll;
means of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured conveying speed of the web and the measured rotational speed of the guide roll; and
means of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
9. A web conveying control device for controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously, comprising:
means of measuring a conveying speed and tension of the web during conveying;
means of measuring a rotational speed of a drive roll which conveys the web;
means of measuring a rotational speed of a guide roll;
means of measuring the slip amount of the web with respect to the guide roll on the basis of a difference between the measured rotational speed of the drive roll and the measured rotational speed of the guide roll; and
means of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
10. A web conveying control device for controlling a slip of the web with respect to a roll arranged in a conveying line for conveying the web continuously, comprising:
means of measuring a conveying speed and tension of the web during conveying;
means of detecting a shifting amount of the web from a surface of the roll;
means of measuring the slip amount of the web with respect to the roll on the basis of the shifting amount; and
means of controlling the conveying speed and/or the tension of the web such that the slip amount becomes a target slip amount set in advance.
US12/595,972 2007-04-27 2008-04-07 Web conveyance controlling method, web slip amount measuring means, and web conveyance controlling device Abandoned US20100108733A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-119877 2007-04-27
JP2007119877A JP4556966B2 (en) 2007-04-27 2007-04-27 Web conveyance control method and conveyance control device
PCT/JP2008/057225 WO2008136256A1 (en) 2007-04-27 2008-04-07 Web conveyance controlling method, web slip amount measuring means, and web conveyance controlling device

Publications (1)

Publication Number Publication Date
US20100108733A1 true US20100108733A1 (en) 2010-05-06

Family

ID=39943373

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/595,972 Abandoned US20100108733A1 (en) 2007-04-27 2008-04-07 Web conveyance controlling method, web slip amount measuring means, and web conveyance controlling device

Country Status (5)

Country Link
US (1) US20100108733A1 (en)
JP (1) JP4556966B2 (en)
KR (1) KR101084870B1 (en)
CN (1) CN101678979B (en)
WO (1) WO2008136256A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130126578A1 (en) * 2011-11-18 2013-05-23 Samsung Display Co., Ltd. Substrate aligning unit, substrate processing apparatus having the same, and method of aligning substrate using the same
US8770878B2 (en) 2011-02-08 2014-07-08 Xerox Corporation System and method for monitoring a web member and applying tension to the web member
US9033200B2 (en) 2012-02-20 2015-05-19 Xerox Corporation Method and device for controlling tension applied to a media web
US20180101118A1 (en) * 2016-10-07 2018-04-12 Fuji Xerox Co., Ltd. Image forming apparatus
US11204563B2 (en) * 2019-03-22 2021-12-21 Fujifilm Business Innovation Corp. Image forming apparatus
US11220116B2 (en) 2017-06-12 2022-01-11 Hewlett-Packard Development Company, L.P. Conveyor belt slippage
US11577870B1 (en) * 2019-09-27 2023-02-14 Amazon Technologies, Inc. Isolated film tension and steering system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186397B2 (en) * 2009-01-20 2013-04-17 リンテック株式会社 Processing equipment
JP5457921B2 (en) * 2009-06-19 2014-04-02 日東電工株式会社 Web transport control method and web transport apparatus
KR101070735B1 (en) 2009-06-30 2011-10-07 건국대학교 산학협력단 Method for designing central colntoller for Continuous Process Roll to Roll Printed System for The Printed Electronics
JP2011236008A (en) * 2010-05-11 2011-11-24 Nisshin Steel Co Ltd Carrier speed control device
KR101914566B1 (en) * 2012-07-27 2018-11-02 삼성에스디아이 주식회사 Winding apparatus for manufacturing electrode assembly and control method thereof
JP6033604B2 (en) * 2012-08-09 2016-11-30 株式会社ミヤコシ Paper transport device in a printing machine
JP6116003B2 (en) * 2013-07-31 2017-04-19 住友化学株式会社 Transport device
CN104058280B (en) * 2014-06-11 2016-08-24 江苏阳光股份有限公司 A kind of silk ribbon batcher
JP6447151B2 (en) * 2015-01-14 2019-01-09 株式会社Ihi Tension control device and transfer device
JP6553993B2 (en) * 2015-09-08 2019-07-31 理想科学工業株式会社 Transport device
JP6674774B2 (en) * 2015-12-18 2020-04-01 株式会社アルバック Film transport device
JP6835200B2 (en) * 2017-02-28 2021-02-24 東芝三菱電機産業システム株式会社 Mathematical model calculation device and control device for sheet material production line
JP7451191B2 (en) * 2020-01-28 2024-03-18 住友重機械工業株式会社 Controls and roll-to-roll conveying systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459351A (en) * 1967-09-26 1969-08-05 Wilson Lee Eng Co Inc Method and apparatus for tensioning a moving strip
US4125881A (en) * 1977-05-19 1978-11-14 International Business Machines Corporation Tape motion control for reel-to-reel drive
US4442985A (en) * 1981-04-06 1984-04-17 Sony Corporation Apparatus for controlling a web transport system
US4958111A (en) * 1989-09-08 1990-09-18 Gago Noel J Tension and web guiding system
US20040045994A1 (en) * 2002-01-30 2004-03-11 Presstek, Inc. Methods and apparatus for prescribing web tracking in processing equipment
US6782818B2 (en) * 2000-02-04 2004-08-31 Koenig & Bauer Aktiengesellschaft Method for adjustment of a belt tension in a rotary press machine
US20050167461A1 (en) * 2003-09-15 2005-08-04 Hakan Koc Control method for guiding the movement of materials to be transported
US6968254B2 (en) * 2003-01-22 2005-11-22 Calsonic Kansei Corporation Feedback controlled tension applying system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269841A (en) * 1986-05-16 1987-11-24 Matsushita Graphic Commun Syst Inc Image recording device
JPH04280764A (en) * 1991-03-07 1992-10-06 Kawasaki Steel Corp Tension control method
JPH058916A (en) * 1991-07-09 1993-01-19 Toshiba Corp Rewinder control device
CN2146461Y (en) * 1992-08-28 1993-11-17 朱志豪 Paper width tension controller for rewinders

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3459351A (en) * 1967-09-26 1969-08-05 Wilson Lee Eng Co Inc Method and apparatus for tensioning a moving strip
US4125881A (en) * 1977-05-19 1978-11-14 International Business Machines Corporation Tape motion control for reel-to-reel drive
US4442985A (en) * 1981-04-06 1984-04-17 Sony Corporation Apparatus for controlling a web transport system
US4958111A (en) * 1989-09-08 1990-09-18 Gago Noel J Tension and web guiding system
US6782818B2 (en) * 2000-02-04 2004-08-31 Koenig & Bauer Aktiengesellschaft Method for adjustment of a belt tension in a rotary press machine
US20040045994A1 (en) * 2002-01-30 2004-03-11 Presstek, Inc. Methods and apparatus for prescribing web tracking in processing equipment
US6968254B2 (en) * 2003-01-22 2005-11-22 Calsonic Kansei Corporation Feedback controlled tension applying system
US20050167461A1 (en) * 2003-09-15 2005-08-04 Hakan Koc Control method for guiding the movement of materials to be transported

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8770878B2 (en) 2011-02-08 2014-07-08 Xerox Corporation System and method for monitoring a web member and applying tension to the web member
US20130126578A1 (en) * 2011-11-18 2013-05-23 Samsung Display Co., Ltd. Substrate aligning unit, substrate processing apparatus having the same, and method of aligning substrate using the same
US9260263B2 (en) * 2011-11-18 2016-02-16 Samsung Display Co., Ltd. Substrate aligning unit, substrate processing apparatus having the same, and method of aligning substrate using the same
US9033200B2 (en) 2012-02-20 2015-05-19 Xerox Corporation Method and device for controlling tension applied to a media web
DE102013201832B4 (en) 2012-02-20 2022-06-09 Xerox Corporation UNIT FOR CONTROLLING THE VOLTAGE APPLIED TO A MEDIA TRACK
US20180101118A1 (en) * 2016-10-07 2018-04-12 Fuji Xerox Co., Ltd. Image forming apparatus
US10481541B2 (en) * 2016-10-07 2019-11-19 Fuji Xerox Co., Ltd. Image forming apparatus
US11220116B2 (en) 2017-06-12 2022-01-11 Hewlett-Packard Development Company, L.P. Conveyor belt slippage
US11204563B2 (en) * 2019-03-22 2021-12-21 Fujifilm Business Innovation Corp. Image forming apparatus
US11577870B1 (en) * 2019-09-27 2023-02-14 Amazon Technologies, Inc. Isolated film tension and steering system

Also Published As

Publication number Publication date
KR101084870B1 (en) 2011-11-21
CN101678979B (en) 2011-08-10
CN101678979A (en) 2010-03-24
KR20090130332A (en) 2009-12-22
JP4556966B2 (en) 2010-10-06
WO2008136256A1 (en) 2008-11-13
JP2008273700A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
US20100108733A1 (en) Web conveyance controlling method, web slip amount measuring means, and web conveyance controlling device
CA2553357C (en) Media registration systems and methods
EP0536885B1 (en) Method and apparatus for compensating for skewing of documents
US7530256B2 (en) Calibration of sheet velocity measurement from encoded idler rolls
US8528398B2 (en) Sheet sag evaluation method and device
JP3254714B2 (en) Method and apparatus for controlling calender roll gap
EP1503950B1 (en) Adjustable, self-correcting web substrate folding system
US20070075483A1 (en) Sheet conveying apparatus and image forming apparatus
CN107020309B (en) A kind of means for correcting of coiler pinch-roll tracking accuracy and bearing calibration
US5756979A (en) Apparatus for positioning web in place
US20130068814A1 (en) Web conveying device, printing apparatus, and tension control method
JP2004360166A (en) Device and method for regulating tension of running web
JP5754622B2 (en) Paper processing apparatus and image forming system
KR20150076018A (en) Belt conveyer
US20120260813A1 (en) Method and device for measuring a running direction of a substrate web
US8413920B2 (en) Method and apparatus for unwinding a roll of web material
NO316219B1 (en) Procedure for rewinding a paper web
KR20090092483A (en) Appratus for measuring Coil width total in skin pass mill process and method thereof
JP5573717B2 (en) Web transport device
KR100954444B1 (en) Apparatus for controling lateral displacement of a moving web
KR20190070661A (en) Slab carring apparatus
JPH05116021A (en) Squareness control device for sheared sheet
KR20140110180A (en) Roll Device Employed with Gyro Sensor
JP2001317932A (en) Method and device for detecting shape of rolled material
JP5304291B2 (en) Web conveying speed detecting means and printing apparatus using the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: TOYOTA JIDOSHA KABUSHIKI KAISHA,JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FUWA, TOSHIO;REEL/FRAME:023387/0282

Effective date: 20091001

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION