US20100095623A1 - Modular form for building a preinsulated, roughly finished concrete wall and method of building a structure therewith - Google Patents

Modular form for building a preinsulated, roughly finished concrete wall and method of building a structure therewith Download PDF

Info

Publication number
US20100095623A1
US20100095623A1 US12/288,114 US28811408A US2010095623A1 US 20100095623 A1 US20100095623 A1 US 20100095623A1 US 28811408 A US28811408 A US 28811408A US 2010095623 A1 US2010095623 A1 US 2010095623A1
Authority
US
United States
Prior art keywords
building module
building
vertical side
insulated
concrete wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/288,114
Inventor
Brian D. Hicks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/288,114 priority Critical patent/US20100095623A1/en
Publication of US20100095623A1 publication Critical patent/US20100095623A1/en
Priority to US13/135,082 priority patent/US20110296783A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms

Definitions

  • the invention pertains to forms for forming concrete-filled walls and, more particularly, to modular, preinsulated forms readily assembled and adapted to receive concrete therein.
  • the modular forms create a concrete-filled wall having a rough finish on both an interior and exterior surface, thereby allowing ready finishing of these surfaces.
  • Insulated concrete walls are sometimes constructed using form assemblies having insulation disposed as a part of the form.
  • the form becomes part of the concrete wall. This type of construction is typically referred to as lost form construction.
  • the second problem is that poured concrete walls constructed using forms of the prior art are notoriously difficult to finish.
  • U.S. Pat. No. 1,892,605 for WALL CONSTRUCTION issued Dec. 27, 1932 to Paul Betzler provides a series of interlocking components to facilitate constructing a hollow wall structure.
  • the hollow wall may, optionally, be filled with concrete, the interlocking block wall constituting a lost form.
  • U.S. Pat. No. 5,038,541 for POLYMER BUILDING WALL FORM CONSTRUCTION issued Aug. 13, 1991 to James H. Gibbar, Jr. provides a form system wherein prefabricated polymer forms are assembled together and spaced apart by integrally connecting polymer blocks, spacers or spool means. The forms may then be erected on a foundation.
  • U.S. Pat. No. 6,170,220 for INSULATED CONCRETE FORM shows an insulated concrete form system having at least one longitudinally-extending side panel and at least one web member partially disposed in the side panel.
  • U.S. Pat. No. 6,178,711 for COMPACTLY-SHIPPED SITE-ASSEMBLED CONCRETE FORMS FOR PRODUCING VARIABLE-WIDTH INSULATED SIDEWALL FASTENER-RECEIVING BUILDING WALLS, issued Jan. 30, 2001 to Andrew Laird et al. discloses a form system of polymer sheets (e.g., polyurethane or expanded polystyrene) that may be fabricated on site to provide concrete forms.
  • polymer sheets e.g., polyurethane or expanded polystyrene
  • U.S. Pat. No. 6,363,683 for INSULATED CONCRETE FORM issued Apr. 2, 2002 to James Daniel Moore, Jr. provides another insulated concrete form system having at least one longitudinally-extending side panel and at least one web member partially disposed in the side panel.
  • a novel system of building modules that may readily be assembled into wall structures that, when filled with concrete, form a roughly-finished wall structure ready to receive both exterior and interior wall treatments.
  • the modules may readily be assembled by relatively untrained personnel. Finished walls constructed using the novel building modules typically have an overall R-value in the range of approximately 30.
  • the novel building modules eliminate the need for setting traditional concrete forms and for finishing bare concrete walls.
  • the outer walls of the building modules may be shipped to a building site where they may be assembled using metal width bars in lieu of solid top and bottom members. This may reduce the bulk and weight of the building modules being delivered to a construction site.
  • an object of the invention to provide a building module that may be combined with other like building modules to create a pre-insulated, lost form concrete wall.
  • FIG. 1 is a top plan view of a building module in accordance with the invention.
  • FIG. 2 is an end elevational view of the building module of FIG. 1 ;
  • FIG. 3 is a top plan view of a corner building module in accordance with the invention.
  • FIG. 4 is a detailed view of a portion of end, elevational view of FIG. 2 showing spline-receiving grooves;
  • FIGS. 5 a - 5 d are schematic elevational views showing the layout of a front, right side, back, and left side of a typical building constructed using the building modules of FIGS. 1-3 ;
  • FIG. 6 is cross-sectional view of a typical wall constructed using the building modules of FIGS. 1-3 ;
  • FIG. 7 is a perspective view of a spacing bar used to form building modules in an alternate embodiment of the invention.
  • FIG. 8 is an exploded end view of a building module being formed using the spacing bar of FIG. 7 ;
  • FIG. 9 is a top plan view of a corner building module constructed using the spacing bar of FIG. 7 .
  • the present invention provides a system of modular building units that may be readily assembled and used to construct an insulated, roughly-finished concrete-filled wall.
  • the modular building units are adapted to receive both exterior and interior wall surface treatments.
  • FIGS. 1 and 2 there are shown top plan and side elevational schematic views, respectively of a typical building module in accordance with the present invention, generally at reference number 100 .
  • Top and bottom members 104 a , 104 b , along with vertical members 102 a , 102 b define and enclose a structure having the general form of a rectangular parallelepiped.
  • pressure treated plywood is used to form vertical members 102 a , 102 b and top and bottom member 104 a , 104 b , respectively.
  • pressure treated is intended to encompass any wood treatment method or material wherein the wood is protected from rot, fungus, insect attack, or any other similar wood-degrading conditions.
  • a nominal thickness of 3 ⁇ 4 inch has been found satisfactory for vertical members 102 a , 102 b and 1 ⁇ 2 inch nominal thickness for top and bottom members 104 a , 104 b , respectively.
  • other materials, dimensions or treatments may be chosen to meet a particular operating circumstance or environment. Consequently, the invention is not considered limited to the particular materials, dimensions, or treatments chosen for purposes of disclosure.
  • polymers, metals, fiberglass, etc. may all be substituted for plywood chosen for purposes of disclosure.
  • Top horizontal support strips 106 a , 106 b and bottom horizontal support strips 108 a , 108 b are fastened in respective top and bottom corners adjacent the points of intersection of respective top member 104 a and vertical members 102 a and 102 b as well as bottom member 104 b and vertical members 102 a and 102 b .
  • a pressure treated 1 ⁇ 2 “nailer” strip has been found suitable for the application.
  • 3 ⁇ 4′′ spacers may be substituted for horizontal support strips 106 a , 106 b and bottom horizontal support strips 108 a , 108 b.
  • Foam insulation sheets 110 a, 110 b are attached to inward-facing surfaces of horizontal support strips 106 a , 108 a and 106 b , 108 b , respectively.
  • Insulation sheets 110 a, 110 b are typically polyisocyanurate insulation.
  • An exemplary insulation is Thermax® manufactured by Dow Building Solution division of Dow Chemical.
  • Foam sheets 110 a, 110 b may be attached to vertical members 102 a , 102 b , respectively, using a suitable adhesive or any other suitable attachment method such as caulk, small nails or screws, or other similar fasteners believed to be known to those of skill in the art.
  • Air spaces 112 a , 112 b are formed between respective surfaces of insulation sheets 110 a, 110 b, and vertical members 102 a , 102 b.
  • Holes 114 and half-holes 116 are provided to receive rebar 614 ( FIG. 6 ) when building modules are assembled in the manner described in detail hereinbelow.
  • Openings 118 are provided in top and bottom members 104 a , 104 b , respectively, to allow pouring concrete into the central, interior space remaining within building modules 100 .
  • the assembly and filling of multiple building modules 100 is described in detail hereinbelow.
  • Optional end members 122 a , 122 b may be provided to seal an end of building module 100 , 200 when a window or door opening (see FIGS. 5 a - 5 d ) is to be left in the wall being constructed.
  • foam backed plywood may be used for form vertical members 102 a , 102 b , thereby eliminating the step of applying foam insulation 106 a , 106 b to the vertical members 102 a , 102 b formed from non-foambacked plywood or other materials.
  • Each building module 100 has an overall length “L” 120 typically chosen to be a multiple of 16 inches, for example, 16′′, 32′′, 48′′, 64′′, 80′′, 96′′, etc. It will be recognized that other lengths may be provided as needed to construct a particular wall configuration.
  • FIG. 3 there is shown top plan view of a building module 200 adapted for forming corners in cooperation with building module 100 .
  • Vertical members 202 a and 202 d are disposed in a mutually orthogonal relationship, meeting at outside corner 204 .
  • vertical members 202 b and 202 c are mutually orthogonal and meet at an inside corner 206 .
  • a substantially square member 208 is provided to help join vertical members 202 a and 202 d . Dimensions of square member 208 are chosen to be compatible with the interior construction of building module 200 .
  • Top horizontal support strips 210 a , 210 b , 210 c , 210 d and corresponding bottom horizontal support strips, not shown, are fastened in respective top and bottom corners 204 , 206 to respective vertical members 202 a , 202 b , 202 c , 202 d .
  • pressure treated 1 ⁇ 2 “nailer” strips have been found suitable for the application.
  • Spacers may be substituted for horizontal support strips 210 a , 210 b , 210 c , 210 d .
  • 3 ⁇ 4′′ diameter spacers have been found suitable for the application although other similar spacers may be substituted therefore.
  • Foam insulation sheets 212 a , 212 b , 212 c , 212 d are attached to inward-facing surfaces of horizontal support strips 210 a , 210 b , 210 c , 210 d and corresponding bottom horizontal support strips, not shown, respectively.
  • Air spaces 214 a , 214 b , 214 c , 214 d are formed between respective inner surfaces of insulation sheets 212 a , 212 b , 212 c , 212 d , and vertical members 202 a , 202 b , 202 c , 202 d.
  • Holes 216 and half-holes 218 are provided to receive rebar 614 ( FIG. 6 ) when building modules are assembled in the manner described in detail hereinbelow.
  • Openings 220 a , 220 b , 220 c , 220 d are provided in top member 222 and a corresponding bottom member, not shown, to allow pouring concrete into the central space remaining within building modules 200 .
  • the assembly and filling of multiple building modules 100 , 200 is described in detail hereinbelow.
  • Building modules 100 , 200 are adapted for interconnection, both top-to-bottom and end-to-end. Because, while building modules 100 , 200 are structural elements in their own right, they rely upon a concrete core for final structural integrity. However, until filled, they must be viewed as concrete forms. Consequently, it is important that block-to-block sealing be maintained to avoid concrete blow out during the concrete pouring process. To accomplish this necessary sealing, each building module 100 , 200 may be equipped with grooves to accommodate a spline or a tongue-and-groove arrangement.
  • FIG. 4 there is shown an enlarged portion of a side elevational view of a corner region of building module 100 , 200 .
  • Grooves 402 and 406 are formed in the end surfaces of top member 104 a and vertical member 102 b , respectively.
  • grooves 402 and 406 align with corresponding grooves, not shown, in the second building module 100 , 200 .
  • Splines, not shown, are then received in corresponding grooves 402 and 406 thereby creating a seam capable of preventing concrete blowout during the pouring process as described in detail hereinbelow.
  • grooves 404 and 408 are provided in the top surface of top member 104 a and along the top edge of vertical member 102 b , respectively, to allow sealing the building module 100 , 200 to a corresponding building module, not shown, placed above the illustrated building module 100 , 200 .
  • Grooves 404 , 408 also receive splines, not shown, during assembly to prevent concrete blowout along horizontal seams between adjacent building modules 100 , 200 .
  • inter-module sealing may not be necessary in certain operating environments. Therefore, such structures as grooves, tongues, and splines may be eliminated.
  • building modules 100 , 200 could be provided with a tongue-and-groove sealing system replacing the groove and spline system chosen for purposes of disclosure. Consequently, the invention is not considered limited to the groove and spline system chosen for purposes of disclosure but includes tongue-and-groove sealing systems as well.
  • building modules 100 , 200 are adapted to be assembled into a desired wall configuration.
  • FIGS. 5 a - 5 d there are shown front, right-side, rear, and left-side elevational views, respectively of a small building illustrating the use of the novel building modules 100 , 200 in accordance with the invention.
  • the terms front, right side, etc. are, of course, arbitrary.
  • FIG. 5 a a door 502 and a window 504 are shown.
  • an “overhead” or garage door 506 may be placed.
  • FIG. 5 c two windows 508 , 510 are shown.
  • FIG. 5 d a single window 512 is shown.
  • the presence and/or placements of door 502 , windows 504 , 508 , 510 and 512 , and overhead door 506 is arbitrary and only used to illustrate the flexibility of using building modules 100 , 200 in varying lengths.
  • FIG. 6 there is shown a cross sectional, elevational view of a typical wall built in accordance with the building modules and method of the present invention, generally at reference number 600 .
  • Building modules 100 , 200 are designed for ease of use by persons of minimum skill. The procedure for erecting a building is first, an appropriate footer 602 is placed in accordance with local building codes or accepted practices using conventional techniques.
  • U-shaped starting channels 604 are secured to footer 602 , typically using bolts 606 embedded in footer 602 and secured with nuts 608 to the footer 602 .
  • U-shaped channels 604 are typically placed at all seams of building modules 100 , 200 and at least every 4 feet along the footer 602 .
  • U-shaped channels 604 are bolted or otherwise fastened to footer 602 using techniques believed to be well known to those of skill in the art. Consequently, such techniques are not further discussed herein.
  • building modules 100 , 200 are placed within U-shaped channels 604 in a pattern such as one of the patterns of FIGS. 5 a - 5 d.
  • each building module 100 , 200 is abutted to its neighbor, a spline, not shown is inserted in grooves 402 , 406 ( FIG. 4 ) as discussed hereinabove.
  • Corner building modules 200 ( FIG. 3 ) are used to form corners.
  • a spline is inserted into grove 408 .
  • the spline forms a guide to align the next course of building modules 100 , 200 .
  • rebar 614 may be placed vertically through-holes 114 , 116 , 216 and 218 .
  • Vertical alignment braces 616 are attached to the surface facing the interior of the building being constructed using building modules 100 , 200 . Typically 2 ⁇ 2 material disposed on 16′′ centers is used. The vertical alignment braces 616 become the “studs” for later attaching an interior finish layer 620 to the wall 600 being constructed.
  • the laid-up assembly of building modules 100 , 200 Prior to pouring concrete, the laid-up assembly of building modules 100 , 200 is braced to keep the form securely plumb during the pouring and curing of the concrete. While no bracing is shown in FIG. 6 , methods and materials for aligning and bracing concrete forms are believed to be well known to those of skill in the construction trades. Consequently, such material and methods are not further discussed herein.
  • concrete 618 is poured into the interior cavities of building modules 100 , 200 through openings 118 , 200 a , 220 b , 220 c , and 220 d.
  • an exterior finish typically at least some combination of building paper, Tyvek® wrap, foam insulation board, etc. 610 is covered by siding 612 .
  • a masonry veneer finish e.g., brick, stone, etc.
  • Interior wall finish is typically accomplished by placing foam insulation, not shown, between the studs formed by vertical alignment braces 616 . Dry wall 620 may then be applied and finished using conventional finishing techniques.
  • novel building modules 100 , 200 to construct concrete-filled walls is also environmentally advantageous.
  • a smaller quantity of insulating foam is required to achieve a predetermined “R” value than in conventional wall construction. This results in less pollution from the foam manufacturing process and a smaller amount of scrap foam eventually reaching landfills or other disposal sites.
  • building module 100 has a top surface 104 a and a bottom surface 104 b (not shown in FIG. 1 ) formed from a solid material such as plywood.
  • building modules 100 are constructed at a central manufacturing facility and shipped to a building site where they are used to construct wall structures as described in detail hereinabove.
  • the building modules 100 and 200 ( FIG. 3 ) so formed occupy a significant volume and weight for shipping purposes.
  • FIG. 7 there is shown a perspective view of a spacing bar 700 for use in assembling building modules in an alternate embodiment of the invention.
  • the building modules 100 , 200 may be shipped to a construction site in a knocked-down (KD) form and assembled at the construction site.
  • KD knocked-down
  • Significant reduction of shipping expense may be achieved using this approach.
  • the cost of spacing bars 700 is lest than solid top and bottom members 104 a , 104 b , respectively.
  • Spacing bars 700 are formed from sheet material formed into a U-shape having and elongated, central surface 702 and a pair of end surfaces 704 , 706 perpendicular thereto.
  • a plurality of inwardly projecting spikes 708 may be formed in central surface 702 proximate each of end surfaces 704 , 706 .
  • a hole 114 is formed proximate the midpoint of central surface 702 .
  • holes 710 may be provided in one or both of end surfaces 704 , 706 .
  • FIG. 8 there is shown an exploded, schematic end view of a building module 100 being formed using vertical members 102 a , 102 b and spacing bars 700 .
  • inwardly projecting spikes 708 are spaced so as to properly space apart vertical members 102 a , 102 b .
  • Spikes 708 a closest to respective end surfaces 706 , 708 are spaced away therefrom so as to capture and outer (i.e., inwardly-facing) surface of horizontal support strips 106 a , 106 b at the top and bottom, respectively of vertical members 102 a , 102 b.
  • Inner spikes 708 b are disposed so as to engage an edge of foam sheets 110 a , 110 b.
  • Building modules 100 or 200 may readily be assembled by selecting two vertical members 102 a , 102 b and positioning them as shown in FIG. 8 .
  • Spacer bars 700 are used to properly set a horizontal distance between vertical members 102 a , 102 b . Once spacer bars 700 are attached at both the top and bottom of vertical members 102 a , 102 b , screws 712 or other fasteners, not shown, may be inserted through holes 710 into a surface of vertical members 102 a , 102 b to retain spacer bars 700 in position.
  • FIG. 9 there is shown a top plan view of a corner building module 200 ′ assembled using spacer bars 700 .
  • One additional advantage resulting from assembling the building modules 100 , 200 using spacer bars 700 is that some thermal bridging from solid top and members 104 a , 104 b ( FIG. 1 ) is reduced, thereby creating a wall structure having a higher overall “R” value.
  • spacer bars 700 may be varied to readily control the overall thickness of a wall constructed with building modules 100 , 200 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

A system of building modules that may readily be assembled into wall structures that, when filled with concrete forms an insulated, roughly-finished wall structure ready to receive both exterior and interior wall treatments. The building modules may readily be assembled by relatively untrained personnel and forms walls typically having an overall R-value in the range of approximately 30. The novel building modules eliminate the need for setting traditional concrete forms and of finishing a bare concrete wall. The modules are provided in various lengths, the lengths typically being multiples of 16 inches.

Description

    FIELD OF THE INVENTION
  • The invention pertains to forms for forming concrete-filled walls and, more particularly, to modular, preinsulated forms readily assembled and adapted to receive concrete therein. The modular forms create a concrete-filled wall having a rough finish on both an interior and exterior surface, thereby allowing ready finishing of these surfaces.
  • BACKGROUND OF THE INVENTION
  • The process of forming vertical walls from poured concrete has been known for centuries. The process, while theoretically simple, typically requires highly skilled laborers and expensive forms to accomplish. Forms may be either built for single use or may be formed from modular sections assembled to the required configuration. Upon curing of the concrete wall poured therein, the reusable forms are typically removed and stored for later use on another project.
  • Insulated concrete walls are sometimes constructed using form assemblies having insulation disposed as a part of the form. The form becomes part of the concrete wall. This type of construction is typically referred to as lost form construction.
  • Regardless of the type of form utilized to construct a poured concrete wall, two major problems remain. First, the construction or assembly of forms typically requires skilled labor and is time intensive. When forms are not properly constructed or set, finished walls may be out of square or plumb, be of the wrong dimension, and/or have bulges or other abnormalities. It is not uncommon for it to be necessary to destroy one or more of the poured walls, reset the forms, and re-pour the concrete. This results in further expense as well as delays in the construction project.
  • The second problem is that poured concrete walls constructed using forms of the prior art are notoriously difficult to finish.
  • DISCUSSION OF THE RELATED ART
  • Many attempts have been made to overcome one or more of the aforementioned deficiencies in the concrete wall formations processes of the prior art. For example, U.S. Pat. No. 1,892,605 for WALL CONSTRUCTION, issued Dec. 27, 1932 to Paul Betzler provides a series of interlocking components to facilitate constructing a hollow wall structure. The hollow wall may, optionally, be filled with concrete, the interlocking block wall constituting a lost form.
  • U.S. Pat. No. 3,410,044 for FOAMED PLASTIC BASED CONSTRUCTION ELEMENTS, issued Nov. 12, 1968 to Gerhard W. Moog provides construction elements that may be stacked and then, optionally, be filled with concrete. Interlocking blocks are optionally provided by MOOG.
  • U.S. Pat. No. 3,552,076 for CONCRETE FORM, issued Jan. 5, 1971 to Werner K. H. Gregori, discloses a self-supporting concrete form of low-density foamed polymer. Once in place, concrete may be poured into the hollow central space in the form. The forms become part of the finished concrete wall.
  • U.S. Pat. No. 4,075,808 for BUILDING CONSTRUCTION SYSTEM USING MORTAR-LESS MODULAR BUILDING BLOCK ELEMENTS, issued Feb. 28, 1978 to Sanford Pearlman teaches another set of interlocking form block useful for laying up a modular from for filling with concrete.
  • U.S. Pat. No. 4,924,641 for POLYMER BUILDING WALL FORM CONSTRUCTION, issued May 15, 1990 to James H. Gibbar, Jr.
  • U.S. Pat. No. 5,038,541 for POLYMER BUILDING WALL FORM CONSTRUCTION, issued Aug. 13, 1991 to James H. Gibbar, Jr. provides a form system wherein prefabricated polymer forms are assembled together and spaced apart by integrally connecting polymer blocks, spacers or spool means. The forms may then be erected on a foundation.
  • U.S. Pat. No. 5,107,648 for INSULATED WALL CONSTRUCTION, issued Apr. 28, 1992 to Edward F. Roby teaches an insulated form system wherein the thickness of the wall may be varied.
  • U.S. Pat. No. 5,323,578 for PREFABRICATED FORMWORK, issued Jun. 28, 1994 to Claude Chagnon et al. provides a prefabricated, collapsible formwork assembly.
  • U.S. Pat. No. 5,311,718 for FORM FOR USE IN FABRICATING WALL STRUCTURES AND A WALL STRUCTURE FABRICATION SYSTEM EMPLOYING SAID FORM, issued May 17, 1994 to Jan P. V. Trousilek discloses plastic prefabricated form system.
  • U.S. Pat. No. 5,570,550 for INSULATED WALL CONSTRUCTION, issued Nov. 5, 1996 to Edward F. Roby teaches another insulated form system wherein the thickness of the wall may be varied.
  • U.S. Pat. No. 5,625,989 for METHOD AND APPARATUS FOR FORMING OF A POURED CONCRETE WALL, issued May 6, 1977 to Thomas R. Brubaker et al. discloses a form system wherein two identically configured panel members each define slots adapted to receive interconnecting flanges of connecting members.
  • U.S. Pat. No. 5,860,262 for PERMANENT PANELIZED MOLD APPARATUS AND METHOD FOR CASTING MONOLITHIC CONCRETE STRUCTURES IN SITU, issued Jan. 19, 1999 to Frank K. Johnson teaches an interconnectable system of panels useful for casting a concrete wall.
  • U.S. Pat. No. 6,170,220 for INSULATED CONCRETE FORM, issued Jan. 9, 2001 to James Daniel Moore, Jr. shows an insulated concrete form system having at least one longitudinally-extending side panel and at least one web member partially disposed in the side panel.
  • U.S. Pat. No. 6,178,711 for COMPACTLY-SHIPPED SITE-ASSEMBLED CONCRETE FORMS FOR PRODUCING VARIABLE-WIDTH INSULATED SIDEWALL FASTENER-RECEIVING BUILDING WALLS, issued Jan. 30, 2001 to Andrew Laird et al. discloses a form system of polymer sheets (e.g., polyurethane or expanded polystyrene) that may be fabricated on site to provide concrete forms.
  • U.S. Pat. No. 6,263,628 for LOAD BEARING BUILDING COMPONENT AND WALL ASSEMBLY METHOD, issued Jul. 24, 2001 to John Griffin G. E. Steel Company provides a panelized from system that may be erected and then filled with concrete.
  • U.S. Pat. No. 6,321,498 for FORMWORK FOR BUILDING WALLS, issued Nov. 27, 2001 to Salvatore Trovato teaches a formwork consisting of a plurality of pairs of facing panels connected together to form an inside space to receive concrete.
  • U.S. Pat. No. 6,363,683 for INSULATED CONCRETE FORM, issued Apr. 2, 2002 to James Daniel Moore, Jr. provides another insulated concrete form system having at least one longitudinally-extending side panel and at least one web member partially disposed in the side panel.
  • U.S. Pat. No. 6,438,918 for LATCHING SYSTEM FOR COMPONENTS USED IN FORMING CONCRETE STRUCTURES, issued Aug. 27, 2002 to James Daniel Moore, Jr. et al provides latching mechanisms for frictionally holding connectors or the like in position within a concrete form assembly.
  • U.S. Pat. No. 6,691,481 for CORNER FORM FOR MODULAR INSULATING CONCRETE FORM SYSTEM, issued Feb. 17, 2004 to Donald L. Schmidt provides a corner form module.
  • Published United States Patent Application No. for INSULATED CONCRETE FORM SYSTEMS AND METHODS OF MAKING AND USING THE SAME, published Dec. 15, 2005 upon application by Kenneth Franklin discloses a from system wherein flat insulating panels are tied together by a plurality of tying members.
  • Published United States Patent Application No. for ASSEMBLAGE CONCRETE FORMS AND METHOD FOR MANUFACTURING THEREOF, published May 3, 2007 upon application by Qinjiang Zhu discloses from form system where steel mesh plates and a plurality of joining pieces in cooperation with insulating sheets are assembled to construct a concrete form.
  • None of the patents and published patent applications, taken singly, or in any combination are seen to teach or suggest the novel building module form units of the present invention.
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention there is provided a novel system of building modules that may readily be assembled into wall structures that, when filled with concrete, form a roughly-finished wall structure ready to receive both exterior and interior wall treatments. The modules may readily be assembled by relatively untrained personnel. Finished walls constructed using the novel building modules typically have an overall R-value in the range of approximately 30. The novel building modules eliminate the need for setting traditional concrete forms and for finishing bare concrete walls.
  • In an alternate embodiment, the outer walls of the building modules may be shipped to a building site where they may be assembled using metal width bars in lieu of solid top and bottom members. This may reduce the bulk and weight of the building modules being delivered to a construction site.
  • It is, therefore, an object of the invention to provide a building module that may be combined with other like building modules to create a pre-insulated, lost form concrete wall.
  • It is another object of the invention to provide a building module that is readily assembled into a form for receiving concrete by relatively untrained personnel.
  • It is an additional object of the invention to provide a building module for constructing a pre-insulated, lost form concrete wall that is readily finishable on both an interior and an exterior surface.
  • It is a further object of the invention to provide a building module for constructing a pre-insulated, lost form concrete wall that, when finished, has an R-value of approximately 30.
  • It is an additional object of the invention to provide a building module for constructing a pre-insulated, lost form concrete wall that achieves a high R-values using a combination of insulating materials and air spaces while minimizing the amount of insulating material.
  • It is a still further object of the invention to provide a building module in varied lengths, typical lengths being multiples of 16 inches.
  • It is yet another object of the invention to provide a building module that utilizes metal spacing bars in lieu of solid top and bottom members.
  • It is an additional object of the invention to provide a building module that my be shipped knocked down to a construction site and assembled thereat.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various objects, features, and attendant advantages of the present invention will become more fully appreciated as the same becomes better understood when considered in conjunction with the accompanying drawings, in which like reference characters designate the same or similar parts throughout the several views, and wherein:
  • FIG. 1 is a top plan view of a building module in accordance with the invention;
  • FIG. 2 is an end elevational view of the building module of FIG. 1;
  • FIG. 3 is a top plan view of a corner building module in accordance with the invention;
  • FIG. 4 is a detailed view of a portion of end, elevational view of FIG. 2 showing spline-receiving grooves;
  • FIGS. 5 a-5 d are schematic elevational views showing the layout of a front, right side, back, and left side of a typical building constructed using the building modules of FIGS. 1-3;
  • FIG. 6 is cross-sectional view of a typical wall constructed using the building modules of FIGS. 1-3;
  • FIG. 7 is a perspective view of a spacing bar used to form building modules in an alternate embodiment of the invention;
  • FIG. 8 is an exploded end view of a building module being formed using the spacing bar of FIG. 7; and
  • FIG. 9 is a top plan view of a corner building module constructed using the spacing bar of FIG. 7.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The present invention provides a system of modular building units that may be readily assembled and used to construct an insulated, roughly-finished concrete-filled wall. The modular building units are adapted to receive both exterior and interior wall surface treatments.
  • In the United States as well as other localities, standardized dimensions for construction have emerged over the years. For example, sheet materials such as plywood, wallboard, particleboard, etc. are typically supplied in 4-foot widths and 4, 8, 10, or 12-foot lengths. Many building codes require that studs (i.e., upright vertical posts in a building framework or wall) typically be placed on 16-inch centers, a spacing that conveniently accommodates standard 4-foot wide panels. Other such standard measurements for window widths and heights, door widths and heights, etc. have also emerged. The building modules of the present invention are sized and configured to accommodate such standard dimensions.
  • Referring first to FIGS. 1 and 2, there are shown top plan and side elevational schematic views, respectively of a typical building module in accordance with the present invention, generally at reference number 100. Top and bottom members 104 a, 104 b, along with vertical members 102 a, 102 b define and enclose a structure having the general form of a rectangular parallelepiped.
  • Typically, pressure treated plywood is used to form vertical members 102 a, 102 b and top and bottom member 104 a, 104 b, respectively. As used herein in, the term “pressure treated” is intended to encompass any wood treatment method or material wherein the wood is protected from rot, fungus, insect attack, or any other similar wood-degrading conditions. In the embodiment chosen for purposes of disclosure, a nominal thickness of ¾ inch has been found satisfactory for vertical members 102 a, 102 b and ½ inch nominal thickness for top and bottom members 104 a, 104 b, respectively. It will be recognized by those of skill in the art that other materials, dimensions or treatments may be chosen to meet a particular operating circumstance or environment. Consequently, the invention is not considered limited to the particular materials, dimensions, or treatments chosen for purposes of disclosure. For example, polymers, metals, fiberglass, etc. may all be substituted for plywood chosen for purposes of disclosure.
  • Top horizontal support strips 106 a, 106 b and bottom horizontal support strips 108 a, 108 b are fastened in respective top and bottom corners adjacent the points of intersection of respective top member 104 a and vertical members 102 a and 102 b as well as bottom member 104 b and vertical members 102 a and 102 b. In the embodiment chosen for purposes of disclosure, a pressure treated 1×2 “nailer” strip has been found suitable for the application. In alternate embodiments ¾″ spacers may be substituted for horizontal support strips 106 a, 106 b and bottom horizontal support strips 108 a, 108 b.
  • Foam insulation sheets 110 a, 110 b are attached to inward-facing surfaces of horizontal support strips 106 a, 108 a and 106 b, 108 b, respectively. Insulation sheets 110 a, 110 b are typically polyisocyanurate insulation. An exemplary insulation is Thermax® manufactured by Dow Building Solution division of Dow Chemical. Foam sheets 110 a, 110 b may be attached to vertical members 102 a, 102 b, respectively, using a suitable adhesive or any other suitable attachment method such as caulk, small nails or screws, or other similar fasteners believed to be known to those of skill in the art.
  • Air spaces 112 a, 112 b are formed between respective surfaces of insulation sheets 110 a, 110 b, and vertical members 102 a, 102 b.
  • Holes 114 and half-holes 116 are provided to receive rebar 614 (FIG. 6) when building modules are assembled in the manner described in detail hereinbelow.
  • Openings 118 are provided in top and bottom members 104 a, 104 b, respectively, to allow pouring concrete into the central, interior space remaining within building modules 100. The assembly and filling of multiple building modules 100 is described in detail hereinbelow.
  • Optional end members 122 a, 122 b may be provided to seal an end of building module 100, 200 when a window or door opening (see FIGS. 5 a-5 d) is to be left in the wall being constructed.
  • It will be recognized by those of skill in the art that commercially available foam backed plywood may be used for form vertical members 102 a, 102 b, thereby eliminating the step of applying foam insulation 106 a, 106 b to the vertical members 102 a, 102 b formed from non-foambacked plywood or other materials.
  • Each building module 100 has an overall length “L” 120 typically chosen to be a multiple of 16 inches, for example, 16″, 32″, 48″, 64″, 80″, 96″, etc. It will be recognized that other lengths may be provided as needed to construct a particular wall configuration.
  • While a 16″ fundamental length has been chosen for purposes of disclosure, it will be recognized that other fundamental module lengths compatible with building codes, practices, or traditions in regions other than the United States may be substituted therefore. Consequently, the invention is not limited to the particular dimensions chosen for purposes of disclosure.
  • Referring now also to FIG. 3, there is shown top plan view of a building module 200 adapted for forming corners in cooperation with building module 100. Vertical members 202 a and 202 d are disposed in a mutually orthogonal relationship, meeting at outside corner 204. Likewise, vertical members 202 b and 202 c are mutually orthogonal and meet at an inside corner 206.
  • A substantially square member 208 is provided to help join vertical members 202 a and 202 d. Dimensions of square member 208 are chosen to be compatible with the interior construction of building module 200.
  • Top horizontal support strips 210 a, 210 b, 210 c, 210 d and corresponding bottom horizontal support strips, not shown, are fastened in respective top and bottom corners 204, 206 to respective vertical members 202 a, 202 b, 202 c, 202 d. In the embodiment chosen for purposes of disclosure, pressure treated 1×2 “nailer” strips have been found suitable for the application. Spacers may be substituted for horizontal support strips 210 a, 210 b, 210 c, 210 d. ¾″ diameter spacers have been found suitable for the application although other similar spacers may be substituted therefore.
  • Foam insulation sheets 212 a, 212 b, 212 c, 212 d are attached to inward-facing surfaces of horizontal support strips 210 a, 210 b, 210 c, 210 d and corresponding bottom horizontal support strips, not shown, respectively.
  • Air spaces 214 a, 214 b, 214 c, 214 d are formed between respective inner surfaces of insulation sheets 212 a, 212 b, 212 c, 212 d, and vertical members 202 a, 202 b, 202 c, 202 d.
  • Holes 216 and half-holes 218 are provided to receive rebar 614 (FIG. 6) when building modules are assembled in the manner described in detail hereinbelow.
  • Openings 220 a, 220 b, 220 c, 220 d are provided in top member 222 and a corresponding bottom member, not shown, to allow pouring concrete into the central space remaining within building modules 200. The assembly and filling of multiple building modules 100, 200 is described in detail hereinbelow.
  • Building modules 100, 200 are adapted for interconnection, both top-to-bottom and end-to-end. Because, while building modules 100, 200 are structural elements in their own right, they rely upon a concrete core for final structural integrity. However, until filled, they must be viewed as concrete forms. Consequently, it is important that block-to-block sealing be maintained to avoid concrete blow out during the concrete pouring process. To accomplish this necessary sealing, each building module 100, 200 may be equipped with grooves to accommodate a spline or a tongue-and-groove arrangement.
  • Referring now to FIG. 4, there is shown an enlarged portion of a side elevational view of a corner region of building module 100, 200. Grooves 402 and 406 are formed in the end surfaces of top member 104 a and vertical member 102 b, respectively. When the illustrated surface is abutted with a second building module 100, not shown, grooves 402 and 406 align with corresponding grooves, not shown, in the second building module 100, 200. Splines, not shown, are then received in corresponding grooves 402 and 406 thereby creating a seam capable of preventing concrete blowout during the pouring process as described in detail hereinbelow.
  • Likewise, grooves 404 and 408 are provided in the top surface of top member 104 a and along the top edge of vertical member 102 b, respectively, to allow sealing the building module 100, 200 to a corresponding building module, not shown, placed above the illustrated building module 100, 200. Grooves 404, 408 also receive splines, not shown, during assembly to prevent concrete blowout along horizontal seams between adjacent building modules 100, 200.
  • It will be recognized that inter-module sealing may not be necessary in certain operating environments. Therefore, such structures as grooves, tongues, and splines may be eliminated.
  • It will be recognized that in alternate embodiments, building modules 100, 200 could be provided with a tongue-and-groove sealing system replacing the groove and spline system chosen for purposes of disclosure. Consequently, the invention is not considered limited to the groove and spline system chosen for purposes of disclosure but includes tongue-and-groove sealing systems as well.
  • As previously stated, building modules 100, 200 are adapted to be assembled into a desired wall configuration. Referring now to FIGS. 5 a-5 d, there are shown front, right-side, rear, and left-side elevational views, respectively of a small building illustrating the use of the novel building modules 100, 200 in accordance with the invention. The terms front, right side, etc. are, of course, arbitrary.
  • In FIG. 5 a, a door 502 and a window 504 are shown. In FIG. 5 b, an “overhead” or garage door 506 may be placed. In FIG. 5 c, two windows 508, 510 are shown. In FIG. 5 d, a single window 512 is shown. The presence and/or placements of door 502, windows 504, 508, 510 and 512, and overhead door 506 is arbitrary and only used to illustrate the flexibility of using building modules 100, 200 in varying lengths.
  • Referring now to FIG. 6, there is shown a cross sectional, elevational view of a typical wall built in accordance with the building modules and method of the present invention, generally at reference number 600.
  • Building modules 100, 200 are designed for ease of use by persons of minimum skill. The procedure for erecting a building is first, an appropriate footer 602 is placed in accordance with local building codes or accepted practices using conventional techniques.
  • Next, U-shaped starting channels 604 are secured to footer 602, typically using bolts 606 embedded in footer 602 and secured with nuts 608 to the footer 602. U-shaped channels 604 are typically placed at all seams of building modules 100, 200 and at least every 4 feet along the footer 602. U-shaped channels 604 are bolted or otherwise fastened to footer 602 using techniques believed to be well known to those of skill in the art. Consequently, such techniques are not further discussed herein.
  • Once U-shaped channels 604 are in place, building modules 100, 200 are placed within U-shaped channels 604 in a pattern such as one of the patterns of FIGS. 5 a-5 d.
  • As each building module 100, 200 is abutted to its neighbor, a spline, not shown is inserted in grooves 402, 406 (FIG. 4) as discussed hereinabove. Corner building modules 200 (FIG. 3) are used to form corners.
  • When a first course of building modules 100, 200 is complete, a spline, not shown, is inserted into grove 408. As each building module 100, 200 is placed above a lower course, the spline, not shown, forms a guide to align the next course of building modules 100, 200.
  • When all courses of building modules 100, 200 are laid up, rebar 614 may be placed vertically through- holes 114, 116, 216 and 218.
  • Vertical alignment braces 616 are attached to the surface facing the interior of the building being constructed using building modules 100, 200. Typically 2×2 material disposed on 16″ centers is used. The vertical alignment braces 616 become the “studs” for later attaching an interior finish layer 620 to the wall 600 being constructed.
  • Prior to pouring concrete, the laid-up assembly of building modules 100, 200 is braced to keep the form securely plumb during the pouring and curing of the concrete. While no bracing is shown in FIG. 6, methods and materials for aligning and bracing concrete forms are believed to be well known to those of skill in the construction trades. Consequently, such material and methods are not further discussed herein.
  • Once the rebar 614 is positioned and the wall is adequately braced, concrete 618 is poured into the interior cavities of building modules 100, 200 through openings 118, 200 a, 220 b, 220 c, and 220 d.
  • After the concrete 618 cures, an exterior finish, typically at least some combination of building paper, Tyvek® wrap, foam insulation board, etc. 610 is covered by siding 612. In alternate construction, a masonry veneer finish (e.g., brick, stone, etc.), not shown, may be applied to the exterior face of the wall in lieu of siding 612.
  • Interior wall finish is typically accomplished by placing foam insulation, not shown, between the studs formed by vertical alignment braces 616. Dry wall 620 may then be applied and finished using conventional finishing techniques.
  • It is estimated that the R-value of the wall of FIG. 6 is approximately 30. The R-value contribution of each of the wall components is shown in Table 1.
  • TABLE 1
    Siding with building paper, 2
    etc.
    Outer plywood 1
    ¾″ Air gap 1
    ½″ foam 7
    Concrete 1
    ½″ foam 7
    ¾″ air gap 1
    Inner plywood 1
    1″ foam 8
    ½″ air gap 1
    ½″ drywall 1
    Total 31
  • The use of novel building modules 100, 200 to construct concrete-filled walls is also environmentally advantageous. A smaller quantity of insulating foam is required to achieve a predetermined “R” value than in conventional wall construction. This results in less pollution from the foam manufacturing process and a smaller amount of scrap foam eventually reaching landfills or other disposal sites.
  • As shown in FIG. 1, building module 100 has a top surface 104 a and a bottom surface 104 b (not shown in FIG. 1) formed from a solid material such as plywood. Typically, building modules 100 are constructed at a central manufacturing facility and shipped to a building site where they are used to construct wall structures as described in detail hereinabove. The building modules 100 and 200 (FIG. 3) so formed occupy a significant volume and weight for shipping purposes.
  • Referring now to FIG. 7, there is shown a perspective view of a spacing bar 700 for use in assembling building modules in an alternate embodiment of the invention. By replacing solid top and bottom surfaces 104 a, 104 b, respectively, with spacing bars 700, the building modules 100, 200 may be shipped to a construction site in a knocked-down (KD) form and assembled at the construction site. Significant reduction of shipping expense may be achieved using this approach. Also, it is anticipated that the cost of spacing bars 700 is lest than solid top and bottom members 104 a, 104 b, respectively.
  • Spacing bars 700 are formed from sheet material formed into a U-shape having and elongated, central surface 702 and a pair of end surfaces 704, 706 perpendicular thereto. A plurality of inwardly projecting spikes 708 may be formed in central surface 702 proximate each of end surfaces 704, 706. A hole 114 is formed proximate the midpoint of central surface 702. Optionally, holes 710 may be provided in one or both of end surfaces 704, 706.
  • Referring now also to FIG. 8, there is shown an exploded, schematic end view of a building module 100 being formed using vertical members 102 a, 102 b and spacing bars 700. As may be seen, inwardly projecting spikes 708 are spaced so as to properly space apart vertical members 102 a, 102 b. Spikes 708 a closest to respective end surfaces 706, 708 are spaced away therefrom so as to capture and outer (i.e., inwardly-facing) surface of horizontal support strips 106 a, 106 b at the top and bottom, respectively of vertical members 102 a, 102 b.
  • Inner spikes 708 b are disposed so as to engage an edge of foam sheets 110 a, 110 b.
  • Building modules 100 or 200 may readily be assembled by selecting two vertical members 102 a, 102 b and positioning them as shown in FIG. 8. Spacer bars 700 are used to properly set a horizontal distance between vertical members 102 a, 102 b. Once spacer bars 700 are attached at both the top and bottom of vertical members 102 a, 102 b, screws 712 or other fasteners, not shown, may be inserted through holes 710 into a surface of vertical members 102 a, 102 b to retain spacer bars 700 in position.
  • Referring now also to FIG. 9, there is shown a top plan view of a corner building module 200′ assembled using spacer bars 700.
  • One additional advantage resulting from assembling the building modules 100, 200 using spacer bars 700 is that some thermal bridging from solid top and members 104 a, 104 b (FIG. 1) is reduced, thereby creating a wall structure having a higher overall “R” value.
  • It will be recognized that the length of spacer bars 700 may be varied to readily control the overall thickness of a wall constructed with building modules 100, 200.
  • Since other modifications and changes varied to fit particular operating requirements and environments will be apparent to those skilled in the art, the invention is not considered limited to the example chosen for purposes of disclosure, and covers all changes and modifications which do not constitute departures from the true spirit and scope of this invention.
  • Having thus described the invention, what is desired to be protected by Letters Patent is presented in the subsequently appended claims.

Claims (18)

1. A building module adapted for modular construction of an insulated, lost form concrete wall, comprising:
a) an elongated rectangular parallelepiped having a first vertical side, a second, substantially parallel vertical side disposed apart therefrom, a top member and a bottom member both joining said first vertical side and said second, substantially parallel vertical side, said first vertical side, said second vertical side, said top member and said bottom member bounding a hollow interior region within said elongated rectangular parallelepiped;
b) at least two horizontal support strips disposed within said hollow interior region substantially parallel to a major axis thereof and attached to least one of said first vertical side, and said second vertical side adjacent at least one of said top member and said bottom member;
c) sheet insulation attached to an inward-facing surface of said at least two horizontal support strips, said insulation sheet forming an air cavity between itself and an inner surface of at least one of said first vertical side and said second vertical side; and
d) an opening sized and configured to-receive poured concrete in said interior region disposed in at least one of said top member and said bottom member.
2. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 1, further comprising:
e) an end sealing member disposed substantially perpendicular to each of said first vertical side, said second vertical side, said top member, and said bottom member proximate at least one of a distal end, and a proximal end of said building module.
3. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 1, further comprising:
e) means for supporting rebar disposed in at least one of said top member and said bottom member.
4. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 3, wherein said means for supporting rebar comprises a first through-hole in said top member and a second through-hole in said bottom member, said first through-hole and said second through-hole being aligned to define an axis substantially perpendicular to a major surface of said top member and substantially parallel to said first vertical side and said second vertical side.
5. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 1, further comprising:
e) means for sealing a first of said building modules to a second adjacent one of said building modules to prevent egress of concrete poured into said interior region.
6. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 5, wherein said means for sealing comprises means for sealing an end surface of said building module to and end surface of a second building module abutted thereto.
7. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 5, wherein said means for sealing comprises means for sealing at least one of a top surface and a bottom surface of a first building module to at least one of a top surface and a bottom surface of a second building module vertically aligned with and adjacent to said first building module.
8. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 5, wherein said means for sealing comprises means at least one of the group: a tongue-and-groove seal, and a groove and spline arrangement.
9. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 1, wherein said building module comprises a corner building module comprising a first portion and a second portion contiguous with and orthogonal to said first portion.
10. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 1, wherein each of said first vertical side, said second vertical side, said top member, and said bottom member comprise pressure treated plywood or other building material.
11. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 10, wherein each of said first vertical sides, and said second vertical side have a nominal thickness of approximately ¾ inch.
12. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 10, wherein each of said top member and said bottom member have a nominal thickness of approximately ½ inch.
13. The building module adapted for modular construction of an insulated, lost form concrete wall as recited in claim 1, wherein said at least two horizontal support strips comprises pressure treated lumber having a nominal dimension of approximately 1×2 inches.
14. A method of erecting a concrete wall, the steps comprising:
a) providing a foundation adapted to receive a modular, insulated, lost concrete form;
b) attaching a U-bracket to said foundation;
c) providing a plurality of building modules adapted for modular construction of an insulated, lost form concrete wall, each of said building modules comprising a hollow, rectangular parallelepiped adapted to receive concrete in a hollow interior region thereof, each of said building modules comprising at least two horizontal support strips disposed within said hollow interior region substantially parallel to a major axis thereof and attached to least one of a first vertical side, and a second vertical side adjacent at least one of a top member and a bottom member and comprising sheet insulation attached to an inward-facing surface of said at least two horizontal support strips, said insulation sheet forming an air cavity between itself and an inner surface of at least one of said first vertical side and said second vertical side; and an opening sized and configured to receive poured concrete in said interior region disposed in at least one of said top member and said bottom member;
d) placing a first course of said plurality of building modules in said U-channel;
e) placing subsequent courses of said plurality of said building modules to define at least one wall structure;
f) upon completion of said at least one-wall structure, placing alignment braces on an interior face of said at least one wall structure; and
g) filling said at least one wall structure with concrete.
15. The method of erecting a concrete wall as recited in claim 14, wherein said providing step (c) comprises providing at least one building module comprising a corner building module comprising a first portion and a second portion contiguous with and orthogonal to said first portion.
16. The method of erecting a concrete wall as recited in claim 15, wherein said placing step (d) comprises placing said at least one building module comprising a corner building module comprising a first portion and a second portion contiguous with and orthogonal to said first portion.
17. The method of erecting a concrete wall as recited in claim 15, the steps further comprising:
h) inserting a spline into a groove disposed in a surface of a first building module and a corresponding groove disposed in an adjacent surface of a second building module.
18. A building module adapted for modular construction of an insulated, lost form concrete wall, comprising:
a) a pair of vertical members each having an identical vertical height and an identical length;
b) at least two U-shaped spacer bars each having an elongated, central surface and a pair of end surfaces perpendicular thereto, said U-shaped spacer bar having inward-facing spikes disposed in said elongated central surface proximate each of said end surfaces, a first of said pair of end surfaces of each of said at least two U-shaped spacer bars being proximate an outside surface of a first of said pair of vertical members, a second of said pair of end surfaces of each of said at least two U-shaped spacer bars being abutted to an outside surface of second of said pair of vertical members, said inward-facing spikes engaging at least a portion of an edge of each of said first vertical member and said second vertical member.
US12/288,114 2008-10-17 2008-10-17 Modular form for building a preinsulated, roughly finished concrete wall and method of building a structure therewith Abandoned US20100095623A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/288,114 US20100095623A1 (en) 2008-10-17 2008-10-17 Modular form for building a preinsulated, roughly finished concrete wall and method of building a structure therewith
US13/135,082 US20110296783A1 (en) 2008-10-17 2011-06-24 Modular form for building a preinsulated, roughly finished concrete wall and method of building a structure therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/288,114 US20100095623A1 (en) 2008-10-17 2008-10-17 Modular form for building a preinsulated, roughly finished concrete wall and method of building a structure therewith

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/135,082 Continuation-In-Part US20110296783A1 (en) 2008-10-17 2011-06-24 Modular form for building a preinsulated, roughly finished concrete wall and method of building a structure therewith

Publications (1)

Publication Number Publication Date
US20100095623A1 true US20100095623A1 (en) 2010-04-22

Family

ID=42107515

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/288,114 Abandoned US20100095623A1 (en) 2008-10-17 2008-10-17 Modular form for building a preinsulated, roughly finished concrete wall and method of building a structure therewith

Country Status (1)

Country Link
US (1) US20100095623A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110258869A (en) * 2019-07-30 2019-09-20 上海圣奎塑业有限公司 Exempt from demoulding heat preservation component in building yin-yang angle

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1240492A (en) * 1915-02-10 1917-09-18 Frank Mcmurray Sawyer Building construction.
US1892605A (en) * 1931-10-20 1932-12-27 Betzler Paul Wall construction
US2552076A (en) * 1948-12-29 1951-05-08 Wilson Jones Co Loose-leaf binder
US2887868A (en) * 1957-09-25 1959-05-26 Harold A Glidden Wall structure and form unit therefor
US3410044A (en) * 1965-07-23 1968-11-12 Contemporary Walls Ltd Foamed plastic based construction elements
US3440788A (en) * 1965-06-11 1969-04-29 Arthur B Merget Building blocks with a shell containing a filler and having projections and depressions connected by tubes
US3625470A (en) * 1969-02-25 1971-12-07 Symons Mfg Co Tie rod securing means for a concrete wall form
US4075808A (en) * 1974-11-25 1978-02-28 Sanford Pearlman Building construction system using mortar-less modular building block elements
US4924641A (en) * 1988-04-01 1990-05-15 Gibbar Jr James H Polymer building wall form construction
US5038541A (en) * 1988-04-01 1991-08-13 Gibbar Jr James H Polymer building wall form construction
US5107648A (en) * 1991-02-19 1992-04-28 Roby Edward F Insulated wall construction
US5311718A (en) * 1992-07-02 1994-05-17 Trousilek Jan P V Form for use in fabricating wall structures and a wall structure fabrication system employing said form
US5323578A (en) * 1990-12-19 1994-06-28 Claude Chagnon Prefabricated formwork
US5611974A (en) * 1989-12-11 1997-03-18 Welch-Sluder Ip Partners Method for preparing or repairing a machine foundation
US5625989A (en) * 1995-07-28 1997-05-06 Huntington Foam Corp. Method and apparatus for forming of a poured concrete wall
US5860262A (en) * 1997-04-09 1999-01-19 Johnson; Frank K. Permanent panelized mold apparatus and method for casting monolithic concrete structures in situ
US6122880A (en) * 1996-04-15 2000-09-26 Josef Kolb Building module and building module system for producing flat construction, especially walls
US6170220B1 (en) * 1998-01-16 2001-01-09 James Daniel Moore, Jr. Insulated concrete form
US6178711B1 (en) * 1996-11-07 2001-01-30 Andrew Laird Compactly-shipped site-assembled concrete forms for producing variable-width insulated-sidewall fastener-receiving building walls
US6263628B1 (en) * 1999-04-21 2001-07-24 John Griffin G. E. Steel Company Load bearing building component and wall assembly method
US6289646B1 (en) * 1999-03-26 2001-09-18 Nichiha Co., Ltd. Metal fixture assembly for installation of vertical sidings, construction and method of installation
US20010029717A1 (en) * 1997-02-04 2001-10-18 Spakousky John G. Composite building block with modular connective structure
US6321498B1 (en) * 1997-09-02 2001-11-27 Salvatore Trovato Formwork for building walls
US6438918B2 (en) * 1998-01-16 2002-08-27 Eco-Block Latching system for components used in forming concrete structures
US6691481B2 (en) * 2001-08-20 2004-02-17 Donald L. Schmidt Corner form for modular insulating concrete form system
US20050275124A1 (en) * 2004-06-14 2005-12-15 Kenneth Franklin Insulated concrete form systems and methods of making and using the same
US20070009473A1 (en) * 2005-07-08 2007-01-11 Walker Robert W Vintage dated wine soap

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1240492A (en) * 1915-02-10 1917-09-18 Frank Mcmurray Sawyer Building construction.
US1892605A (en) * 1931-10-20 1932-12-27 Betzler Paul Wall construction
US2552076A (en) * 1948-12-29 1951-05-08 Wilson Jones Co Loose-leaf binder
US2887868A (en) * 1957-09-25 1959-05-26 Harold A Glidden Wall structure and form unit therefor
US3440788A (en) * 1965-06-11 1969-04-29 Arthur B Merget Building blocks with a shell containing a filler and having projections and depressions connected by tubes
US3410044A (en) * 1965-07-23 1968-11-12 Contemporary Walls Ltd Foamed plastic based construction elements
US3625470A (en) * 1969-02-25 1971-12-07 Symons Mfg Co Tie rod securing means for a concrete wall form
US4075808A (en) * 1974-11-25 1978-02-28 Sanford Pearlman Building construction system using mortar-less modular building block elements
US4924641A (en) * 1988-04-01 1990-05-15 Gibbar Jr James H Polymer building wall form construction
US5038541A (en) * 1988-04-01 1991-08-13 Gibbar Jr James H Polymer building wall form construction
US5611974A (en) * 1989-12-11 1997-03-18 Welch-Sluder Ip Partners Method for preparing or repairing a machine foundation
US5323578A (en) * 1990-12-19 1994-06-28 Claude Chagnon Prefabricated formwork
US5107648A (en) * 1991-02-19 1992-04-28 Roby Edward F Insulated wall construction
US5311718A (en) * 1992-07-02 1994-05-17 Trousilek Jan P V Form for use in fabricating wall structures and a wall structure fabrication system employing said form
US5625989A (en) * 1995-07-28 1997-05-06 Huntington Foam Corp. Method and apparatus for forming of a poured concrete wall
US6122880A (en) * 1996-04-15 2000-09-26 Josef Kolb Building module and building module system for producing flat construction, especially walls
US6178711B1 (en) * 1996-11-07 2001-01-30 Andrew Laird Compactly-shipped site-assembled concrete forms for producing variable-width insulated-sidewall fastener-receiving building walls
US20010029717A1 (en) * 1997-02-04 2001-10-18 Spakousky John G. Composite building block with modular connective structure
US5860262A (en) * 1997-04-09 1999-01-19 Johnson; Frank K. Permanent panelized mold apparatus and method for casting monolithic concrete structures in situ
US6321498B1 (en) * 1997-09-02 2001-11-27 Salvatore Trovato Formwork for building walls
US6170220B1 (en) * 1998-01-16 2001-01-09 James Daniel Moore, Jr. Insulated concrete form
US6363683B1 (en) * 1998-01-16 2002-04-02 James Daniel Moore, Jr. Insulated concrete form
US6438918B2 (en) * 1998-01-16 2002-08-27 Eco-Block Latching system for components used in forming concrete structures
US6289646B1 (en) * 1999-03-26 2001-09-18 Nichiha Co., Ltd. Metal fixture assembly for installation of vertical sidings, construction and method of installation
US6263628B1 (en) * 1999-04-21 2001-07-24 John Griffin G. E. Steel Company Load bearing building component and wall assembly method
US6691481B2 (en) * 2001-08-20 2004-02-17 Donald L. Schmidt Corner form for modular insulating concrete form system
US20050275124A1 (en) * 2004-06-14 2005-12-15 Kenneth Franklin Insulated concrete form systems and methods of making and using the same
US20070009473A1 (en) * 2005-07-08 2007-01-11 Walker Robert W Vintage dated wine soap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110258869A (en) * 2019-07-30 2019-09-20 上海圣奎塑业有限公司 Exempt from demoulding heat preservation component in building yin-yang angle

Similar Documents

Publication Publication Date Title
US6880304B1 (en) Structural thermal framing and panel system for assembling finished or unfinished walls with multiple panel combinations for poured and nonpoured walls
US6041562A (en) Composite wall construction and dwelling therefrom
US6178711B1 (en) Compactly-shipped site-assembled concrete forms for producing variable-width insulated-sidewall fastener-receiving building walls
US3353315A (en) Grooved panel with load-bearing strips
US5611183A (en) Wall form structure and methods for their manufacture
US6167671B1 (en) Prefabricated concrete wall form system
US8151539B2 (en) Panel building system
US4924641A (en) Polymer building wall form construction
US5617686A (en) Insulating polymer wall panels
US5038541A (en) Polymer building wall form construction
US5758463A (en) Composite modular building panel
US9303400B2 (en) Construction blocks
US20030005659A1 (en) Buck system for concrete structures
US6931806B2 (en) Concrete forming system and method
US20100107536A1 (en) Thermo tech mark ii limited
US9399867B2 (en) Concrete panel corner connection
CA2933296C (en) Precast modular concrete wall panel, system thereof, and method of construction
US3258888A (en) Building structure and method of erecting same
WO2001075244A1 (en) Insulated wall structure
WO2010014192A1 (en) A building construction for forming columns and beams within a wall mold
US20110296783A1 (en) Modular form for building a preinsulated, roughly finished concrete wall and method of building a structure therewith
US10612234B2 (en) Dry stack construction block system and method
GB2429217A (en) Modular shell housing system
US6212844B1 (en) Architectural bearing wall construction incorporating courses of fiberboard planks or the like
US20100095623A1 (en) Modular form for building a preinsulated, roughly finished concrete wall and method of building a structure therewith

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION