US20100092330A1 - Eco-friendly pb-free free cutting steel with excellent machinability and hot workability - Google Patents

Eco-friendly pb-free free cutting steel with excellent machinability and hot workability Download PDF

Info

Publication number
US20100092330A1
US20100092330A1 US12/520,884 US52088407A US2010092330A1 US 20100092330 A1 US20100092330 A1 US 20100092330A1 US 52088407 A US52088407 A US 52088407A US 2010092330 A1 US2010092330 A1 US 2010092330A1
Authority
US
United States
Prior art keywords
steel
free
cutting
sio
inventive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/520,884
Inventor
Hyong Jik Lee
Sang Chul Shim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060137003A external-priority patent/KR100825566B1/en
Priority claimed from KR1020070104423A external-priority patent/KR100979058B1/en
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Assigned to POSCO reassignment POSCO ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, HYONG JIK, SHIM, SANG CHUL
Publication of US20100092330A1 publication Critical patent/US20100092330A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to eco-friendly Pb-free free cutting steel used as a material of precision oil pressure parts of an automobile, parts for office automation equipment, and parts for home appliances and more particularly, to eco-friendly free cutting steel with excellent machinability by using not only elements for improving the machinability, capable of replacing Pb harmful to environments or a human body, but also oxides with low melting point, formed on a steel wire rod by precision deoxidization.
  • the present invention relates to eco-friendly free cutting steel where defects on a surface, such as corner cracks, do not occur while hot rolling, due to excellent hot ductility thereof.
  • Free cutting steel is generally used as a material for precision components, which has excellent machinability.
  • the excellent machinability of the free cutting steel is due to metallic or nonmetallic inclusions present in the free cutting steel.
  • nonmetallic inclusions such as MnS act as a stress concentration element at a portion where a tip of the tool is in contact with steel products in such a way that generation of voids and growth of cracks at an interface between the inclusions and a matrix are easily made and power required in cutting is reduced.
  • metallic inclusions such as Pb melt at a relatively lower temperature than cutting heat and act as a lubricant at an interface between a chip and a cutting tool, thereby restraining abrasions of the cutting tool and reducing cutting force.
  • MnS As conventionally used nonmetallic inclusions, there is MnS. Particularly, MnS formed in a spherical shape mixed with oxides provides most excellent machinability.
  • metallic inclusions are generally called as machinability improving elements.
  • Pb is a representative machinability improving element. Since Pb has low solubility with iron, it is easy to exist in free cutting steel as metallic inclusions. Also, due to an appropriately low melting point of 327.5° C., Pb is capable of being easily melted by heat generated in a cutting tip.
  • the free cutting steel containing Pb may generate lead vapor in a process of recycling cutting operations. Since Pb present in steel products is harmful to a human body, it has been required from long ago to replace the steel having Pb.
  • Bi is a low melting point metal and has low solubility for iron, Bi is very advantageous to improve machinability.
  • the free cutting steel having Bi has notably deteriorated hot workability. Also, the free cutting steel has machinability not good as that of the free cutting steel containing Pb, there still exist various problems to replace the steel having Pb by the steel having Bi.
  • the free cutting steel containing Pb is not capable of effectively preventing abrasion of tools, due to thermal diffusion, it is required to develop free cutting steel having excellent machinability in an aspect of high speed cutting.
  • An aspect of the present invention provides eco-friendly Pb-free free cutting steel having eco-friendly properties by adding Bi and Sn capable of replacing elements harmful to environments and human bodies, such as Pb, to steel products, providing excellent machinability by forming composite oxides having a low melting point, capable of restraining abrasions of tools, and having excellent hot workability by adding elements such as Mn and B by optimal ratio.
  • Pb-free free cutting steel is formed of 0.03 to 0.30 wt % of carbon (C), 0.01 to 0.30wt % of silicon (Si), 0.2 to 2.0 wt % of manganese (Mn), 0.02 to 0.10 wt % of phosphorus (P), 0.06 to 0.45 wt % of sulfur (S), 0.04 to 0.20 wt % of bismuth (Bi), 0.04 to 0.20 wt % of tin (Sn), 0.001 to 0.015 wt % of boron (B), 0.001 to 0.010 wt % of nitrogen (N), 0.002 to 0.025 wt % of total oxygen (T[0]), and residual Fe, and unavoidable impurities, wherein Sn, Bi, S, B, and N satisfy one or more relations selected from a group consisting of following Relational Expressions 1 to 3,
  • Pb-free free cutting steel is formed of 0.03 to 0.30 wt % of C, 0.01 to 0.30wt % of Si, 0.2 to 2.0 wt % of Mn, 0.02 to 0.10 wt % of P, 0.06 to 0.45 wt % of S, 0.04 to 0.20 wt % of Bi, 0.04 to 0.20 wt % of Sn, 0.001 to 0.015 wt % of B, 0.001 to 0.010 wt % of N, 0.002 to 0.025 wt % of T[0], and residual Fe, and unavoidable impurities, wherein the steel includes one of MnO—SiO—Al 2 O 3 -based oxides, CaO—SiO—Al 2 O 3 -based oxides, and composite oxides with a low melting point, which is a mixture of the MnO—SiO 2 —Al 2 O 3 -based oxides
  • eco-friendly Pb-free free cutting steel having excellent machinability, no less than free cutting steel containing Pb. Also, due to excellent hot ductility, occurrence of defects on a surface while hot rolling is capable of being reduced, thereby improving hot workability.
  • the present invention provides Pb-free free cutting steel showing excellent properties not only at low speed cutting but also at high speed cutting by controlling an element system, a relationship between elements, a number of low melting point composite oxides, respectively or cooperatively.
  • C should be added by 0.03 wt % or more, and more particularly, to 0.05 wt % or more.
  • machinability becomes deteriorated due to an increase of hard pearlite structures.
  • Si acts as a deoxidizer and generates SiO 2 .
  • Si may be added to 0.01 wt % or more, and more particularly, to 0.05 wt % or more.
  • Si when adding silicon more than 0.30 wt %, high melting point inclusions or exclusive SiO 2 inclusions area formed, thereby notably increasing speed of abrasions of tools.
  • Mn forms MnS inclusions, which prevent red shortness caused by S.
  • Mn may be added to 0.2 wt % or more. However, when adding Mn more than 2.0 wt %, ferrites are solid-solution strengthened, which reduces machinability. Mn acts as a deoxidizer, forms MnO, and acts as a nucleus of MnS inclusions.
  • P is segregated into boundaries and improves machinability.
  • P may be added to 0.02 wt % or more. However, to provide mechanical properties and cold workability, P may be added 0.10 or less.
  • S forms MnS inclusions, which restrains generation of a built-up edge to reduce abrasions of a cutting tool and improve surface roughness of a workpiece in a cutting process.
  • S may be added to 0.06 wt % or more.
  • the amount of S should be 0.45 wt % or less.
  • Bi independently exists as metal inclusions or attached to MnS inclusions when adding to steel products. Bi is easily melted by heat while cutting, which improves cutting properties, reduces frictional force by acting as a lubricating film between a chip and a cutting tool and restrains abrasions of the cutting tool.
  • a content of Bi is less than 0.04 wt %, an effect of machinability is decreased.
  • the content of Bi is more than 0.20 wt %, and more particularly, 0.16 wt %, casting and rolling properties are not good.
  • the content of Bi may be limited within a range from 0.04 to 0.20 wt %.
  • Sn may act similarly to Pb. That is, Sn may act identically to liquid metal embrittlement that is a mechanism of Pb, improving machinability of steel. In detail, this phenomenon is shown since Sn moves ferrite grain boundaries and is segregated, and decreases binding energy of grain boundaries, thereby allowing the grain boundaries to be easily weakened. Accordingly, to obtain an effect of improving machinability due to Sn, Sn may be added to 0.04 wt % or more. However, when a content of Sn is more than 0.20 wt %, and more particularly, 0.16 wt %, it may be harmful to casting and rolling properties. Therefore, the content of Sn may be limited to be in a range from 0.04 to 0.20 wt %.
  • B segregated into austenite boundaries improves hot ductility by strengthening grain boundaries. Also, it has been known since early times that steel containing graphite has excellent machinability. When B reacts to nitrogen in steel and a B nitride BN having a grain structure and physical properties similar to the graphite is generated, there may be an effect of improving machinability identical to the steel containing graphite. When a content of B is less than 0.001 wt %, an effect of adding B is very small. Accordingly, B should be added to 0.001 wt % or more.
  • the content of B may be limited to be within a range from 0.001 to 0.015 wt %.
  • N should be added to 0.001 wt % or more to form BN together with boron.
  • a content of N is more than 0.010 wt %, an amount of effective boron segregated into austenite grain boundaries is reduced, thereby decreasing boundary strengthening effect.
  • a content of T[0] should be 0.025 wt % or less to provide plastic deformability of the MnS inclusions while cutting.
  • Al and Ca are required to form low melting point composite oxides formed in steel. However, it is not required to intentionally add. An amount naturally included in slag is enough. Al and Ca may be generally present by 10 ppm or less.
  • Bi, Sn, S, Mn, and B may provide excellent machinability and hot workability by satisfying following relational expressions.
  • relational expressions with respect to Bi, Sn, S, Mn, and B will be described in detail.
  • each symbol for element indicates weight percent (wt %) of the element, the same as above.
  • Relational Expression 1 In addition to the restriction on contents of the elements, to provide Pb-free fee cutting steel having excellent machinability according to an exemplary embodiment of the present invention, Relational Expression 1 should be satisfied. That is, Sn and Bi causes improvement of machinability by liquid metal embrittlement in steel products, as metallic inclusions and S improves machinability by forming MnS.
  • Relational Expression 2 indicates that a content Mn is required to a degree to be bonded to S and restrain hot embrittlement due to S.
  • B and N should satisfy Relational Expression 3. That is, though N is present, there is required just an amount of N capable of strengthening austenite grain boundaries by B segregated into grain boundaries.
  • Relational Expressions 1 to 3 Although satisfying one of Relational Expressions 1 to 3, an effect thereof is shown. When satisfying two or more of Relational Expressions 1 to 3 at the same time, there is shown a notable effect. Accordingly, when satisfying one or more of Relational Expressions 1 to 3, it may be considered as being included in the scope of the present invention.
  • the Pb-free free cutting steel of the present invention includes low melting point inclusions by Mn, Si, Ca, and Al.
  • the low melting point inclusions will be described in detail.
  • the oxides may be present in the form of MnO—SiO 2 —Al 2 O 3 -based or CaO—SiO 2 —Al 2 O 3 -based.
  • the MnO—SiO 2 —Al 2 O 3 -based oxides may be formed of 20 to 65 wt % of MnO, 25 to 60 wt % of SiO , and 0 to 30 wt % of Al 2 O 3 .
  • the CaO—SiO—Al 2 O 3 -based oxides may be formed of 10 to 55 wt % of CaO, 35 to 65 wt % of SiO 2 , and 0 to 25 wt % of Al 2 O 3 .
  • one of the low melting point composite oxides such as the MnO—SiO 2 —Al 2 O 3 -based oxides and the CaO—SiO —Al 2 O 3 -based oxides may be present five or more per 5 g of a steel wire rod. When there are less than five inclusions, machinability is decreased.
  • Comparative Steels 1 to 6 and Comparative steel 1 satisfy the element system of the present invention.
  • Comparative Steels 2 and 3 are different in B and Bi and Comparative Steel 4 indicates conventional free cutting steel containing Pb.
  • Comparative Steels 1 and 2 are out of an appropriate range of B/N and Comparative Steel 3 is out of an appropriate range of (Bi+Sn+S)/Mn. Comparative Steel 4 is not shown because Comparative Steel 4 is free cutting steel containing Pb.
  • Comparative Steel 2 it may be known that a number of inclusions included in Comparative Steel 2 are less than a reference value. Also, Comparative Steel 4 that is the free cutting steel containing Pb is excluded.
  • machinability tests were performed as follows.
  • a workpiece that was a bar with a diameter of 25 mm was turned by a CNC lathe without cutting oil.
  • a transfer speed was 0.3 mm/rev
  • a cutting depth was 0.5 mm
  • a cutting speed was 150 m/min.
  • a flank wear width (VB) of the tool was measured and compared.
  • a result of tool abrasions caused by the turning operation was shown in Table 4.
  • Inventive Steels and Comparative Steels were heated at a temperature of 1250° C. that was a reheating temperature and maintained for one minute. After that, a tension test was performed. After the tests, a reduction of area (RA) of specimen was measured and shown in Table 5.
  • eco-friendly Pb-free free cutting steel capable of providing excellent machinability by restraining tool abrasion that may be shown in cutting processes at a speed regardless of high or low speed by controlling contents of B, Sn, Mn, S, and N at appropriate relational expressions and forming low melting point composite oxides, and having excellent hot workability by adding elements such as Mn and B at optimum ratios.

Abstract

There is provided a Pb-free free cutting steel is formed of 0.03 to 0.30 wt % of carbon (C), 0.01 to 0.30 wt % of silicon (Si), 0.2 to 2.0 wt % of manganese (Mn), 0.02 to 0.10 wt % of phosphorus, 0.06 to 0.45 wt % of sulfur (S), 0.04 to 0.20 wt % of bismuth (Bi), 0.04 to 0.20 wt % of tin (Sn), 0.001 to 0.015 wt % of boron (B), 0.001 to 0.010 wt % of nitrogen (N), 0.002 to 0.025 wt % of total oxygen (T[O]), and residual Fe, and unavoidable impurities, wherein S, Bi, S, B, and N satisfy a certain relationship. The steel has excellent machinability no less than conventional free cutting steel including Pb, while being eco-friendly. Also, the steel has excellent hot ductility capable of reducing occurrence of defects on a surface, thereby improving hot rolling workability.

Description

    TECHNICAL FIELD
  • The present invention relates to eco-friendly Pb-free free cutting steel used as a material of precision oil pressure parts of an automobile, parts for office automation equipment, and parts for home appliances and more particularly, to eco-friendly free cutting steel with excellent machinability by using not only elements for improving the machinability, capable of replacing Pb harmful to environments or a human body, but also oxides with low melting point, formed on a steel wire rod by precision deoxidization. In addition, the present invention relates to eco-friendly free cutting steel where defects on a surface, such as corner cracks, do not occur while hot rolling, due to excellent hot ductility thereof.
  • BACKGROUND ART
  • Free cutting steel is generally used as a material for precision components, which has excellent machinability. The excellent machinability of the free cutting steel is due to metallic or nonmetallic inclusions present in the free cutting steel. When cutting steel products by using a tool, nonmetallic inclusions such as MnS act as a stress concentration element at a portion where a tip of the tool is in contact with steel products in such a way that generation of voids and growth of cracks at an interface between the inclusions and a matrix are easily made and power required in cutting is reduced.
  • Also, metallic inclusions such as Pb melt at a relatively lower temperature than cutting heat and act as a lubricant at an interface between a chip and a cutting tool, thereby restraining abrasions of the cutting tool and reducing cutting force.
  • Accordingly, to improve machinability of steel products, elements capable of forming the metallic or nonmetallic inclusions are added. As conventionally used nonmetallic inclusions, there is MnS. Particularly, MnS formed in a spherical shape mixed with oxides provides most excellent machinability.
  • On the other hand, metallic inclusions are generally called as machinability improving elements. Pb is a representative machinability improving element. Since Pb has low solubility with iron, it is easy to exist in free cutting steel as metallic inclusions. Also, due to an appropriately low melting point of 327.5° C., Pb is capable of being easily melted by heat generated in a cutting tip.
  • Accordingly, since Pb thoroughly has properties required for improving machinability, up to now, free cutting steel containing Pb is classified as most representative free cutting steel and has been put to practical use as most suitable steel products for cutting.
  • However, the free cutting steel containing Pb may generate lead vapor in a process of recycling cutting operations. Since Pb present in steel products is harmful to a human body, it has been required from long ago to replace the steel having Pb.
  • As steel products developed to replace the free cutting steel containing Pb, there is free cutting steel having Bi. Since Bi is a low melting point metal and has low solubility for iron, Bi is very advantageous to improve machinability.
  • However, since the melting point of Bi is 290° C., which is lower than that of Pb by 120° C., Bi is easier to be melted. Since having surface tension lower than Pb, Bi has high wettability. Such properties cause embrittlement of grain boundaries of steel products.
  • Accordingly, due to a decrease in hot ductility caused by the embrittlement of grain boundaries, the free cutting steel having Bi has notably deteriorated hot workability. Also, the free cutting steel has machinability not good as that of the free cutting steel containing Pb, there still exist various problems to replace the steel having Pb by the steel having Bi.
  • However, there are also problems in free cutting steel containing Pb. Particularly, as CNC machine tools have been rapidly provided, high speed cutting and automation are realized. There occurs a phenomenon where a certain element of a cutting tool, such as tungsten (W) that is most important element of a tungsten carbide, diffuses to a chip at high speed by heat with a temperature of 1000° C. or more in the high speed cutting. Due to such diffusion of the element such as W, the cutting tool may be rapidly worn.
  • Particularly, since the free cutting steel containing Pb is not capable of effectively preventing abrasion of tools, due to thermal diffusion, it is required to develop free cutting steel having excellent machinability in an aspect of high speed cutting.
  • DISCLOSURE OF INVENTION Technical Problem
  • An aspect of the present invention provides eco-friendly Pb-free free cutting steel having eco-friendly properties by adding Bi and Sn capable of replacing elements harmful to environments and human bodies, such as Pb, to steel products, providing excellent machinability by forming composite oxides having a low melting point, capable of restraining abrasions of tools, and having excellent hot workability by adding elements such as Mn and B by optimal ratio.
  • Technical Solution
  • According to an aspect of the present invention, there is provided Pb-free free cutting steel is formed of 0.03 to 0.30 wt % of carbon (C), 0.01 to 0.30wt % of silicon (Si), 0.2 to 2.0 wt % of manganese (Mn), 0.02 to 0.10 wt % of phosphorus (P), 0.06 to 0.45 wt % of sulfur (S), 0.04 to 0.20 wt % of bismuth (Bi), 0.04 to 0.20 wt % of tin (Sn), 0.001 to 0.015 wt % of boron (B), 0.001 to 0.010 wt % of nitrogen (N), 0.002 to 0.025 wt % of total oxygen (T[0]), and residual Fe, and unavoidable impurities, wherein Sn, Bi, S, B, and N satisfy one or more relations selected from a group consisting of following Relational Expressions 1 to 3,
  • ( Bi + Sn + S ) Mn 0.4 , Relational Expression 1 Mn 3 S 4.6 , Relational Expression 2 and B N 2.0 . Relational Expression 3
  • According to another aspect of the present invention, there is provided Pb-free free cutting steel is formed of 0.03 to 0.30 wt % of C, 0.01 to 0.30wt % of Si, 0.2 to 2.0 wt % of Mn, 0.02 to 0.10 wt % of P, 0.06 to 0.45 wt % of S, 0.04 to 0.20 wt % of Bi, 0.04 to 0.20 wt % of Sn, 0.001 to 0.015 wt % of B, 0.001 to 0.010 wt % of N, 0.002 to 0.025 wt % of T[0], and residual Fe, and unavoidable impurities, wherein the steel includes one of MnO—SiO—Al2O3-based oxides, CaO—SiO—Al2O3-based oxides, and composite oxides with a low melting point, which is a mixture of the MnO—SiO2—Al2O3-based oxides and the CaO—SiO—Al2O3-based oxides.
  • Advantageous Effects
  • According to an exemplary embodiment of the present invention, eco-friendly Pb-free free cutting steel having excellent machinability, no less than free cutting steel containing Pb. Also, due to excellent hot ductility, occurrence of defects on a surface while hot rolling is capable of being reduced, thereby improving hot workability.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • As described above, the present invention provides Pb-free free cutting steel showing excellent properties not only at low speed cutting but also at high speed cutting by controlling an element system, a relationship between elements, a number of low melting point composite oxides, respectively or cooperatively.
  • Hereinafter, an element system forming the Pb-free free cutting steel according to the present invention will be described in detail.
  • Carbon (C): 0.03 to 0.30 wt %
  • To provide surface roughness and mechanical properties, C should be added by 0.03 wt % or more, and more particularly, to 0.05 wt % or more. However, when adding C more than 0.30 wt %, machinability becomes deteriorated due to an increase of hard pearlite structures.
  • Silicon (Si): 0.01 to 0.30 wt %
  • Si acts as a deoxidizer and generates SiO2. To form low melting point composite oxides capable of reducing abrasions of a tool due to thermal diffusion while cutting at high speed, Si may be added to 0.01 wt % or more, and more particularly, to 0.05 wt % or more. However, when adding silicon more than 0.30 wt %, high melting point inclusions or exclusive SiO2 inclusions area formed, thereby notably increasing speed of abrasions of tools.
  • Manganese (Mn): 0.2 to 2.0 wt %
  • Mn forms MnS inclusions, which prevent red shortness caused by S. Mn may be added to 0.2 wt % or more. However, when adding Mn more than 2.0 wt %, ferrites are solid-solution strengthened, which reduces machinability. Mn acts as a deoxidizer, forms MnO, and acts as a nucleus of MnS inclusions.
  • Phosphorus (P) 0.02 to 0.10 wt %
  • P is segregated into boundaries and improves machinability. P may be added to 0.02 wt % or more. However, to provide mechanical properties and cold workability, P may be added 0.10 or less.
  • Sulfur (S): 0.06 to 0.45 wt %
  • S forms MnS inclusions, which restrains generation of a built-up edge to reduce abrasions of a cutting tool and improve surface roughness of a workpiece in a cutting process. For this, S may be added to 0.06 wt % or more. However, when an amount of S becomes great, it is easy to generate FeS with a low melting point, which decreases hot ductility and make hot rolling difficult. Therefore, the amount of S should be 0.45 wt % or less.
  • Bismuth (Bi): 0.04 to 0.20 wt %
  • Bi independently exists as metal inclusions or attached to MnS inclusions when adding to steel products. Bi is easily melted by heat while cutting, which improves cutting properties, reduces frictional force by acting as a lubricating film between a chip and a cutting tool and restrains abrasions of the cutting tool. When a content of Bi is less than 0.04 wt %, an effect of machinability is decreased. On the other hand, when the content of Bi is more than 0.20 wt %, and more particularly, 0.16 wt %, casting and rolling properties are not good. The content of Bi may be limited within a range from 0.04 to 0.20 wt %.
  • Tin (Sn): 0.04 to 0.20 wt %
  • Sn may act similarly to Pb. That is, Sn may act identically to liquid metal embrittlement that is a mechanism of Pb, improving machinability of steel. In detail, this phenomenon is shown since Sn moves ferrite grain boundaries and is segregated, and decreases binding energy of grain boundaries, thereby allowing the grain boundaries to be easily weakened. Accordingly, to obtain an effect of improving machinability due to Sn, Sn may be added to 0.04 wt % or more. However, when a content of Sn is more than 0.20 wt %, and more particularly, 0.16 wt %, it may be harmful to casting and rolling properties. Therefore, the content of Sn may be limited to be in a range from 0.04 to 0.20 wt %.
  • Boron (B): 0.001 to 0.015 wt %
  • B segregated into austenite boundaries improves hot ductility by strengthening grain boundaries. Also, it has been known since early times that steel containing graphite has excellent machinability. When B reacts to nitrogen in steel and a B nitride BN having a grain structure and physical properties similar to the graphite is generated, there may be an effect of improving machinability identical to the steel containing graphite. When a content of B is less than 0.001 wt %, an effect of adding B is very small. Accordingly, B should be added to 0.001 wt % or more. On the other hand, when the content of boron is more than 0.015 wt %, there is no additionally increased effect and grain boundary strength is decreased due to precipitation of the boron nitride, thereby deteriorating hot workability. The content of B may be limited to be within a range from 0.001 to 0.015 wt %.
  • Nitrogen (N): 0.001 to 0.010 wt %
  • N should be added to 0.001 wt % or more to form BN together with boron. However, when a content of N is more than 0.010 wt %, an amount of effective boron segregated into austenite grain boundaries is reduced, thereby decreasing boundary strengthening effect.
  • Total Oxygen (T[0]): 0.002 to 0.025 wt %
  • It is required to add oxygen (0) of 0.002 wt % or more to prevent a decrease of machinability, due to MnS inclusion elongation while hot rolling. However, a content of T[0] should be 0.025 wt % or less to provide plastic deformability of the MnS inclusions while cutting.
  • Aluminum (Al) and Calcium (Ca): 10 ppm or less, respectively
  • Al and Ca are required to form low melting point composite oxides formed in steel. However, it is not required to intentionally add. An amount naturally included in slag is enough. Al and Ca may be generally present by 10 ppm or less.
  • Among the described elements, Bi, Sn, S, Mn, and B may provide excellent machinability and hot workability by satisfying following relational expressions. Hereinafter, the relational expressions with respect to Bi, Sn, S, Mn, and B will be described in detail.
  • Relational expression with respect to Sn, Bi, S, and Mn is as follows.
  • ( Bi + Sn + S ) Mn 0.4 Relational Expression 1
  • wherein each symbol for element indicates weight percent (wt %) of the element, the same as above.
  • In addition to the restriction on contents of the elements, to provide Pb-free fee cutting steel having excellent machinability according to an exemplary embodiment of the present invention, Relational Expression 1 should be satisfied. That is, Sn and Bi causes improvement of machinability by liquid metal embrittlement in steel products, as metallic inclusions and S improves machinability by forming MnS.
  • Relational expression with respect to Mn and S is as follows.
  • Mn 3 S 4.6 Relational Expression 2
  • In addition to the restriction on the contents of the elements, to provide the Pb-free free cutting steel having excellent hot ductility, it is required that a relation between Mn and S satisfies Relational Expression 2. Relational Expression 2 indicates that a content Mn is required to a degree to be bonded to S and restrain hot embrittlement due to S.
  • Relational Expression with respect to B and N is as follows.
  • B N 2.0 Relational Expression 3
  • To provide the Pb-free free cutting steel having excellent hot ductility, B and N should satisfy Relational Expression 3. That is, though N is present, there is required just an amount of N capable of strengthening austenite grain boundaries by B segregated into grain boundaries.
  • Though satisfying one of Relational Expressions 1 to 3, an effect thereof is shown. When satisfying two or more of Relational Expressions 1 to 3 at the same time, there is shown a notable effect. Accordingly, when satisfying one or more of Relational Expressions 1 to 3, it may be considered as being included in the scope of the present invention.
  • On the other hand, the Pb-free free cutting steel of the present invention includes low melting point inclusions by Mn, Si, Ca, and Al. Hereinafter, the low melting point inclusions will be described in detail.
  • In the element system of the present invention, oxidization of Mn, Si, Ca, and Al occurs, thereby various low melting point composite oxides are formed. To form the inclusions, Mn, Si, Ca, and Al may be additionally added. However, an amount of Ca and Al basically present in steel is enough to form the inclusions. In the present invention, the oxides may be present in the form of MnO—SiO2—Al2O3-based or CaO—SiO2—Al2O3-based.
  • The MnO—SiO2—Al2O3-based oxides may be formed of 20 to 65 wt % of MnO, 25 to 60 wt % of SiO , and 0 to 30 wt % of Al2O3. The CaO—SiO—Al2O3-based oxides may be formed of 10 to 55 wt % of CaO, 35 to 65 wt % of SiO2, and 0 to 25 wt % of Al2O3.
  • Also, one of the low melting point composite oxides such as the MnO—SiO2—Al2O3-based oxides and the CaO—SiO —Al2O3-based oxides may be present five or more per 5 g of a steel wire rod. When there are less than five inclusions, machinability is decreased.
  • Hereinafter, embodiments of the present invention will be described in detail.
  • Embodiment
  • Turning test and high temperature tensile test were performed on inventive steels and comparative steels having compositions shown in Tables 1, 2, and 3 to investigate machinability, hot ductility thereof. Composite oxides were analyzed by extraction & separation of nonmetallic inclusion in steel by electrolysis in AA solution under ultrasonic wave (ESAA).
  • TABLE 1
    C Si Mn P S B Bi Sn T[O] N
    Inventive 0.079 0.067 1.155 0.053 0.304 0.0095 0.07 0.08 0.0080 0.0048
    Steel 1
    Inventive 0.073 0.060 1.151 0.067 0.328 0.0092 0.13 0.14 0.0120 0.0032
    Steel 2
    Inventive 0.102 0.080 1.235 0.058 0.350 0.0070 0.09 0.11 0.0153 0.0015
    Steel 3
    Inventive 0.044 0.030 1.570 0.059 0.380 0.0100 0.18 0.17 0.0140 0.0023
    Steel 4
    Inventive 0.038 0.010 1.250 0.061 0.310 0.0074 0.13 0.09 0.0170 0.0035
    Steel 5
    Inventive 0.104 0.086 1.380 0.058 0.360 0.0120 0.08 0.11 0.0160 0.0027
    Steel 6
    Comparative 0.080 0.138 1.449 0.050 0.376 0.0073 0.10 0.10 0.0130 0.0058
    Steel 1
    Comparative 0.070 0.004 1.162 0.076 0.344 0.07 0.11 0.0201 0.0043
    Steel 2
    Comparative 0.290 0.285 1.020 0.030 0.210 0.0081 0.05 0.0110 0.0040
    Steel 3
    Comparative 0.070 0.002 1.10 0.080 0.298 Pb: 0.0120
    Steel 4 0.3
  • In Table 1, Inventive Steels 1 to 6 and Comparative steel 1 satisfy the element system of the present invention. On the other hand, Comparative Steels 2 and 3 are different in B and Bi and Comparative Steel 4 indicates conventional free cutting steel containing Pb.
  • TABLE 2
    (Bi + Sn + S)/Mn Mn3/S B/N
    Inventive Steel 1 0.4 5.07 2.0
    Inventive Steel 2 0.5 4.65 2.9
    Inventive Steel 3 0.4 5.38 4.7
    Inventive Steel 4 0.5 10.18 4.4
    Inventive Steel 5 0.4 6.30 2.1
    Inventive Steel 6 0.4 7.30 4.4
    Comparative Steel 1 0.4 8.09 1.3
    Comparative Steel 2 0.5 4.56 0.0
    Comparative Steel 3 0.3 5.05 2.0
  • In Table 2, it may be known that Comparative Steels 1 and 2 are out of an appropriate range of B/N and Comparative Steel 3 is out of an appropriate range of (Bi+Sn+S)/Mn. Comparative Steel 4 is not shown because Comparative Steel 4 is free cutting steel containing Pb.
  • TABLE 3
    MnO—SiO2—Al2O3 - CaO—SiO2—Al2O3 -
    based based Number of
    composite oxides composite oxides inclusions (per
    SiO2 Al2O3 CaO SiO2 Al2O3 5 g of steel wire
    MnO (%) (%) (%) (%) (%) (%) rod)
    Inventive 30 55 15 40 35 25 10
    Steel 1
    Inventive 45 35 20 35 45 20 7
    Steel 2
    Inventive 25 50 25 15 65 20 6
    Steel 3
    Inventive 50 25 25 45 20 15 9
    Steel 4
    Inventive 50 40 10 30 55 15 12
    Steel 5
    Inventive 35 40 25 45 50 5 8
    Steel 6
    Comparative 60 30 10 40 35 25 5
    Steel 1
    Comparative 80 10 10 25 30 45 2
    Steel 2
    Comparative 40 40 20 30 55 15 6
    Steel 3
    *ESSA: extraction & separation of nonmetallic inclusion in steel by electrolysis in AA solution under ultrasonic wave
  • Also, in Table 3, it may be known that a number of inclusions included in Comparative Steel 2 are less than a reference value. Also, Comparative Steel 4 that is the free cutting steel containing Pb is excluded.
  • With respect to Inventive Steels and Comparative Steels, to check whether Inventive Steels are capable of replacing the free cutting steel containing Pb by testing machinability of Inventive Steels, machinability tests were performed as follows. In the machinability test, a workpiece that was a bar with a diameter of 25 mm was turned by a CNC lathe without cutting oil. A transfer speed was 0.3 mm/rev, a cutting depth was 0.5 mm, and a cutting speed was 150 m/min. To check a degree of abrasions of a tool, after turning test for the same time, a flank wear width (VB) of the tool was measured and compared. A result of tool abrasions caused by the turning operation was shown in Table 4.
  • TABLE 4
    Tool flank wear width according
    to cutting time (mm)
    Cutting for 10 Cutting for 20 Cutting for 30
    minutes minutes minutes
    Inventive Steel 1 0.12 0.21 0.30
    Inventive Steel 2 0.07 0.14 0.20
    Inventive Steel 3 0.09 0.18 0.28
    Inventive Steel 4 0.07 0.12 0.18
    Inventive Steel 5 0.08 0.16 0.24
    Inventive Steel 6 0.10 0.19 0.28
    Comparative Steel 1 0.08 0.15 0.25
    Comparative Steel 2 0.15 0.23 0.32
    Comparative Steel 3 0.20 0.34 0.40
    Comparative Steel 4 0.16 0.28 0.34
  • As shown in Table 4, as a result of measuring the degree of tool abrasions via a cutting test, when comparing eco-friendly free cutting steels according to the present invention, which were Inventive Steels 1 to 6 with conventional free cutting steel containing Pb, which was Comparative Steel 4, the eco-friendly free cutting steels showed very excellent tool wear resistant properties. In the case of Comparative Steel 2, since low melting point oxides were not formed, machinability thereof was less excellent than that of Inventive Steels. Also, in the case of Comparative Steel 3, tools were most rapidly abraded.
  • To perform a hot ductility test, Inventive Steels and Comparative Steels were heated at a temperature of 1250° C. that was a reheating temperature and maintained for one minute. After that, a tension test was performed. After the tests, a reduction of area (RA) of specimen was measured and shown in Table 5.
  • TABLE 5
    Reduction of Reduction of Reduction of
    Reduction of area at area at area at
    area at 900° C. 1000° C. 1100° C. 1200° C.
    Inventive 70 72 84 89
    Steel 1
    Inventive 69 78 82 92
    Steel 2
    Inventive 76 82 85 91
    Steel 3
    Inventive 62 65 72 80
    Steel 4
    Inventive 73 78 83 93
    Steel 5
    Inventive 77 75 80 91
    Steel 6
    Comparative 50 60 62 83
    Steel 1
    Comparative 49 57 60 76
    Steel 2
    Comparative 49 57 60 76
    Steel 3
    Comparative 77 81 88 81
    Steel 4
  • As shown in Tables 1 and 2, in the case of Inventive Steels 1 to 6, a value of Mn3/S was 4.6 or more, red shortness due to forming of low melting point FeS was restrained, and also, a value of B/N was 2.0 or more, an effect of strengthening austenite grain boundaries was capable being obtained. Accordingly, it was possible to obtain hot ductility with a reduction of area of 70% when performing high temperature tensile tests at 900° C. or more. Therefore, a possibility of occurrence of defects on a surface such as corner cracks was very low.
  • On the other hand, as in the case of Comparative Steel 1, when a value of Mn3/S was 4.6 or more but a value of B/N was less than 2.0, since B in steel was generally precipitated and it was impossible to strengthen grain boundaries enough, a reduction of area less than 60% at a temperature of 900° C. was shown. Also, as in the case of Comparative Steel 2, when a value of Mn3/S was less than 4.6 and a value of B/N was less than 2.0, hot ductility was shown as lower than that of Comparative Steel 1.
  • As described above, according to an exemplary embodiment of the present invention, there is provided eco-friendly Pb-free free cutting steel capable of providing excellent machinability by restraining tool abrasion that may be shown in cutting processes at a speed regardless of high or low speed by controlling contents of B, Sn, Mn, S, and N at appropriate relational expressions and forming low melting point composite oxides, and having excellent hot workability by adding elements such as Mn and B at optimum ratios.

Claims (6)

1. A Pb-free free cutting steel comprising 0.03 to 0.30 wt % of carbon (C), 0.01 to 0.30 wt % of silicon (Si), 0.2 to 2.0 wt % of manganese (Mn), 0.02 to 0.10 wt % of phosphorus (P), 0.06 to 0.45 wt % of sulfur (S), 0.04 to 0.20 wt % of bismuth (Bi), 0.04 to 0.20 wt % of tin (Sn), 0.001 to 0.015 wt % of boron (B), 0.001 to 0.010 wt % of nitrogen (N), 0.002 to 0.025 wt % of total oxygen (T[0]), and residual Fe, and unavoidable impurities,
wherein S, Bi, S, B, and N satisfy one or more relationships selected from a group consisting of following Relational Expressions 1 to 3,
( Bi + Sn + S ) Mn 0.4 , Relational Expression 1 Mn 3 S 4.6 , Relational Expression 2 and B N 2.0 . Relational Expression 3
2. A Pb-free free cutting steel comprising 0.03 to 0.30 wt % of C, 0.01 to 0.30 wt % of Si, 0.2 to 2.0 wt % of Mn, 0.02 to 0.10 wt % of P, 0.06 to 0.45 wt % of S, 0.04 to 0.20 wt % of Bi, 0.04 to 0.20 wt % of Sn, 0.001 to 0.015 wt % of B, 0.001 to 0.010 wt % of N, 0.002 to 0.025 wt % of T[0], and residual Fe, and unavoidable impurities,
wherein the steel comprises one of MnO—SiO2—Al2O3-based oxide, CaO—SiO2—Al2O3-based oxide, and composite oxides with a low melting point, which is a mixture of the MnO—SiO2—Al2O3-based oxide and the CaO—SiO2—Al2O3-based oxide.
3. The steel of claim 2, wherein the MnO—SiO2—Al2O3-based oxide is formed of 20 to 65 wt % of MnO, 25 to 60 wt % of Si02, and 0 to 30 wt % of Al2O3.
4. The steel of claim 2, wherein the CaO—SiO2—Al2O3-based oxide is formed of 10 to 55 wt % of CaO, 35 to 65 wt % of SiO2, and 0 to 25 wt % of Al2O3.
5. The steel of claim 2, wherein there are five or more of the composite oxides with a low melting point in 5 g of a steel wire rod.
6. The steel of claim 2, wherein the S, Bi, S, B, and N satisfy one or more relationships selected from a group consisting of following Relational Expressions 1 to 3,
( Bi + Sn + S ) Mn 0.4 , Relational Expression 1 Mn 3 S 4.6 , Relational Expression 2 and B N 2.0 . Relational Expression 3
US12/520,884 2006-12-28 2007-12-27 Eco-friendly pb-free free cutting steel with excellent machinability and hot workability Abandoned US20100092330A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR1020060137003A KR100825566B1 (en) 2006-12-28 2006-12-28 Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
KR10-2006-0137003 2006-12-28
KR1020070104423A KR100979058B1 (en) 2007-10-17 2007-10-17 Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
KR10-2007-0104423 2007-10-17
PCT/KR2007/006883 WO2008082153A1 (en) 2006-12-28 2007-12-27 Eco-friendly pb-free free cutting steel with excellent machinability and hot workability

Publications (1)

Publication Number Publication Date
US20100092330A1 true US20100092330A1 (en) 2010-04-15

Family

ID=39588763

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/520,884 Abandoned US20100092330A1 (en) 2006-12-28 2007-12-27 Eco-friendly pb-free free cutting steel with excellent machinability and hot workability

Country Status (3)

Country Link
US (1) US20100092330A1 (en)
JP (1) JP5241734B2 (en)
WO (1) WO2008082153A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150369322A1 (en) * 2013-01-15 2015-12-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Si-killed steel wire rod having excellent fatigue properties, and spring using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052036A1 (en) 2009-11-05 2011-05-12 Buderus Edelstahl Band Gmbh Lead-free free-cutting steel
KR101259271B1 (en) * 2010-12-23 2013-04-29 주식회사 포스코 Method for manufacturing groove-rolling free cutting steel billet
RU2503737C1 (en) * 2012-08-06 2014-01-10 Закрытое акционерное общество "Омутнинский металлургический завод" Free-machining bismuth-containing steels
JP6844943B2 (en) * 2015-06-01 2021-03-17 日本製鉄株式会社 Non-microalloyed steel for induction hardening

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783728B2 (en) * 2001-06-08 2004-08-31 Daido Steel Co., Ltd. Free-cutting steel for machine structural use having good machinability in cutting by cemented carbide tool
US20050025658A1 (en) * 2003-08-01 2005-02-03 Sumitomo Metal Industries, Ltd. Low-carbon free cutting steel
US7488396B2 (en) * 2002-11-15 2009-02-10 Nippon Steel Corporation Superior in machinability and method of production of same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933662B2 (en) * 1976-10-27 1984-08-17 住友金属工業株式会社 Steel wire rod with excellent machinability
JPH03240931A (en) * 1990-02-15 1991-10-28 Nkk Corp Steel for machine structural use excellent in machinability
JP2848497B2 (en) * 1990-03-07 1999-01-20 大同特殊鋼株式会社 Cross roll processing method for BN-containing free-cutting steel
JPH10158781A (en) * 1996-12-02 1998-06-16 Kobe Steel Ltd Free cutting steel excellent in cemented carbide tool life
JP2001329335A (en) * 2000-05-16 2001-11-27 Kobe Steel Ltd Low carbon sulfur based bn free cutting steel excellent in hot ductility
JP2004068066A (en) * 2002-08-05 2004-03-04 Sanyo Special Steel Co Ltd Case hardened steel superior in machinability and pitting resistance
JP4348164B2 (en) * 2002-11-15 2009-10-21 新日本製鐵株式会社 Steel with excellent machinability
JP4264329B2 (en) * 2002-11-15 2009-05-13 新日本製鐵株式会社 Steel with excellent machinability
JP4359548B2 (en) * 2004-09-22 2009-11-04 Jfe条鋼株式会社 BN free cutting steel
JP4451808B2 (en) * 2005-04-15 2010-04-14 株式会社神戸製鋼所 Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP4546917B2 (en) * 2005-11-28 2010-09-22 新日本製鐵株式会社 Free-cutting steel with excellent hot ductility
KR20070067792A (en) * 2005-12-23 2007-06-29 주식회사 포스코 Eco-friendly pb-free free cutting steel with excellent machinability
AU2007326255B2 (en) * 2006-11-28 2010-06-24 Nippon Steel Corporation Free-cutting steel excellent in manufacturability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6783728B2 (en) * 2001-06-08 2004-08-31 Daido Steel Co., Ltd. Free-cutting steel for machine structural use having good machinability in cutting by cemented carbide tool
US7488396B2 (en) * 2002-11-15 2009-02-10 Nippon Steel Corporation Superior in machinability and method of production of same
US20050025658A1 (en) * 2003-08-01 2005-02-03 Sumitomo Metal Industries, Ltd. Low-carbon free cutting steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150369322A1 (en) * 2013-01-15 2015-12-24 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Si-killed steel wire rod having excellent fatigue properties, and spring using same

Also Published As

Publication number Publication date
WO2008082153A1 (en) 2008-07-10
JP2010514929A (en) 2010-05-06
JP5241734B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
AU2005264481B2 (en) Steel for steel pipe
CN111032899B (en) Steel material for carburized bearing component
US8535459B2 (en) Steel material for hardening
KR100683923B1 (en) Steel excellent in machinability
EP2006406B1 (en) High-strength pearlite rail with excellent delayed-fracture resistance
KR101492782B1 (en) Steel sheet
KR20030066448A (en) Low-carbon free cutting steel
US20100092330A1 (en) Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
US7014812B2 (en) Sulfur-containing free-cutting steel for machine structural use
CN101578383B (en) Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
JPH0253506B2 (en)
JP2655911B2 (en) Linepipe steel with excellent hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance
KR100940715B1 (en) Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
WO2018212196A1 (en) Steel and component
KR20070067792A (en) Eco-friendly pb-free free cutting steel with excellent machinability
JP4964060B2 (en) Mechanical structural steel and mechanical structural parts with excellent strength anisotropy and machinability
KR100833034B1 (en) Eco-friendly pb-free free cutting steel with excellent hot ductility and method for manufacturing the same
JP2000144333A (en) High hardness high speed tool steel by melting
KR100979058B1 (en) Eco-friendly pb-free free cutting steel with excellent machinability and hot workability
JP2712666B2 (en) High yield ratio martensitic stainless steel
SU1397529A1 (en) Alloy for deoxidizing and alloying steel
JPH0610091A (en) High strength hot forged non-refined product excellent in machinability
JPH083681A (en) Steel for machine structural use, excellent in cold workability
KR20090061403A (en) Composition for manufacturing annulus gear

Legal Events

Date Code Title Description
AS Assignment

Owner name: POSCO,KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, HYONG JIK;SHIM, SANG CHUL;REEL/FRAME:022861/0241

Effective date: 20090610

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION