US20100090734A1 - Wide dynamic range charge pump - Google Patents

Wide dynamic range charge pump Download PDF

Info

Publication number
US20100090734A1
US20100090734A1 US12/249,915 US24991508A US2010090734A1 US 20100090734 A1 US20100090734 A1 US 20100090734A1 US 24991508 A US24991508 A US 24991508A US 2010090734 A1 US2010090734 A1 US 2010090734A1
Authority
US
United States
Prior art keywords
output
ibp
pfd
phd
charge pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/249,915
Other versions
US7692458B1 (en
Inventor
Mehmet Mustafa Eker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MACOM Connectivity Solutions LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/249,915 priority Critical patent/US7692458B1/en
Assigned to APPLIED MICRO CIRCUITS CORPORATION reassignment APPLIED MICRO CIRCUITS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EKER, MEHMET
Application granted granted Critical
Publication of US7692458B1 publication Critical patent/US7692458B1/en
Publication of US20100090734A1 publication Critical patent/US20100090734A1/en
Assigned to MACOM CONNECTIVITY SOLUTIONS, LLC reassignment MACOM CONNECTIVITY SOLUTIONS, LLC MERGER AND CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: APPLIED MICRO CIRCUITS CORPORATION, MACOM CONNECTIVITY SOLUTIONS, LLC
Assigned to GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT reassignment GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MACOM CONNECTIVITY SOLUTIONS, LLC (SUCCESSOR TO APPLIED MICRO CIRCUITS CORPORATION)
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • H03L7/0895Details of the current generators
    • H03L7/0896Details of the current generators the current generators being controlled by differential up-down pulses
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/085Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal
    • H03L7/089Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses
    • H03L7/0891Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump
    • H03L7/0893Details of the phase-locked loop concerning mainly the frequency- or phase-detection arrangement including the filtering or amplification of its output signal the phase or frequency detector generating up-down pulses the up-down pulses controlling source and sink current generators, e.g. a charge pump the up-down pulses controlling at least two source current generators or at least two sink current generators connected to different points in the loop

Definitions

  • This invention generally relates to phase-locked loop (PLL) circuitry and, more particularly, to a wide dynamic range charge pump for use in a PLL.
  • PLL phase-locked loop
  • FIG. 1 is a schematic diagram of a conventional charge pump and loop filter (prior art).
  • the charge pump 100 and loop filter 102 are interposed between a phase detector (PHD) or phase/frequency detector (PFD) 104 and a voltage controlled oscillator (VCO), not shown.
  • PLD phase detector
  • PFD phase/frequency detector
  • VCO voltage controlled oscillator
  • the common mode feedback (CMF) circuitry is not depicted.
  • the advantage of this circuit is its simplicity. In less critical applications, such as those in which there is no restriction on the maximum loop bandwidth and/or jitter transfer peaking, the circuit is easily implemented.
  • the disadvantage is that the circuit does not permit the independent adjustment of loop bandwidth and jitter transfer peaking. That is, the loop bandwidth and the jitter transfer peaking can not be optimized independently.
  • FIG. 2 is a schematic diagram of a charge pump and loop filter that circumvents the problems associated with the circuit of FIG. 1 (prior art). Since there are 2 separate current outputs (I a and I b ), the jitter transfer peaking and the loop bandwidth can be adjusted independently. The current, I a , controls the jitter transfer peaking only, and the current, I b , controls the loop bandwidth as well as the peaking. However, after the loop bandwidth is set, the peaking can be re-adjusted by I a without changing the set bandwidth.
  • the unity gain buffer is an operational amplifier (op amp) in the voltage-follower configuration. There is really no better unity gain alternative. In the latest technologies, supply voltages are as low as 1.2V. The output of the op amp needs to swing as large as its input, and still maintain a high enough open loop gain so that the close loop gain will be no less than 0.85 worst-case (a reasonable design target). These requirements restrict the driving capability of the output stage.
  • I b must be larger than the op amp can drive, the loop bandwidth can no longer be controlled properly.
  • a charge pump and loop filter are presented that address the issues associated with the circuit in FIG. 2 .
  • the present invention circuit provides greater symmetric and wider dynamic range than the circuit of FIG. 2 .
  • the present invention circuit also has an increased loop bandwidth adjustment range.
  • a method for controlling current in a wide dynamic range charge pump in a phase-locked loop (PLL) circuit.
  • the method provides a PLL including a phase/frequency detector, a charge pump, and a voltage controlled oscillator (VCO).
  • the charge pump includes a first, second, and third set of current sources. Each set includes a top source connected to a first reference voltage and a top signal input, and an output to supply current responsive to a top signal.
  • Each set also includes a bottom source connected to the top source output and a bottom signal input, and an output connected to a second reference voltage, different than the first reference voltage, to supply current in response to a bottom signal.
  • the charge pump further includes a first capacitor having an input connected to the first set top source output, and an output connected to the second reference voltage.
  • a first operational amplifier (op amp) has an input connected to the first set top source output, and an output connected to the second set top source output and to a voltage controlled oscillator (VCO) input through a first resistor.
  • the first resistor has a first end connected to the first op amp output and a second end connected to the third set top source output.
  • a second capacitor has an input connected to the first resistor second end, and an output connected to the second reference voltage.
  • the method receives a phase detector/phase-frequency detector (PHD/PFD) first output as the top signal and a PHD/PFD second output as the bottom signal input.
  • a first current (Iap) is supplied from the top source output responsive to the difference between the top and bottom signal inputs.
  • the PHD/PFD first output is received as the bottom signal and the PHD/PFD second output as the top signal input.
  • a second current (Ibp 2 ) is supplied from the top source output responsive to the difference between the top and bottom signal inputs.
  • the PHD/PFD first output is received as the top signal and the PHD/PFD second output as the bottom signal input, and a third current (Ibp 1 ) is supplied from the top source output response to the difference between the top and bottom signal inputs.
  • FIG. 1 is a schematic diagram of a conventional charge pump and loop filter (prior art).
  • FIG. 2 is a schematic diagram of a charge pump and loop filter that circumvents the problems associated with the circuit of FIG. 1 (prior art).
  • FIG. 3 is a schematic diagram of a wide dynamic range charge pump.
  • FIG. 4 is a schematic diagram of a wide dynamic range charge pump enabled with differential output voltages.
  • FIG. 5 is a flowchart illustrating a method for controlling current in a wide dynamic range charge pump, in a PLL circuit.
  • FIG. 3 is a schematic diagram of a wide dynamic range charge pump.
  • the charge pump 300 may also be referred to as a combination charge pump and loop filter.
  • the charge pump 300 comprises a first set of current sources 302 a , a second set of current sources 302 b , and a third set of current sources 302 c .
  • Many current source designs are well known in the art that would be suitable to enable the charge pump 300 .
  • Each set 302 comprises a top source 304 connected to a first reference voltage on line 306 and a top signal input on line 308 , and an output on line 310 to supply current responsive to a top signal.
  • Each set also includes a bottom source 312 connected to the top source output on line 310 and a bottom signal input on line 314 , and an output on line 316 connected to a second reference voltage, different than the first reference voltage, to supply current in response to a bottom signal.
  • the first reference voltage may be a positive DC voltage and the second reference voltage may be ground.
  • a first capacitor 318 has an input connected to the first set top source output on line 310 a , and an output connected to the second reference voltage on line 316 .
  • a first operational amplifier (op amp) 320 has an input connected to the first set top source output on line 310 a , and an output connected to the second set top source output on line 310 b .
  • the first op amp 320 is a unity-gain op amp (unity gain buffer).
  • a first resistor 322 has a first end connected to the first op amp output on line 310 b and a second end connected to the third set top source output on line 310 c .
  • a second capacitor 324 having an input connected to the first resistor second end on line 310 c , and an output connected to the second reference voltage on line 316 .
  • the first set 302 a receives a phase detector/phase-frequency detector (PHD/PFD) first output as the top signal on line 308 a and a PHD/PFD second output as the bottom signal input 314 a , to supply a first current (Iap) from the top source output on line 310 a in response to the difference between the top and bottom signal inputs.
  • PHD/PFD 325 can be a Hogge, Bang Bang, or any type of phase or frequency detector known in the art.
  • the second set 302 b receives the PHD/PFD first output as the bottom signal on line 314 b and the PHD/PFD second output as the top signal input on line 308 b , to supply a second current (Ibp 2 ) from the top source output on line 310 b in response to the difference between the top and bottom signal inputs.
  • the third set 302 c receives the PHD/PFD first output as the top signal on line 308 c and the PHD/PFD second output as the bottom signal input on line 314 c , to supply a third current (Ibp 1 ) from the top source output on line 310 c (Vout) in response to the difference between the top and bottom signal inputs.
  • the first set 302 a supplies a first average value of Iap on line 310 a .
  • the second set 302 b and third set 302 c supply currents Ibp 2 and Ibp 1 , respectively, each having a second average value greater than the first average value.
  • the average value sum of Ibp 1 and Ibp 2 is approximately zero. Further, the sum of the Ibp 1 and Ibp 2 instantaneous values at any particular time is approximately zero.
  • Vout on line 310 c may be connected to a VCO, with the VCO, PHD/PFD 325 , and charge pump 300 being components in a PLL.
  • FIG. 4 is a schematic diagram of a wide dynamic range charge pump enabled with differential output voltages.
  • the charge pump 400 of FIG. 4 includes all the components of FIG. 3 .
  • differential charge pump 400 comprises a fourth set of current sources 302 d, a fifth set of current sources 302 e, and sixth set of current sources 302 f.
  • Each current set is defined as above in the explanation of the charge pump of FIG. 3 , with a top source 304 and a bottom source 312 .
  • a third capacitor 400 has an input connected to the fourth set top source output on line 310 d, and an output connected to the second reference voltage on line 316 .
  • a second op amp 402 has an input connected to the fourth set top source output on line 310 d, and an output connected to the fifth set top source output on line 310 e.
  • the second op amp 402 is a unity-gain op amp.
  • a second resistor 404 has a first end connected to the second op amp output on line 310 e and a second end connected to the sixth set top source output on line 310 f.
  • a fourth capacitor 406 has an input connected to the second resistor second end on line 310 f, and an output connected to the second reference voltage on line 316 .
  • the fourth set 302 d receives a PHD/PFD first differential output (Un) as the top signal on line 308 d and a PHD/PFD second differential output as the bottom signal input on line 314 d, to supply a fourth current (Ian) from the top source output on line 310 d in response to the difference between the top and bottom signal inputs.
  • the PHD/PFD first differential output signal Un on line 308 d is a differential signal with respect to the PHD/PFD first output signal (Up) on line 308 a .
  • the PHD/PFD second differential output signal Dn on line 314 d is a differential signal with respect to the PHD/PFD second output signal (Dp) on line 314 a.
  • the fifth set 302 e receives the PHD/PFD first differential output as the bottom signal on line 314 e and the PHD/PFD second differential output as the top signal input on line 308 e, to supply a fifth current (Ibn 2 ) from the top source output on line 310 e in response to the difference between the top and bottom signal inputs.
  • the sixth set 302 f receives the PHD/PFD first differential output as the top signal on line 308 f and the PHD/PFD second differential output as the bottom signal input on line 314 f, to supply a sixth current (Ibn 1 ) from the top source output in response to the difference between the top and bottom signal inputs.
  • the fourth set 302 d supplies an average value of Ian.
  • the fifth set 302 e and the sixth set 302 f supply currents Ibn 2 and Ibn 1 , respectively, each an average value greater than the first average value.
  • the average value sum of Ibn 1 and Ibn 2 is approximately zero.
  • the sum of the Ibn 1 and Ibn 2 instantaneous values at any particular time is approximately zero. That is, the Ibn 1 and Ibn 2 currents will always have the same (opposite) magnitude.
  • Iap
  • Vout P on line 310 c and Vout N on line 310 f may be connected to a VCO with differential inputs, with the VCO, PHD/PFD 325 , and charge pump 400 being components in a PLL.
  • Ibp 1 Assuming that the Up output of the PHD/PFD 325 is wider than the Dp output, more Ibp 1 is generated in average, pumping into resistor 322 on line 310 c . Since Ibp 2 is generated the same way as Ibp 1 but in the opposite direction, Ibp 1 flows through first resistor 322 and sinks through Ibp 2 , without going into the first op amp 320 . Therefore, op amp 320 need not sink this current.
  • Ibn 1 Ibp 1 .
  • Ibn 1 is flowing away from second resistor 404
  • Ibp 1 is flowing into resistor 322 . Since the charge pump current source control inputs are switched, Ibn 2 is out of phase with Ibn 1 at any instant, but is of the same absolute magnitude. As Ibn 1 flows out of resistor 404 , Ibn 2 flows into it. Thus, there is no need for op amp 402 to provide current.
  • Ibn 1 has the same magnitude and the same current flow direction as Ibp 2 , its phase may differ from Ibp 2 , depending on the type of phase detector used.
  • the instantaneous phases of Ibp 1 and Ibp 2 are exactly 180° different, so that they have opposite current flow directions at all times. Equivalently, the instantaneous phases of Ibn 1 and Ibn 2 are 180° different at any instant.
  • the op amp output drive is effectively increased only in instances when its load demands (or pumps) more current.
  • the op amps behave more like an ideal buffer (voltage source output). Since the op amps are no longer a limiting factor in the charge pump design, Ib can be set to the values that are beyond the op amp output's internal bias current level. Therefore, the loop bandwidth can be adjusted as far as it is practical without the risk of saturating the unity gain buffer.
  • the PHD (PFD or any other detector) outputs are at the same level going into the current sources.
  • the voltage averaging occurs at the output of the current sources.
  • the PHD/PFD outputs continuously turn on and off the current sources they are driving, causing an average voltage build up across the capacitances at the outputs of current sources in the process. This average voltage build up is proportional to the phase difference between PHD inputs.
  • each set of current sources can generate different values of currents from the same PHD (or PFD) output.
  • the current (Ia) is typically much smaller than the currents (Ib 1 ) and (Ib 2 ), and the currents (Ib 1 ) and (Ib 2 ) are typically of the same magnitude, but opposite in direction.
  • FIG. 5 is a flowchart illustrating a method for controlling current in a wide dynamic range charge pump, in a PLL circuit. Although the method is depicted as a sequence of numbered steps for clarity, the numbering does not necessarily dictate the order of the steps. It should be understood that some of these steps may be skipped, performed in parallel, or performed without the requirement of maintaining a strict order of sequence.
  • the method starts at Step 500 .
  • Step 502 provides a PLL including a phase/frequency detector, a charge pump, and a voltage controlled oscillator (VCO).
  • the charge pump includes a first, second, and third set of current sources. Each set includes a top source connected to a first reference voltage and a top signal input, and an output to supply current responsive to a top signal. Each set also includes a bottom source connected to the top source output and a bottom signal input, and an output connected to a second reference voltage, different than the first reference voltage, to supply current in response to a bottom signal.
  • the charge pump further includes a first capacitor having an input connected to the first set top source output, and an output connected to the second reference voltage.
  • a first operational amplifier has an input connected to the first set top source output, and an output connected to the second set top source output and to a voltage controlled oscillator (VCO) input.
  • a first resistor has a first end connected to the first op amp output and a second end connected to the third set top source output.
  • a second capacitor has an input connected to the first resistor second end, and an output connected to the second reference voltage.
  • Step 504 the first set receives a phase detector/phase-frequency detector (PHD/PFD) first output as the top signal and a PHD/PFD second output as the bottom signal input.
  • Step 506 supplies a first current (Iap) from the top source output responsive to the difference between the top and bottom signal inputs.
  • the second set receives the PHD/PFD first output as the bottom signal and the PHD/PFD second output as the top signal input.
  • Step 510 supplies a second current (Ibp 2 ) from the top source output responsive to the difference between the top and bottom signal inputs.
  • the third set receives the PHD/PFD first output as the top signal and the PHD/PFD second output as the bottom signal input.
  • Step 514 supplies a third current (Ibp 1 ) from the top source output response to the difference between the top and bottom signal inputs.
  • Step 516 decreases PLL jitter transfer peaking in response to decreasing
  • Step 518 increases the PLL bandwidth in response to increasing
  • Step 520 decreases PLL jitter transfer peaking in response to increasing
  • a wide dynamic range charge pump has been provided. Particular circuit components and signals have been used to illustrate the invention. However, the invention is not necessarily limited to these exampled. Other variations and embodiments of the invention will occur to those skilled in the art.

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

A wide dynamic range charge pump is provided for use in a phase-locked loop (PLL) circuit. The charge pump includes a first, second, and third set of current sources. The charge pump further includes a first capacitor having an input connected to the first set. A first operational amplifier (op amp) has an input connected to the first set output, and an output connected to the second set output and to a voltage controlled oscillator (VCO) input. A first resistor has a first end connected to the first op amp output and a second end connected to the third set. A second capacitor has an input connected to the first resistor second end, and an output connected to the second reference voltage.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention generally relates to phase-locked loop (PLL) circuitry and, more particularly, to a wide dynamic range charge pump for use in a PLL.
  • 2. Description of the Related Art
  • FIG. 1 is a schematic diagram of a conventional charge pump and loop filter (prior art). The charge pump 100 and loop filter 102 are interposed between a phase detector (PHD) or phase/frequency detector (PFD) 104 and a voltage controlled oscillator (VCO), not shown. For simplicity, the common mode feedback (CMF) circuitry is not depicted. The advantage of this circuit is its simplicity. In less critical applications, such as those in which there is no restriction on the maximum loop bandwidth and/or jitter transfer peaking, the circuit is easily implemented. The disadvantage is that the circuit does not permit the independent adjustment of loop bandwidth and jitter transfer peaking. That is, the loop bandwidth and the jitter transfer peaking can not be optimized independently.
  • FIG. 2 is a schematic diagram of a charge pump and loop filter that circumvents the problems associated with the circuit of FIG. 1 (prior art). Since there are 2 separate current outputs (Ia and Ib), the jitter transfer peaking and the loop bandwidth can be adjusted independently. The current, Ia, controls the jitter transfer peaking only, and the current, Ib, controls the loop bandwidth as well as the peaking. However, after the loop bandwidth is set, the peaking can be re-adjusted by Ia without changing the set bandwidth.
  • One problem observed in the circuit of FIG. 2 is its inability to accommodate large values of Ib, which is limited by the driving capacity of the unity gain buffers 200 and 202. The difficulty arises from the fact that the unity gain buffer is an operational amplifier (op amp) in the voltage-follower configuration. There is really no better unity gain alternative. In the latest technologies, supply voltages are as low as 1.2V. The output of the op amp needs to swing as large as its input, and still maintain a high enough open loop gain so that the close loop gain will be no less than 0.85 worst-case (a reasonable design target). These requirements restrict the driving capability of the output stage. When Ib, must be larger than the op amp can drive, the loop bandwidth can no longer be controlled properly.
  • It would be advantageous if the charge pump of FIG. 2 could be modified to provide a more symmetric, wider dynamic range at its outputs, while increasing the loop bandwidth adjustment range.
  • SUMMARY OF THE INVENTION
  • A charge pump and loop filter are presented that address the issues associated with the circuit in FIG. 2. The present invention circuit provides greater symmetric and wider dynamic range than the circuit of FIG. 2. The present invention circuit also has an increased loop bandwidth adjustment range.
  • Accordingly, a method is provided for controlling current in a wide dynamic range charge pump in a phase-locked loop (PLL) circuit. The method provides a PLL including a phase/frequency detector, a charge pump, and a voltage controlled oscillator (VCO). The charge pump includes a first, second, and third set of current sources. Each set includes a top source connected to a first reference voltage and a top signal input, and an output to supply current responsive to a top signal. Each set also includes a bottom source connected to the top source output and a bottom signal input, and an output connected to a second reference voltage, different than the first reference voltage, to supply current in response to a bottom signal. The charge pump further includes a first capacitor having an input connected to the first set top source output, and an output connected to the second reference voltage. A first operational amplifier (op amp) has an input connected to the first set top source output, and an output connected to the second set top source output and to a voltage controlled oscillator (VCO) input through a first resistor. The first resistor has a first end connected to the first op amp output and a second end connected to the third set top source output. A second capacitor has an input connected to the first resistor second end, and an output connected to the second reference voltage.
  • The method receives a phase detector/phase-frequency detector (PHD/PFD) first output as the top signal and a PHD/PFD second output as the bottom signal input. A first current (Iap) is supplied from the top source output responsive to the difference between the top and bottom signal inputs. The PHD/PFD first output is received as the bottom signal and the PHD/PFD second output as the top signal input. A second current (Ibp2) is supplied from the top source output responsive to the difference between the top and bottom signal inputs. The PHD/PFD first output is received as the top signal and the PHD/PFD second output as the bottom signal input, and a third current (Ibp1) is supplied from the top source output response to the difference between the top and bottom signal inputs.
  • Additional details of the above-described method and a wide dynamic range charge pump circuit are provided below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of a conventional charge pump and loop filter (prior art).
  • FIG. 2 is a schematic diagram of a charge pump and loop filter that circumvents the problems associated with the circuit of FIG. 1 (prior art).
  • FIG. 3 is a schematic diagram of a wide dynamic range charge pump.
  • FIG. 4 is a schematic diagram of a wide dynamic range charge pump enabled with differential output voltages.
  • FIG. 5 is a flowchart illustrating a method for controlling current in a wide dynamic range charge pump, in a PLL circuit.
  • DETAILED DESCRIPTION
  • FIG. 3 is a schematic diagram of a wide dynamic range charge pump. The charge pump 300 may also be referred to as a combination charge pump and loop filter. The charge pump 300 comprises a first set of current sources 302 a, a second set of current sources 302 b, and a third set of current sources 302 c. Many current source designs are well known in the art that would be suitable to enable the charge pump 300. Each set 302 comprises a top source 304 connected to a first reference voltage on line 306 and a top signal input on line 308, and an output on line 310 to supply current responsive to a top signal. Each set also includes a bottom source 312 connected to the top source output on line 310 and a bottom signal input on line 314, and an output on line 316 connected to a second reference voltage, different than the first reference voltage, to supply current in response to a bottom signal. For example, the first reference voltage may be a positive DC voltage and the second reference voltage may be ground.
  • A first capacitor 318 has an input connected to the first set top source output on line 310 a, and an output connected to the second reference voltage on line 316. A first operational amplifier (op amp) 320 has an input connected to the first set top source output on line 310 a, and an output connected to the second set top source output on line 310 b. In one aspect, the first op amp 320 is a unity-gain op amp (unity gain buffer).
  • A first resistor 322 has a first end connected to the first op amp output on line 310 b and a second end connected to the third set top source output on line 310 c. A second capacitor 324 having an input connected to the first resistor second end on line 310 c, and an output connected to the second reference voltage on line 316.
  • The first set 302 a receives a phase detector/phase-frequency detector (PHD/PFD) first output as the top signal on line 308 a and a PHD/PFD second output as the bottom signal input 314 a, to supply a first current (Iap) from the top source output on line 310 a in response to the difference between the top and bottom signal inputs. The signals are supplied by PHD/PFD 325. PHD/PFD 325 can be a Hogge, Bang Bang, or any type of phase or frequency detector known in the art. The second set 302 b receives the PHD/PFD first output as the bottom signal on line 314 b and the PHD/PFD second output as the top signal input on line 308 b, to supply a second current (Ibp2) from the top source output on line 310 b in response to the difference between the top and bottom signal inputs.
  • The third set 302 c receives the PHD/PFD first output as the top signal on line 308 c and the PHD/PFD second output as the bottom signal input on line 314 c, to supply a third current (Ibp1) from the top source output on line 310 c (Vout) in response to the difference between the top and bottom signal inputs.
  • In one aspect, the first set 302 a supplies a first average value of Iap on line 310 a. The second set 302 b and third set 302 c supply currents Ibp2 and Ibp1, respectively, each having a second average value greater than the first average value. The average value sum of Ibp1 and Ibp2 is approximately zero. Further, the sum of the Ibp1 and Ibp2 instantaneous values at any particular time is approximately zero. In another aspect, |Iap|<|Ibp1| and |Iap|<|Ibp2|.
  • Although not shown, Vout on line 310 c may be connected to a VCO, with the VCO, PHD/PFD 325, and charge pump 300 being components in a PLL.
  • FIG. 4 is a schematic diagram of a wide dynamic range charge pump enabled with differential output voltages. The charge pump 400 of FIG. 4 includes all the components of FIG. 3. In addition, differential charge pump 400 comprises a fourth set of current sources 302 d, a fifth set of current sources 302 e, and sixth set of current sources 302 f. Each current set is defined as above in the explanation of the charge pump of FIG. 3, with a top source 304 and a bottom source 312.
  • A third capacitor 400 has an input connected to the fourth set top source output on line 310 d, and an output connected to the second reference voltage on line 316. A second op amp 402 has an input connected to the fourth set top source output on line 310 d, and an output connected to the fifth set top source output on line 310 e. Typically, the second op amp 402 is a unity-gain op amp. A second resistor 404 has a first end connected to the second op amp output on line 310 e and a second end connected to the sixth set top source output on line 310 f. A fourth capacitor 406 has an input connected to the second resistor second end on line 310 f, and an output connected to the second reference voltage on line 316.
  • The fourth set 302 d receives a PHD/PFD first differential output (Un) as the top signal on line 308 d and a PHD/PFD second differential output as the bottom signal input on line 314 d, to supply a fourth current (Ian) from the top source output on line 310 d in response to the difference between the top and bottom signal inputs. The PHD/PFD first differential output signal Un on line 308 d is a differential signal with respect to the PHD/PFD first output signal (Up) on line 308 a. Likewise, the PHD/PFD second differential output signal Dn on line 314 d is a differential signal with respect to the PHD/PFD second output signal (Dp) on line 314 a.
  • The fifth set 302 e receives the PHD/PFD first differential output as the bottom signal on line 314 e and the PHD/PFD second differential output as the top signal input on line 308 e, to supply a fifth current (Ibn2) from the top source output on line 310 e in response to the difference between the top and bottom signal inputs. The sixth set 302 f receives the PHD/PFD first differential output as the top signal on line 308 f and the PHD/PFD second differential output as the bottom signal input on line 314 f, to supply a sixth current (Ibn1) from the top source output in response to the difference between the top and bottom signal inputs.
  • The fourth set 302 d supplies an average value of Ian. The fifth set 302 e and the sixth set 302 f supply currents Ibn2 and Ibn1, respectively, each an average value greater than the first average value. The average value sum of Ibn1 and Ibn2 is approximately zero. The sum of the Ibn1 and Ibn2 instantaneous values at any particular time is approximately zero. That is, the Ibn1 and Ibn2 currents will always have the same (opposite) magnitude. Typically, |Ian|<|Ibn1| and |Ian|<|Ibn2|. Further, |Ian|=Iap|, |Ibp1|=|Ibn1|, and |Ibp2|=|bn2|.
  • Although not shown, VoutP on line 310 c and VoutN on line 310 f may be connected to a VCO with differential inputs, with the VCO, PHD/PFD 325, and charge pump 400 being components in a PLL.
  • Functional Description
  • Assuming that the Up output of the PHD/PFD 325 is wider than the Dp output, more Ibp1 is generated in average, pumping into resistor 322 on line 310 c. Since Ibp2 is generated the same way as Ibp1 but in the opposite direction, Ibp1 flows through first resistor 322 and sinks through Ibp2, without going into the first op amp 320. Therefore, op amp 320 need not sink this current.
  • At the VoutN output on line 310 f, the opposite happens, i.e. on average Ibn1=Ibp1. Note that Ibn1 is flowing away from second resistor 404, whereas Ibp1 is flowing into resistor 322. Since the charge pump current source control inputs are switched, Ibn2 is out of phase with Ibn1 at any instant, but is of the same absolute magnitude. As Ibn1 flows out of resistor 404, Ibn2 flows into it. Thus, there is no need for op amp 402 to provide current.
  • Even though Ibn1 has the same magnitude and the same current flow direction as Ibp2, its phase may differ from Ibp2, depending on the type of phase detector used. Typically, the instantaneous phases of Ibp1 and Ibp2 are exactly 180° different, so that they have opposite current flow directions at all times. Equivalently, the instantaneous phases of Ibn1 and Ibn2 are 180° different at any instant.
  • With this technique, the op amp output drive is effectively increased only in instances when its load demands (or pumps) more current. As a result, the op amps behave more like an ideal buffer (voltage source output). Since the op amps are no longer a limiting factor in the charge pump design, Ib can be set to the values that are beyond the op amp output's internal bias current level. Therefore, the loop bandwidth can be adjusted as far as it is practical without the risk of saturating the unity gain buffer.
  • For all practical applications, the PHD (PFD or any other detector) outputs are at the same level going into the current sources. The voltage averaging occurs at the output of the current sources. The PHD/PFD outputs continuously turn on and off the current sources they are driving, causing an average voltage build up across the capacitances at the outputs of current sources in the process. This average voltage build up is proportional to the phase difference between PHD inputs. However, each set of current sources can generate different values of currents from the same PHD (or PFD) output. The current (Ia) is typically much smaller than the currents (Ib1) and (Ib2), and the currents (Ib1) and (Ib2) are typically of the same magnitude, but opposite in direction.
  • FIG. 5 is a flowchart illustrating a method for controlling current in a wide dynamic range charge pump, in a PLL circuit. Although the method is depicted as a sequence of numbered steps for clarity, the numbering does not necessarily dictate the order of the steps. It should be understood that some of these steps may be skipped, performed in parallel, or performed without the requirement of maintaining a strict order of sequence. The method starts at Step 500.
  • Step 502 provides a PLL including a phase/frequency detector, a charge pump, and a voltage controlled oscillator (VCO). The charge pump includes a first, second, and third set of current sources. Each set includes a top source connected to a first reference voltage and a top signal input, and an output to supply current responsive to a top signal. Each set also includes a bottom source connected to the top source output and a bottom signal input, and an output connected to a second reference voltage, different than the first reference voltage, to supply current in response to a bottom signal. The charge pump further includes a first capacitor having an input connected to the first set top source output, and an output connected to the second reference voltage. A first operational amplifier has an input connected to the first set top source output, and an output connected to the second set top source output and to a voltage controlled oscillator (VCO) input. A first resistor has a first end connected to the first op amp output and a second end connected to the third set top source output. A second capacitor has an input connected to the first resistor second end, and an output connected to the second reference voltage.
  • In Step 504 the first set receives a phase detector/phase-frequency detector (PHD/PFD) first output as the top signal and a PHD/PFD second output as the bottom signal input. Step 506 supplies a first current (Iap) from the top source output responsive to the difference between the top and bottom signal inputs. In Step 508 the second set receives the PHD/PFD first output as the bottom signal and the PHD/PFD second output as the top signal input. Step 510 supplies a second current (Ibp2) from the top source output responsive to the difference between the top and bottom signal inputs. In Step 512 the third set receives the PHD/PFD first output as the top signal and the PHD/PFD second output as the bottom signal input. Step 514 supplies a third current (Ibp1) from the top source output response to the difference between the top and bottom signal inputs.
  • In one aspect, Step 516 decreases PLL jitter transfer peaking in response to decreasing |Iap|, for a constant value of Ibp. Alternately, Step 516 increases PLL jitter transfer peaking in response to increasing |Iap|, for a constant value of Ibp.
  • In another aspect, Step 518 increases the PLL bandwidth in response to increasing |Ibp|, for a constant value of Iap. Alternately, Step 518 decreases the PLL bandwidth in response to decreasing |Ibp|, for a constant value of Iap.
  • In another aspect, Step 520 decreases PLL jitter transfer peaking in response to increasing |Ibp|, for a constant value of Iap. Alternately, Step 520 increases PLL jitter transfer peaking in response to decreasing |Ibp|, for a constant value of Iap.
  • A wide dynamic range charge pump has been provided. Particular circuit components and signals have been used to illustrate the invention. However, the invention is not necessarily limited to these exampled. Other variations and embodiments of the invention will occur to those skilled in the art.

Claims (17)

1. A wide dynamic range charge pump comprising:
a first, second, and third set of current sources, each set comprising:
a top source connected to a first reference voltage and a top signal input, and an output to supply current responsive to a top signal; and,
a bottom source connected to the top source output and a bottom signal input, and an output connected to a second reference voltage, different than the first reference voltage, to
supply current in response to a bottom signal;
a first capacitor having an input connected to the first set top source output, and an output connected to the second reference voltage;
a first operational amplifier (op amp) having an input connected to the first set top source output, and an output connected to the second set top source output;
a first resistor having a first end connected to the first op amp output and a second end connected to the third set top source output;
a second capacitor having an input connected to the first resistor second end, and an output connected to the second reference voltage;
wherein the first set receives a phase detector/phase-frequency detector (PHD/PFD) first output as the top signal and a PHD/PFD second output as the bottom signal input, to supply a first current (Iap) from the top source output in response to the difference between the top and bottom signal inputs;
wherein the second set receives the PFD first output as the bottom signal and the PHD/PFD second output as the top signal input, to supply a second current (Ibp2) from the top source output in response to the difference between the top and bottom signal inputs; and,
wherein the third set receives the PHD/PFD first output as the top signal and the PHD/PFD second output as the bottom signal input, to supply a third current (Ibp1) from the top source output in response to the difference between the top and bottom signal inputs.
2. The charge pump of claim 1 wherein the first set supplies an average value of Iap; and,
wherein the second and third sets supply currents Ibp2 and Ibp1, respectively, each having an average value greater than the first average value.
3. The charge pump of claim 2 wherein the average value sum of Ibp1 and Ibp2 is approximately zero.
4. The charge pump of claim 3 wherein the sum of the Ibp1 and Ibp2 instantaneous values at any particular time is approximately zero.
5. The charge pump of claim 2 wherein |Iap|<|Ibp| and |Iap|<|Ibp2|.
6. The charge pump of claim 1 wherein the first op amp is a unity-gain op amp.
7. The charge pump of claim 1 further comprising:
a fourth, fifth, and sixth set of current sources, each set comprising:
a top source connected to the first reference voltage and a top signal input, and an output to supply current responsive to a top signal; and,
a bottom source connected to the top source output, and a bottom signal input, and an output connected to a second reference voltage, different than the first reference voltage, to supply current in response to a bottom signal;
a third capacitor having an input connected to the fourth set top source output, and an output connected to the second reference voltage;
a second op amp having an input connected to the fourth set top source output, and an output connected to the fifth set top source output;
a second resistor having a first end connected to the second op amp output and a second end connected to the sixth set top source output;
a fourth capacitor having an input connected to the second resistor second end, and an output connected to the second reference voltage;
wherein the fourth set receives a PHD/PFD first differential output as the top signal and a PHD/PFD second differential output as the bottom signal input, to supply a fourth current (Ian) from the top source output in response to the difference between the top and bottom signal inputs;
wherein the fifth set receives the PHD/PFD first differential output as the bottom signal and the PHD/PFD second differential output as the top signal input, to supply a fifth current (Ibn2) from the top source output in response to the difference between the top and bottom signal inputs; and,
wherein the sixth set receives the PHD/PFD first differential output as the top signal and the PHD/PFD second differential output as the bottom signal input, to supply a sixth current (Ibn1) from the top source output in response to the difference between the top and bottom signal inputs.
8. The charge pump of claim 7 wherein the fourth set supplies an average value of Ian; and,
wherein the fifth and sixth sets supply currents Ibn2 and Ibn1, respectively, each having an average value greater than the first average value.
9. The charge pump of claim 8 wherein the average value sum of Ibn1 and Ibn2 is approximately zero.
10. The charge pump of claim 9 wherein the sum of the Ibn1 and Ibn2 instantaneous values at any particular time is approximately zero.
11. The charge pump of claim 8 wherein |Ian|<|Ibn1| and |Ian|<|Ibn2|.
12. The charge pump of claim 7 wherein the second op amp is a unity-gain op amp.
13. The charge pump of claim 7 wherein |Ian|=|Iap|, |Ibp1|=|Ibn1|, and |Ibp2|=|Ibn2|.
14. In a phase-locked loop (PLL) circuit, a method for controlling current in a wide dynamic range charge pump, the method comprising:
providing a PLL including a phase/frequency detector, a charge pump, and a voltage controlled oscillator (VCO), wherein the charge pump includes:
a first, second, and third set of current sources, each set including:
a top source connected to a first reference voltage and a top signal input, and an output to supply current responsive to a top signal; and,
a bottom source connected to the top source output and a bottom signal input, and an output connected to a second reference voltage, different than the first reference voltage, to supply current in response to a bottom signal;
a first capacitor having an input connected to the first set top source output, and an output connected to the second reference voltage;
a first operational amplifier (op amp) having an input connected to the first set top source output, and an output connected to the second set top source output and to a voltage controlled oscillator (VCO) input;
a first resistor having a first end connected to the first op amp output and a second end connected to the third set top source output;
a second capacitor having an input connected to the first resistor second end, and an output connected to the second reference voltage;
at the first set, receiving a phase detector/phase-frequency detector (PHD/PFD) first output as the top signal and a PHD/PFD second output as the bottom signal input;
supplying a first current (Iap) from the top source output responsive to the difference between the top and bottom signal inputs;
at the second set, receiving the PHD/PFD first output as the bottom signal and the PHD/PFD second output as the top signal input;
supplying a second current (Ibp2) from the top source output responsive to the difference between the top and bottom signal inputs;
at the third set, receiving the PHD/PFD first output as the top signal and the PHD/PFD second output as the bottom signal input; and,
supplying a third current (Ibp1) from the top source output response to the difference between the top and bottom signal inputs.
15. The method of claim 14 further comprising:
for a constant value of Ibp, decreasing PLL jitter transfer peaking in response to decreasing |Iap|; and,
for a constant value of Ibp, increasing PLL jitter transfer peaking in response to increasing |Iap|.
16. The method of claim 14 further comprising:
for a constant value of Iap, increasing the PLL bandwidth in response to increasing |Ibp|; and,
for a constant value of lap, decreasing the PLL bandwidth in response to decreasing |Ibp|.
17. The method of claim 14 further comprising:
for a constant value of Iap, decreasing PLL jitter transfer peaking in response to increasing |Ibp|; and,
for a constant value of Iap, increasing PLL jitter transfer peaking in response to decreasing |Ibp|.
US12/249,915 2008-10-11 2008-10-11 Wide dynamic range charge pump Active 2028-12-17 US7692458B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/249,915 US7692458B1 (en) 2008-10-11 2008-10-11 Wide dynamic range charge pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/249,915 US7692458B1 (en) 2008-10-11 2008-10-11 Wide dynamic range charge pump

Publications (2)

Publication Number Publication Date
US7692458B1 US7692458B1 (en) 2010-04-06
US20100090734A1 true US20100090734A1 (en) 2010-04-15

Family

ID=42061315

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/249,915 Active 2028-12-17 US7692458B1 (en) 2008-10-11 2008-10-11 Wide dynamic range charge pump

Country Status (1)

Country Link
US (1) US7692458B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120062292A1 (en) * 2010-09-13 2012-03-15 Akihide Sai Phase-locked loop circuit and radio receiver
US8368443B1 (en) * 2012-01-17 2013-02-05 Himax Technologies Limited Differential charge pump circuit
US8829962B2 (en) * 2012-09-28 2014-09-09 Analog Devices, Inc. Sub-gate delay adjustment using digital locked-loop

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283468B1 (en) * 2009-11-19 2013-07-23 한국전자통신연구원 Loop filter and phase locked loop comprising the same
US9496880B1 (en) * 2015-08-14 2016-11-15 Qualcomm Incorporated Fully differential charge pump with switched-capacitor common-mode feedback
US10027333B2 (en) * 2016-11-18 2018-07-17 Stmicroelectronics International N.V. Phase locked loops having decoupled integral and proportional paths

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012425A1 (en) * 2002-07-17 2004-01-22 Wei-Chan Hsu Charge-pump phase-locked loop circuit with charge calibration
US20050052220A1 (en) * 2003-09-08 2005-03-10 Burgener Mark L. Low noise charge pump method and apparatus
US7082177B2 (en) * 2001-11-28 2006-07-25 Agere Systems Inc. Methods and devices for improving the switching times of PLLs
US7120217B2 (en) * 2000-10-10 2006-10-10 Atmel Germany Gmbh Phase-locked loop circuit
US7158600B2 (en) * 2002-04-04 2007-01-02 Texas Instruments Incorporated Charge pump phase locked loop

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7120217B2 (en) * 2000-10-10 2006-10-10 Atmel Germany Gmbh Phase-locked loop circuit
US7082177B2 (en) * 2001-11-28 2006-07-25 Agere Systems Inc. Methods and devices for improving the switching times of PLLs
US7158600B2 (en) * 2002-04-04 2007-01-02 Texas Instruments Incorporated Charge pump phase locked loop
US20040012425A1 (en) * 2002-07-17 2004-01-22 Wei-Chan Hsu Charge-pump phase-locked loop circuit with charge calibration
US20050052220A1 (en) * 2003-09-08 2005-03-10 Burgener Mark L. Low noise charge pump method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120062292A1 (en) * 2010-09-13 2012-03-15 Akihide Sai Phase-locked loop circuit and radio receiver
US8283957B2 (en) * 2010-09-13 2012-10-09 Kabushiki Kaisha Toshiba Phase-locked loop circuit and radio receiver
US8368443B1 (en) * 2012-01-17 2013-02-05 Himax Technologies Limited Differential charge pump circuit
TWI489781B (en) * 2012-01-17 2015-06-21 Himax Tech Ltd Differential charge pump circuit
US8829962B2 (en) * 2012-09-28 2014-09-09 Analog Devices, Inc. Sub-gate delay adjustment using digital locked-loop

Also Published As

Publication number Publication date
US7692458B1 (en) 2010-04-06

Similar Documents

Publication Publication Date Title
US7692458B1 (en) Wide dynamic range charge pump
US8542043B2 (en) High speed DLL offset cancellation
EP3556018B1 (en) Differential pll with charge pump chopping
US8063678B2 (en) Charge pump for phase locked loop
US7339438B2 (en) Phase and delay locked loops and semiconductor memory device having the same
US6903585B2 (en) Pulse width modulated common mode feedback loop and method for differential charge pump
US8207795B2 (en) Delay cell of ring oscillator and associated method
US6825730B1 (en) High-performance low-noise charge-pump for voltage controlled oscillator applications
US9570975B2 (en) Method and apparatus for charge leakage compensation for charge pump with leaky capacitive load
US7492197B2 (en) Charge pump circuit with regulated current output
TWI419451B (en) Charge pump circuit
US20020175722A1 (en) Clock generator for generating internal clock signal synchronized with reference clock signal
US10911053B2 (en) Phase locked loop design with reduced VCO gain
WO2008151435A1 (en) Bias generator providing for low power, self-biased delay element and delay line
US20110234273A1 (en) Method and apparatus for charge leakage compensation for charge pump
US8248121B2 (en) Phase lock loop and control method thereof
CN1983817A (en) Electric charge pump, phase-locking loop, method of regulating controlling current in electric charge pump and method of generating output signal
US7439783B2 (en) Phase-locked loop systems and methods
US20100207673A1 (en) Asymmetric charge pump and phase locked loops having the same
US20060119404A1 (en) Phase locked loop circuit
US8368443B1 (en) Differential charge pump circuit
JP4480547B2 (en) Charge pump circuit
US6873194B2 (en) Charge pump including a feedback device for use in a phase-locked loop
CN100353670C (en) differential electric charge pump
US6861898B2 (en) Loop filter and method for adjusting a compensating current of the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: APPLIED MICRO CIRCUITS CORPORATION,CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EKER, MEHMET;REEL/FRAME:021670/0950

Effective date: 20081010

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: MACOM CONNECTIVITY SOLUTIONS, LLC, MASSACHUSETTS

Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:APPLIED MICRO CIRCUITS CORPORATION;MACOM CONNECTIVITY SOLUTIONS, LLC;REEL/FRAME:042423/0700

Effective date: 20170126

AS Assignment

Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW Y

Free format text: SECURITY INTEREST;ASSIGNOR:MACOM CONNECTIVITY SOLUTIONS, LLC (SUCCESSOR TO APPLIED MICRO CIRCUITS CORPORATION);REEL/FRAME:042444/0891

Effective date: 20170504

Owner name: GOLDMAN SACHS BANK USA, AS COLLATERAL AGENT, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:MACOM CONNECTIVITY SOLUTIONS, LLC (SUCCESSOR TO APPLIED MICRO CIRCUITS CORPORATION);REEL/FRAME:042444/0891

Effective date: 20170504

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12