US20100064720A1 - Single Component Flat Panel Cooling Apparatus - Google Patents

Single Component Flat Panel Cooling Apparatus Download PDF

Info

Publication number
US20100064720A1
US20100064720A1 US12/620,896 US62089609A US2010064720A1 US 20100064720 A1 US20100064720 A1 US 20100064720A1 US 62089609 A US62089609 A US 62089609A US 2010064720 A1 US2010064720 A1 US 2010064720A1
Authority
US
United States
Prior art keywords
cooling apparatus
layer
single component
flat panel
panel cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/620,896
Inventor
Mark D. Fuchs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/110,179 external-priority patent/US7730739B2/en
Application filed by Individual filed Critical Individual
Priority to US12/620,896 priority Critical patent/US20100064720A1/en
Publication of US20100064720A1 publication Critical patent/US20100064720A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • F25D3/08Movable containers portable, i.e. adapted to be carried personally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2303/00Details of devices using other cold materials; Details of devices using cold-storage bodies
    • F25D2303/08Devices using cold storage material, i.e. ice or other freezable liquid
    • F25D2303/082Devices using cold storage material, i.e. ice or other freezable liquid disposed in a cold storage element not forming part of a container for products to be cooled, e.g. ice pack or gel accumulator
    • F25D2303/0822Details of the element
    • F25D2303/08222Shape of the element
    • F25D2303/08223Shape of the element having the shape of an ice cube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/06Details of walls not otherwise covered
    • F25D2323/061Collapsible walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/801Bags
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/803Bottles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2331/00Details or arrangements of other cooling or freezing apparatus not provided for in other groups of this subclass
    • F25D2331/80Type of cooled receptacles
    • F25D2331/805Cans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49359Cooling apparatus making, e.g., air conditioner, refrigerator

Definitions

  • the present invention relates to the field coolers and more specifically to a cooler with integrally constructed freezing and insulating components which can be flattened to less than three inches to be stored in a freezer in a flattened position.
  • FIG. 1 illustrates an exemplary embodiment of a plurality of single component flat cooling apparatuses in a flattened position and stacked in a residential-size freezer:
  • FIG. 2 illustrates an exemplary embodiment of a single component flat cooling apparatus in the non-flattened position.
  • FIG. 3 illustrates an exemplary embodiment of a single component flat panel cooling apparatus which has a pivotal top and pivotal bottom capable of being pivoted to a substantially flush position against a unitary freezing panel in a flattened position.
  • FIG. 4 illustrates the range of motion of pivotal top and pivotal bottom components capable of operating as the top and bottom of a structure and secured with a zipper component or moved to flush position against a unitary freezing panel in a flattened position.
  • FIG. 5 illustrates a side perspective view of an exemplary embodiment of a single component flat cooling apparatus in a flattened position for space-efficient storage within a freezer.
  • FIG. 6 illustrates a cross-sectional view of a integrally constructed insulating and freezing layers of single component flat cooling apparatus.
  • fluid refers to a substance used for cooling (creating ice or other frozen component).
  • fluid examples include water, water with additives, a gel solution (e.g., hydroxyethyl cellulose (CellusizeTM), vinyl-coated silica gel) or another substance or solution capable of providing a chilling effect on surrounding materials by absorbing heat.
  • a gel solution e.g., hydroxyethyl cellulose (CellusizeTM), vinyl-coated silica gel
  • another substance or solution capable of providing a chilling effect on surrounding materials by absorbing heat.
  • unitary freezing panel means a component of a cooling apparatus made up of a plurality of layers, including, but not limited to, freezing, reflective and/or insulating layers.
  • a flat panel may be comprised of multiple freezing and insulation layers, including but not limited to a fabric layer, an insulation layer, an inner reflective layer, a multi-channeled fluid layer and a polyethylene layer.
  • multi-channeled means having openings, lanes, spacing, etc. (horizontal or vertical) between structural components (e.g., freezing cubes, bubbles and/or pockets). Channels may be created by sewing, heat sealing, stamping, molding, machining and combinations thereof.
  • standard freezing time refers to a freezing process which occurs during a measurable time frame, e.g., the normal time frame for freezing of water.
  • panel insertion channel is a portion of a cooler which allows a component of a machine used for embellishment to be more easily used.
  • a panel insertion channel may be an extra panel of fabric attached to one or more unitary freezing panels of the cooling apparatus which allows for insertion of a component of an embroidery or silk screening machine.
  • anti-freeze fiber additive means an additive added to fibers of a layer, such as a fabric layer, insulation layer, reflective layer, fluid layer or any other layer, that makes it resistant to cracking when frozen.
  • an anti-freeze material may be added to fibers during the manufacturing process.
  • weight resistant zipper means a fastener that temporarily joins two edges of fabric and is capable of withstanding a substantial amount of weight.
  • a weight resistant zipper may be capable of joining two edges of fabric under 200 pounds of weight.
  • notched seam means a component which creates a seam by notching foam or other material.
  • bottom or “bottom surface” means the underside of a cooling apparatus.
  • top or “top surface” means the uppermost side of a cooling apparatus.
  • coolers There are many types of portable coolers known in the art, and in particular many coolers which collapse to facilitate storage. Most coolers have some sort of insulated sides to prevent rapid temperature change. Others utilize removable ice-pack components stored in and inserted within packets or into compartments of a cooler.
  • the average size of the freezer compartment in a top/bottom refrigerator/freezer is 4.1 cubic feet, which is not large enough to accommodate a cooler.
  • These freezer compartments generally have one or more shelves which limit the size of the items which the freezer can accommodate.
  • Side by side refrigerators/freezers generally have a larger size freezer, e.g., 9.9 cubic feet; however, they have multiple shelves which maximize the number of items that can be stored while limiting the size of the items.
  • Commercial coolers are also available; however, they are typically used to store other things.
  • Coolers known in the art are not specifically designed to be placed in a freezer without disassembly of components. Coolers with hard shells of molded plastic will accumulate frost if left in a freezer for an extended period and when removed from the freezer moisture will form on the outside of the cooler. Coolers having less-rigid vinyl sides are also susceptible to the formation of moisture when removed from a freezer and also to cracking when frozen.
  • Ice packs can also offer the ability to store freezing components in the limited space available in a residential-size freezer; however, they offer limited cooling capacity and must generally be inserted separately into coolers.
  • Ice packs are inserted into coolers requiring coolers to have several components which need to be removed when the cooler is not in use and re-inserted when a cooler is in use. Ice packs take up a lot of otherwise usable space within the interior of the cooler if they are not designed to compactly fit within the cooler.
  • U.S. Pat. No. 4,311,022 discloses an example of an ice pack.
  • the ice pack constructed of a plurality of separate compartments which are connected together through a webbing assembly allowing the ice pack to be folded into a variety of different shapes.
  • the ice pack must be stored in the freezer and separately inserted into the cooler and again removed after each use.
  • the ice packs can be stored in the freezer, but the cooler cannot be.
  • U.S. Pat. No. 5,490,396 (Morris '396).
  • Morris '396 teaches a collapsible cooler bag made of a flexible material.
  • a refrigerant gel is enclosed as a layer in between the inner and outer surfaces of the cooler bag.
  • the gel is flexible and the cooler itself are made of flexible material; therefore, the entire container may be compressed or folded in a relatively flat position in order to be easily placed in a freezer so that the gel can be frozen. This attempt is not satisfactory due to the amount of time required to freeze the refrigerant gel.
  • the refrigerant gel is contained within a single compartment inserted between layers and not divided into smaller compartments, which freeze faster.
  • McCrory '810 teaches a soft walled cooler composed of two quilted layers. Between these layers are a plurality of permanently attached gel pockets that can be frozen to aid in insulating and cooling the contents stored within.
  • the cooler is foldable in the areas of the walls that fall in between the gel pockets. This design is not desirable because the insulating layers slow down the freezing of the cubes. In addition, the cooler cannot be neatly folded into a flat configuration.
  • the present invention is a unitary cooling apparatus capable of being stored in a freezer and allows the cooling components to freeze in a normal freezing time despite the integral construction of both freezing and insulating components. Channels create circulation of frozen air and this effect is enhanced by reflective elements.
  • One embodiment of the apparatus includes a zipper component which extends along the edges of a top surface and bottom surface allowing the top and bottom to be pivoted outward or inward and the cooling apparatus flattened along the seams which connect the four unitary freezing panels.
  • a plurality of cube structures positioned along a plurality of channels allows rapid cooling using a minimum of frozen fluid.
  • the unitary freezing panels are comprised of a plurality of layers.
  • the outermost layer is a fabric layer.
  • Next to the fabric layer is an insulation layer followed by an inner reflective layer.
  • a multi-channeled fluid layer containing spaced apart cubes filled with fluid is sandwiched between the inner reflective layer and a polyethylene layer.
  • the polyethylene layer is sewn to the other layers along channels between sets of the cubes.
  • cooling apparatus When the cooling apparatus is in a flattened position, i.e., top and bottom pivoted flat against cooling apparatus folded along the seams, multiple flattened coolers can be stored in a small space, such as a standard-size freezer.
  • FIG. 1 illustrates an exemplary embodiment of unitary cooling apparatuses 100 a - 100 d stored in a flattened position in freezer 77 . As shown in FIG. 1 , unitary cooling apparatuses 100 a - 100 d are extremely space efficient.
  • FIG. 2 illustrates an exemplary embodiment of unitary cooling apparatus 100 with multi-channeled fluid layer 40 in an expanded position.
  • Cooling apparatus 100 is comprised of four unitary freezing panels 10 a - 10 d , top surface 20 and bottom surface 30 .
  • Each unitary freezing panel 10 a - 10 d has multi-channeled fluid layer 40 fixedly attached.
  • Multi-channeled fluid layer 40 is comprised of a plurality of spaced-apart cubes 45 filled with fluid.
  • cubes 45 are rectangular and are filled with purified water.
  • cubes 45 are of another shape, such as square, circular, or triangular and are filled with a fluid other than water, such as a gel solution.
  • Cooling apparatus 100 further includes zippers 50 a , 50 b .
  • Zipper 50 a runs along all four sides of top surface 20 and zipper 50 b runs along four sides of bottom surface 30 .
  • Top surface 20 and bottom surface 30 are attached to cooling apparatus 100 using fabric piece 18 a , 18 b (visible in FIG. 3 ) sewn over the zipper on one edge (i.e., top edge of unitary freezing panel 10 c and bottom edge of unitary freezing panel 10 c ).
  • Fabric piece 18 a , 18 b prevents top surface 20 and bottom surface 30 from being completely unzipped from cooling apparatus 100 and also allow top surface 20 and bottom surface 30 to be pivoted backward and flat.
  • top surface 20 and bottom surface 30 can be pivoted outward or inward and unitary freezing panels 10 a - 10 d can be folded along seams 15 b , 15 d (seams 15 a , 15 c will be flat) or along seams 15 a , 15 c (seams 15 b , 15 d will be flat) into a flat configuration.
  • cooling apparatus 100 When cooling apparatus 100 is in the collapsed flat configuration, it will easily fit in a standard freezer for freezing the fluid in cubes 45 or into a small space for storage.
  • cooling apparatus 100 further includes strap 60 .
  • Strap 60 may be fixedly attached to cooling apparatus 100 (e.g., sewn) or removably attached to cooling apparatus 100 (e.g., hook and loop fasteners or snaps).
  • Cooling apparatus 100 may further include an optional panel insertion channel.
  • cooling apparatus 100 may include an extra panel of fabric on unitary freezing panel 10 a which allows for easy embroidering or silk screening (plate slides between extra panel and fabric layer).
  • FIG. 3 illustrates an exemplary embodiment of unitary cooling apparatus 100 with multi-channeled fluid layer 40 in a collapsed position with top surface 20 and bottom surface 30 pivoted upward.
  • FIG. 4 illustrates an exemplary embodiment of unitary cooling apparatus 100 with multi-channeled fluid layer 40 in a collapsed position with top surface 20 and bottom surface 30 pivoted outward and cooling apparatus 100 folded along seams 15 b , 15 d so that seams 15 a , 15 c are flat.
  • FIG. 5 illustrates a side perspective view of an exemplary embodiment of unitary cooling apparatus 100 with multi-channeled fluid layer 40 in a collapsed position with top surface 20 (not visible) and bottom surface 30 pivoted backward.
  • zippers 50 a , 50 b are open, top surface 20 and bottom surface 30 are pivoted backward against unitary freezing panel 10 c and cooling apparatus 100 is folded along seams 15 b , 15 d (seams 15 a , 15 c are flat) into a collapsed position for placing in a freezer or for economical storage.
  • channels 44 a - 44 f between cubes 45 and seams 58 a - 58 d .
  • channels 44 a - 44 f run vertically between cubes 45 .
  • channels which run horizontally between cubes 45 are also channels which run horizontally between cubes 45 (not visible); therefore each cube 45 is spaced apart from the cubes surrounding it.
  • Multi-channeled fluid layer 40 manufactured in sheets of evenly spaced apart cubes 45 .
  • the sheets are cut to the desired size/number of cubes by cutting between the cubes in the channels.
  • unitary freezing panels 10 a , 10 c may contain four columns of five cubes for a total of twenty cubes and unitary freezing panels 10 b , 10 d may contain two columns of five cubes for a total of ten cubes.
  • Polyethylene layer 48 is placed over multi-channeled fluid layer 40 and sewn to inner reflective layer 40 (not labeled) along lanes 58 a , 58 b and at seams 15 a - 15 d.
  • Opening zippers 50 a , 50 b allows air to go flow through cooling apparatus 100 allowing for standard freezing time of cubes 15 .
  • the channels between cubes 45 also aid in the freezing of cubes 45 by exposing a greater surface area of cubes 45 to the cold air. In addition to being important for standard freezing time, the channels allow for flexibility in unitary freezing panels 10 a - 10 d even when cubes 45 are frozen.
  • FIG. 6 illustrates a cross-sectional view of unitary freezing panel 10 a of an exemplary embodiment of unitary cooling apparatus 100 with multi-channeled fluid layer 40 .
  • each unitary freezing panel 10 of cooling apparatus 100 is comprised of a fabric layer 56 , insulation layer 54 , inner reflective layer 52 , multi-channeled fluid layer 40 and polyethylene layer 48 .
  • unitary freezing panels 10 a - 10 d may be comprised of a larger or smaller number of layers.
  • fabric layer 56 is comprised of a nylon blend and is water resistant. Additives (“anti-freeze material”) are added to the fibers of the fabric during the manufacturing process which prevents the fabric from cracking when frozen. In other embodiments, fabric layer 56 may be comprised of another material or combination of materials that does not crack during freezing and remains flexible when frozen.
  • insulation layer 54 is comprised of notched foam. In other embodiments, insulation layer 54 is comprised of another type of foam or other insulating material known in the art (e.g., fiberglass, coat).
  • inner reflective layer 52 is comprised of PE-LD metalized polyethylene. Inner reflective layer 52 reflects cold air back into the interior of the cooler and slowing the passing of cold air through the side of the cooler. Inner reflective layer 52 reduces conductivity and slows molecules helping maintain a lower temperature inside cooling apparatus 100 . In other embodiments, inner reflective layer is made up of another type of reflective material, such as aluminum foil.
  • top surface 20 and bottom surface 30 may also include a reflective layer (not shown).
  • Multi-channeled fluid layer 40 is comprised of backing layer 46 and top layer 42 which is formed into cubes 45 .
  • backing layer 46 and top layer 42 are comprised of layers of LDPF polyester/nylon that is flexible and does not crack when frozen, is puncture resistant and reduces air flow (i.e., has limited porosity).
  • top layer 42 and backing layer 46 are comprised of another material with similar properties. This composition of layers allows for a normal freezing time despite the integral construction of both freezing and insulating components.
  • Multi-channeled fluid layer 40 is secured to inner reflective layer 52 , insulation layer 54 and fabric layer 56 by polyethylene layer 48 .
  • Polyethylene layer 48 is comprised of food grade, low density polyethylene which is placed over multi-channeled fluid layer 40 and is sewn to inner reflective layer 52 at lanes 58 a - 58 c.

Abstract

The present invention is a unitary cooling apparatus capable of standard freezing time despite heavy insulation. One embodiment of the apparatus includes a zipper component which extends along the edges of a top surface and bottom surface allowing the top and bottom to be pivoted outward or inward and the cooling apparatus flattened along the seams which connect the sides. A plurality of cube structures positioned along a plurality of channels allows rapid cooling using a minimum of frozen fluid.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part application that claims priority to U.S. application Ser. No. 11/110,179 filed on Apr. 20, 2005.
  • FIELD OF INVENTION
  • The present invention relates to the field coolers and more specifically to a cooler with integrally constructed freezing and insulating components which can be flattened to less than three inches to be stored in a freezer in a flattened position.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an exemplary embodiment of a plurality of single component flat cooling apparatuses in a flattened position and stacked in a residential-size freezer:
  • FIG. 2 illustrates an exemplary embodiment of a single component flat cooling apparatus in the non-flattened position.
  • FIG. 3 illustrates an exemplary embodiment of a single component flat panel cooling apparatus which has a pivotal top and pivotal bottom capable of being pivoted to a substantially flush position against a unitary freezing panel in a flattened position.
  • FIG. 4 illustrates the range of motion of pivotal top and pivotal bottom components capable of operating as the top and bottom of a structure and secured with a zipper component or moved to flush position against a unitary freezing panel in a flattened position.
  • FIG. 5 illustrates a side perspective view of an exemplary embodiment of a single component flat cooling apparatus in a flattened position for space-efficient storage within a freezer.
  • FIG. 6 illustrates a cross-sectional view of a integrally constructed insulating and freezing layers of single component flat cooling apparatus.
  • GLOSSARY
  • As used herein, the term “fluid” refers to a substance used for cooling (creating ice or other frozen component). Examples of fluid include water, water with additives, a gel solution (e.g., hydroxyethyl cellulose (Cellusize™), vinyl-coated silica gel) or another substance or solution capable of providing a chilling effect on surrounding materials by absorbing heat.
  • As used herein, the term “unitary freezing panel” means a component of a cooling apparatus made up of a plurality of layers, including, but not limited to, freezing, reflective and/or insulating layers. For example a flat panel may be comprised of multiple freezing and insulation layers, including but not limited to a fabric layer, an insulation layer, an inner reflective layer, a multi-channeled fluid layer and a polyethylene layer.
  • As used herein, the term “multi-channeled” means having openings, lanes, spacing, etc. (horizontal or vertical) between structural components (e.g., freezing cubes, bubbles and/or pockets). Channels may be created by sewing, heat sealing, stamping, molding, machining and combinations thereof.
  • As used herein, the term “standard freezing time” refers to a freezing process which occurs during a measurable time frame, e.g., the normal time frame for freezing of water.
  • As used herein, the term “panel insertion channel” is a portion of a cooler which allows a component of a machine used for embellishment to be more easily used. For example, a panel insertion channel may be an extra panel of fabric attached to one or more unitary freezing panels of the cooling apparatus which allows for insertion of a component of an embroidery or silk screening machine.
  • As used herein, the term “anti-freeze fiber additive” means an additive added to fibers of a layer, such as a fabric layer, insulation layer, reflective layer, fluid layer or any other layer, that makes it resistant to cracking when frozen. For example, an anti-freeze material may be added to fibers during the manufacturing process.
  • As used herein, the term “weight resistant zipper” means a fastener that temporarily joins two edges of fabric and is capable of withstanding a substantial amount of weight. For example, a weight resistant zipper may be capable of joining two edges of fabric under 200 pounds of weight.
  • As used herein, the term “notched seam” means a component which creates a seam by notching foam or other material.
  • As used herein, the term “bottom” or “bottom surface” means the underside of a cooling apparatus.
  • As used herein, the term “top” or “top surface” means the uppermost side of a cooling apparatus.
  • BACKGROUND
  • There are many types of portable coolers known in the art, and in particular many coolers which collapse to facilitate storage. Most coolers have some sort of insulated sides to prevent rapid temperature change. Others utilize removable ice-pack components stored in and inserted within packets or into compartments of a cooler.
  • The average size of the freezer compartment in a top/bottom refrigerator/freezer is 4.1 cubic feet, which is not large enough to accommodate a cooler. These freezer compartments generally have one or more shelves which limit the size of the items which the freezer can accommodate. Side by side refrigerators/freezers generally have a larger size freezer, e.g., 9.9 cubic feet; however, they have multiple shelves which maximize the number of items that can be stored while limiting the size of the items. Commercial coolers are also available; however, they are typically used to store other things.
  • Coolers known in the art are not specifically designed to be placed in a freezer without disassembly of components. Coolers with hard shells of molded plastic will accumulate frost if left in a freezer for an extended period and when removed from the freezer moisture will form on the outside of the cooler. Coolers having less-rigid vinyl sides are also susceptible to the formation of moisture when removed from a freezer and also to cracking when frozen.
  • Ice packs can also offer the ability to store freezing components in the limited space available in a residential-size freezer; however, they offer limited cooling capacity and must generally be inserted separately into coolers.
  • Because of the space constraints in freezers and the material from which coolers are constructed, ice packs are inserted into coolers requiring coolers to have several components which need to be removed when the cooler is not in use and re-inserted when a cooler is in use. Ice packs take up a lot of otherwise usable space within the interior of the cooler if they are not designed to compactly fit within the cooler.
  • For example, U.S. Pat. No. 4,311,022 (Hall '022) discloses an example of an ice pack. The ice pack constructed of a plurality of separate compartments which are connected together through a webbing assembly allowing the ice pack to be folded into a variety of different shapes. The ice pack must be stored in the freezer and separately inserted into the cooler and again removed after each use. The ice packs can be stored in the freezer, but the cooler cannot be.
  • There have been numerous attempts known in the art to create a cooler structure which can be stored in a freezer. One example is disclosed in U.S. Pat. No. 5,582,028 (Rilling '028). Rilling '028 teaches a cooling that is designed to be flexible and adjustable in a way that allows the user to fit the pack closely around a variety of different containers or objects that he or she is trying to keep cold. This cooling pack is also designed to be foldably compact, allowing it to be laid out flat or folded up to conserve storage space when the pack is not in use or being frozen. Although, the cooling device disclosed by Rilling '028 is foldable into a somewhat collapsible position, this attempt is not satisfactory because the cooling pack still requires the removal of one or more components before it is capable of being efficiently stored within a freezer.
  • Another example of a portable cooler with permanent frozen inserts is disclosed in U.S. Pat. No. 5,490,396 (Morris '396). Morris '396 teaches a collapsible cooler bag made of a flexible material. A refrigerant gel is enclosed as a layer in between the inner and outer surfaces of the cooler bag. The gel is flexible and the cooler itself are made of flexible material; therefore, the entire container may be compressed or folded in a relatively flat position in order to be easily placed in a freezer so that the gel can be frozen. This attempt is not satisfactory due to the amount of time required to freeze the refrigerant gel. The refrigerant gel is contained within a single compartment inserted between layers and not divided into smaller compartments, which freeze faster.
  • Another example of a portable cooler with permanent frozen inserts is disclosed in U.S. Pat. No. 7,302,810 (McCrory '810). McCrory '810 teaches a soft walled cooler composed of two quilted layers. Between these layers are a plurality of permanently attached gel pockets that can be frozen to aid in insulating and cooling the contents stored within. The cooler is foldable in the areas of the walls that fall in between the gel pockets. This design is not desirable because the insulating layers slow down the freezing of the cubes. In addition, the cooler cannot be neatly folded into a flat configuration.
  • It is desirable to have a cooling apparatus which includes freezing components that are not inhibited from rapid freezing and are not inhibited by the use of insulating layers.
  • It is further desirable to have an integrally constructed cooling apparatus which can be flattened and stored in a residential-size freezer, and is capable of rapid freezing when in a collapsed position.
  • It is further desirable to have an integrally constructed cooling apparatus that is less than two to three inches thick when folded to conserve freezer space.
  • It is further desirable to have an integrally constructed cooling apparatus which is specially designed to be inserted directly into a freezer.
  • SUMMARY OF THE INVENTION
  • The present invention is a unitary cooling apparatus capable of being stored in a freezer and allows the cooling components to freeze in a normal freezing time despite the integral construction of both freezing and insulating components. Channels create circulation of frozen air and this effect is enhanced by reflective elements.
  • One embodiment of the apparatus includes a zipper component which extends along the edges of a top surface and bottom surface allowing the top and bottom to be pivoted outward or inward and the cooling apparatus flattened along the seams which connect the four unitary freezing panels. A plurality of cube structures positioned along a plurality of channels allows rapid cooling using a minimum of frozen fluid.
  • The unitary freezing panels are comprised of a plurality of layers. The outermost layer is a fabric layer. Next to the fabric layer is an insulation layer followed by an inner reflective layer. A multi-channeled fluid layer containing spaced apart cubes filled with fluid is sandwiched between the inner reflective layer and a polyethylene layer. The polyethylene layer is sewn to the other layers along channels between sets of the cubes.
  • When the cooling apparatus is in a flattened position, i.e., top and bottom pivoted flat against cooling apparatus folded along the seams, multiple flattened coolers can be stored in a small space, such as a standard-size freezer.
  • DETAILED DESCRIPTION OF INVENTION
  • For the purpose of promoting an understanding of the present invention, references are made in the text to exemplary embodiments of a single component flat cooling apparatus with a multi-channeled fluid layer, only some of which are described herein. It should be understood that no limitations on the scope of the invention are intended by describing these exemplary embodiments. One of ordinary skill in the art will readily appreciate that alternate but functionally equivalent components, structures and materials may be used. The inclusion of additional elements may be deemed readily apparent and obvious to one of ordinary skill in the art. Specific elements disclosed herein are not to be interpreted as limiting, but rather as a basis for the claims and as a representative basis for teaching one of ordinary skill in the art to employ the present invention.
  • It should be understood that the drawings are not necessarily to scale; instead, emphasis has been placed upon illustrating the principles of the invention. In addition, in the embodiments depicted herein, like reference numerals in the various drawings refer to identical or near identical structural elements.
  • Moreover, the terms “substantially” or “approximately” as used herein may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related.
  • FIG. 1 illustrates an exemplary embodiment of unitary cooling apparatuses 100 a-100 d stored in a flattened position in freezer 77. As shown in FIG. 1, unitary cooling apparatuses 100 a-100 d are extremely space efficient.
  • FIG. 2 illustrates an exemplary embodiment of unitary cooling apparatus 100 with multi-channeled fluid layer 40 in an expanded position. Cooling apparatus 100 is comprised of four unitary freezing panels 10 a-10 d, top surface 20 and bottom surface 30. Each unitary freezing panel 10 a-10 d has multi-channeled fluid layer 40 fixedly attached. Multi-channeled fluid layer 40 is comprised of a plurality of spaced-apart cubes 45 filled with fluid. In the embodiment shown, cubes 45 are rectangular and are filled with purified water. In other embodiments, cubes 45 are of another shape, such as square, circular, or triangular and are filled with a fluid other than water, such as a gel solution.
  • Cooling apparatus 100 further includes zippers 50 a, 50 b. Zipper 50 a runs along all four sides of top surface 20 and zipper 50 b runs along four sides of bottom surface 30. Top surface 20 and bottom surface 30 are attached to cooling apparatus 100 using fabric piece 18 a, 18 b (visible in FIG. 3) sewn over the zipper on one edge (i.e., top edge of unitary freezing panel 10 c and bottom edge of unitary freezing panel 10 c). Fabric piece 18 a, 18 b prevents top surface 20 and bottom surface 30 from being completely unzipped from cooling apparatus 100 and also allow top surface 20 and bottom surface 30 to be pivoted backward and flat.
  • When zippers 50 a, 50 b are open, top surface 20 and bottom surface 30 can be pivoted outward or inward and unitary freezing panels 10 a-10 d can be folded along seams 15 b, 15 d (seams 15 a, 15 c will be flat) or along seams 15 a, 15 c ( seams 15 b, 15 d will be flat) into a flat configuration. When cooling apparatus 100 is in the collapsed flat configuration, it will easily fit in a standard freezer for freezing the fluid in cubes 45 or into a small space for storage.
  • In the embodiment shown, cooling apparatus 100 further includes strap 60. Strap 60 may be fixedly attached to cooling apparatus 100 (e.g., sewn) or removably attached to cooling apparatus 100 (e.g., hook and loop fasteners or snaps). Cooling apparatus 100 may further include an optional panel insertion channel. For example, cooling apparatus 100 may include an extra panel of fabric on unitary freezing panel 10 a which allows for easy embroidering or silk screening (plate slides between extra panel and fabric layer).
  • FIG. 3 illustrates an exemplary embodiment of unitary cooling apparatus 100 with multi-channeled fluid layer 40 in a collapsed position with top surface 20 and bottom surface 30 pivoted upward.
  • FIG. 4 illustrates an exemplary embodiment of unitary cooling apparatus 100 with multi-channeled fluid layer 40 in a collapsed position with top surface 20 and bottom surface 30 pivoted outward and cooling apparatus 100 folded along seams 15 b, 15 d so that seams 15 a, 15 c are flat.
  • FIG. 5 illustrates a side perspective view of an exemplary embodiment of unitary cooling apparatus 100 with multi-channeled fluid layer 40 in a collapsed position with top surface 20 (not visible) and bottom surface 30 pivoted backward. In the embodiment shown, zippers 50 a, 50 b (not visible) are open, top surface 20 and bottom surface 30 are pivoted backward against unitary freezing panel 10 c and cooling apparatus 100 is folded along seams 15 b, 15 d (seams 15 a, 15 c are flat) into a collapsed position for placing in a freezer or for economical storage.
  • Visible are polyethylene layer 48 and cubes 45 of multi-channeled fluid layer 40. Also visible are channels 44 a-44 f between cubes 45 and seams 58 a-58 d. When cooling apparatus 100 is in an upright position (as in FIG. 2), channels 44 a-44 f run vertically between cubes 45. There are also channels which run horizontally between cubes 45 (not visible); therefore each cube 45 is spaced apart from the cubes surrounding it.
  • Multi-channeled fluid layer 40 manufactured in sheets of evenly spaced apart cubes 45. The sheets are cut to the desired size/number of cubes by cutting between the cubes in the channels. For example, in an exemplary embodiment of cooling apparatus 100, unitary freezing panels 10 a, 10 c may contain four columns of five cubes for a total of twenty cubes and unitary freezing panels 10 b, 10 d may contain two columns of five cubes for a total of ten cubes. Polyethylene layer 48 is placed over multi-channeled fluid layer 40 and sewn to inner reflective layer 40 (not labeled) along lanes 58 a, 58 b and at seams 15 a-15 d.
  • Opening zippers 50 a, 50 b allows air to go flow through cooling apparatus 100 allowing for standard freezing time of cubes 15. The channels between cubes 45 also aid in the freezing of cubes 45 by exposing a greater surface area of cubes 45 to the cold air. In addition to being important for standard freezing time, the channels allow for flexibility in unitary freezing panels 10 a-10 d even when cubes 45 are frozen.
  • FIG. 6 illustrates a cross-sectional view of unitary freezing panel 10 a of an exemplary embodiment of unitary cooling apparatus 100 with multi-channeled fluid layer 40. In the embodiment shown, each unitary freezing panel 10 of cooling apparatus 100 is comprised of a fabric layer 56, insulation layer 54, inner reflective layer 52, multi-channeled fluid layer 40 and polyethylene layer 48. In other embodiments, unitary freezing panels 10 a-10 d may be comprised of a larger or smaller number of layers.
  • In the embodiment shown, fabric layer 56 is comprised of a nylon blend and is water resistant. Additives (“anti-freeze material”) are added to the fibers of the fabric during the manufacturing process which prevents the fabric from cracking when frozen. In other embodiments, fabric layer 56 may be comprised of another material or combination of materials that does not crack during freezing and remains flexible when frozen.
  • In the embodiment shown, insulation layer 54 is comprised of notched foam. In other embodiments, insulation layer 54 is comprised of another type of foam or other insulating material known in the art (e.g., fiberglass, coat).
  • In the embodiment shown, inner reflective layer 52 is comprised of PE-LD metalized polyethylene. Inner reflective layer 52 reflects cold air back into the interior of the cooler and slowing the passing of cold air through the side of the cooler. Inner reflective layer 52 reduces conductivity and slows molecules helping maintain a lower temperature inside cooling apparatus 100. In other embodiments, inner reflective layer is made up of another type of reflective material, such as aluminum foil.
  • In addition to inner reflective layer 52, top surface 20 and bottom surface 30 may also include a reflective layer (not shown).
  • Multi-channeled fluid layer 40 is comprised of backing layer 46 and top layer 42 which is formed into cubes 45. In the embodiment shown, backing layer 46 and top layer 42 are comprised of layers of LDPF polyester/nylon that is flexible and does not crack when frozen, is puncture resistant and reduces air flow (i.e., has limited porosity). In other embodiments, top layer 42 and backing layer 46 are comprised of another material with similar properties. This composition of layers allows for a normal freezing time despite the integral construction of both freezing and insulating components.
  • Multi-channeled fluid layer 40 is secured to inner reflective layer 52, insulation layer 54 and fabric layer 56 by polyethylene layer 48. Polyethylene layer 48 is comprised of food grade, low density polyethylene which is placed over multi-channeled fluid layer 40 and is sewn to inner reflective layer 52 at lanes 58 a-58 c.

Claims (19)

1. A single component flat panel cooling apparatus designed to be inserted directly into a freezer comprised of:
four unitary freezing panels joined at the sides to form a single rectangular structure that may be collapsed to a substantially flat position for storage within a freezer;
a bottom surface which pivots backward into a flush position over said rectangular structure in a collapsed position;
a top surface which pivots backward into a flush position over said rectangular structure in a collapsed position; and
at least one weight resistant zipper.
2. The single component flat panel cooling apparatus of claim 1 wherein each of said four unitary freezing panels are comprised of:
a fabric layer;
an insulation layer;
an inner reflective layer;
a top layer and a backing layer containing a plurality of cubes with a plurality of channels between said cubes filled with fluid; and
a polyethylene layer.
3. The single component flat panel cooling apparatus of claim 2 wherein said fabric layer is a nylon blend containing anti-freeze material.
4. The single component flat panel cooling apparatus of claim 2 wherein said insulation layer is notched foam.
5. The single component flat panel cooling apparatus of claim 2 wherein said inner reflective layer is PE-LD metalized polyethylene.
6. The single component flat panel cooling apparatus of claim 2 wherein said top layer and said backing layer are layers of a blend of polyester and nylon.
7. The single component flat panel cooling apparatus of claim 1 wherein said cooling apparatus is has a height of one to three inches in the collapsed position.
8. The single component flat panel cooling apparatus of claim 2 wherein said cubes are filled with a fluid other than water and channels which allow for circulation of air between said cubes in a freezer.
9. The single component flat panel cooling apparatus of claim 1 wherein said top surface and said bottom surface further include an insulation layer.
10. The single component flat panel cooling apparatus of claim 1 wherein said top surface and said bottom surface further include an inner reflective layer.
11. The single component flat panel cooling apparatus of claim 1 which further includes a panel insertion channel.
12. A method of manufacturing a single component flat panel cooling apparatus designed to be directly inserted into a freezer comprised of:
assembling unitary freezing panels, said four unitary freezing panels comprised of a fabric layer, an insulation layer, an inner reflective layer, a multi-channeled fluid layer containing a plurality of ice cubes separated by channels and a polyethylene layer,
attaching said polyethylene layer to said inner reflective layer using stitching wherein said stitching runs along at least one of said channels;
attaching said four unitary freezing panels together to form a rectangular structure having flexible seams between said four unitary freezing panels;
adding a zipper along the top edge of said rectangular structure and a zipper along the bottom edge of said rectangular structure, wherein said zippers are double-stitched to said rectangular structure to further secure said fabric layer, said insulation layer, said inner reflective layer, said multi-channel fluid layer and said polyethylene layer of said four unitary freezing panels together; and
attaching a top surface with a zipper along one of said top edges of said rectangular structure and a bottom surface with a zipper to one of said bottom edges of said rectangular structure using a panel of fabric which permanently secures said top surface and said bottom surface to said rectangular structure and allows said top surface and said bottom surface to pivot backward and flat.
13. The method of manufacturing a single component flat panel cooling apparatus of claim 12 which further includes creating channels between said plurality of ice cubes to allow for circulation of air between said plurality of cubes when stored in a freezer.
14. The method of manufacturing a single component flat panel cooling apparatus of claim 12 which further includes creating seams so that said rectangular structure may be flattened and said top surface and said bottom surface pivoted.
15. A single component flat panel cooling apparatus designed to be inserted directly into a freezer comprised of:
four unitary freezing panels joined at the sides to form a single rectangular structure that may be collapsed to a substantially flat position for storage within a freezer; wherein said rectangular structure folds to less than three inches;
a bottom surface which pivots backward into a flush position over said rectangular structure in a collapsed position;
a top surface which pivots backward into a flush position over said rectangular structure in a collapsed position; and
at least one weight resistant zipper.
16. The single component flat panel cooling apparatus of claim 15 wherein each of said four unitary freezing panels are comprised of:
a fabric layer;
an insulation layer;
an inner reflective layer;
a top layer and a backing layer containing a plurality of cubes with a plurality of channels between said cubes filled with fluid having a standard freezing time; and
a polyethylene layer.
17. The single component flat panel cooling apparatus of claim 15 wherein said top surface and said bottom surface further include an insulation layer.
18. The single component flat panel cooling apparatus of claim 15 wherein said top surface and said bottom surface further include an inner reflective layer.
19. The single component flat panel cooling apparatus of claim 15 herein said fabric layer is a nylon blend containing anti-freeze material.
US12/620,896 2005-04-20 2009-11-18 Single Component Flat Panel Cooling Apparatus Abandoned US20100064720A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/620,896 US20100064720A1 (en) 2005-04-20 2009-11-18 Single Component Flat Panel Cooling Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/110,179 US7730739B2 (en) 2003-09-13 2005-04-20 Portable cooler with built-in refrigerant cubes
US12/620,896 US20100064720A1 (en) 2005-04-20 2009-11-18 Single Component Flat Panel Cooling Apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/110,179 Continuation-In-Part US7730739B2 (en) 2003-09-13 2005-04-20 Portable cooler with built-in refrigerant cubes

Publications (1)

Publication Number Publication Date
US20100064720A1 true US20100064720A1 (en) 2010-03-18

Family

ID=42006016

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/620,896 Abandoned US20100064720A1 (en) 2005-04-20 2009-11-18 Single Component Flat Panel Cooling Apparatus

Country Status (1)

Country Link
US (1) US20100064720A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140144161A1 (en) * 2011-10-24 2014-05-29 Eco-Pim Technologies Temperature stabilizing cargo compartment, including a freeze and heat barrier, for transport container constructed with thermal resistant materials
US20140190201A1 (en) * 2013-01-07 2014-07-10 Umm Al-Qura University Cooling receptacle for vaccine bottles
US10378810B2 (en) * 2017-10-31 2019-08-13 Jung Kyun Na Eco-friendly ice pack to be easily separated and discharged

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602302A (en) * 1947-06-13 1952-07-08 Noel J Poux Combination ice and hot pack
US2865433A (en) * 1955-09-06 1958-12-23 Stuart T Warner Combination stadium seat and article carrier
US4081061A (en) * 1977-02-22 1978-03-28 Harrison Leather Goods Corporation Modular luggage
US4183226A (en) * 1977-07-18 1980-01-15 Freeze Sleeves Of America, Inc. Refrigerated beverage holder
US4311022A (en) * 1980-04-18 1982-01-19 Hall John M Foldable ice pack
US4324111A (en) * 1980-06-19 1982-04-13 Jerry B. Gallant Freezing gel containment structure and method
US4517815A (en) * 1983-10-07 1985-05-21 Basso Peter J Insulated modular cooler
US4598802A (en) * 1984-09-28 1986-07-08 Jacques Abenaim Foldable frame type luggage
US4700706A (en) * 1984-03-28 1987-10-20 Muench Walter Cold and warm pack for physiotherapy and the like
US4741176A (en) * 1987-05-07 1988-05-03 Johnson Mark D Beverage cooler
US4931333A (en) * 1985-09-23 1990-06-05 Henry D Lindley Thermal packaging assembly
US5005374A (en) * 1990-04-27 1991-04-09 Chillynex Corporation Thermal wraps
US5570558A (en) * 1991-11-26 1996-11-05 Ab Volvo Reinforcing beam
US6068402A (en) * 1998-10-27 2000-05-30 Outer Circle Products, Ltd. Foldable cooler
US6116045A (en) * 1998-03-09 2000-09-12 California Innovations Inc. Insulated container and receptacle therefor
US6223870B1 (en) * 1997-10-20 2001-05-01 Travel Caddy, Inc. Storage and travel bag
US6250104B1 (en) * 1999-03-31 2001-06-26 R. G. Barry Corporation Temperature control assembly and method for temperature control
US6269654B1 (en) * 1998-05-15 2001-08-07 Thermal Products, Inc. Porous laminated, super absorbent, hydratable, temperature control pack system
US6336577B1 (en) * 2000-06-09 2002-01-08 Cool Pac Products, Inc. Backpack cooler
US20020189278A1 (en) * 1998-12-17 2002-12-19 Defelice Terry Robert Nested cooler system
US6513661B1 (en) * 1998-07-23 2003-02-04 California Innovations Inc. Pack structure
US6645598B2 (en) * 2002-01-04 2003-11-11 Robert J. Alderman Cell insulation blanket with phase change material, and method of making
US6736834B1 (en) * 2001-10-29 2004-05-18 Biomet, Inc. Resorbable implant heating device
US6910560B2 (en) * 2002-05-29 2005-06-28 Jacques M. Dulin Dual access luggage with orthogonal isolation packing stowage-cell system
US7011224B2 (en) * 2003-08-04 2006-03-14 Sourcing Solutions, Inc. Soft storage bin
US7520223B2 (en) * 2003-07-31 2009-04-21 Blastgard Technologies, Inc. Explosive effect mitigated containers

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2602302A (en) * 1947-06-13 1952-07-08 Noel J Poux Combination ice and hot pack
US2865433A (en) * 1955-09-06 1958-12-23 Stuart T Warner Combination stadium seat and article carrier
US4081061A (en) * 1977-02-22 1978-03-28 Harrison Leather Goods Corporation Modular luggage
US4183226A (en) * 1977-07-18 1980-01-15 Freeze Sleeves Of America, Inc. Refrigerated beverage holder
US4311022A (en) * 1980-04-18 1982-01-19 Hall John M Foldable ice pack
US4324111A (en) * 1980-06-19 1982-04-13 Jerry B. Gallant Freezing gel containment structure and method
US4517815A (en) * 1983-10-07 1985-05-21 Basso Peter J Insulated modular cooler
US4700706A (en) * 1984-03-28 1987-10-20 Muench Walter Cold and warm pack for physiotherapy and the like
US4598802A (en) * 1984-09-28 1986-07-08 Jacques Abenaim Foldable frame type luggage
US4931333A (en) * 1985-09-23 1990-06-05 Henry D Lindley Thermal packaging assembly
US4741176A (en) * 1987-05-07 1988-05-03 Johnson Mark D Beverage cooler
US5005374A (en) * 1990-04-27 1991-04-09 Chillynex Corporation Thermal wraps
US5570558A (en) * 1991-11-26 1996-11-05 Ab Volvo Reinforcing beam
US6223870B1 (en) * 1997-10-20 2001-05-01 Travel Caddy, Inc. Storage and travel bag
US6116045A (en) * 1998-03-09 2000-09-12 California Innovations Inc. Insulated container and receptacle therefor
US6269654B1 (en) * 1998-05-15 2001-08-07 Thermal Products, Inc. Porous laminated, super absorbent, hydratable, temperature control pack system
US6513661B1 (en) * 1998-07-23 2003-02-04 California Innovations Inc. Pack structure
US6068402A (en) * 1998-10-27 2000-05-30 Outer Circle Products, Ltd. Foldable cooler
US20020189278A1 (en) * 1998-12-17 2002-12-19 Defelice Terry Robert Nested cooler system
US6250104B1 (en) * 1999-03-31 2001-06-26 R. G. Barry Corporation Temperature control assembly and method for temperature control
US6336577B1 (en) * 2000-06-09 2002-01-08 Cool Pac Products, Inc. Backpack cooler
US6736834B1 (en) * 2001-10-29 2004-05-18 Biomet, Inc. Resorbable implant heating device
US6645598B2 (en) * 2002-01-04 2003-11-11 Robert J. Alderman Cell insulation blanket with phase change material, and method of making
US6910560B2 (en) * 2002-05-29 2005-06-28 Jacques M. Dulin Dual access luggage with orthogonal isolation packing stowage-cell system
US7520223B2 (en) * 2003-07-31 2009-04-21 Blastgard Technologies, Inc. Explosive effect mitigated containers
US7011224B2 (en) * 2003-08-04 2006-03-14 Sourcing Solutions, Inc. Soft storage bin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140144161A1 (en) * 2011-10-24 2014-05-29 Eco-Pim Technologies Temperature stabilizing cargo compartment, including a freeze and heat barrier, for transport container constructed with thermal resistant materials
US9834365B2 (en) * 2011-10-24 2017-12-05 Eco-Pim Technologies Temperature stabilizing cargo compartment, including a freeze and heat barrier, for transport container constructed with thermal resistant materials
US20140190201A1 (en) * 2013-01-07 2014-07-10 Umm Al-Qura University Cooling receptacle for vaccine bottles
US10378810B2 (en) * 2017-10-31 2019-08-13 Jung Kyun Na Eco-friendly ice pack to be easily separated and discharged

Similar Documents

Publication Publication Date Title
US11634263B2 (en) Pallet cover comprising one or more temperature-control members and kit for use in making the pallet cover
US11125474B2 (en) Self-ice making / self heating hybrid food and beverage storage chest
US7730739B2 (en) Portable cooler with built-in refrigerant cubes
US20210070539A1 (en) Shipping system for temperature-sensitive materials
US6925834B2 (en) Portable cooler including ice sheet having refrigerant cubes
CN102438917B (en) Collapsible insulated container
US20080245096A1 (en) Fold-up insulated container
US20070000932A1 (en) Apparatus for enhancing temperature stabilization of a cooler
US5901571A (en) Portable beverage carrier
JP5337594B2 (en) Cold storage container
US20080307824A1 (en) Cooling insert for a container
TW200938453A (en) Nestable thermal insulated box
US20100064720A1 (en) Single Component Flat Panel Cooling Apparatus
JPH1179261A (en) Cold reserving bag
US6612127B2 (en) Portable refrigeration table with elevating and supporting dividers
KR101455700B1 (en) Ice-Box Having A Separated Room For Fluid of Thawed Coolant
WO2011085049A2 (en) An insertable semi-flexible shelf within a compartment
US20050029272A1 (en) Multi-pocket carrier adapted for use with a cooler and the like and method therefor
RU115055U1 (en) BAG
US8398184B1 (en) Thermal barrier and constraining apparatus to retain cold air and constrain containers on a shelf fixture within a compartment
JP2005016900A (en) Refrigerator
JP3124027U (en) Hand-held cold box
CN205860629U (en) Freezer
CN219913588U (en) Refrigerator
CN206798210U (en) A kind of Quick-frozen dumpling tray device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION