US20100051582A1 - Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith - Google Patents
Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith Download PDFInfo
- Publication number
- US20100051582A1 US20100051582A1 US12/591,210 US59121009A US2010051582A1 US 20100051582 A1 US20100051582 A1 US 20100051582A1 US 59121009 A US59121009 A US 59121009A US 2010051582 A1 US2010051582 A1 US 2010051582A1
- Authority
- US
- United States
- Prior art keywords
- cleaning liquid
- etched
- layer
- space
- low dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000004140 cleaning Methods 0.000 title claims abstract description 40
- 239000000758 substrate Substances 0.000 title claims abstract description 24
- 230000009977 dual effect Effects 0.000 title claims abstract description 19
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims abstract description 32
- 238000005530 etching Methods 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 125000001453 quaternary ammonium group Chemical group 0.000 claims abstract description 9
- 239000000908 ammonium hydroxide Substances 0.000 claims abstract description 8
- 239000003960 organic solvent Substances 0.000 claims abstract description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 46
- 239000000463 material Substances 0.000 claims description 25
- 125000004432 carbon atom Chemical group C* 0.000 claims description 20
- 150000001875 compounds Chemical class 0.000 claims description 18
- 125000000217 alkyl group Chemical group 0.000 claims description 12
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 9
- 239000011521 glass Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 4
- KIZQNNOULOCVDM-UHFFFAOYSA-M 2-hydroxyethyl(trimethyl)azanium;hydroxide Chemical compound [OH-].C[N+](C)(C)CCO KIZQNNOULOCVDM-UHFFFAOYSA-M 0.000 claims description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 3
- 229960001231 choline Drugs 0.000 abstract description 7
- OEYIOHPDSNJKLS-UHFFFAOYSA-N choline Chemical compound C[N+](C)(C)CCO OEYIOHPDSNJKLS-UHFFFAOYSA-N 0.000 abstract description 6
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 124
- 229920002120 photoresistant polymer Polymers 0.000 description 35
- 239000010949 copper Substances 0.000 description 19
- -1 copper (Cu) Chemical class 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 11
- 230000007797 corrosion Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 9
- 238000004380 ashing Methods 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 0 [1*]N([2*])([3*])[4*].[OH-] Chemical compound [1*]N([2*])([3*])[4*].[OH-] 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 125000001424 substituent group Chemical group 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Natural products C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 3
- 239000012965 benzophenone Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- PJUIMOJAAPLTRJ-UHFFFAOYSA-N monothioglycerol Chemical compound OCC(O)CS PJUIMOJAAPLTRJ-UHFFFAOYSA-N 0.000 description 3
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 3
- HNJZOHHIXSIJFG-UHFFFAOYSA-N (2,6-dihydroxy-4-methoxyphenyl)-phenylmethanone Chemical compound OC1=CC(OC)=CC(O)=C1C(=O)C1=CC=CC=C1 HNJZOHHIXSIJFG-UHFFFAOYSA-N 0.000 description 2
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 2
- PMNLUUOXGOOLSP-UHFFFAOYSA-N 2-mercaptopropanoic acid Chemical compound CC(S)C(O)=O PMNLUUOXGOOLSP-UHFFFAOYSA-N 0.000 description 2
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- JVUVKQDVTIIMOD-UHFFFAOYSA-N dimethoxy(dipropyl)silane Chemical compound CCC[Si](OC)(OC)CCC JVUVKQDVTIIMOD-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- XLLIQLLCWZCATF-UHFFFAOYSA-N ethylene glycol monomethyl ether acetate Natural products COCCOC(C)=O XLLIQLLCWZCATF-UHFFFAOYSA-N 0.000 description 2
- WJLUBOLDZCQZEV-UHFFFAOYSA-M hexadecyl(trimethyl)azanium;hydroxide Chemical compound [OH-].CCCCCCCCCCCCCCCC[N+](C)(C)C WJLUBOLDZCQZEV-UHFFFAOYSA-M 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- 238000005019 vapor deposition process Methods 0.000 description 2
- YYZAKQYFXDJLTA-UHFFFAOYSA-N (2,5-dihydroxyphenyl)-(2,6-dihydroxyphenyl)methanone Chemical compound OC1=CC=C(O)C(C(=O)C=2C(=CC=CC=2O)O)=C1 YYZAKQYFXDJLTA-UHFFFAOYSA-N 0.000 description 1
- RNVADSKAURBXRD-UHFFFAOYSA-N (3,4-dihydroxyphenyl)-[4-(dimethylamino)phenyl]methanone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(O)C(O)=C1 RNVADSKAURBXRD-UHFFFAOYSA-N 0.000 description 1
- UTCOUOISVRSLSH-UHFFFAOYSA-N 1,2-Anthracenediol Chemical compound C1=CC=CC2=CC3=C(O)C(O)=CC=C3C=C21 UTCOUOISVRSLSH-UHFFFAOYSA-N 0.000 description 1
- ADVLMMRRMDSTHU-UHFFFAOYSA-N 1,2-dihydroxyanthracene-9-carboxylic acid Chemical compound C1=C(O)C(O)=C2C(C(=O)O)=C(C=CC=C3)C3=CC2=C1 ADVLMMRRMDSTHU-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- AZLXQBNSOMJQEJ-UHFFFAOYSA-N 1,3-di(propan-2-yl)imidazolidin-2-one Chemical compound CC(C)N1CCN(C(C)C)C1=O AZLXQBNSOMJQEJ-UHFFFAOYSA-N 0.000 description 1
- NYCCIHSMVNRABA-UHFFFAOYSA-N 1,3-diethylimidazolidin-2-one Chemical compound CCN1CCN(CC)C1=O NYCCIHSMVNRABA-UHFFFAOYSA-N 0.000 description 1
- ZSNFLNBEXCLGBC-UHFFFAOYSA-N 1,5-dihydroxyanthracene-9-carboxylic acid Chemical compound C1=CC(O)=C2C(C(=O)O)=C(C=CC=C3O)C3=CC2=C1 ZSNFLNBEXCLGBC-UHFFFAOYSA-N 0.000 description 1
- VKXMUYIAJVLZOM-UHFFFAOYSA-N 1-(2-aminophenyl)sulfanyl-3-sulfanylpropan-2-ol Chemical compound NC1=CC=CC=C1SCC(O)CS VKXMUYIAJVLZOM-UHFFFAOYSA-N 0.000 description 1
- WDQFELCEOPFLCZ-UHFFFAOYSA-N 1-(2-hydroxyethyl)pyrrolidin-2-one Chemical compound OCCN1CCCC1=O WDQFELCEOPFLCZ-UHFFFAOYSA-N 0.000 description 1
- KVFLEGRBTUDZRD-UHFFFAOYSA-N 1-(2-hydroxyethylsulfanyl)-3-sulfanylpropan-2-ol Chemical compound OCCSCC(O)CS KVFLEGRBTUDZRD-UHFFFAOYSA-N 0.000 description 1
- PJEXUIKBGBSHBS-UHFFFAOYSA-N 1-(hydroxymethyl)pyrrolidin-2-one Chemical compound OCN1CCCC1=O PJEXUIKBGBSHBS-UHFFFAOYSA-N 0.000 description 1
- ZFPGARUNNKGOBB-UHFFFAOYSA-N 1-Ethyl-2-pyrrolidinone Chemical compound CCN1CCCC1=O ZFPGARUNNKGOBB-UHFFFAOYSA-N 0.000 description 1
- MUVQKFGNPGZBII-UHFFFAOYSA-N 1-anthrol Chemical compound C1=CC=C2C=C3C(O)=CC=CC3=CC2=C1 MUVQKFGNPGZBII-UHFFFAOYSA-N 0.000 description 1
- RWNUSVWFHDHRCJ-UHFFFAOYSA-N 1-butoxypropan-2-ol Chemical compound CCCCOCC(C)O RWNUSVWFHDHRCJ-UHFFFAOYSA-N 0.000 description 1
- JOLQKTGDSGKSKJ-UHFFFAOYSA-N 1-ethoxypropan-2-ol Chemical compound CCOCC(C)O JOLQKTGDSGKSKJ-UHFFFAOYSA-N 0.000 description 1
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 1
- FVRSWMRVYMPTBU-UHFFFAOYSA-M 1-hydroxypropyl(trimethyl)azanium;hydroxide Chemical compound [OH-].CCC(O)[N+](C)(C)C FVRSWMRVYMPTBU-UHFFFAOYSA-M 0.000 description 1
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 1
- PRPINYUDVPFIRX-UHFFFAOYSA-N 1-naphthaleneacetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CC=CC2=C1 PRPINYUDVPFIRX-UHFFFAOYSA-N 0.000 description 1
- DCALJVULAGICIX-UHFFFAOYSA-N 1-propylpyrrolidin-2-one Chemical compound CCCN1CCCC1=O DCALJVULAGICIX-UHFFFAOYSA-N 0.000 description 1
- MEZZCSHVIGVWFI-UHFFFAOYSA-N 2,2'-Dihydroxy-4-methoxybenzophenone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1O MEZZCSHVIGVWFI-UHFFFAOYSA-N 0.000 description 1
- HTQNYBBTZSBWKL-UHFFFAOYSA-N 2,3,4-trihydroxbenzophenone Chemical compound OC1=C(O)C(O)=CC=C1C(=O)C1=CC=CC=C1 HTQNYBBTZSBWKL-UHFFFAOYSA-N 0.000 description 1
- ZXDDPOHVAMWLBH-UHFFFAOYSA-N 2,4-Dihydroxybenzophenone Chemical group OC1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 ZXDDPOHVAMWLBH-UHFFFAOYSA-N 0.000 description 1
- NALCGNSXYWQCLV-UHFFFAOYSA-N 2-(2,4,6-trihydroxyphenyl)sulfonylbenzene-1,3,5-triol Chemical compound OC1=CC(O)=CC(O)=C1S(=O)(=O)C1=C(O)C=C(O)C=C1O NALCGNSXYWQCLV-UHFFFAOYSA-N 0.000 description 1
- UIEDEZQFKHJQBK-UHFFFAOYSA-N 2-(2,5-dihydroxyphenyl)sulfonylbenzene-1,4-diol Chemical compound OC1=CC=C(O)C(S(=O)(=O)C=2C(=CC=C(O)C=2)O)=C1 UIEDEZQFKHJQBK-UHFFFAOYSA-N 0.000 description 1
- QQLILYBIARWEIF-UHFFFAOYSA-N 2-(2-hydroxyethylsulfonyl)ethanol Chemical compound OCCS(=O)(=O)CCO QQLILYBIARWEIF-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- KLNMQYHQWUWCPG-UHFFFAOYSA-N 2-anthracen-9-ylethanol Chemical compound C1=CC=C2C(CCO)=C(C=CC=C3)C3=CC2=C1 KLNMQYHQWUWCPG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- ZFDNAYFXBJPPEB-UHFFFAOYSA-M 2-hydroxyethyl(tripropyl)azanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCO ZFDNAYFXBJPPEB-UHFFFAOYSA-M 0.000 description 1
- KVMAQXBSRFDBSI-UHFFFAOYSA-N 2-methoxyethoxy(dimethyl)silane Chemical compound COCCO[SiH](C)C KVMAQXBSRFDBSI-UHFFFAOYSA-N 0.000 description 1
- NTGFGMVYTAPOSF-UHFFFAOYSA-N 2-methoxyethoxy(dipropyl)silane Chemical compound C(CC)[SiH](OCCOC)CCC NTGFGMVYTAPOSF-UHFFFAOYSA-N 0.000 description 1
- HRWFFDJQZODCGS-UHFFFAOYSA-N 2-methoxyethoxy(methyl)silane Chemical compound COCCO[SiH2]C HRWFFDJQZODCGS-UHFFFAOYSA-N 0.000 description 1
- XOTZXZZXBQKUNZ-UHFFFAOYSA-N 2-methoxyethoxy(propyl)silane Chemical compound C(CC)[SiH2]OCCOC XOTZXZZXBQKUNZ-UHFFFAOYSA-N 0.000 description 1
- WKRJCCZAZDZNJL-UHFFFAOYSA-N 2-methoxyethoxysilicon Chemical compound COCCO[Si] WKRJCCZAZDZNJL-UHFFFAOYSA-N 0.000 description 1
- RXWNCMHRJCOWDK-UHFFFAOYSA-N 2-naphthalen-1-ylethanol Chemical compound C1=CC=C2C(CCO)=CC=CC2=C1 RXWNCMHRJCOWDK-UHFFFAOYSA-N 0.000 description 1
- VCZANYLMPFRUHG-UHFFFAOYSA-N 2-naphthalen-2-ylethanol Chemical compound C1=CC=CC2=CC(CCO)=CC=C21 VCZANYLMPFRUHG-UHFFFAOYSA-N 0.000 description 1
- UOBYKYZJUGYBDK-UHFFFAOYSA-N 2-naphthoic acid Chemical compound C1=CC=CC2=CC(C(=O)O)=CC=C21 UOBYKYZJUGYBDK-UHFFFAOYSA-N 0.000 description 1
- FBWWONJGKBCKRQ-UHFFFAOYSA-N 3-(2,3-dihydroxyphenyl)sulfonylbenzene-1,2-diol Chemical compound OC1=CC=CC(S(=O)(=O)C=2C(=C(O)C=CC=2)O)=C1O FBWWONJGKBCKRQ-UHFFFAOYSA-N 0.000 description 1
- SAQJKAAHQOXPQA-UHFFFAOYSA-N 3-(2-methoxyethoxy)propoxy-methylsilane Chemical compound C[SiH2]OCCCOCCOC SAQJKAAHQOXPQA-UHFFFAOYSA-N 0.000 description 1
- JZOPEAAYHHDTRJ-UHFFFAOYSA-N 3-(2-methoxyethoxy)propoxy-propylsilane Chemical compound C(CC)[SiH2]OCCCOCCOC JZOPEAAYHHDTRJ-UHFFFAOYSA-N 0.000 description 1
- RVDMGSOWQHKICR-UHFFFAOYSA-N 3-(2-methoxyethoxy)propoxysilane Chemical compound COCCOCCCO[SiH3] RVDMGSOWQHKICR-UHFFFAOYSA-N 0.000 description 1
- MBHVNAPDEYXNFI-UHFFFAOYSA-N 3-ethoxypropoxy(diethyl)silane Chemical compound C(C)[SiH](OCCCOCC)CC MBHVNAPDEYXNFI-UHFFFAOYSA-N 0.000 description 1
- GMRWKIKDDGCKKP-UHFFFAOYSA-N 3-ethoxypropoxy(dimethyl)silane Chemical compound C[SiH](OCCCOCC)C GMRWKIKDDGCKKP-UHFFFAOYSA-N 0.000 description 1
- OFTFAIWXZRZGDV-UHFFFAOYSA-N 3-ethoxypropoxy(propyl)silane Chemical compound C(CC)[SiH2]OCCCOCC OFTFAIWXZRZGDV-UHFFFAOYSA-N 0.000 description 1
- DPAWRIYVWQXVHR-UHFFFAOYSA-N 3-ethoxypropoxy-ethyl-methylsilane Chemical compound C[SiH](OCCCOCC)CC DPAWRIYVWQXVHR-UHFFFAOYSA-N 0.000 description 1
- JTMLGHSDWCAQHS-UHFFFAOYSA-N 3-ethoxypropoxysilane Chemical compound C(C)OCCCO[SiH3] JTMLGHSDWCAQHS-UHFFFAOYSA-N 0.000 description 1
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 1
- VKIHJUUXHCZCAG-UHFFFAOYSA-N 3-methoxypropoxy(methyl)silane Chemical compound COCCCO[SiH2]C VKIHJUUXHCZCAG-UHFFFAOYSA-N 0.000 description 1
- BNHRZSXEOVMJJG-UHFFFAOYSA-N 3-methoxypropoxysilane Chemical compound COCCCO[SiH3] BNHRZSXEOVMJJG-UHFFFAOYSA-N 0.000 description 1
- LDMRLRNXHLPZJN-UHFFFAOYSA-N 3-propoxypropan-1-ol Chemical compound CCCOCCCO LDMRLRNXHLPZJN-UHFFFAOYSA-N 0.000 description 1
- RXNYJUSEXLAVNQ-UHFFFAOYSA-N 4,4'-Dihydroxybenzophenone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1 RXNYJUSEXLAVNQ-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- KSVHFNCMBLJILY-UHFFFAOYSA-N 4-(2,3,4-trihydroxyphenyl)sulfonylbenzene-1,2,3-triol Chemical compound OC1=C(O)C(O)=CC=C1S(=O)(=O)C1=CC=C(O)C(O)=C1O KSVHFNCMBLJILY-UHFFFAOYSA-N 0.000 description 1
- UZXPAUUYLCVMOX-UHFFFAOYSA-N 4-(2,4-dihydroxy-6-methylphenyl)sulfonyl-5-methylbenzene-1,3-diol Chemical compound CC1=CC(O)=CC(O)=C1S(=O)(=O)C1=C(C)C=C(O)C=C1O UZXPAUUYLCVMOX-UHFFFAOYSA-N 0.000 description 1
- AYLMSJBHAJHAMB-UHFFFAOYSA-N 4-(2,4-dihydroxyphenyl)sulfonylbenzene-1,3-diol Chemical compound OC1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1O AYLMSJBHAJHAMB-UHFFFAOYSA-N 0.000 description 1
- ASVQOVSTAOQGAT-UHFFFAOYSA-N 4-(3,4-dihydroxyphenyl)sulfonylbenzene-1,2-diol Chemical compound C1=C(O)C(O)=CC=C1S(=O)(=O)C1=CC=C(O)C(O)=C1 ASVQOVSTAOQGAT-UHFFFAOYSA-N 0.000 description 1
- SUCTVKDVODFXFX-UHFFFAOYSA-N 4-(4-hydroxy-3,5-dimethylphenyl)sulfonyl-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(S(=O)(=O)C=2C=C(C)C(O)=C(C)C=2)=C1 SUCTVKDVODFXFX-UHFFFAOYSA-N 0.000 description 1
- FMIKSLCDFIEESP-UHFFFAOYSA-N 4-chloro-6-(5-chloro-2,3,4-trihydroxyphenyl)sulfonylbenzene-1,2,3-triol Chemical compound OC1=C(O)C(Cl)=CC(S(=O)(=O)C=2C(=C(O)C(O)=C(Cl)C=2)O)=C1O FMIKSLCDFIEESP-UHFFFAOYSA-N 0.000 description 1
- CUDYMMZZJFUJQS-UHFFFAOYSA-N 4-chloro-6-(5-chloro-2,4-dihydroxyphenyl)sulfonylbenzene-1,3-diol Chemical compound C1=C(Cl)C(O)=CC(O)=C1S(=O)(=O)C1=CC(Cl)=C(O)C=C1O CUDYMMZZJFUJQS-UHFFFAOYSA-N 0.000 description 1
- SGOABAQAJIBAFU-UHFFFAOYSA-N 5-(3,5-dihydroxyphenyl)sulfonylbenzene-1,3-diol Chemical compound OC1=CC(O)=CC(S(=O)(=O)C=2C=C(O)C=C(O)C=2)=C1 SGOABAQAJIBAFU-UHFFFAOYSA-N 0.000 description 1
- CBMMDBZCDJUGPD-UHFFFAOYSA-N 5-chloro-3-(5-chloro-2,3-dihydroxyphenyl)sulfonylbenzene-1,2-diol Chemical compound OC1=CC(Cl)=CC(S(=O)(=O)C=2C(=C(O)C=C(Cl)C=2)O)=C1O CBMMDBZCDJUGPD-UHFFFAOYSA-N 0.000 description 1
- QGCURONAMSJJMM-UHFFFAOYSA-N 5-methyl-4-(2,3,4-trihydroxy-6-methylphenyl)sulfonylbenzene-1,2,3-triol Chemical compound CC1=CC(O)=C(O)C(O)=C1S(=O)(=O)C1=C(C)C=C(O)C(O)=C1O QGCURONAMSJJMM-UHFFFAOYSA-N 0.000 description 1
- UTNTUJZQHYKKFO-UHFFFAOYSA-N 6-anthracen-9-ylhexan-1-ol Chemical compound C1=CC=C2C(CCCCCCO)=C(C=CC=C3)C3=CC2=C1 UTNTUJZQHYKKFO-UHFFFAOYSA-N 0.000 description 1
- OVNFAUDFNHBQSQ-UHFFFAOYSA-N 8-anthracen-9-yloctan-1-ol Chemical compound C1=CC=C2C(CCCCCCCCO)=C(C=CC=C3)C3=CC2=C1 OVNFAUDFNHBQSQ-UHFFFAOYSA-N 0.000 description 1
- PCFMUWBCZZUMRX-UHFFFAOYSA-N 9,10-Dihydroxyanthracene Chemical compound C1=CC=C2C(O)=C(C=CC=C3)C3=C(O)C2=C1 PCFMUWBCZZUMRX-UHFFFAOYSA-N 0.000 description 1
- XGWFJBFNAQHLEF-UHFFFAOYSA-N 9-anthroic acid Chemical compound C1=CC=C2C(C(=O)O)=C(C=CC=C3)C3=CC2=C1 XGWFJBFNAQHLEF-UHFFFAOYSA-N 0.000 description 1
- AUKRYONWZHRJRE-UHFFFAOYSA-N 9-anthrol Chemical compound C1=CC=C2C(O)=C(C=CC=C3)C3=CC2=C1 AUKRYONWZHRJRE-UHFFFAOYSA-N 0.000 description 1
- WEJBZGRJYARXRC-UHFFFAOYSA-N CC.CC.CC1=C2C=CC=CC2=CC2=C1C=CC=C2 Chemical compound CC.CC.CC1=C2C=CC=CC2=CC2=C1C=CC=C2 WEJBZGRJYARXRC-UHFFFAOYSA-N 0.000 description 1
- PBDYQPOAXBEPJI-UHFFFAOYSA-N CCCCO[SiH](OC)OC Chemical compound CCCCO[SiH](OC)OC PBDYQPOAXBEPJI-UHFFFAOYSA-N 0.000 description 1
- LDIKGRPEVICZDG-UHFFFAOYSA-N CCCC[SiH2]OCCOC Chemical compound CCCC[SiH2]OCCOC LDIKGRPEVICZDG-UHFFFAOYSA-N 0.000 description 1
- NTHKCSDJQGWPJY-UHFFFAOYSA-N CCCC[SiH](OC)OC Chemical compound CCCC[SiH](OC)OC NTHKCSDJQGWPJY-UHFFFAOYSA-N 0.000 description 1
- PMPGBDYFVDJHLK-UHFFFAOYSA-N CCCC[SiH](OCCC)OCCC Chemical compound CCCC[SiH](OCCC)OCCC PMPGBDYFVDJHLK-UHFFFAOYSA-N 0.000 description 1
- CEYKWTJRCMKNKX-UHFFFAOYSA-N CCCO[SiH](OCC)OCC Chemical compound CCCO[SiH](OCC)OCC CEYKWTJRCMKNKX-UHFFFAOYSA-N 0.000 description 1
- UGJLGGUQXBCUIA-UHFFFAOYSA-N CCO[SiH](OC)OC Chemical compound CCO[SiH](OC)OC UGJLGGUQXBCUIA-UHFFFAOYSA-N 0.000 description 1
- ATSKCUWHWYIJMW-UHFFFAOYSA-N CO[SiH2]Oc1ccccc1 Chemical compound CO[SiH2]Oc1ccccc1 ATSKCUWHWYIJMW-UHFFFAOYSA-N 0.000 description 1
- 244000132059 Carica parviflora Species 0.000 description 1
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- BYSYUYRPTYENND-UHFFFAOYSA-N [10-(hydroxymethyl)anthracen-9-yl]methanol Chemical compound C1=CC=C2C(CO)=C(C=CC=C3)C3=C(CO)C2=C1 BYSYUYRPTYENND-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- XCCCHWWMLSAIOH-UHFFFAOYSA-N anthracen-1-ylmethanol Chemical compound C1=CC=C2C=C3C(CO)=CC=CC3=CC2=C1 XCCCHWWMLSAIOH-UHFFFAOYSA-N 0.000 description 1
- JCJNNHDZTLRSGN-UHFFFAOYSA-N anthracen-9-ylmethanol Chemical compound C1=CC=C2C(CO)=C(C=CC=C3)C3=CC2=C1 JCJNNHDZTLRSGN-UHFFFAOYSA-N 0.000 description 1
- PTRIFXADIRVNHS-UHFFFAOYSA-N anthracene-1,2,3,4,5,6,7,8-octol Chemical compound OC1=C(O)C(O)=C(O)C2=CC3=C(O)C(O)=C(O)C(O)=C3C=C21 PTRIFXADIRVNHS-UHFFFAOYSA-N 0.000 description 1
- BNSKSALWUYKGFH-UHFFFAOYSA-N anthracene-1,2,3,4,5,6-hexol Chemical compound OC1=C(O)C(O)=C(O)C2=CC3=C(O)C(O)=CC=C3C=C21 BNSKSALWUYKGFH-UHFFFAOYSA-N 0.000 description 1
- NMKMOHFZXZFDFP-UHFFFAOYSA-N anthracene-1,2,3,4-tetrol Chemical compound C1=CC=CC2=CC3=C(O)C(O)=C(O)C(O)=C3C=C21 NMKMOHFZXZFDFP-UHFFFAOYSA-N 0.000 description 1
- SLOLMTWBBAFOKJ-UHFFFAOYSA-N anthracene-1,2,3-triol Chemical compound C1=CC=C2C=C(C(O)=C(C(O)=C3)O)C3=CC2=C1 SLOLMTWBBAFOKJ-UHFFFAOYSA-N 0.000 description 1
- AGTBKJDELLDEOQ-UHFFFAOYSA-N anthracene-1,5-diol Chemical compound C1=CC=C2C=C3C(O)=CC=CC3=CC2=C1O AGTBKJDELLDEOQ-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000005441 aurora Substances 0.000 description 1
- 229950011260 betanaphthol Drugs 0.000 description 1
- WXNRYSGJLQFHBR-UHFFFAOYSA-N bis(2,4-dihydroxyphenyl)methanone Chemical compound OC1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1O WXNRYSGJLQFHBR-UHFFFAOYSA-N 0.000 description 1
- SODJJEXAWOSSON-UHFFFAOYSA-N bis(2-hydroxy-4-methoxyphenyl)methanone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=C(OC)C=C1O SODJJEXAWOSSON-UHFFFAOYSA-N 0.000 description 1
- OAKGITOBDKUFBR-UHFFFAOYSA-N butoxy-butyl-ethoxy-methoxysilane Chemical compound CCCCO[Si](OCC)(OC)CCCC OAKGITOBDKUFBR-UHFFFAOYSA-N 0.000 description 1
- HUUOQEMAQQPKGS-UHFFFAOYSA-N butoxy-ethoxy-ethyl-methoxysilane Chemical compound CCCCO[Si](CC)(OC)OCC HUUOQEMAQQPKGS-UHFFFAOYSA-N 0.000 description 1
- YIGRUUCTKSBMGE-UHFFFAOYSA-N butoxy-ethoxy-methoxy-methylsilane Chemical compound CCCCO[Si](C)(OC)OCC YIGRUUCTKSBMGE-UHFFFAOYSA-N 0.000 description 1
- CCBRDEWXSJFAMO-UHFFFAOYSA-N butoxy-ethoxy-methoxy-propylsilane Chemical compound CCCCO[Si](CCC)(OC)OCC CCBRDEWXSJFAMO-UHFFFAOYSA-N 0.000 description 1
- MIJYHJNSTXWNQX-UHFFFAOYSA-N butyl diethyl methyl silicate Chemical compound CCCCO[Si](OC)(OCC)OCC MIJYHJNSTXWNQX-UHFFFAOYSA-N 0.000 description 1
- OIEKEOOORZPUGH-UHFFFAOYSA-N butyl diethyl propyl silicate Chemical compound CCCCO[Si](OCC)(OCC)OCCC OIEKEOOORZPUGH-UHFFFAOYSA-N 0.000 description 1
- HBYXIAOWUBQKMR-UHFFFAOYSA-N butyl ethyl dimethyl silicate Chemical compound CCCCO[Si](OC)(OC)OCC HBYXIAOWUBQKMR-UHFFFAOYSA-N 0.000 description 1
- LXTZTIXTSZSGBR-UHFFFAOYSA-N butyl ethyl dipropyl silicate Chemical compound CCCCO[Si](OCC)(OCCC)OCCC LXTZTIXTSZSGBR-UHFFFAOYSA-N 0.000 description 1
- AGBZIWDKCKUACI-UHFFFAOYSA-N butyl ethyl methyl propyl silicate Chemical compound CCCCO[Si](OC)(OCC)OCCC AGBZIWDKCKUACI-UHFFFAOYSA-N 0.000 description 1
- WWIIWYLGTMNOEU-UHFFFAOYSA-N butyl methyl dipropyl silicate Chemical compound CCCCO[Si](OC)(OCCC)OCCC WWIIWYLGTMNOEU-UHFFFAOYSA-N 0.000 description 1
- GPLARHNOLLDPGA-UHFFFAOYSA-N butyl trimethyl silicate Chemical compound CCCCO[Si](OC)(OC)OC GPLARHNOLLDPGA-UHFFFAOYSA-N 0.000 description 1
- ZEZXMFBCRYGNNP-UHFFFAOYSA-N butyl(diethoxy)silane Chemical compound CCCC[SiH](OCC)OCC ZEZXMFBCRYGNNP-UHFFFAOYSA-N 0.000 description 1
- XGZGKDQVCBHSGI-UHFFFAOYSA-N butyl(triethoxy)silane Chemical compound CCCC[Si](OCC)(OCC)OCC XGZGKDQVCBHSGI-UHFFFAOYSA-N 0.000 description 1
- SXPLZNMUBFBFIA-UHFFFAOYSA-N butyl(trimethoxy)silane Chemical compound CCCC[Si](OC)(OC)OC SXPLZNMUBFBFIA-UHFFFAOYSA-N 0.000 description 1
- OGCNPMTZBJEZKT-UHFFFAOYSA-N butyl(triphenoxy)silane Chemical compound C=1C=CC=CC=1O[Si](OC=1C=CC=CC=1)(CCCC)OC1=CC=CC=C1 OGCNPMTZBJEZKT-UHFFFAOYSA-N 0.000 description 1
- GNRBSDIBKIHSJH-UHFFFAOYSA-N butyl(tripropoxy)silane Chemical compound CCCC[Si](OCCC)(OCCC)OCCC GNRBSDIBKIHSJH-UHFFFAOYSA-N 0.000 description 1
- AAVHUXGAYVEBMM-UHFFFAOYSA-N butyl-[3-(2-methoxyethoxy)propoxy]silane Chemical compound CCCC[SiH2]OCCCOCCOC AAVHUXGAYVEBMM-UHFFFAOYSA-N 0.000 description 1
- BRKLXJLNOMYEPC-UHFFFAOYSA-N butyl-diethoxy-methoxysilane Chemical compound CCCC[Si](OC)(OCC)OCC BRKLXJLNOMYEPC-UHFFFAOYSA-N 0.000 description 1
- AFNPFLDWLMEASV-UHFFFAOYSA-N butyl-diethoxy-methylsilane Chemical compound CCCC[Si](C)(OCC)OCC AFNPFLDWLMEASV-UHFFFAOYSA-N 0.000 description 1
- ZQTCJZZVNNQCRS-UHFFFAOYSA-N butyl-diethoxy-propylsilane Chemical compound CCCC[Si](CCC)(OCC)OCC ZQTCJZZVNNQCRS-UHFFFAOYSA-N 0.000 description 1
- WEPTUKVCIZSMNO-UHFFFAOYSA-N butyl-dimethoxy-propylsilane Chemical compound CCCC[Si](OC)(OC)CCC WEPTUKVCIZSMNO-UHFFFAOYSA-N 0.000 description 1
- JVYLRDJQLUXKSK-UHFFFAOYSA-N butyl-ethoxy-propoxysilane Chemical compound CCCC[SiH](OCC)OCCC JVYLRDJQLUXKSK-UHFFFAOYSA-N 0.000 description 1
- YIKWDPVXTZFQFF-UHFFFAOYSA-N butyl-methoxy-diphenoxysilane Chemical compound C=1C=CC=CC=1O[Si](OC)(CCCC)OC1=CC=CC=C1 YIKWDPVXTZFQFF-UHFFFAOYSA-N 0.000 description 1
- CFGAMKNEOXZXAN-UHFFFAOYSA-N butyl-methoxy-dipropoxysilane Chemical compound CCCC[Si](OC)(OCCC)OCCC CFGAMKNEOXZXAN-UHFFFAOYSA-N 0.000 description 1
- WHFVJENFZHIOKB-UHFFFAOYSA-N butyl-methyl-dipropoxysilane Chemical compound CCCC[Si](C)(OCCC)OCCC WHFVJENFZHIOKB-UHFFFAOYSA-N 0.000 description 1
- OLBYXUFXSMENBN-UHFFFAOYSA-N butyl-methyl-phenoxysilane Chemical compound CCCC[SiH](C)Oc1ccccc1 OLBYXUFXSMENBN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- DKXKWUWRJAEPGM-UHFFFAOYSA-N dibutyl dimethyl silicate Chemical compound CCCCO[Si](OC)(OC)OCCCC DKXKWUWRJAEPGM-UHFFFAOYSA-N 0.000 description 1
- DGPFXVBYDAVXLX-UHFFFAOYSA-N dibutyl(diethoxy)silane Chemical compound CCCC[Si](OCC)(OCC)CCCC DGPFXVBYDAVXLX-UHFFFAOYSA-N 0.000 description 1
- YPENMAABQGWRBR-UHFFFAOYSA-N dibutyl(dimethoxy)silane Chemical compound CCCC[Si](OC)(OC)CCCC YPENMAABQGWRBR-UHFFFAOYSA-N 0.000 description 1
- LWXABEZWLYKMRO-UHFFFAOYSA-N dibutyl-ethoxy-propoxysilane Chemical compound CCCC[Si](CCCC)(OCC)OCCC LWXABEZWLYKMRO-UHFFFAOYSA-N 0.000 description 1
- SUXFXSDGMCJFMP-UHFFFAOYSA-N dibutyl-methoxy-propoxysilane Chemical compound CCCC[Si](CCCC)(OC)OCCC SUXFXSDGMCJFMP-UHFFFAOYSA-N 0.000 description 1
- ZMAPKOCENOWQRE-UHFFFAOYSA-N diethoxy(diethyl)silane Chemical compound CCO[Si](CC)(CC)OCC ZMAPKOCENOWQRE-UHFFFAOYSA-N 0.000 description 1
- HZLIIKNXMLEWPA-UHFFFAOYSA-N diethoxy(dipropyl)silane Chemical compound CCC[Si](CCC)(OCC)OCC HZLIIKNXMLEWPA-UHFFFAOYSA-N 0.000 description 1
- AWQTZFCYSLRFJO-UHFFFAOYSA-N diethoxy(methoxy)silane Chemical compound CCO[SiH](OC)OCC AWQTZFCYSLRFJO-UHFFFAOYSA-N 0.000 description 1
- GAURFLBIDLSLQU-UHFFFAOYSA-N diethoxy(methyl)silicon Chemical compound CCO[Si](C)OCC GAURFLBIDLSLQU-UHFFFAOYSA-N 0.000 description 1
- MYEKFZTYZUIIAE-UHFFFAOYSA-N diethoxy(phenoxy)silane Chemical compound CCO[SiH](OCC)Oc1ccccc1 MYEKFZTYZUIIAE-UHFFFAOYSA-N 0.000 description 1
- FZQNBVBLHJXOEA-UHFFFAOYSA-N diethoxy(propyl)silane Chemical compound CCC[SiH](OCC)OCC FZQNBVBLHJXOEA-UHFFFAOYSA-N 0.000 description 1
- KWHPGQVFPWGFMG-UHFFFAOYSA-N diethoxy-ethyl-methoxysilane Chemical compound CCO[Si](CC)(OC)OCC KWHPGQVFPWGFMG-UHFFFAOYSA-N 0.000 description 1
- UWGJCHRFALXDAR-UHFFFAOYSA-N diethoxy-ethyl-methylsilane Chemical compound CCO[Si](C)(CC)OCC UWGJCHRFALXDAR-UHFFFAOYSA-N 0.000 description 1
- VUVODZCTKMTLTH-UHFFFAOYSA-N diethoxy-methoxy-methylsilane Chemical compound CCO[Si](C)(OC)OCC VUVODZCTKMTLTH-UHFFFAOYSA-N 0.000 description 1
- PJKZHPDNDUQMNP-UHFFFAOYSA-N diethoxy-methoxy-propylsilane Chemical compound CCC[Si](OC)(OCC)OCC PJKZHPDNDUQMNP-UHFFFAOYSA-N 0.000 description 1
- UJTGYJODGVUOGO-UHFFFAOYSA-N diethoxy-methyl-propylsilane Chemical compound CCC[Si](C)(OCC)OCC UJTGYJODGVUOGO-UHFFFAOYSA-N 0.000 description 1
- ZXPDYFSTVHQQOI-UHFFFAOYSA-N diethoxysilane Chemical compound CCO[SiH2]OCC ZXPDYFSTVHQQOI-UHFFFAOYSA-N 0.000 description 1
- VGWJKDPTLUDSJT-UHFFFAOYSA-N diethyl dimethyl silicate Chemical compound CCO[Si](OC)(OC)OCC VGWJKDPTLUDSJT-UHFFFAOYSA-N 0.000 description 1
- WXAYXYTUOFVMKE-UHFFFAOYSA-N diethyl dipropyl silicate Chemical compound CCCO[Si](OCC)(OCC)OCCC WXAYXYTUOFVMKE-UHFFFAOYSA-N 0.000 description 1
- DGXPASZXUJQWLQ-UHFFFAOYSA-N diethyl(methoxy)silane Chemical compound CC[SiH](CC)OC DGXPASZXUJQWLQ-UHFFFAOYSA-N 0.000 description 1
- GDKYIZVVUAWETK-UHFFFAOYSA-N diethyl-methoxy-propoxysilane Chemical compound CCCO[Si](CC)(CC)OC GDKYIZVVUAWETK-UHFFFAOYSA-N 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 description 1
- PKTOVQRKCNPVKY-UHFFFAOYSA-N dimethoxy(methyl)silicon Chemical compound CO[Si](C)OC PKTOVQRKCNPVKY-UHFFFAOYSA-N 0.000 description 1
- RXBGEIGGCCSMHC-UHFFFAOYSA-N dimethoxy(propoxy)silane Chemical compound CCCO[SiH](OC)OC RXBGEIGGCCSMHC-UHFFFAOYSA-N 0.000 description 1
- SGKDAFJDYSMACD-UHFFFAOYSA-N dimethoxy(propyl)silane Chemical compound CCC[SiH](OC)OC SGKDAFJDYSMACD-UHFFFAOYSA-N 0.000 description 1
- XKRPWHZLROBLDI-UHFFFAOYSA-N dimethoxy-methyl-propylsilane Chemical compound CCC[Si](C)(OC)OC XKRPWHZLROBLDI-UHFFFAOYSA-N 0.000 description 1
- YQGOWXYZDLJBFL-UHFFFAOYSA-N dimethoxysilane Chemical compound CO[SiH2]OC YQGOWXYZDLJBFL-UHFFFAOYSA-N 0.000 description 1
- HOXUFWMHAIJENN-UHFFFAOYSA-N dimethyl dipropyl silicate Chemical compound CCCO[Si](OC)(OC)OCCC HOXUFWMHAIJENN-UHFFFAOYSA-N 0.000 description 1
- SWLVAJXQIOKFSJ-UHFFFAOYSA-N dimethyl(diphenoxy)silane Chemical compound C=1C=CC=CC=1O[Si](C)(C)OC1=CC=CC=C1 SWLVAJXQIOKFSJ-UHFFFAOYSA-N 0.000 description 1
- ZIDTUTFKRRXWTK-UHFFFAOYSA-N dimethyl(dipropoxy)silane Chemical compound CCCO[Si](C)(C)OCCC ZIDTUTFKRRXWTK-UHFFFAOYSA-N 0.000 description 1
- YYLGKUPAFFKGRQ-UHFFFAOYSA-N dimethyldiethoxysilane Chemical compound CCO[Si](C)(C)OCC YYLGKUPAFFKGRQ-UHFFFAOYSA-N 0.000 description 1
- JFCVQVCWZYWWPV-UHFFFAOYSA-N diphenoxy(dipropyl)silane Chemical compound C=1C=CC=CC=1O[Si](CCC)(CCC)OC1=CC=CC=C1 JFCVQVCWZYWWPV-UHFFFAOYSA-N 0.000 description 1
- XNAZVASFWJAZNT-UHFFFAOYSA-N diphenoxy(propyl)silane Chemical compound CCC[SiH](Oc1ccccc1)Oc1ccccc1 XNAZVASFWJAZNT-UHFFFAOYSA-N 0.000 description 1
- AYLOLAANSIXPJA-UHFFFAOYSA-N diphenoxysilicon Chemical compound C=1C=CC=CC=1O[Si]OC1=CC=CC=C1 AYLOLAANSIXPJA-UHFFFAOYSA-N 0.000 description 1
- SACPKRUZWRIEBW-UHFFFAOYSA-N dipropoxysilane Chemical compound CCCO[SiH2]OCCC SACPKRUZWRIEBW-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- DMSVKKSBEJFTSD-UHFFFAOYSA-N ethoxy(dipropoxy)silane Chemical compound CCCO[SiH](OCC)OCCC DMSVKKSBEJFTSD-UHFFFAOYSA-N 0.000 description 1
- OMUZVOVPUNRELL-UHFFFAOYSA-N ethoxy(phenoxy)silane Chemical compound CCO[SiH2]Oc1ccccc1 OMUZVOVPUNRELL-UHFFFAOYSA-N 0.000 description 1
- LWVQRZRMDDXSQO-UHFFFAOYSA-N ethyl methyl dipropyl silicate Chemical compound CCCO[Si](OC)(OCC)OCCC LWVQRZRMDDXSQO-UHFFFAOYSA-N 0.000 description 1
- ITAHRPSKCCPKOK-UHFFFAOYSA-N ethyl trimethyl silicate Chemical compound CCO[Si](OC)(OC)OC ITAHRPSKCCPKOK-UHFFFAOYSA-N 0.000 description 1
- XBQKHZAEBLQEHX-UHFFFAOYSA-N ethyl(diphenoxy)silane Chemical compound CC[SiH](Oc1ccccc1)Oc1ccccc1 XBQKHZAEBLQEHX-UHFFFAOYSA-N 0.000 description 1
- BNFBSHKADAKNSK-UHFFFAOYSA-N ethyl(dipropoxy)silane Chemical compound CCCO[SiH](CC)OCCC BNFBSHKADAKNSK-UHFFFAOYSA-N 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- KVFVBPYVNUCWJX-UHFFFAOYSA-M ethyl(trimethyl)azanium;hydroxide Chemical compound [OH-].CC[N+](C)(C)C KVFVBPYVNUCWJX-UHFFFAOYSA-M 0.000 description 1
- HGWSCXYVBZYYDK-UHFFFAOYSA-N ethyl(triphenoxy)silane Chemical compound C=1C=CC=CC=1O[Si](OC=1C=CC=CC=1)(CC)OC1=CC=CC=C1 HGWSCXYVBZYYDK-UHFFFAOYSA-N 0.000 description 1
- KUCGHDUQOVVQED-UHFFFAOYSA-N ethyl(tripropoxy)silane Chemical compound CCCO[Si](CC)(OCCC)OCCC KUCGHDUQOVVQED-UHFFFAOYSA-N 0.000 description 1
- BKPOHJLJSNVXOQ-UHFFFAOYSA-N ethyl-(2-methoxyethoxy)-propylsilane Chemical compound C(C)[SiH](OCCOC)CCC BKPOHJLJSNVXOQ-UHFFFAOYSA-N 0.000 description 1
- HTSRFYSEWIPFNI-UHFFFAOYSA-N ethyl-dimethoxy-methylsilane Chemical compound CC[Si](C)(OC)OC HTSRFYSEWIPFNI-UHFFFAOYSA-N 0.000 description 1
- MXIPHWDAHRGDRK-UHFFFAOYSA-N ethyl-dimethoxy-propylsilane Chemical compound CCC[Si](CC)(OC)OC MXIPHWDAHRGDRK-UHFFFAOYSA-N 0.000 description 1
- PSKLDHFDQSYMOL-UHFFFAOYSA-N ethyl-methoxy-diphenoxysilane Chemical compound C=1C=CC=CC=1O[Si](OC)(CC)OC1=CC=CC=C1 PSKLDHFDQSYMOL-UHFFFAOYSA-N 0.000 description 1
- HIPNKAPHGKUQDM-UHFFFAOYSA-N ethyl-methoxy-dipropoxysilane Chemical compound CCCO[Si](CC)(OC)OCCC HIPNKAPHGKUQDM-UHFFFAOYSA-N 0.000 description 1
- UNBRJJYHSVNZBW-UHFFFAOYSA-N ethyl-methoxy-propoxysilane Chemical compound CCCO[SiH](CC)OC UNBRJJYHSVNZBW-UHFFFAOYSA-N 0.000 description 1
- QIDROACCJPQEGZ-UHFFFAOYSA-N ethyl-methyl-diphenoxysilane Chemical compound C=1C=CC=CC=1O[Si](C)(CC)OC1=CC=CC=C1 QIDROACCJPQEGZ-UHFFFAOYSA-N 0.000 description 1
- GXAOCGRUWCYNML-UHFFFAOYSA-N ethyl-methyl-dipropoxysilane Chemical compound CCCO[Si](C)(CC)OCCC GXAOCGRUWCYNML-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- YAMHXTCMCPHKLN-UHFFFAOYSA-N imidazolidin-2-one Chemical compound O=C1NCCN1 YAMHXTCMCPHKLN-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- QBCNIGWTXULERZ-UHFFFAOYSA-N methoxy(dipropoxy)silane Chemical compound CCCO[SiH](OC)OCCC QBCNIGWTXULERZ-UHFFFAOYSA-N 0.000 description 1
- JTOARSATYYFDSP-UHFFFAOYSA-N methoxy-diphenoxy-propylsilane Chemical compound C=1C=CC=CC=1O[Si](OC)(CCC)OC1=CC=CC=C1 JTOARSATYYFDSP-UHFFFAOYSA-N 0.000 description 1
- NPKCRFQGOQDCPM-UHFFFAOYSA-N methoxy-dipropoxy-propylsilane Chemical compound CCCO[Si](CCC)(OC)OCCC NPKCRFQGOQDCPM-UHFFFAOYSA-N 0.000 description 1
- IKESVYSZFPIZDP-UHFFFAOYSA-N methoxy-methyl-diphenoxysilane Chemical compound C=1C=CC=CC=1O[Si](C)(OC)OC1=CC=CC=C1 IKESVYSZFPIZDP-UHFFFAOYSA-N 0.000 description 1
- JRUSMKPBJTYUCR-UHFFFAOYSA-N methoxy-methyl-dipropoxysilane Chemical compound CCCO[Si](C)(OC)OCCC JRUSMKPBJTYUCR-UHFFFAOYSA-N 0.000 description 1
- NJISVYSHLYACRT-UHFFFAOYSA-N methoxy-methyl-phenoxysilane Chemical compound CO[SiH](C)Oc1ccccc1 NJISVYSHLYACRT-UHFFFAOYSA-N 0.000 description 1
- WUHFHHFIAKZOGV-UHFFFAOYSA-N methyl triphenyl silicate Chemical compound C=1C=CC=CC=1O[Si](OC=1C=CC=CC=1)(OC)OC1=CC=CC=C1 WUHFHHFIAKZOGV-UHFFFAOYSA-N 0.000 description 1
- RJMRIDVWCWSWFR-UHFFFAOYSA-N methyl(tripropoxy)silane Chemical compound CCCO[Si](C)(OCCC)OCCC RJMRIDVWCWSWFR-UHFFFAOYSA-N 0.000 description 1
- KTDMLSMSWDJKGA-UHFFFAOYSA-M methyl(tripropyl)azanium;hydroxide Chemical compound [OH-].CCC[N+](C)(CCC)CCC KTDMLSMSWDJKGA-UHFFFAOYSA-M 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- XOOMNEFVDUTJPP-UHFFFAOYSA-N naphthalene-1,3-diol Chemical compound C1=CC=CC2=CC(O)=CC(O)=C21 XOOMNEFVDUTJPP-UHFFFAOYSA-N 0.000 description 1
- ABMFBCRYHDZLRD-UHFFFAOYSA-N naphthalene-1,4-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1 ABMFBCRYHDZLRD-UHFFFAOYSA-N 0.000 description 1
- KHARCSTZAGNHOT-UHFFFAOYSA-N naphthalene-2,3-dicarboxylic acid Chemical compound C1=CC=C2C=C(C(O)=O)C(C(=O)O)=CC2=C1 KHARCSTZAGNHOT-UHFFFAOYSA-N 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- WPUMVKJOWWJPRK-UHFFFAOYSA-N naphthalene-2,7-dicarboxylic acid Chemical compound C1=CC(C(O)=O)=CC2=CC(C(=O)O)=CC=C21 WPUMVKJOWWJPRK-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- RBCYCMNKVQPXDR-UHFFFAOYSA-N phenoxysilane Chemical compound [SiH3]OC1=CC=CC=C1 RBCYCMNKVQPXDR-UHFFFAOYSA-N 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000003880 polar aprotic solvent Substances 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- UQMOLLPKNHFRAC-UHFFFAOYSA-N tetrabutyl silicate Chemical compound CCCCO[Si](OCCCC)(OCCCC)OCCCC UQMOLLPKNHFRAC-UHFFFAOYSA-N 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- VHLDQAOFSQCOFS-UHFFFAOYSA-M tetrakis(2-hydroxyethyl)azanium;hydroxide Chemical compound [OH-].OCC[N+](CCO)(CCO)CCO VHLDQAOFSQCOFS-UHFFFAOYSA-M 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- ADLSSRLDGACTEX-UHFFFAOYSA-N tetraphenyl silicate Chemical compound C=1C=CC=CC=1O[Si](OC=1C=CC=CC=1)(OC=1C=CC=CC=1)OC1=CC=CC=C1 ADLSSRLDGACTEX-UHFFFAOYSA-N 0.000 description 1
- ZQZCOBSUOFHDEE-UHFFFAOYSA-N tetrapropyl silicate Chemical compound CCCO[Si](OCCC)(OCCC)OCCC ZQZCOBSUOFHDEE-UHFFFAOYSA-N 0.000 description 1
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 description 1
- HSDAZXVGQVMFAY-UHFFFAOYSA-N tributyl methyl silicate Chemical compound CCCCO[Si](OC)(OCCCC)OCCCC HSDAZXVGQVMFAY-UHFFFAOYSA-N 0.000 description 1
- PZOOLKGCOFWELU-UHFFFAOYSA-N tributyl propyl silicate Chemical compound CCCCO[Si](OCCC)(OCCCC)OCCCC PZOOLKGCOFWELU-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 1
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 1
- QYBKVVRRGQSGDC-UHFFFAOYSA-N triethyl methyl silicate Chemical compound CCO[Si](OC)(OCC)OCC QYBKVVRRGQSGDC-UHFFFAOYSA-N 0.000 description 1
- CXZMPNCYSOLUEK-UHFFFAOYSA-N triethyl propyl silicate Chemical compound CCCO[Si](OCC)(OCC)OCC CXZMPNCYSOLUEK-UHFFFAOYSA-N 0.000 description 1
- GRNRCQKEBXQLAA-UHFFFAOYSA-M triethyl(2-hydroxyethyl)azanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CCO GRNRCQKEBXQLAA-UHFFFAOYSA-M 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- YUYCVXFAYWRXLS-UHFFFAOYSA-N trimethoxysilane Chemical compound CO[SiH](OC)OC YUYCVXFAYWRXLS-UHFFFAOYSA-N 0.000 description 1
- WKEXHTMMGBYMTA-UHFFFAOYSA-N trimethyl propyl silicate Chemical compound CCCO[Si](OC)(OC)OC WKEXHTMMGBYMTA-UHFFFAOYSA-N 0.000 description 1
- AMUIJRKZTXWCEA-UHFFFAOYSA-N triphenoxy(propyl)silane Chemical compound C=1C=CC=CC=1O[Si](OC=1C=CC=CC=1)(CCC)OC1=CC=CC=C1 AMUIJRKZTXWCEA-UHFFFAOYSA-N 0.000 description 1
- OZWKZRFXJPGDFM-UHFFFAOYSA-N tripropoxysilane Chemical compound CCCO[SiH](OCCC)OCCC OZWKZRFXJPGDFM-UHFFFAOYSA-N 0.000 description 1
- IJGSGCGKAAXRSC-UHFFFAOYSA-M tris(2-hydroxyethyl)-methylazanium;hydroxide Chemical compound [OH-].OCC[N+](C)(CCO)CCO IJGSGCGKAAXRSC-UHFFFAOYSA-M 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/30—Imagewise removal using liquid means
- G03F7/32—Liquid compositions therefor, e.g. developers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31144—Etching the insulating layers by chemical or physical means using masks
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D7/00—Compositions of detergents based essentially on non-surface-active compounds
- C11D7/22—Organic compounds
- C11D7/32—Organic compounds containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31127—Etching organic layers
- H01L21/31133—Etching organic layers by chemical means
- H01L21/31138—Etching organic layers by chemical means by dry-etching
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/22—Electronic devices, e.g. PCBs or semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76807—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
Definitions
- the material for the low dielectric layer examples include a low dielectric material (low-k material), for example, a carbon-doped silicon oxide (SiOC) material, such as “Black Diamond” (produced by Applied Materials, Inc.), “Coral” (produced by Novellus Systems, Inc.) and “Aurora” (produced by ASM Japan Co., Ltd.); an MSQ (methylsilsesquioxane) material, such as “OCD T-7”, “OCD T-9”, “OCD T-11”, “OCD T-31” and “OCD T-39” (all produced by Tokyo Ohka Kogyo Co., Ltd.); and an HSQ (hydroxysilsesquioxane) material, such as “OCD T-12” and “OCD T-32” (all produced by Tokyo Ohka Kogyo Co., Ltd.), but it is not limited to these examples.
- a low dielectric material for example, a carbon-doped silicon oxide (SiOC) material, such as “Black Diamond” (produced by
- R 17 and R 18 each independently represents a hydrogen atom, an alkyl group having 1-4 carbon atoms or a phenyl group
- R 19 and R 20 each independently represents an alkyl group having 1-4 carbon atoms or a phenyl group
- Examples of the compound (II) include trimethoxysilane, triethoxysilane, tripropoxysilane, triphenoxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, dipropoxymonoethoxysilane, diphenoxymonomethoxysilane, diphenoxymonoethoxysilane, diphenoxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane, monopropoxydiethoxysilane, monobutoxydimethoxysilane, monophenoxydiethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltripropoxysilane, ethyltriphenoxysilane, propyltrimethoxysilane, propyl
- the contact to the cleaning liquid may be carried out by an ordinary method, such as a dipping method, a paddle method and a shower method.
- the contact time may be a period of time sufficient to remove the sacrifice layer and can be appropriately adjusted depending on the contact method.
- the contact is generally carried out at a temperature of 20-80° C. for 1-40 minutes, but the invention is not limited thereto.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Weting (AREA)
Abstract
It is disclosed a cleaning liquid used in a process for forming a dual damascene structure comprising steps of etching a low dielectric layer (low-k layer) accumulated on a substrate having thereon a metallic layer to form a first etched-space; charging a sacrifice layer in the first etched-space; partially etching the low dielectric layer and the sacrifice layer to form a second etched-space connected to the first etched-space; and removing the sacrifice layer remaining in the first etched-space with the cleaning liquid, wherein the cleaning liquid comprises (a) 1-25 mass % of a quaternary ammonium hydroxide, such as TMAH and choline, (b) 30-70 mass % of a water soluble organic solvent, and (c) 20-60 mass % of water. The cleaning liquid attains in a well balanced manner such effects that a sacrifice layer used for forming a dual damascene structure is excellently removed, and a low dielectric layer is not damaged upon formation of a metallic wiring on a substrate having a metallic layer (such as a Cu layer) and the low dielectric layer formed thereon.
Description
- 1. Field of the Invention
- The present invention relates to a cleaning liquid used in a process for forming a dual damascene structure and a method for treating a substrate therewith. The cleaning liquid of the invention is favorably used in production of a semiconductor device, such as IC and LSI.
- 2. Description of the Related Art
- A semiconductor device, such as IC and LSI, is produced in the following process. A photoresist is uniformly coated on an electroconductive metallic film, an insulating film or a low dielectric material film formed on a substrate, such as a silicon wafer, by CVD vapor deposition process or the like. The photoresist selectively subjected to exposure and development to form a photoresist pattern. The electroconductive metallic film, the insulating film or the low dielectric material film formed by CVD vapor deposition is selectively etched by using the photoresist pattern as a mask to form a minute circuit, and the photoresist layer thus becoming unnecessary is then removed with a remover liquid.
- It is a trend in recent years that wiring circuits are becoming minute and multilayered as integration degree of semiconductor devices increases and chip size reduces, in which there arise problems in semiconductor devices, i.e., resistance of metallic films (wiring resistance) and wiring delay caused by wiring capacities. Accordingly, there are proposals of using metals, such as copper (Cu), having resistance smaller than that of aluminum (Al) having been mainly employed as a wiring material, and in recent years, two kinds of devices are being used, i.e., devices using an Al wiring (a metallic wiring using Al as a major component, such as Al and an Al alloy) and devices using a copper wiring (a metallic wiring using Cu as a major component).
- Upon forming a Cu metallic wiring, in particular, a process is used in which a Cu multilayer wiring is formed without etching Cu by using a dual damascene process, owing to the low etching resistance of Cu. Various kinds of dual damascene processes have been proposed, an example of which will be described below, but the dual damascene process is not limited thereto.
- After forming a Cu layer on a substrate, an interlayer film, such as a low dielectric film and an insulating film, is accumulated as being multilayered thereon, and a photoresist pattern is formed on the uppermost layer by a photolithography technique. The photoresist pattern serves as a mask pattern for forming via holes, in which openings are formed on regions where via holes are to be formed. Thereafter, the multilayer structure having the low dielectric film, the insulating film and the like is etched by using the photoresist pattern as a mask to form via holes reaching the Cu layer. The photoresist pattern is removed, and a sacrifice layer containing an alkoxysilane material or the like is charged in the via holes.
- Subsequently, another photoresist pattern (mask pattern) for forming a trench pattern is formed on the uppermost layer on the remaining multilayer structure, and the low dielectric film, the insulating film and the sacrifice layer are partially etched to a prescribed depth with the pattern as a mask, whereby trenches for wiring reaching the via holes are formed. The sacrifice layer remaining in the via holes is then removed and cleaned. After removing the photoresist pattern, Cu is charged in the via holes and the trenches by plating process or the like, so as to form a multilayer Cu wiring.
- In the formation process by the dual damascene process, it is necessary that not only the sacrifice layer is completely removed and cleaned, but also damages on the low dielectric layer having openings exposed to the dual damascene structure are suppressed.
- Upon removal of the sacrifice layer in the dual damascene process, a buffered hydrofluoric acid and the like have been used as a remover liquid (as shown, for example, U.S. Pat. No. 6,365,529 (column 8, lines 2 to 6) and U.S. Pat. No. 6,329,118 (column 7, lines 57 to 61)), but in the case where the remover liquid is used, there is such a problem that damages on the low dielectric layer cannot be sufficiently suppressed.
- The following remover liquids are proposed as a quaternary ammonium remover liquid in the photolithography field, i.e., a remover liquid containing a mixture of a quaternary ammonium salt, dimethyl sulfoxide and water (in particular, a dimethyl sulfoxide solution (containing 1.5 mass % of water) containing 0.5 mass % of tetramethylammonium hydroxide) (as described in JP-A-8-301911 (paragraphs 0032 and 0043), a stripping composition containing a polar aprotic solvent, such as dimethyl sulfoxide and sulfolane, and an aggressive base, such as a quaternary ammonium hydroxide, (as described in JP-A-2001-324823), and a remover liquid containing dimethylsulfoxide, an alcohol amine, water and quaternary ammonium hydroxide (as described in JP-A-7-28254). However, these are used for removing an organic film, such as a photoresist, but there is no disclosure on removal of a sacrifice layer and no suggestion on suppression of damages on a low dielectric layer, in the dual damascene process.
- An object of the invention is to provide a cleaning liquid attaining in a well balanced manner such effects that a sacrifice layer used for forming a dual damascene structure is excellently removed, and a low dielectric layer is not damaged upon formation of a metallic wiring on a substrate having a metallic layer (such as a Cu layer) and the low dielectric layer formed thereon.
- The invention relates to, as one aspect, a cleaning liquid used in a process for forming a dual damascene structure comprising steps of etching a low dielectric layer accumulated on a substrate having thereon a metallic layer to form a first etched-space; charging a sacrifice layer in the first etched-space; partially etching the low dielectric layer and the sacrifice layer to form a second etched-space connected to the first etched-space; and removing the sacrifice layer remaining in the first etched-space with the cleaning liquid, wherein the cleaning liquid comprises (a) 1-25 mass % of a quaternary ammonium hydroxide represented by the following general formula (I), (b) 30-70 mass % of a water soluble organic solvent, and (c) 20-60 mass % of water:
- wherein R1, R2, R3 and R4 each independently represents an alkyl group having 1-4 carbon atoms or a hydroxyalkyl group having 1-4 carbon atoms.
- The invention also relates to, as another aspect, a process for treating a substrate having a dual-damascene structure comprising steps of: etching a low dielectric layer accumulated on a substrate having thereon a metallic layer to form a first etched-space; charging a sacrifice layer in the first etched-space; partially etching the low dielectric layer and the sacrifice layer to form a second etched-space connected to the first etched-space; and bringing the sacrifice layer remaining in the first etched-space in contact with the aforementioned cleaning liquid to remove the sacrifice layer.
- The cleaning liquid of the invention is used for removing a sacrifice layer in a process for forming a dual damascene structure on a substrate having thereon a metallic layer and a low dielectric layer, and component (a) is a quaternary ammonium hydroxide represented by the following general formula (I):
- wherein R1, R2, R3 and R4 each independently represents an alkyl group having 1-4 carbon atoms or a hydroxyalkyl group having 1-4 carbon atoms.
- Specific examples thereof include tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, monomethyltripropylammonium hydroxide, trimethylethylammonium hydroxide, (2-hydroxyethyl)trimethylammonium hydroxide [=choline], (2-hydroxyethyl)triethylammonium hydroxide, (2-hydroxyethyl)tripropylammonium hydroxide, and (1-hydroxypropyl)trimethylammonium hydroxide. Among these, TMAH and choline are preferred, and TMAH are most preferred, owing to the high dissolving capability to a sacrifice layer. Component (a) may be used singly or as a combination of two or more kinds thereof.
- The amount of component (a) in the cleaning liquid of the invention is 1-25 mass %, and preferably 8-12 mass %. In the case where the amount of component (a) is less than 1 mass %, the dissolving capability to the sacrifice layer is low to fail to attain sufficient removal thereof, and in the case where it exceeds 25 mass %, the low dielectric layer is damaged.
- The water soluble organic solvent as component (b) may be any organic solvent that is miscible with water and the other components, and those having been conventionally used in this field of art may be used. Specific examples thereof include a sulfoxide, such as dimethyl sulfoxide; a sulfone, such as dimethyl sulfone, diethyl sulfone, bis(2-hydroxyethyl)sulfone and tetramethyl sulfone; an amide, such as N,N-dimethylformamide, N-methylformamide, N,N-dimethylacetamide, N-methylacetamide and N,N-diethylacetamide; a lactam, such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-propyl-2-pyrrolidone, N-hydroxymethyl-2-pyrrolidone and N-hydroxyethyl-2-pyrrolidone; an imidazolidinone, such as 1,3-dimethyl-2-imidazolidinone, 1,3-diethyl-2-imidazolidinone and 1,3-diisopropyl-2-imidazolidinone; and a polyhydric alcohol and a derivative thereof, such as ethylene glycol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether and propylene glycol monobutyl ether. Among these, dimethyl sulfoxide and N-methyl-2-pyrrolidone are preferably used. Component (b) may be used singly or as a combination of two or more kinds thereof.
- The amount of component (b) in the cleaning liquid of the invention is 30-70 mass %, and preferably 40-60 mass %. In the case where the amount of component (b) is less than 30 mass %, the low dielectric layer is damaged, and in the case where it exceeds 70 mass %, the dissolving capability to the sacrifice layer is low to fail to attain sufficient removal thereof.
- The amount of water as component (c) in the cleaning liquid of the invention is 20-60 mass %, and preferably 30-50 mass %. In the case where the amount of component (c) is less than 20 mass %, the dissolving capability to the sacrifice layer is low to fail to attain sufficient removal thereof, and in the case where it exceeds 60 mass %, the low dielectric layer is damaged.
- In addition to components (a) to (c), the cleaning liquid of the invention may further contain (d) mercapto group-containing compound, and/or (e) a quaternary ammonium hydroxide represented by the following general formula (II), with the proviso that component (e) differs from component (a):
- wherein R5, R6, R7 and R8 each independently represents an alkyl group having 1-20 carbon atoms or a hydroxyalkyl group having 1-20 carbon atoms, provided that at least one of R5, R6, R7 and R8 represents an alkyl group having 10 or more carbon atoms, or at least two of R5, R6, R7 and R8 each independently represents a hydroxyalkyl group having 2-5 carbon atoms.
- As component (d), a compound is preferred which has a structure that has a hydroxyl group and/or a carboxyl group on at least one of an α-position and a β-position of a carbon atom connected to a mercapto group. Specific preferred examples of the compound include 1-thioglycerol, 3-(2-aminophenylthio)-2-hydroxypropylmercaptan, 3-(2-hydroxyethylthio)-2-hydroxypropylmercaptan, 2-mercaptopropionic acid and 3-mercaptopropionic acid. Among these, 1-thioglycerol is particularly preferably used. Component (d) may be used singly or as a combination of two or more kinds thereof.
- In the incorporation of component (d), the amount thereof in the cleaning liquid of the invention is preferably 0.01-15 mass %, and particularly 0.1-10 mass %. Corrosion of Cu can be further effectively prevented by the incorporation of component (d).
- Specific preferred examples of component (e) include hexadecyltrimethylammonium hydroxide, tri(2-hydroxyethyl)methylammonium hydroxide and tetra(2-hydroxyethyl)ammonium hydroxide. Component (e) may be used singly or as a combination of two or more kinds thereof.
- In the incorporation of component (e), the amount thereof in the cleaning liquid of the invention is preferably 0.01-15 mass %, and particularly 0.1-10 mass %. Corrosion of Cu can be further effectively prevented by the incorporation of component (e).
- Examples of a specific embodiment of the use of the cleaning liquid according to the invention and a specific embodiment of a process for treating a substrate using the cleaning liquid according to the invention will be described below. However, the invention is not limited to the examples.
- As the dual damascene process used in the invention, processes having been known in this field of art may be employed, which include the via first process, in which via holes are firstly formed, and then trenches (trenches for wiring) are formed, and the trench first process, in which trenches are firstly formed, and then via holes are formed.
- Specifically, for example, a metallic layer (an electroconductive layer) is provided on a substrate, a barrier layer (an etching stopper layer) is then provided thereon. A low dielectric layer is accumulated on the barrier layer, and a photoresist layer is provided on the low dielectric layer. The photoresist layer is then selectively exposed and developed to form a photoresist pattern.
- Subsequently, in the via first process, the low dielectric layer is etched by using the photoresist pattern as a mask to form via holes (i.e., the first etched-space) connected to the metallic layer on the substrate, and the photoresist pattern is then removed by ashing treatment or the like. A sacrifice layer is then charged in the via holes. Thereafter, another photoresist pattern is formed on the remaining low dielectric layer, and the low dielectric layer and the sacrifice layer are etched to a prescribed depth by using the photoresist pattern as a mask to form trenches (i.e., the second etched-space) connected to the via holes.
- In the trench first process, on the other hand, the low dielectric layer is etched to a prescribed thickness by using the photoresist pattern as a mask to form trenches (i.e., the first etched-space), and the photoresist pattern is then removed by ashing treatment or the like. A sacrifice layer is then charged in the trenches. Thereafter, another photoresist pattern is formed on the remaining low dielectric layer, and the low dielectric layer and the sacrifice layer are etched to connect to the trench by using the photoresist pattern as a mask to form via holes (i.e., the second etched-space), lower parts of which are connected to the Cu layer on the substrate.
- After completing one of the foregoing processes, the sacrifice layer charged in the via holes in the via first process, or the sacrifice layer charged in the trenches in the trench first process is made in contact with the cleaning liquid according to the invention to remove the sacrifice layer. A metal is charged in the via holes and the trenches of the substrate thus processed to produce a multilayer metallic wiring substrate.
- Examples of the material for the metallic layer include Cu, a Cu alloy, Al and an Al alloy. The metallic layer may be formed by the CVD vapor deposition process, the electrolytic plating or the like, but is not limited thereto.
- Examples of the material for the barrier (etching stopper) layer include SiN, SiCN, Ta and TaN.
- Examples of the material for the low dielectric layer include a low dielectric material (low-k material), for example, a carbon-doped silicon oxide (SiOC) material, such as “Black Diamond” (produced by Applied Materials, Inc.), “Coral” (produced by Novellus Systems, Inc.) and “Aurora” (produced by ASM Japan Co., Ltd.); an MSQ (methylsilsesquioxane) material, such as “OCD T-7”, “OCD T-9”, “OCD T-11”, “OCD T-31” and “OCD T-39” (all produced by Tokyo Ohka Kogyo Co., Ltd.); and an HSQ (hydroxysilsesquioxane) material, such as “OCD T-12” and “OCD T-32” (all produced by Tokyo Ohka Kogyo Co., Ltd.), but it is not limited to these examples.
- The low dielectric layer may be formed directly on the metallic layer. The formation of the low dielectric layer can be carried out by coating the low dielectric material (low-k material) as exemplified above and baked, in general, at a high temperature of 350° C. or higher to attain crystallization.
- Preferred examples of the photoresist include photoresist materials having been generally used for a KrF, ArF or F2 excimer laser or an electron beam. The photoresist pattern may be formed by the ordinary photolithography technique.
- The etching of the low dielectric layer may be carried out by the ordinary process, such as dry etching. The ashing of the photoresist pattern may also be carried out by the ordinary process. In the case where the low dielectric layer has a low dielectric constant (k) of about 3 or less, the ashing is not carried out due to the low ashing resistance thereof, but the photoresist pattern can be removed with a known resist remover liquid or the like.
- Subsequently, the sacrifice layer is charged in the first etched-space (i.e., the via holes or the trenches) thus formed. As the material for the sacrifice layer, for example, a spin-on-glass material or a material obtained by adding a light absorbing substance thereto is employed.
- Examples of the spin-on-glass material include a material obtained by hydrolyzing at least one compound selected from the following compounds (i) to (iii) in the presence of an acid catalyst, but it is not limited thereto.
- The compound (i) is represented by the following general formula (III):
-
Si(OR9)a(OR10)b(OR11)c(OR12)d (III) - wherein R9, R10, R11 and R12 each independently represents an alkyl group having 1-4 carbon atoms or a phenyl group; and a, b, c and d each independently represents an integer of 0-4, provided that a, b, c and d satisfy a condition of a+b+c+d=4.
- The compound (II) is represented by the following general formula (IV):
-
R13Si(OR14)e(OR15)f(OR16)g (IV) - wherein R13 represents a hydrogen atom, an alkyl group having 1-4 carbon atoms or a phenyl group; R14, R15 and R16 each independently represents an alkyl group having 1-4 carbon atoms or a phenyl group; and e, f and g each independently represents an integer of 0-3, provided that e, f and g satisfy a condition of e+f+g=3.
- The compound (iii) is represented by the following general formula (V):
-
R17R18Si(OR19)h(OR20)i (V) - wherein R17 and R18 each independently represents a hydrogen atom, an alkyl group having 1-4 carbon atoms or a phenyl group; R19 and R20 each independently represents an alkyl group having 1-4 carbon atoms or a phenyl group; and h and i each independently represents an integer of 0-2, provided that h and i satisfy a condition of h+i=2.
- Examples of the compound (i) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetraphenoxysilane, trimethoxymonoethoxysilane, dimethoxydiethoxysilane, triethoxymonomethoxysilane, trimethoxymonopropoxysilane, monomethoxytributoxysilane, monomethoxytriphenoxysilane, dimethoxydipropoxysilane, tripropoxymonomethoxysilane, trimethoxymonobutoxysilane, dimethoxydibutoxysilane, triethoxymonopropoxysilane, diethoxydipropoxysilane, tributoxymonopropoxysilane, dimethoxymonoethoxymonobutoxysilane, diethoxymonomethoxymonobutoxysilane, diethoxymonopropoxymonobutoxysilane, dipropoxymonomethoxymonoethoxysilane, dipropoxymonomethoxymonobutoxysilane, dipropoxymonoethoxymonobutoxysilane, dibutoxymonomethoxymonoethoxysilane, dibutoxymonoethoxymonopropoxysilane and monomethoxymonoethoxymonopropoxymonobutoxysilane.
- Examples of the compound (II) include trimethoxysilane, triethoxysilane, tripropoxysilane, triphenoxysilane, dimethoxymonoethoxysilane, diethoxymonomethoxysilane, dipropoxymonomethoxysilane, dipropoxymonoethoxysilane, diphenoxymonomethoxysilane, diphenoxymonoethoxysilane, diphenoxymonopropoxysilane, methoxyethoxypropoxysilane, monopropoxydimethoxysilane, monopropoxydiethoxysilane, monobutoxydimethoxysilane, monophenoxydiethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltripropoxysilane, ethyltriphenoxysilane, propyltrimethoxysilane, propyltriethoxysilane, propyltriphenoxysilane, butyltrimethoxysilane, butyltriethoxysilane, butyltripropoxysilane, butyltriphenoxysilane, methylmonomethoxydiethoxysilane, ethylmonomethoxydiethoxysilane, propylmonomethoxydiethoxysilane, butylmonomethoxydiethoxysilane, methylmonomethoxydipropoxysilane, methylmonomethoxydiphenoxysilane, ethylmonomethoxydipropoxysilane, ethylmonomethoxydiphenoxysilane, propylmonomethoxydipropoxysilane, propylmonomethoxydiphenoxysilane, butylmonomethoxydipropoxysilane, butylmonomethoxydiphenoxysilane, methylmethoxyethoxypropoxysilane, propylmethoxyethoxypropoxysilane, butylmethoxyethoxypropoxysilane, methylmonomethoxymonoethoxymonobutoxysilane, ethylmonomethoxymonoethoxymonobutoxysilane, propylmonomethoxymonoethoxymonobutoxysilane and butylmonomethoxymonoethoxymonobutoxysilane.
- Examples of the compound (iii) include dimethoxysilane, diethoxysilane, dipropoxysilane, diphenoxysilane, methoxyethoxysilane, methoxypropoxysilane, methoxyphenoxysilane, ethoxypropoxysilane, ethoxyphenoxysilane, methyldimethoxysilane, methylmethoxyethoxysilane, methyldiethoxysilane, methylmethoxypropoxysilane, methylmethoxyphenoxysilane, ethyldipropoxysilane, ethylmethoxypropoxysilane, ethyldiphenoxysilane, propyldimethoxysilane, propylmethoxyethoxysilane, propylethoxypropoxysilane, propyldiethoxysilane, propyldiphenoxysilane, butyldimethoxysilane, butylmethoxyethoxysilane, butyldiethoxysilane, butylethoxypropoxysilane, butyldipropoxysilane, butylmethylphenoxysilane, dimethyldimethoxysilane, dimethylmethoxyethoxysilane, dimethyldiethoxysilane, dimethyldiphenoxysilane, dimethylethoxypropoxysilane, dimethyldipropoxysilane, diethylmethoxysilane, diethylmethoxypropoxysilane, diethyldiethoxysilane, diethylethoxypropoxysilane, dipropyldimethoxysilane, dipropyldiethoxysilane, dipropyldiphenoxysilane, dibutyldimethoxysilane, dibutyldiethoxysilane, dibutyldipropoxysilane, dibutylmethoxy, phenoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, methylethyldipropoxysilane, methylethyldiphenoxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, methylbutyldimethyoxysilane, methylbutyldiethoxysilane, methylbutyldipropoxysilane, methylethylethoxypropoxysilane, ethylpropyldimethoxysilane, ethylpropylmethoxyethoxysilane, dipropyldimethoxysilane, dipropylmethoxyethoxysilane, propylbutyldimethoxysilane, propylbutyldiethoxysilane, dibutylmethoxyethoxysilane, dibutylmethoxypropoxysilane and dibutylethoxypropoxysilane.
- Preferred examples of the light absorbing substance that can be added to the spin-on-glass material include at least one kind of a compound having, in the structure thereof, a substituent capable of being condensed with the compounds (i) to (iii). Examples of the light absorbing substance include a sulfone compound, a benzophenone compound, an anthracene compound and a naphthalene compound. In particular, a bisphenylsulfone compound and a benzophenone compound having at least two hydroxyl groups, an anthracene compound having at least one substituent selected from a hydroxyl group, a hydroxyalkyl group and a carboxyl group, and a naphthalene compound having at least one substituent selected from a hydroxyl group and a carboxyl group are preferred.
- Examples of the bisphenylsulfone compound having at least two hydroxyl groups include a bis(hydroxyphenyl)sulfone compound and a bis(polyhydroxyphenyl)sulfone compound. Specific examples thereof include bis(4-hydroxyphenyl)sulfone, bis(3,5-dimethyl-4-hydroxyphenyl)sulfone, bis(2,3-dihydroxyphenyl)sulfone, bis(2,4-dihydroxyphenyl)sulfone, bis(2,4-dihydroxy-6-methylphenyl)sulfone, bis(5-chloro-2,4-dihydroxyphenyl)sulfone, bis(2,5-dihydroxyphenyl)sulfone, bis(3,4-dihydroxyphenyl)sulfone, bis(3,5-dihydroxyphenyl)sulfone, bis(2,3,4-trihydroxyphenyl)sulfone, bis(2,3,4-trihydroxy-6-methylphenyl)sulfone, bis(5-chloro-2,3,4-trihydroxyphenyl)sulfone, bis(2,4,6-trihydroxyphenyl)sulfone and bis(5-chloro-2,3-dihydroxyphenyl)sulfone.
- Examples of the benzophenone compound having at least two hydroxyl groups include 2,4-dihydroxybenzophenone, 2,3,4-trihydroxybenzophenone, 2,2′,4,4′-tetrahydroxybenzophenone, 2,2′,5,6′-tetrahydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,6-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, 4-dimethylamino-2′,4,4′-dihydroxybenzophenone and 4-dimethylamino-3′,4′-dihydroxybenzophenone.
- Examples of the anthracene compound having at least one substituent selected from a hydroxyl group, a hydroxyalkyl group and a carboxyl group include a compound represented by the following general formula (VI):
- wherein p represents an integer of 0-8; q represents an integer of 0-10; r represents an integer of 0-6; and s represents 0 or 1, provided that p, q and r are not simultaneously 0.
- Specific examples of the compound include 1-hydroxyanthracene, 9-hydroxyanthracene, anthracene-9-carboxylic acid, 1,2-dihydroxyanthracene, 1,2-dihydroxy-9-carboxyanthracene, 1,5-dihydroxyanthracene, 1,5-dihydroxy-9-carboxyanthracene, 9,10-dihydroxyanthracene, 1,2,3-trihydroxyanthracene, 1,2,3,4-tetrahydroxyanthracene, 1,2,3,4,5,6-hexahydroxyanthracene, 1,2,3,4,5,6,7,8-octahydroxyanthracene, 1-hydroxymethylanthracene, 9-hydroxymethylanthracene, 9-hydroxyethylanthracene, 9-hydroxyhexylanthracene, 9-hydroxyoctylanthracene and 9,10-dihydroxymethylanthracene.
- Specific examples of the naphthalene compound having at least one substituent selected from a hydroxyl group and a carboxyl group include 1-naphthol, 2-naphthol, 1-naphthalene ethanol, 2-naphthalene ethanol, 1,3-naphthalenediol, naphthalene-1-carboxylic acid, naphthalene-2-carboxylic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-2,3-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid and naphthalene-1-acetic acid.
- The spin-on-glass material is charged in the first etched-space (i.e., the via holes or the trenches) and then baked at a relatively low temperature of 250° C. or lower to form the sacrifice layer.
- The spin-on-glass material as the material for the sacrifice layer preferably has an etching rate equivalent to that of the material used in the low dielectric layer, and a material of the same kind as the low dielectric layer may be used therefor. However, while the low dielectric layer is formed through crystallization by baking at a high temperature, the sacrifice layer is formed by baking at a relatively lower temperature than the crystallization temperature since it is finally removed after etching.
- Subsequently, another resist pattern is formed on the low dielectric layer, and the second etched-space (i.e., the trenches or the via holes) is formed by using the photoresist pattern as a mask according to an ordinary process. Consequently, a dual damascene structure is formed, which is an interconnection structure connected to the metallic layer on the substrate.
- It is necessary herein that the sacrifice layer remaining in the first etched-space is removed. The sacrifice layer can be completely removed by bringing it in contact with the cleaning liquid according to the invention without damaging the part of the low dielectric layer that is exposed to the etched-space.
- The contact to the cleaning liquid may be carried out by an ordinary method, such as a dipping method, a paddle method and a shower method. The contact time may be a period of time sufficient to remove the sacrifice layer and can be appropriately adjusted depending on the contact method. The contact is generally carried out at a temperature of 20-80° C. for 1-40 minutes, but the invention is not limited thereto.
- The photoresist pattern on the low dielectric layer is then removed by ashing treatment or the like. As described in the foregoing, in the case where the low dielectric layer has a low dielectric constant (k) of about 3 or less, the ashing is not carried out due to the low ashing resistance thereof, but the photoresist pattern can be removed with a known resist remover liquid or the like.
- The cleaning liquid of the invention exhibits a large difference between the solubility to the low dielectric layer (low-k layer) and the solubility to the sacrifice layer, and therefore, it readily provides a good selectivity. Furthermore, damages on the low dielectric layer (low-k layer) can be considerably decreased in comparison to the case using a diluted hydrofluoric acid solution, which has been often used as a remover for a sacrifice layer.
- The invention will be described in detail below with reference to the example, but the invention is not construed as being limited thereto. All the amounts in the example are in terms of percent by mass unless otherwise indicated.
- A barrier layer formed with an SiN film as the first layer, a low dielectric layer (formed with “OCD T-12”, produced by Tokyo Ohka Kogyo Co., Ltd.) as the second layer, a barrier layer formed with an SiN film as the third layer, and a low dielectric layer (formed with “OCD T-12”, produced by Tokyo Ohka Kogyo Co., Ltd.) as the fourth layer were formed on a substrate having a Cu layer formed thereon. A photoresist pattern is formed thereon by the photolithography technique, and via holes connected to the Cu layer were formed by etching the first to fourth layers with the photoresist patter as a mask. A sacrifice layer (formed with “OCD T-32”, produced by Tokyo Ohka Kogyo Co., Ltd.) was charged in the via holes (baked at 200° C.). Another photoresist pattern is formed thereon by the photolithography technique, and trenches were formed by etching with the photoresist pattern as a mask.
- The substrate thus obtained was subjected to a dipping treatment in the cleaning liquids shown in Table 1 below (at 40° C. for 20 minutes), and then rinsed with pure water. The removing capability to the sacrifice layer (dissolving capability) and the state of damages (corrosion) of the low dielectric layer were evaluated by observing with an SEM (scanning electron microscope). The results obtained are shown in Table 2 below.
- The removing capability to the sacrifice layer (dissolving capability) and the state of damages (corrosion) of the low dielectric layer were evaluated with the following standards.
- <Removing capability to Sacrifice Layer (Dissolving Capability>
S: The sacrifice layer was completely removed (i.e., no residue remaining in the via holes was found).
A: A slight amount of a residue remained. - S: No corrosion was found.
A: Slight corrosion (roughness) was found on the surface of the low dielectric layer.
B: Corrosion of the surface of the low dielectric layer was found. -
TABLE 1 Components of cleaning liquid (amount (mass %)) Component Component Component Component Component Other (a) (b) (c) (d) (e) component Example 1 TMAH DMSO (40) — — — (10) (50) Example 2 Choline DMSO (40) — — — (10) (50) Example 3 TMAH (5), DMSO (40) — — — Choline (5) (50) Example 4 Choline DMSO (40) 1-thioglycerol — — (10) (49.5) (0.5) Example 5 TMAH DMSO (40) — HDTMAH — (10) (49.5) (0.5) Comparative 0.1 mass % buffered hydrofluoric acid aqueous solution (100) Example 1 Comparative TMAH DMSO (35) — — — Example 2 (30) (35) Comparative TMAH DMSO (39.5) — — — Example 3 (0.5) (60) Comparative TMAH DMSO (70) — — — Example 4 (10) (20) Comparative TMAH DMSO (15) — — — Example 5 (5) (80) Note: Components shown in Table 1 are as follows. TMAH: tetramethylammonium hydroxide Choline: (2-hydroxyethyl)trimethylammonium hydroxide DMSO: dimethyl sulfoxide HDTMAH: hexadecyltrimethylammonium hydroxide -
TABLE 2 Removing State of capability to corrosion of low sacrifice layer dielectric layer Example 1 S S Example 2 S S Example 3 S S Example 4 S S Example 5 S S Comparative Example 1 S B Comparative Example 2 S B Comparative Example 3 A S Comparative Example 4 S B Comparative Example 5 A S - As described in detail above, according to the invention, a cleaning liquid can be obtained that attains in a well balanced manner such effects that a sacrifice layer used for forming a dual damascene structure is excellently removed, and a low dielectric layer is not damaged upon formation of a metallic wiring on a substrate having a metallic layer and the low dielectric layer formed thereon.
Claims (8)
1. A cleaning liquid used in a process for forming a dual damascene structure comprising steps of etching a low dielectric layer accumulated on a substrate having thereon a metallic layer to form a first etched-space; charging a sacrifice layer in the first etched-space; partially etching the low dielectric layer and the sacrifice layer to form a second etched-space connected to the first etched-space; and removing the sacrifice layer remaining in the first etched-space with the cleaning liquid, wherein the cleaning liquid comprises (a) 1-25 mass % of a quaternary ammonium hydroxide represented by the following general formula (I), (b) 30-70 mass % of a water soluble organic solvent, and (c) 20-60 mass % of water:
wherein R1, R2, R3 and R4 each independently represents an alkyl group having 1-4 carbon atoms or a hydroxyalkyl group having 1-4 carbon atoms.
2. The cleaning liquid as claimed in claim 1 , wherein the sacrifice layer comprises a spin-on-glass material.
3. The cleaning liquid as claimed in claim 2 , wherein the spin-on-glass material contains a light absorbing substance.
4. The cleaning liquid as claimed in claim 1 , wherein component (a) is tetramethylammonium hydroxide and/or (2-hydroxyethyl)trimethylammonium hydroxide.
5. The cleaning liquid as claimed in claim 1 , wherein component (b) is dimethyl sulfoxide.
6. The cleaning liquid as claimed in claim 1 , wherein the cleaning liquid comprises 8-12 mass % of component (a), 40-60 mass % of component (b), and 30-50 mass % of component (c).
7. The cleaning liquid as claimed in claim 1 , wherein the cleaning liquid further comprises (d) a mercapto group-containing compound, and/or (e) a quaternary ammonium hydroxide represented by the following general formula (II), with the proviso that component (e) differs from component (a):
wherein R5, R6, R7 and R8 each independently represents an alkyl group having 1-20 carbon atoms or a hydroxyalkyl group having 1-20 carbon atoms, provided that at least one of R5, R6, R7 and R8 represents an alkyl group having 10 or more carbon atoms, or at least two of R5, R6, R7 and R8 each independently represents a hydroxyalkyl group having 2-5 carbon atoms.
8. A process for treating a substrate having a dual damascene structure comprising steps of: etching a low dielectric layer accumulated on a substrate having thereon a metallic layer to form a first etched-space; charging a sacrifice layer in the first etched-space; partially etching the low dielectric layer and the sacrifice layer to form a second etched-space connected to the first etched-space; and bringing the sacrifice layer remaining in the first etched-space in contact with a cleaning liquid as claimed in any one of claims 1 -7 to remove the sacrifice layer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/591,210 US20100051582A1 (en) | 2002-09-09 | 2009-11-12 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
US12/801,452 US8158568B2 (en) | 2002-09-09 | 2010-06-09 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-262565 | 2002-09-09 | ||
JP2002262565A JP4282054B2 (en) | 2002-09-09 | 2002-09-09 | Cleaning liquid used in dual damascene structure forming process and substrate processing method |
US10/657,177 US20040121937A1 (en) | 2002-09-09 | 2003-09-09 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
US11/473,030 US20060241012A1 (en) | 2002-09-09 | 2006-06-23 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
US12/379,099 US20090156005A1 (en) | 2002-09-09 | 2009-02-12 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
US12/591,210 US20100051582A1 (en) | 2002-09-09 | 2009-11-12 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/379,099 Continuation US20090156005A1 (en) | 2002-09-09 | 2009-02-12 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/801,452 Continuation US8158568B2 (en) | 2002-09-09 | 2010-06-09 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100051582A1 true US20100051582A1 (en) | 2010-03-04 |
Family
ID=32262578
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/657,177 Abandoned US20040121937A1 (en) | 2002-09-09 | 2003-09-09 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
US11/473,030 Abandoned US20060241012A1 (en) | 2002-09-09 | 2006-06-23 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
US12/379,099 Abandoned US20090156005A1 (en) | 2002-09-09 | 2009-02-12 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
US12/591,210 Abandoned US20100051582A1 (en) | 2002-09-09 | 2009-11-12 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
US12/801,452 Expired - Fee Related US8158568B2 (en) | 2002-09-09 | 2010-06-09 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/657,177 Abandoned US20040121937A1 (en) | 2002-09-09 | 2003-09-09 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
US11/473,030 Abandoned US20060241012A1 (en) | 2002-09-09 | 2006-06-23 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
US12/379,099 Abandoned US20090156005A1 (en) | 2002-09-09 | 2009-02-12 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/801,452 Expired - Fee Related US8158568B2 (en) | 2002-09-09 | 2010-06-09 | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith |
Country Status (5)
Country | Link |
---|---|
US (5) | US20040121937A1 (en) |
JP (1) | JP4282054B2 (en) |
KR (1) | KR100810953B1 (en) |
CN (1) | CN100504620C (en) |
TW (1) | TW200405133A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120157367A1 (en) * | 2010-12-16 | 2012-06-21 | Anh Duong | Composition and method for removing photoresist and bottom anti-reflective coating for a semiconductor substrate |
US11353794B2 (en) * | 2017-12-22 | 2022-06-07 | Versum Materials Us, Llc | Photoresist stripper |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3738996B2 (en) * | 2002-10-10 | 2006-01-25 | 東京応化工業株式会社 | Cleaning liquid for photolithography and substrate processing method |
KR101043397B1 (en) * | 2003-07-10 | 2011-06-22 | 주식회사 동진쎄미켐 | Stripping composition for removing color resist of tft-lcd manufacturing process |
EP2202579A3 (en) * | 2004-12-03 | 2010-10-27 | Tokyo Ohka Kogyo Co., Ltd. | Chemically amplified photoresist composition, photoresist laminated product, manufacturing method for photoresist composition, manufacturing method for photoresist pattern, and manufacturing method for connection element |
CN1982426B (en) * | 2005-12-16 | 2011-08-03 | 安集微电子(上海)有限公司 | Slow-releasing agent system for cleaning semiconductor chip |
SG175273A1 (en) * | 2009-05-07 | 2011-11-28 | Basf Se | Resist stripping compositions and methods for manufacturing electrical devices |
JP5498768B2 (en) | 2009-12-02 | 2014-05-21 | 東京応化工業株式会社 | Lithographic cleaning liquid and wiring forming method |
JP5404459B2 (en) | 2010-02-08 | 2014-01-29 | 東京応化工業株式会社 | Lithographic cleaning liquid and wiring forming method |
CN102443500B (en) * | 2010-09-30 | 2014-05-21 | 奇美实业股份有限公司 | Detergent remover component and washing method |
JP6468716B2 (en) * | 2014-04-04 | 2019-02-13 | 東京応化工業株式会社 | Lithographic cleaning liquid and substrate etching method |
JP6486652B2 (en) | 2014-10-31 | 2019-03-20 | 東京応化工業株式会社 | Lithographic cleaning liquid and substrate cleaning method |
TWI783640B (en) * | 2016-03-01 | 2022-11-11 | 日商東京應化工業股份有限公司 | Cleaning solution for semiconductor substrates or devices |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL80311A (en) * | 1986-10-15 | 1990-11-05 | Erez Forensic Technology Ltd | Test kit for the detection of explosives |
US5988186A (en) * | 1991-01-25 | 1999-11-23 | Ashland, Inc. | Aqueous stripping and cleaning compositions |
JPH07247498A (en) | 1994-03-09 | 1995-09-26 | Mitsubishi Gas Chem Co Inc | Cleanser for semiconductor device and method for forming wiring pattern |
JP3575109B2 (en) | 1995-05-10 | 2004-10-13 | Jsr株式会社 | Bump forming material |
JP2911792B2 (en) * | 1995-09-29 | 1999-06-23 | 東京応化工業株式会社 | Stripper composition for resist |
JP3236220B2 (en) * | 1995-11-13 | 2001-12-10 | 東京応化工業株式会社 | Stripper composition for resist |
US5911836A (en) * | 1996-02-05 | 1999-06-15 | Mitsubishi Gas Chemical Company, Inc. | Method of producing semiconductor device and rinse for cleaning semiconductor device |
JPH10239865A (en) * | 1997-02-24 | 1998-09-11 | Jsr Corp | Stripping solution composition for negative photoresist |
US6268323B1 (en) * | 1997-05-05 | 2001-07-31 | Arch Specialty Chemicals, Inc. | Non-corrosive stripping and cleaning composition |
DE69941088D1 (en) * | 1998-05-18 | 2009-08-20 | Mallinckrodt Baker Inc | ALKALINE, SILICATE-CONTAINING CLEANING SOLUTIONS FOR MICROELECTRONIC SUBSTRATES |
US6417112B1 (en) * | 1998-07-06 | 2002-07-09 | Ekc Technology, Inc. | Post etch cleaning composition and process for dual damascene system |
JP2000031118A (en) | 1998-07-08 | 2000-01-28 | Toshiba Corp | Formation of pattern |
US6974766B1 (en) * | 1998-10-01 | 2005-12-13 | Applied Materials, Inc. | In situ deposition of a low κ dielectric layer, barrier layer, etch stop, and anti-reflective coating for damascene application |
KR200172673Y1 (en) * | 1999-03-20 | 2000-03-15 | 윤기흥 | Carrying along water pail to have custody of ice water and hot water |
US6329118B1 (en) * | 1999-06-21 | 2001-12-11 | Intel Corporation | Method for patterning dual damascene interconnects using a sacrificial light absorbing material |
JP3410403B2 (en) | 1999-09-10 | 2003-05-26 | 東京応化工業株式会社 | Photoresist stripping solution and photoresist stripping method using the same |
JP3514435B2 (en) * | 1999-12-28 | 2004-03-31 | 東京応化工業株式会社 | Photoresist stripping solution and photoresist stripping method using the same |
JP3339575B2 (en) * | 2000-01-25 | 2002-10-28 | 日本電気株式会社 | Release agent composition and release method |
US6531436B1 (en) * | 2000-02-25 | 2003-03-11 | Shipley Company, L.L.C. | Polymer removal |
US6319835B1 (en) | 2000-02-25 | 2001-11-20 | Shipley Company, L.L.C. | Stripping method |
US6417147B2 (en) * | 2000-02-29 | 2002-07-09 | Showa Denko K.K. | Cleaning agent composition, method for cleaning and use thereof |
US6410437B1 (en) | 2000-06-30 | 2002-06-25 | Lam Research Corporation | Method for etching dual damascene structures in organosilicate glass |
TW554258B (en) * | 2000-11-30 | 2003-09-21 | Tosoh Corp | Resist stripper |
MY131912A (en) * | 2001-07-09 | 2007-09-28 | Avantor Performance Mat Inc | Ammonia-free alkaline microelectronic cleaning compositions with improved substrate compatibility |
JP3403187B2 (en) * | 2001-08-03 | 2003-05-06 | 東京応化工業株式会社 | Stripping solution for photoresist |
US20030138737A1 (en) * | 2001-12-27 | 2003-07-24 | Kazumasa Wakiya | Photoresist stripping solution and a method of stripping photoresists using the same |
-
2002
- 2002-09-09 JP JP2002262565A patent/JP4282054B2/en not_active Expired - Fee Related
-
2003
- 2003-09-08 KR KR1020030062499A patent/KR100810953B1/en active IP Right Grant
- 2003-09-09 TW TW092124919A patent/TW200405133A/en not_active IP Right Cessation
- 2003-09-09 US US10/657,177 patent/US20040121937A1/en not_active Abandoned
- 2003-09-09 CN CNB031565794A patent/CN100504620C/en not_active Expired - Lifetime
-
2006
- 2006-06-23 US US11/473,030 patent/US20060241012A1/en not_active Abandoned
-
2009
- 2009-02-12 US US12/379,099 patent/US20090156005A1/en not_active Abandoned
- 2009-11-12 US US12/591,210 patent/US20100051582A1/en not_active Abandoned
-
2010
- 2010-06-09 US US12/801,452 patent/US8158568B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120157367A1 (en) * | 2010-12-16 | 2012-06-21 | Anh Duong | Composition and method for removing photoresist and bottom anti-reflective coating for a semiconductor substrate |
US8449681B2 (en) * | 2010-12-16 | 2013-05-28 | Intermolecular, Inc. | Composition and method for removing photoresist and bottom anti-reflective coating for a semiconductor substrate |
US11353794B2 (en) * | 2017-12-22 | 2022-06-07 | Versum Materials Us, Llc | Photoresist stripper |
Also Published As
Publication number | Publication date |
---|---|
KR100810953B1 (en) | 2008-03-10 |
US20040121937A1 (en) | 2004-06-24 |
JP2004103771A (en) | 2004-04-02 |
US20100248477A1 (en) | 2010-09-30 |
KR20040030291A (en) | 2004-04-09 |
US20060241012A1 (en) | 2006-10-26 |
TW200405133A (en) | 2004-04-01 |
CN1495535A (en) | 2004-05-12 |
US8158568B2 (en) | 2012-04-17 |
CN100504620C (en) | 2009-06-24 |
US20090156005A1 (en) | 2009-06-18 |
TWI298429B (en) | 2008-07-01 |
JP4282054B2 (en) | 2009-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8158568B2 (en) | Cleaning liquid used in process for forming dual damascene structure and a process for treating substrate therewith | |
US7442675B2 (en) | Cleaning composition and method of cleaning semiconductor substrate | |
US8192923B2 (en) | Photoresist stripping solution and a method of stripping photoresists using the same | |
US7129029B2 (en) | Compositions substrate for removing etching residue and use thereof | |
TWI304525B (en) | ||
US6821352B2 (en) | Compositions for removing etching residue and use thereof | |
TWI405848B (en) | Semi-aqueous stripping and cleaning composition containing aminobenzenesulfonic acid | |
US8354365B2 (en) | Cleaning liquid for lithography and method for forming wiring | |
US20090131295A1 (en) | Compositions for Removal of Metal Hard Mask Etching Residues from a Semiconductor Substrate | |
US20060003910A1 (en) | Composition and method comprising same for removing residue from a substrate | |
US20070087949A1 (en) | Aqueous cleaning composition for removing residues and method using same | |
JP3738992B2 (en) | Photoresist stripping solution | |
JP4463054B2 (en) | Photoresist stripping solution and substrate processing method using the same | |
JP7561261B1 (en) | Processing solution, substrate processing method, and semiconductor substrate manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |