US20100037375A1 - Undergarment apparel spacers and low resistance air flow - Google Patents

Undergarment apparel spacers and low resistance air flow Download PDF

Info

Publication number
US20100037375A1
US20100037375A1 US12/554,981 US55498109A US2010037375A1 US 20100037375 A1 US20100037375 A1 US 20100037375A1 US 55498109 A US55498109 A US 55498109A US 2010037375 A1 US2010037375 A1 US 2010037375A1
Authority
US
United States
Prior art keywords
apparel
person
spacers
spacer
undergarment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/554,981
Inventor
William J. Plut
Michael B. Patti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cylena Medical Tech Inc
Original Assignee
Cylena Medical Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/887,648 external-priority patent/US20050108813A1/en
Application filed by Cylena Medical Tech Inc filed Critical Cylena Medical Tech Inc
Priority to US12/554,981 priority Critical patent/US20100037375A1/en
Assigned to CYLENA MEDICAL TECHNOLOGY, INC. reassignment CYLENA MEDICAL TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PLUT, WILLIAM J, PATTI, MICHAEL B
Publication of US20100037375A1 publication Critical patent/US20100037375A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/002Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches with controlled internal environment
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/12Surgeons' or patients' gowns or dresses
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D5/00Composition of materials for coverings or clothing affording protection against harmful chemical agents
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/12Surgeons' or patients' gowns or dresses
    • A41D13/1209Surgeons' gowns or dresses
    • A41D13/1218Surgeons' gowns or dresses with head or face protection
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D2400/00Functions or special features of garments
    • A41D2400/52Disposable

Definitions

  • the present invention relates to protective apparel.
  • the invention relates to spacers used in protective apparel to improve comfort and thermal management, improve airflow internal to the apparel, and/or increase breathing volumes.
  • Protective apparel is used in many environments that offer an undesirable agent. Surgeons frequently operate on a patient who carries a communicable disease. Recent worldwide outbreaks of severe acute respiratory syndrome (SARS) and influenza have required health care practitioners to interact with patients that are knowingly afflicted. Practitioners in infectious disease and medical environments such as these are prone to contamination from airborne, blood-borne, and droplet-transmitted biological agents. Industrial and chemical environments also offer a variety of airborne, liquid and solid hazards. Protective apparel is also used in applications such as clean rooms and surgical rooms to maintain a sterile zone and prevent passage of contaminants from a person wearing the apparel to a sterile zone or patient.
  • Thermal discomfort is a repeated complaint for conventional protective apparel.
  • Many health-care workers use surgical apparel designed for a surgeon that stands in one location. If a user walks considerably, or performs other physical tasks such as lifting sick patients, conventional surgical suits cannot manage the extra heat, which additionally raises discomfort.
  • Protective apparel described herein comprises a set of spacers attached to an undergarment. Each spacer attaches to the undergarment and is arranged under shroud material that rests over top of the undergarment. Collectively, the spacers maintain the shroud material proximate to each spacer distant from the undergarment worn by the person, thereby preventing continuous contact between the person and portions of the shroud material near the spacers. Multiple spacers form air channels between the spacers, the undergarment and inner portions of the shroud material. The channels permit low resistance airflow within the shroud material. Low resistance airflow within the channels permits air to be easily moved underneath the shroud material to cool the person.
  • the spacers are attached to an undergarment such as a vest worn under the shroud material or another layer of the protective apparel worn under the shroud material.
  • the spacers may comprise a compressible material, such as foam.
  • the compressible material reduces forces on the person resulting from contact with an external object.
  • the compressible material has an elastic memory, elastic return of the compressible material causes each spacer to return to its initial shape after a deforming force is removed. The elastic return thus permits contact between the person or apparel and an external object without compromising airflow and heat management benefits over an extended period of time.
  • the present invention relates to protective apparel.
  • the apparel includes a shroud material including a body portion configured to cover at least a portion of a torso of a person when the person wears the apparel, a first sleeve configured to receive a portion of a right arm of the person, and a second sleeve configured to receive a portion of a left arm of the person.
  • the apparel also includes an undergarment configured to cover at least the portion of the torso of the person when the person wears the undergarment and adapted to be worn under the shroud material.
  • the apparel further includes a set of spacers, each spacer in the set a) including a first portion that attaches to a portion of the undergarment, b) configured to rest between the portion of the undergarment and a portion of shroud material included in the body portion when the person wears the apparel, and c) configured to maintain shroud material proximate to the spacer distant from the portion of the undergarment.
  • the present invention relates to protective apparel that includes shroud material and a sleeveless undergarment.
  • the shroud material includes a body portion configured to cover at least a portion of a torso of a person when the person wears the apparel, a first sleeve configured to receive a portion of a right arm of the person, and a second sleeve configured to receive a portion of a left arm of the person.
  • the sleeveless undergarment includes a set of spacers, each spacer in the set a) including a first portion that attaches to a portion of the undergarment and a second portion configured to neighbor an inner portion of the shroud material when the person wears the apparel, and b) configured to maintain shroud material proximate to the spacer distant from the portion of the undergarment that the spacer attaches to.
  • the present invention relates to protective apparel that permits low resistance airflow within portions of the apparel.
  • the apparel comprises shroud material, an undergarment, and a set of spacers.
  • the shroud material includes a body portion, a first sleeve, and a second sleeve.
  • the undergarment is configured to cover at least the portion of the torso of the person when the person wears the undergarment and adapted to be worn under the shroud material.
  • the set of spacers is configured to form multiple air channels that are each bordered by a channel portion of the undergarment, a channel portion of the shroud material and two spacers in the set of spacers when the person wears the apparel, each spacer in the set a) including a first portion that attaches to a portion of the undergarment, b) configured to rest between the portion of the undergarment and a portion of shroud material included in the body portion when the person wears the apparel, and c) configured to maintain shroud material proximate to the spacer distant from the portion of the undergarment.
  • the present invention relates to protective apparel that includes a set of spacers.
  • Each spacer in the set includes a first portion that attaches to a portion of an undergarment and a second portion configured to neighbor a portion of a shroud material when the person wears the undergarment and shroud material.
  • Each spacer is also configured to maintain shroud material proximate to the spacer distant from the undergarment and the person.
  • FIG. 1 illustrates a front elevation view of protective apparel in accordance with one embodiment of the present invention.
  • FIG. 2A illustrates a vertical cross section of the person and apparel of FIG. 1 taken through a chest region of the person in accordance with one embodiment of the present invention.
  • FIG. 2B illustrates a vertical cross section of the person and apparel of FIG. 1 taken through a waist region of the person in accordance with one embodiment of the present invention.
  • FIG. 2C illustrates a vertical cross section of the person and apparel of FIG. 1 taken through a thigh region of person in accordance with one embodiment of the present invention.
  • FIG. 2D illustrates a top perspective view of the arc shoulder spacers of FIG. 3D positioned on a shoulder portion of a person in accordance with another embodiment of present invention.
  • FIG. 2E illustrates a front view of shoulder spacers attached to an undergarment and positioned about the chest and shoulders of a person in accordance with another embodiment of present invention.
  • FIG. 2F illustrates a front view of shoulder spacing arrangement and spacers resting on an undergarment over the shoulders of a person in accordance with another embodiment of present invention.
  • FIG. 2G illustrates a side view of the shoulder spacing arrangement of FIG. 2F in accordance with one embodiment of the present invention.
  • FIG. 2H illustrates a side view of a single extended shoulder spacer resting on an undergarment over the shoulders of a person in accordance with one embodiment of the present invention.
  • FIG. 2I illustrates a top view of a shoulder spacing arrangement that includes four extended shoulder spacers of FIG. 2H resting upon an undergarment over the shoulders of a person in accordance with one embodiment of the present invention.
  • FIG. 2J illustrates a front view of the shoulder spacing arrangement of FIG. 2I in accordance with one embodiment of the present invention.
  • FIG. 2K illustrates a front view of a shoulder spacing arrangement in accordance with another embodiment of the present invention.
  • FIG. 3A illustrates a top view of a spacer used in the apparel of FIG. 1 in accordance with one embodiment of the present invention.
  • FIG. 3B illustrates a top perspective view of the spacer of FIG. 3A in accordance with one embodiment of the present invention.
  • FIG. 3C illustrates a top perspective view of a spacer suitable for use in the apparel of FIG. 1 in accordance with another embodiment of the present invention.
  • FIG. 3D illustrates arc shoulder spacers in accordance with another embodiment of present invention.
  • FIG. 4A illustrates a side elevation view of a headgear assembly disposed within the hood of the apparel shown in FIG. 1 in accordance with one embodiment of the present invention.
  • FIG. 4B illustrates a top view of the headgear assembly of FIG. 4A in accordance with one embodiment of the present invention.
  • FIG. 5A shows a schematic of dual airflow directing spacers with the shroud material removed to facilitate illustration in accordance with one embodiment of present invention.
  • FIG. 5B shows a schematic of an airflow directing spacer disposed below an air inlet, with the shroud material removed to facilitate illustration, in accordance with another embodiment of present invention.
  • FIG. 5C shows a schematic of an airflow directing spacer in relation to two spacers, with the shroud material removed to facilitate illustration, in accordance with one embodiment of present invention.
  • FIG. 5D shows a schematic of an arrangement of airflow directing spacers disposed about an air inlet, with the shroud material removed to facilitate illustration, in accordance with another embodiment of present invention.
  • FIG. 6 illustrates a process flow for maintaining an environment internal to protective apparel in accordance with one embodiment of the invention.
  • FIG. 1 illustrates an outer front elevation view of protective apparel 10 in accordance with one embodiment of the present invention. While the present invention will now be described as protective apparel useful for improving comfort and thermal management for its wearer, improving airflow internal to the apparel, and/or increasing breathing volumes, those skilled in the art will recognize that the subsequent description may also illustrate methods and discrete actions for improving ort and thermal management, improving airflow and/or increasing breathing volumes internal to apparel.
  • Apparel 10 generally refers to a garment assembly for use by a person 11 .
  • Apparel 10 comprises multiple components that are attached to form the garment assembly.
  • apparel 10 comprises body portion 12 , sleeves 14 , hood 20 , pant legs 26 , gloves 40 and boots 60 .
  • Apparel 10 also comprises a headgear assembly ( FIGS. 4A and 4B ) within hood 20 , filters 30 and 32 , and spacers ( FIGS. 2A-3D ). Materials suitable for each component are described below, in addition to description of suitable techniques for attaching the different components.
  • apparel 10 resembles a garment assembly or full-body suit that covers the entire body of person 12 .
  • apparel 10 creates an environment internal to apparel 10 and separates the internal environment from an environment external to apparel 10 .
  • apparel 10 resembles a gown with an open bottom and no pant legs 26 .
  • the open gown may extend to the person's waist, ankles, or any height therebetween.
  • Filters 30 and 32 regulate air and particulate passage through specific portions of apparel 10 , while a blower neighbors one of the filters to supply fresh air into apparel 10 for breathing and/or cooling.
  • Shroud material 15 provides the main physical barrier between the environment internal to apparel 10 and the environment external to apparel 10 .
  • Shroud material 15 comprises a relatively thin, flaccid or semi-flaccid sheet.
  • Shroud material 15 is included in most components of apparel 10 , such as body portion 12 , sleeves 14 , pant legs 26 , boots 60 , and hood 20 .
  • apparel 10 is designed to loosely fit about person 11 .
  • shroud material 15 loosely fits about person 11 .
  • apparel 10 employs a single type of material for shroud material 15 .
  • portions of apparel 10 may include different types of shroud material.
  • body portion 12 may include a substantially liquid impervious material while sleeves 14 include a lighter material that provides lesser protection, while hood comprises a separate material that increases breathability between the environment internal to apparel 10 and the external environment.
  • Body portion 12 includes shroud material 15 and covers at least a portion of the person's torso.
  • body portion 12 extends perimetrically about the person's torso and downward from the person's shoulders to below the person's groin, thereby shrouding substantially the full torso.
  • body portion 12 may extend downward from the shoulders to the waist of person 11 , or may extend lower than the waist to the knees, the ankles, a point between the thighs and knees, or a point between the knees and ankles.
  • body portion 12 includes no seams in the front hemisphere to provide a frontal piece that minimizes risk of penetration from liquid or other undesirable agents at a seam.
  • apparel 10 may resemble a gown where body portion 12 includes an open bottom and apparel 10 includes no pant legs 26 .
  • Hood 20 substantially covers the wearer's head 85 and neck; and comprises hood shroud material 15 and a viewing window 24 .
  • a lower portion of the hood shroud material 15 attaches to an upper portion of body portion 12 at seam 21 .
  • Viewing window 24 is configured to rest in front of the person's face when person 11 wears apparel 10 .
  • Viewing window 24 allows person 11 to see out of hood 20 .
  • Viewing window 24 comprises a thin, lightweight and transparent barrier, such as a suitable plastic.
  • shroud material 15 included in hood 20 attaches to viewing window 24 about the perimeter of viewing window 24 .
  • Shroud material of hood 20 and viewing window 24 may be attached by taping, sewing, or with a suitable adhesive, for example.
  • shroud material 15 hangs from headgear assembly 80 ( FIG. 4B ) and viewing window 24 is configured to hang in front of a forward facial section of head 85 when person 11 wears apparel 10 .
  • One or more spacers may be attached to a bottom portion of viewing window 24 , or to shroud material below viewing window 24 , to maintain a distance between the bottom portion of viewing window 24 and person 11 .
  • Viewing window 24 may curve about the person's face to increase unobstructed viewing for person 11 .
  • window 24 curves about the person's face and ends in front of the person's ears.
  • shroud material 15 included in hood 20 is provided with slack such that person 11 may use a stethoscope while wearing apparel 10 .
  • apparel 10 is an open-face design and viewing window 24 does not include a barrier but represents an open area with no material protection.
  • FIG. 4A illustrates a side elevation view of a headgear assembly 180 disposed within hood 20 in accordance with one embodiment of the present invention.
  • FIG. 4B illustrates a top view of headgear assembly 180 .
  • Headgear assembly 180 rests upon the head 85 of person 11 , lies underneath material of hood 20 , and maintains shroud material 15 and viewing window 24 at a distance from head 85 .
  • Headgear assembly 180 includes a head interface 182 and spacing guards 184 .
  • Head interface 182 comprises a headband 186 , support 187 and one or more spacing members 188 .
  • Headband 186 circumferentially surrounds head 85 and fits to prevent rotational motion between assembly 180 and head 85 .
  • Headband 186 includes an adjustable fastener 189 , usually in the back of headband 186 , that allows person 11 to change the circumference of headband 86 .
  • Fastener 189 may include a ratcheting fastener, a hook and loop fastener (commonly marketed under the trademark name ‘Velcro’), or dual arms having mating plastic features that snap together and hold the arms together.
  • Support 187 attaches to headband 186 on one side of head 85 , extends over the top of head 85 when the person wears headgear 180 , and attaches to headband 186 on the other side of head 85 .
  • Support 187 provides vertical support to bear the weight of headgear assembly 180 , shroud material 15 for hood 20 , and viewing window 24 .
  • Support 187 includes dual arms having mating and adjustable plastic features that allow the person to adjust fit for the top support 187 .
  • support 187 and headband 186 include a slightly compliant material to minimize any localized forces on head 85 and/or a soft padding attached to the underside to increase user comfort (such as foam band or cotton).
  • headgear assembly 180 may include a larger number of supports, such as from 2 to 5.
  • supports 187 comprise a continuous net that extends over the entire head 85 while still allowing for gaseous communication with the top of head 85 for heat dissipation.
  • Forward spacing guard 184 a and rear spacing guard 184 b define the external dimensions of headgear assembly 180 .
  • Spacing guards 184 comprise rigid members shaped to contour around the person's head and maintain shroud material 15 from contacting head 85 . Spacing guards 184 thus largely define an amount of space between the inner surface of shroud material 15 (or viewing window 24 ) and head 85 for hood 20 .
  • Spacing guards 184 attach to shroud material 15 at one or more places on its perimeter. As shown, male ends of a hook and loop fastener 191 are disposed in three places on spacing guards 184 to attach to mating females pieces on shroud material 15 in hood 20 (not shown).
  • Spacing guards 184 thus position and support hood 20 and bear of the weight of shroud material 15 and viewing window 24 .
  • Spacing guards 184 also define the vertical cross-section shape of hood 20 ( FIG. 4B ).
  • spacing guards 184 are configured to substantially follow the perimetric contours of the human head. Shroud material 15 drops down from spacing guards 184 according to the contour of spacing guards 184 .
  • Spacing members 188 extend down from support 187 and separate spacing guards 184 laterally from head interface 182 . Spacing members 188 maintain spacing guards 184 in position relative to head 85 and thus help establish the amount of space between the inner surface of shroud material 15 and head 85 for hood 20 . Spacing members 188 each connect a) at their proximate end to head interface 182 , and b) at their distal end to a portion of spacing guards 184 . Screws 193 are used to attach spacing guards 184 to each spacing member 188 on either side of the person's head 85 . As shown, headgear assembly 180 includes two rigid members 188 symmetrically disposed on opposite sides of head 85 . It is understood that a different number of members 188 may be used.
  • headgear assembly 180 is then configured such that shroud material 15 is spaced above and away from head 85 to provide room for airflow around head 85 .
  • Spacing guards 184 also include a height that extends above head 85 to allow for space between material 15 and head 85 above the top of head 85 .
  • headgear assembly 180 is dimensioned to maintain an average or minimum distance, D, between shroud material 15 and head 85 ( FIG. 4B ).
  • headgear assembly 80 is dimensioned such that the inner surface of shroud material 15 is, on average or minimum, from about 1 inch to about 2 inches away from head 85 .
  • slack in shroud material 15 combines with positive pressure from a blower in apparel 10 to expand slack material 15 away from head 85 and thereby create additional space between shroud 15 and head 85 .
  • shroud 15 may rest even further from head 85 than provided passively by headgear assembly 180 .
  • Headgear assembly 180 preferably comprises lightweight materials so as to minimize encumbrance on person 11 .
  • rigid members 92 may comprise a lightweight and stiff plastic.
  • headgear assembly 180 comprises two Willson V5N series headgear browguards assembled to one V5N series head interface as provided by Bacou Dalloz USA Inc. of Smithfield, R.I. Other headgear and headgear assemblies are suitable for use herein.
  • left and right sleeves 14 a and 14 b include shroud material 15 and integrally attach to a shoulder portion of body portion 12 at seams 28 a and 28 b, respectively.
  • the entire front portion of apparel 10 is constructed from a single piece of material and seams 28 do not exist between body portion 12 and sleeves 14 as shown.
  • Sleeve 14 a is adapted to receive a left arm of person 11 ; and left sleeve 14 b is adapted to receive a right arm of person 11 . While sleeves 14 are illustrated as extending up to the shoulder of person 11 , it is understood that different designs and assemblies if apparel 10 will vary the extent of arm coverage provided by each sleeve 14 .
  • each sleeve 14 receives a portion of an arm, such as forearm to wrist, or an upper portion such as from shoulder to elbow.
  • Seams 28 connect the separate pieces of shroud material 15 included in body portion 12 and sleeves 14 ; and may include stitching, tape, an ultrasonic seal and/or a heat seal, depending on the materials being connected and a desired level of protection.
  • Gloves 40 are worn at the distal end of each arm.
  • gloves 40 comprise a gaseous and liquid impermeable material such as polyethylene, latex, rubber, or the like.
  • the person may tape or otherwise temporarily attach gloves 40 to sleeves 14 . Attaching gloves 40 to sleeves 14 allows person 11 to remove apparel 10 as a single unit.
  • apparel 10 is provided with handwear integrally attached to the distal end of sleeves 14 that facilitates removal of gloves 40 worn over the handwear.
  • the handwear is configured such that when a user doffs the handwear and outer glove 40 , the handwear restrains the outer glove 40 . Thus, when a user pulls the handwear and outer glove inside-out, the handwear may capture and contain the outer glove, which allows person 11 to remove apparel 10 as a single unit.
  • Left and right pant legs 26 a and 26 b include shroud material 15 and attach to a lower portion of body portion 12 at seams (not shown).
  • the entire front portion of apparel 10 is made from a single piece of material and seams do not exist between body portion 12 and pants legs 26 .
  • pant legs 26 extend from body portion 12 from the midpoint of the person's thighs. In this case, each pant leg 26 only receives a portion of each leg from the thigh to the foot.
  • body portion 12 may extend down to a different part of person 11 , such as the waist or the knees or below, which will determine the length of pant legs 26 .
  • pant legs 26 extend and enclose the feet or shoes of person 11 .
  • Boots 60 attach to the distal ends of each pant leg 26 .
  • Boots 60 cover at least a portion of the shoes worn by person 11 and may include an abrasion resistant material on a bottom surface.
  • One or more ties, rubber bands or elastics sewn into shroud material 15 may be used to secure excess material included in boots 60 . The excess material assists user entry and exit into and out of boots 60 .
  • Plastic tape, hook and loop fasteners, male and females snaps, or other detachable binders may also be used other than ties or elastics to secure excess material of boots 60 .
  • a filter 30 is sewn or otherwise suitably attached to shroud material 15 about a hole in shroud material 15 at a lower area of body portion 12 .
  • a blower (not shown) is arranged on the inside of apparel 10 to neighbor inlet filter 30 . The blower moves air from the environment external to apparel 10 into the environment internal to apparel 10 . Air provided by the blower ventilates the environment internal to apparel 10 , cools the person wearing apparel 10 and provides fresh air for breathing.
  • the blower may comprise a fan or other air moving apparatus suitably sized to provide a desired flow rate of air into and/or within apparel 10 .
  • the blower capacity should be sufficient to draw air into apparel 10 , through inlet filter 30 , and out of apparel 10 at an air flow rate sufficient for respiration and/or cooling of person 11 .
  • an inlet airflow rate from about 5 to about 80 cubic feet per minute (c.f.m.) is suitable.
  • an inlet airflow rate from about 5 to about 20 c.f.m. is suitable. Larger and smaller airflow rates may be suitable depending on a number of factors, such as the size of apparel 10 and the number of blowers employed.
  • the blower may comprise any conventional fan mechanism and may be powered by a rechargeable battery. Such devices are commercially available from a wide variety of vendors known to those of skill in the art.
  • the blower comprises a D series fan as provided by Pelonis Technologies Inc. of Malvern Pa.
  • person 11 wears a belt or vest under apparel 10 that supports the blower next to filter 30 .
  • mating hook and loop fasteners are used to attach the blower or vest to shroud material 15 adjacent to filter 30 during usage.
  • Inlet filter 30 intercepts air before flow into apparel 10 and selectively regulates the passage of air and any particulates in the air, such as any undesirable agents, into apparel 10 .
  • inlet filter 30 comprises a fabric that provides a minimal pressure drop for the blower.
  • the inlet filter 30 material and type may also be varied according to the undesirable agent(s) to be selectively blocked for apparel 10 .
  • inlet filter 30 comprises a sub-micron filter that has an effective porosity such that particles greater than a micron are not permitted to pass through.
  • a HEPA rated filter may also be employed.
  • Such filters are commercially available from vendors known to those skilled in the art.
  • One suitable provider of bacterial and viral filters is Pall Canada Ltd. of Mississauga, Canada.
  • inlet filter 30 is disposed in front of apparel 10 to provide air inlet to the front portion of apparel 10 .
  • filter 30 (and the neighboring blower) may be disposed in back of apparel 10 , on a side of apparel 10 , or in upper portions of apparel 10 .
  • filter 30 is located just below a belt (not shown), which allows person 11 to constrict the diameter of apparel 10 about the waist of person 11 .
  • filter 30 is located in the upper back region of apparel 10 to allow inlet air to proceed immediately towards hood 20 to facilitate breathing of fresh air.
  • Apparel 10 may also include multiple inlet filters and blowers, such as a second filter 30 disposed on the backside of apparel 10 . In this case, airflow suitable for respiration and cooling may be divided among the multiple inlets.
  • Air filter 32 exhausts air from an environment internal to apparel 10 to an environment external to apparel 10 .
  • Filter 32 is attached material about a hole in the shroud material 15 by sewing, taping, adhesive, etc. As shown in FIG. 1 , outlet filter 32 forms a major portion of the top surface of hood 20 . In another embodiment, a second filter 32 forms a large fraction of shroud material 15 on the backside of hood 20 .
  • Outlet filters 32 may also be included in other portions of apparel 10 , such as the top of the person's shoulders, lower or middle regions of body portion 12 , in sleeves 14 and/or in pant legs 26 .
  • Inlet filters 30 and outlet filters 32 may be arranged to specifically move air along desired paths within apparel 10 or to draw airflow to a certain area within apparel 10 .
  • an inlet filter 30 may be located within or near hood 20 to immediately provide air to this area, while one or more outlet filters are disposed at the waist of apparel 10 (e.g., switch the locations of inlet filter 30 and outlet filter 32 as shown).
  • This arrangement creates a positive pressure about the head 85 and respiratory areas for person 11 and is well-suited for applications that desire positive-pressure respiratory apparel. It is understood that a breathable shroud material 15 will also permit air to escape therethrough.
  • inlet filters 30 , associated blowers and outlet filters 32 are arranged such that at least 50 percent of the of inlet air volume fist moves to hood 20 for breathing.
  • outlet filters 32 in a designated portion of apparel 10 are responsible for at least 50 percent of the of outlet air volume from apparel 10 and the shroud material 15 is breathable and passively exhausts the remainder.
  • outlet filters 32 are responsible for at least 75 percent of the of outlet air volume from apparel 10 .
  • Inlet and outlet filters may also be configured to direct air for cooling of person 11 .
  • inlet and outlet filters may located and configured to increase airflow and cooling across the torso, neck and head of person 11 , which are generally considered priorities for human thermoregulation.
  • air entering an inlet filet 30 in or near hood 20 to increase fresh air supply for breathing may subsequently pass along the body of person 11 for cooling before exhausting from a waist disposed outlet filter 32 .
  • outlet filters 32 comprise the same filter material that is used in inlet filters 30 .
  • brief pressure fluctuations e.g., those resulting from breathing or movement within apparel 10 , do not result in passage of undesirable agents from an environment external to apparel 10 through an intended outlet filter 32 and into the environment internal to apparel 10 .
  • outlet filters 32 selectively transmit air and contaminants moving from the environment internal to the apparel to a clean environment outside the apparel, such as filtering out bacteria and microorganisms carried by person 11 to maintain a sterile zone for surgical applications.
  • Shroud material 15 typically comprises one or more relatively thin, flaccid sheets. Shroud material 15 forms a large portion of apparel 10 and is included in multiple parts of apparel 10 such as body portion 12 , sleeves 14 , pant legs 26 , boots 60 , and hood 20 . The number of pieces of material 15 will depend on how apparel 10 is manufactured and assembled, as one skilled in the art will appreciate, and the present invention is not limited to any particular style, assembly or design of apparel 10 . Usually, a single type of material is employed for shroud material 15 , however, it is contemplated that multiple types of shroud material 15 may be used (e.g., one shroud material 15 for body portion 12 and another shroud material 15 for sleeves 14 and/or hood 20 ).
  • shroud material 15 comprises a breathable and selectively filtering material that prevents transmission of a targeted undesirable agent through shroud material 15 .
  • shroud material 15 comprises a substantially air and/or liquid impermeable material, such as a suitable plastic or non-woven fabric.
  • Shroud material 15 may also comprise a breathable or breathable and splash resistant material, such as a non-woven fabric. Breathable portions of material 15 may also operate as a filter for outlet of air from the environment internal to apparel 10 to the environment external to apparel 10 .
  • different materials may be added or combined to shroud material 15 to increase comfort, protection, strength, appearance or another property of apparel 10 .
  • plastic materials may be combined with non-woven materials to increase protection.
  • a commercially available material such as one of the Tyvek series as provided by DuPont of Wilmington, Del., is suitable for use in shroud material 15 .
  • a non-woven such as one of the Spunbond series as provided by Kimberly-Clark Health Care of Neena, Wis. may also be suitable.
  • Shroud material 15 may also comprise a material based on polymers and copolymers of vinyl chloride, vinylidene chloride, ethylene, acrylic acids and esters, methacrylic acids and esters, propylene amines such as polyamides and other polymerizable monomers, cotton and silk, compressed nylon, polyester, and/or spandex (which may be used to increase user comfort and fit).
  • Seams of the present invention may include sewing, taping, heat sealing, an adhesive and/or solvent or sonic welding.
  • the specific joining technique used will depend on the two materials being joined, cost, manufacturing ease, and the desired joint strength, as one skilled in the art will appreciate. Multiple joining techniques may also be implemented, such as sewing for seal strength and heat-sealing for seal integrity. Other joining techniques may be used.
  • apparel 10 is airtight except for gaseous communication via inlet filters 30 and outlet filters 32 .
  • Apparel 10 then provides an isolated system in which air from the environment external to apparel 10 is transmitted into an environment internal to apparel 10 through inlet filters 30 and out through filters 32 .
  • person 11 is isolated from the ambient environment except through controlled filtering.
  • Air pressure within apparel 10 remains balanced based on the pressure drop across outlet filters 32 and influx pressure provided by the fan or blower.
  • apparel 10 is substantially impermeable to one or more undesirable agents. Impermeable as used herein refers to the quality not permitting passage.
  • Imppermeable to air or liquids refers to a quality of substantially not permitting passage of air or liquids.
  • “Impermeable to an undesirable agent” refers to substantially not permitting passage of the undesirable agent regardless of whether the agent is a solid particulate, gaseous or liquid substance.
  • apparel 10 need not include a hood as shown or may include an open-face hood.
  • apparel 10 includes an aperture in the back or front of body portion 12 for donning and doffing. The aperture may be opened and closed with a zipper (not shown) and the zipper may be sealed internally with a flap (not shown) that covers the zipper and adheres to shroud material using plastic tape or mating hook and loop fasteners.
  • apparel 10 includes a transition portal to assist donning and doffing and to reduce the risk of cross-contamination when doffing. The transition portal attaches to the apparel proximate to one end of an aperture, which provides an exit for the protective apparel.
  • transition portal When doffing, the transition portal extends away from the person, who exits the aperture. The transition portal is then pulled over the body along with any attached portions of the protective apparel. This turns the transition portal—and attached parts of the apparel—inside-out. After doffing, most portions of protective apparel are either a) inside-out, or b) contained within the inside-out transition portal and/or apparel. As a result, undesirable agents—that were initially on the outside of the apparel—are now inside the inside-out transition portal and apparel. Further description of a collapsible transition portal that facilitates donning and doffing is described in commonly owned patent application entitled “Protective Apparel with Improved Doffing”, filed on the same day as the present application, and naming William J. Plut et al. as inventors, which is incorporated by reference herein for all purposes.
  • apparel 10 comprises a set of spacers that prevent continuous contact between person 11 (and garments worn by person 11 ) and shroud material 15 .
  • a set of spacers may be arranged to cooperatively form air channels, within the shroud material 15 of apparel 10 , that allow air to move through apparel 10 with relatively little resistance.
  • FIG. 2A illustrates a vertical cross section of person 11 and apparel 10 taken through a chest region 105 of person 11 in accordance with one embodiment of the present invention.
  • FIG. 2B illustrates a vertical cross section of person 11 and apparel 10 taken through a waist region 111 of person 11 in accordance with another embodiment of the present invention.
  • FIG. 2C illustrates a vertical cross section of person 11 and apparel 10 taken through a thigh region 109 of the person's right leg 130 in accordance with another embodiment of the present invention.
  • FIG. 3A illustrates a top view of a spacer 100 in accordance with one embodiment of the present invention.
  • FIG. 3B illustrates a top perspective view of the spacer 100 .
  • FIG. 3C illustrates a top perspective view of a spacer 150 in accordance with another embodiment of the present invention.
  • each spacer 100 (or 150 ) is configured to maintain shroud material 15 proximate to the spacer distant from an outer surface and an undergarment 107 and chest region 105 for person 11 .
  • Undergarment 107 is worn over chest region 105 , may include a vest for example, and will be described in further detail below.
  • each spacer 100 includes a body 101 having a proximate portion 102 ( FIG. 3A ) that attaches to an inner portion of shroud material 15 and a distal portion 104 ( FIG. 3A ) that neighbors chest region 105 when person 11 wears apparel 10 .
  • proximate portion 102 attaches to the outside of undergarment 107 and distal portion 104 neighbors shroud material 15 when person 11 wears apparel 10 —thus keeping shroud material 15 distant from undergarment 107 and person 11 near each spacer 100 .
  • each spacer 100 in apparel 10 has a truncated right rectangular shape with curved surfaces for distal portion 104 and proximate portion 102 .
  • Spacer 150 of FIG. 3C comprises a roughly rectangular block shape.
  • proximate portion 102 is a surface, which attaches to shroud material 15 at a location on shroud material 15 such that spacer 100 neighbors a portion of person 11 .
  • proximate portion 212 or 102 attaches to an inner surface of shroud material 15 by taping, sewing, or with a suitable adhesive, for example.
  • proximate portion 102 may include a surface, which attaches to undergarment 107 at a location on undergarment 107 such that spacer 100 neighbors a portion of shroud material 15 when person 11 dons shroud material 15 .
  • distal portion 104 neighbors a portion of person 11 when person 11 wears apparel 10 . Neighboring in this sense refers to lying near in position or location. Depending on the size of person 11 , fit of apparel 10 and the temporary relationship between person 11 and apparel 10 , distal portion 104 may be in contact with a portion of person 11 (or clothing 62 worn by person 11 ), closely situated thereto, or relatively removed therefrom. Often, person 11 wears a clothing layer 60 under apparel 10 , such as a T-shirt. The clothing covers one or more portions of the person's body, such as a T-shirt that covers surface 107 of chest region 105 .
  • each spacer 100 is closely situated or in contact person 11 when person 11 wears apparel 10 .
  • shroud material 15 may be pulled away from person 11 as a result of motion by the person or an external force.
  • apparel 10 includes one or more straps or belts that allow person 11 to adjust fit for apparel 10 , thereby maintaining one or more spacers 100 proximate to the belt closer to person 11 .
  • apparel 10 includes an undergarment 107 worn under shroud material 15 .
  • the undergarment 107 may resemble a vest, short-sleeved shirt, or long-sleeved shirt, for example, to position spacers about the chest and torso of person 11 .
  • Other undergarment designs are suitable for use.
  • the undergarment has a set of spacers attached thereto.
  • proximate portion 212 or 102 attaches to undergarment 107 by taping, sewing, or with a suitable adhesive, for example.
  • Each spacer in the set a) includes a proximate portion 102 that attaches to a portion of undergarment 107 and a distal portion 104 configured to neighbor an inner portion of shroud material 15 when the person wears the apparel.
  • Undergarment 107 may or may not include sleeves.
  • undergarment 107 includes a porous material that permits air to pass therethrough and cool the wearer.
  • distal portion 104 may be in contact with a portion of shroud material 15 , closely situated thereto, or relatively removed therefrom. Since shroud material 15 is generally flaccid and often loose fitting, it is understood that each spacer 100 may contact a different portion of shroud material 15 at different times. For example, shroud material 15 may be pulled away from person 11 as a result of motion by the person or an external force. This may temporarily remove a spacer 100 and distal portion 104 from contact with shroud material 15 . The shroud material 15 and spacers 100 may then return to contact at the same or a different location.
  • spacer 100 is compliant.
  • the compliance may be achieved with a material having a stiffness suitable to maintain shroud material 15 and apparel 10 distant from person 11 while allowing compression of spacer 100 when a threshold force is applied to the spacer.
  • body 101 of spacer 100 may comprise a compressible material, such as a compressible foam or sponge.
  • a cylindrical spacer 100 may include a compression spring axially arranged to deflect along the distance between its contact locations on person 11 and shroud material 15 .
  • only a portion of spacer 100 is compliant.
  • a compressible foam or sponge layer may be attached to the surface of distal portion 104 to interface with the body of person 11 . Compliance and compressibility of spacer 100 increases comfort for person 11 and reduces forces on person 11 resulting from contact with an external object.
  • the compliant material has an elastic memory and spacer 100 substantially returns to its initial shape after a deforming force is removed from the spacer 100 .
  • a compressible foam with elastic return is suitable.
  • a closed cell polyethylene foam available from New Dimension Industries of Moonachie, N.J., is well suitable for use with compressible spacers 100 in apparel 10 .
  • the foam may be dimensioned to a desired spacer shape, examples of which are described below.
  • One of skill in the art will appreciate that a wide range of foams and materials offer a suitable stiffness range that allows portions of apparel 10 to maintain a distance from person 11 while providing compliance and elastic return to external deforming forces.
  • the packaging industry for example, relies on numerous foams that are tailored in stiffness for a particular application, such as closed cell polyethylene and polyurethane.
  • Compliance and elastic return of spacer 100 permits contact between person 11 or apparel 10 and an external object without compromising airflow and heat management benefits of apparel 10 over an extended period of time. This is useful for a health care practitioner wearing the apparel for prolonged periods in a surgical environment in which the practitioner intermittently leans against the operating table or bed. Alternatively, the compliance and elastic return is useful for individuals working in a clean room such as a semiconductor manufacturing facility where the individuals are required to perform dexterous duties while leaning and coming into contact with solid objects. Further, this is useful for nurses that frequently perform actions that require bodily contact, such as assisting an elderly patient.
  • the compliance and compressibility of spacers 100 also reduces any lack of mobility that might be caused by the extra space associated with apparel 10 , which is larger than the person alone, since the wearer may temporarily compress portion of the apparel that might inhibit movement.
  • FIG. 2A illustrates an exemplary set of spacers 120 as arranged circumferentially about a chest region 105 of person 11 when the person wears apparel 10 .
  • the set of spacers 120 comprises eight spacers 100 a - h : four spacers 100 b - e in the front hemisphere of person 11 and four spacers 100 a and 100 f - h in back.
  • the set of spacers 120 maintains portions of shroud material 15 distant from an outer surface of undergarment 107 and chest 105 for person.
  • the set of spacers 120 also maintains shroud material 15 between individual spacers 100 distant from the outer surface of undergarment 107 and chest region 105 .
  • the set of spacers 120 is suitably numbered and individual spacers 100 are sized such that, in the absence of a force that compresses any spacer 100 a - h or collapses shroud material 15 between spacers 100 , the set of spacers 120 prevents shroud material 15 from contacting the outside surface of undergarment 107 and chest region 105 for the entire perimeter of undergarment 107 and chest region 105 (when the person's arms are lifted).
  • individual spacers 100 in set 120 are positioned at high contour areas around chest region 105 such that a spacing distance, D, between shroud material 15 and chest region 105 is substantially maintained for shroud material 15 around the entire perimeter.
  • shroud material 15 is flaccid and may be manipulated by external forces such that portions of shroud material 15 momentarily or intermittently contact the a portion of outer surface of undergarment 107 and chest region 105 . Once the forces are removed, shroud material 15 portions between spacers 100 typically return to their position distant from surface 107 of chest region 105 .
  • channels 115 are formed within apparel 10 between individual spacers 100 and between portions of person 11 and inner portions of apparel 10 .
  • Channels described herein refer to spaces within apparel 10 that permit the flow of air therethrough. Cumulatively, numerous channels 115 inside apparel 10 may store a significant volume of air, the benefits of which will be described below. Referring to FIG. 2A , channels 115 are bordered by shroud material 15 , outer surface of undergarment 107 and chest region 105 , and sides 103 of each spacer 100 .
  • channel 115 a comprises space within apparel 10 formed between spacer 100 a , spacer 100 b , shroud material 15 between proximate portions of spacer 100 a and spacer 100 b , and a portion of undergarment 107 between distal portions spacer 100 a and spacer 100 b .
  • the set of spacers 120 create and maintain eight airflow channels 115 a - h arranged circumferentially about chest region 105 .
  • shroud material 15 Inner surfaces of shroud material 15 are thus spaced away from undergarment 107 and person 11 to provide multiple airflow channels 115 within shroud material 15 .
  • This arrangement permits airflow and cooling circulation around person 11 with minimal airflow resistance, which facilitates cooling of the person 11 proximate to channels 115 and eases the travel of fresh air in apparel 10 for breathing.
  • individual spacers 100 are dimensioned and a set of spacers configured to maintain an average distance, D, between inner portions of shroud material 15 and portions of person 11 ( FIG. 2A ). An average distance from about 1 ⁇ 2 inch to about 4 inches is suitable in some applications.
  • spacers in a set are configured to maintain an average distance from about 1 inch to about 2 inches between the inner surface of shroud material 15 and person 11 . Smaller and larger average separation distances are also possible.
  • the separation distance provided by each spacer 100 may vary with where the spacer is located relative to person 11 , a desired amount of airflow desired for the portion of person 11 proximate to the spacer 100 , and whether the spacer 100 may potentially inhibit movement for person 11 .
  • spacers 100 arranged on the outside of a leg may provide a larger separation distance than those arranged on the inside of the leg to minimize any interference on the legs during walking ( FIG. 2C ).
  • FIG. 2B illustrates an exemplary set of spacers 140 that is arranged circumferentially about a waist region 111 of person 11 when the person wears apparel 10 .
  • the set of spacers 140 comprises eight spacers 100 i - p arranged about waist region 111 .
  • the set of spacers 140 maintains portions of shroud material 15 proximate each spacer distant from a surface 117 of undergarment 107 around waist region 111 .
  • the set of spacers 140 also maintains shroud material 15 between individual spacers 100 distant from the surface 117 of undergarment 107 about waist region 111 .
  • the set of spacers 140 is suitably numbered and individual spacers 100 are sized such that, in the absence of a force that compresses any spacer 100 i - p , the set of spacers 140 prevents shroud material 15 from contacting the outside surface 117 of undergarment 107 about waist region 111 for the entire perimeter of waist region 111 .
  • the set of spacers 140 thus maintain eight airflow channels 115 a - h arranged circumferentially about waist region 111 .
  • FIG. 3B illustrates a top perspective view of a spacer 100 used in sets 120 and 140 .
  • a height 140 and a width 142 are used herein to describe dimensions of spacer 100 .
  • Width 142 may be reduced to increase the cross-sectional area of channels 115 .
  • width 142 of either proximate portion 102 or distal portion 104 may be enlarged to increase the stability of spacer 100 in maintaining a constant position relative to person 11 .
  • Height 140 may also be reduced to increase space for channels and air movement within apparel 10 .
  • spacer 100 has a height from about 1 ⁇ 4 inches to about 8 inches. In another embodiment, spacer 100 has a height from about 1 inch to about 4 inches.
  • the set of spacers 120 shown in FIG. 2A and the set of spacers 140 shown in FIG. 2B maintain shroud material 15 vertically between the set of spacers 120 and the set of spacers 140 distant from undergarment 107 and the torso of person 11 .
  • air channels are then formed vertically between the circumferentially arranged spacer sets 120 and 140 .
  • spacer sets 120 and 140 maintain shroud material 15 away from the torso of person 11 for a majority of the torso, including vertical portions between spacer sets 120 and 140 . This permits relatively easy air travel around the torso of person 11 within shroud material 15 of apparel 10 .
  • Apparel 10 may also include shoulder spacers (such as spacers 100 or 150 or other shoulder spacers) that maintain shroud material 15 distant from the shoulders of person 11 .
  • Apparel 10 may further include spacers that maintain shroud material 15 distant from the buttocks and thighs of person 11 . Cumulatively, the spacers arranged throughout apparel 10 maintain shroud material 15 away from person 11 according to the number, size and location of spacers employed.
  • shroud material 15 of apparel 10 facilitates breathing.
  • shroud material 15 included in hood 20 opens directly into this torso volume of space.
  • the spacers 100 cumulatively provide a buffer volume 190 of air that allows a person to breath without incurring uncomfortable pressure changes internal to shroud material 15 of apparel 10 .
  • the buffer volume comprises space internal to apparel 10 between the person and inner surfaces of shroud material 15 . Since the human respiratory capacity of one breath is generally about 0.5 liters, the large volume of air allows person 11 to take a breath without observing a substantial pressure change within apparel 10 , as is common in many conventional protection apparel that do not include a large interior volume of air.
  • Spacer sets 120 and 140 thus facilitate breathing within apparel 10 by reducing pressure fluctuations in the apparel during breathing.
  • One or more spacers 100 may be employed and configured to establish a neck channel that permit low resistance airflow between the inside of hood 20 about the person's face and a buffer volume in body portion 12 . Low resistance airflow within the channels permits air to be readily moved through the apparel and improves breathing ease by allowing the person to draw air from the buffer volume with negligible effort.
  • FIG. 2B also illustrates the positioning of blower 38 and inlet filter 30 .
  • blower 38 and inlet filter 30 are arranged such that fresh air provided by blower 38 flows into a channel 115 .
  • blower 38 and inlet filter 30 are arranged such that blower 38 provides air into channel 115 l . This allows cooling and fresh air inlet with minimal resistance into the interior of apparel 10 . Given the relatively small cross-sectional area or volume of individual spacers 100 , spacer sets 120 and 140 thus provide a large volume of space and air within body portion 12 and apparel 10 .
  • blower 38 to provide inlet cool air into a large volume internal to apparel 10 , thereby providing relatively cool inlet air to cool a large surface of person 11 .
  • Individual spacers 100 may be arranged to increase comfort of a full body suit.
  • channels 115 a and 115 e are arranged such that the arms of person 11 may rest in their natural position as the sides of person 11 without regular interference from a spacer 100 .
  • Channels 115 a and 115 e also permit forward and back motion of each arm without physical interference from a spacer 100 , which is useful during walking.
  • Spacers 100 may also combine with natural movement of person 11 to facilitate cooling. More specifically, spacers 100 allow natural movements of person 11 to create pressure disturbances within the environment internal to shroud material 15 . The pressure disturbances move air within shroud material 15 , through channels 115 , and across the body or clothing (such as undergarment 107 ) of person 11 —thereby cooling person 11 . For example, when person 11 lifts an arm, motion of the arm away from a position where person 11 has his arms at his sides creates a local negative pressure disturbance that moves air within apparel 10 . This local negative pressure in channel 115 e draws air into channel 115 e, thereby cooling the portion of person 11 in this region.
  • the movement also moves the air within apparel 10 from locations in apparel 10 where the air originated, cooling person 11 in these regions.
  • Local pressure disturbances are not limited to movement of person 11 and may be the result of disturbances to shroud material 15 .
  • external forces that move shroud material 15 around channel 115 e may also move air for passive cooling of person 11 .
  • any movements of person 11 and/or shroud material 15 may cause local disturbances move air to and cool of person 11 .
  • an advantage of the present invention is that natural motions by the torso of person 11 may lead to air movement within body portion 12 , such as those associated with walking and twisting. Since the muscles of person 11 that move a person's torso are relatively large, this allows a passive form of air distribution and cooling within apparel 10 that requires minimal added effort from person 11 . For example, walking may lead to considerable air movement and circulation within apparel 10 , thereby passively cooling person 11 .
  • a set of spacers 100 as described herein includes any number of spacers configured to maintain shroud material proximate to the spacers distant from one or more portions of person 11 .
  • apparel 10 comprises from 1 spacer to about 200 spacers.
  • apparel 10 comprises numerous small spacers—over 100, each of about an inch or less.
  • apparel 10 comprises from about 20 spacers to about 50 spacers.
  • a set of spacers may be locally defined and established for particular portions of person 11 , such as sets 120 and 140 described above for chest region 105 and waist region 111 , respectively. Spacers and spacers sets may also be arranged proximate to other portions of person 11 to maintain apparel proximate to the spacer and spacer set distant from a portion of the person, such as a buttocks portion, leg portions such as the thighs, knees and calves, a head or a neck portion, and arm portions such as the upper arm, elbows and forearms, etc.
  • a set of spacers is arranged circumferentially about a buttocks region of person 11 when the person wears apparel 10 , similar to the arrangement shown in FIG.
  • spacers 100 may be arranged anywhere such that they neighbor a desired portion of person 11 to maintain apparel proximate to the spacers distant from the portion of person 11 . Portions of person 11 with high curvature where shroud material 15 would normally be expected to come in contact with person 11 are well suited.
  • a set of spacers is arranged to neighbor a high contour portion (shoulders, buttocks, outside portions of arms and legs, etc.) of person 11 such that the spacing distance, D, between shroud material 15 and portion of person 11 is substantially maintained for shroud material 15 around the high contour portion.
  • the set of spacers 120 prevents shroud material 15 from contacting the high contour portion.
  • the number and density of spacers increases when neighboring a high contour portion of person 11 .
  • FIGS. 2A and 2B are illustrated with spacers 100 of the same size and shape, it is understood that spacers 100 employed in apparel 10 are not limited to common sizing or shaping. In one embodiment, spacers 100 may be sized and shaped to provide a localized interface between apparel 10 and person 11 .
  • FIG. 2C illustrates a vertical cross section of person 11 and apparel 10 taken through a thigh region 109 of the person's right leg in accordance with one embodiment of the present invention.
  • a set of spacers 160 arranged on shroud material 15 about thigh region 109 includes two sizes of spacers: smaller spacers 100 p and 100 q arranged on the inner side of thigh region 109 , and larger spacers 100 r and 100 s arranged on the outer side of thigh region 109 . Smaller spacers 100 p and 100 q minimize any interference on the legs of person 11 during walking.
  • the set of spacers 160 maintains portions of shroud material 15 proximate to where each spacer attaches to shroud material 15 distant from a surface of the person's right leg for the entire leg perimeter.
  • a similar arrangement as that shown in FIG. 2C may be used on other portions of pant leg 26 , such as at the knee or calf.
  • the spacers 100 at these portions may be smaller than those employed for set 160 .
  • a smaller set of spacers may be arranged to neighbor outer portions (away from the body) of an arm for person 11 .
  • Spacers 100 may also employ other shapes than that shown in FIGS. 3A and 3B .
  • spacer 100 is shaped to resemble a cylinder, a cone, a cube, a rectangular block, a truncated right angle cone body (or frustum), a truncated right pyramid with a square or rectangular base for distal portion 102 , a ball-shape, or a hemisphere, etc.
  • FIG. 3C illustrates a top perspective view of a spacer 150 in accordance with another embodiment of the present invention. Spacer 150 comprises substantially square distal and proximate surfaces 102 and 104 , respectively.
  • any one of the side dimensions for spacer 150 may match the thickness of an off-the-shelf foam sheet.
  • the simple shape of spacer 150 simplifies manufacture of numerous spacers 150 .
  • numerous spacers 100 are manufactured (e.g., cut) from commercially available and inexpensive foam sheets, thereby simplifying manufacture and reducing cost of apparel 10 .
  • one side of the sheet comprises a peel adhesive that allows the adhesive to be applied to all the spacers before cutting to further simplify manufacture.
  • FIG. 3D illustrates a shoulder spacer 170 in accordance with another embodiment of present invention.
  • FIG. 2D illustrates a top perspective view of a set of four shoulder spacers 175 positioned about a shoulder portion 180 of person 11 in accordance with another embodiment of present invention.
  • Spacers 175 may be attached to an undergarment 107 or vest or attached to shroud material 15 .
  • Other portions of person 11 and apparel 10 such as shroud material 15 , have been omitted from of FIG. 2D to facilitate illustration.
  • shoulder spacers 170 may also be attached to undergarment 107 (see FIG. 2E ) so that shroud material 15 moveably rests on the spacers 170 .
  • each shoulder spacer 170 comprises a proximate surface 172 and distal surface 174 .
  • Distal surface 174 rests upon the shoulders 180 of person 11 when person 11 wears apparel 10 .
  • Shroud material 15 of apparel 10 thus rests upon the proximate surface 172 shoulder spacers 170 .
  • shoulder spacer 170 comprises compressible foam that allows the distal portion 174 of each spacer 170 to conform to the shape of the person's shoulders.
  • distal surface 174 compress and conform to the contour of the person's shoulders. Curved and compliant distal surfaces 174 increase surface area interface with the top portion of shoulders 180 , thereby minimizing localized and potentially uncomfortable forces on the shoulders.
  • Each shoulder spacer 170 is shaped and dimensioned such that shroud material 15 proximate to each shoulder spacer 170 maintains an average distance, D, from the shoulders of person 11 . As shown in FIG. 3D , spacers 170 are dimensioned such that this average distance extends normal to shoulders 180 from the back of shoulders 180 , over the top of shoulders 180 , to the front of shoulders 180 . More specifically, a front portion 171 of shoulder spacers 170 is dimensioned to extend out from the front of the person's shoulders such that the average distance is maintained in front of the shoulders 180 . If a set of spacers is arranged in the chest region 105 , such as set 120 described with respect to FIG. 3D , the set of spacers 175 ( FIG.
  • the set of shoulder spacers 175 includes support members 187 arranged between adjacent spacers 175 .
  • Support members 187 attach to adjacent spacers 175 and substantially prevent relative motion between the adjacent spacers.
  • Support members 187 comprise a thin, lightweight and rigid material, such as a suitably stiff plastic.
  • two support members 187 are attached to the proximate portion 172 of each spacer 170 , between shroud material 15 and the proximate portion 172 , so as to not interfere with airflow in channels between the set of spacers 175 .
  • a single and thicker support member 187 is attached between adjacent spacers 175 instead of multiple support members 187 .
  • FIG. 2E illustrates a front view of spacers 150 attached to an undergarment 107 and worn about chest region 105 and shoulders 180 of a person in accordance with another embodiment of present invention.
  • a set of spacers 150 is arranged on, and attached to, undergarment 107 outside of shoulders 180 and chest region 105 .
  • the spacers 150 permit low resistance airflow between air channels in the upper areas of body portion 12 and shoulder regions.
  • the spacers 150 also create a buffer volume 190 within a large upper region of body portion 12 , including space between air channels in the upper areas and shoulders of body portion 12 .
  • undergarment 107 does not include sleeves of its own is donned like a vest before shroud material 15 is put on.
  • Undergarment 107 includes buttons in the front that permit easy donning, and may also include a back elastic to increase fit about the waist. Alternatively, undergarment 107 may not include buttons or an elastic and provides a loose fit.
  • Undergarment 107 also includes one or more pockets. In a specific embodiment, a pocket is adapted to hold a blower and positioned proximate to a filter on shroud material 15 when apparel 10 is worn.
  • FIGS. 2F-2G illustrate a shoulder spacing arrangement 240 including a set of spacers 100 in accordance with another embodiment of the present invention.
  • FIG. 2F illustrates a front view of shoulder spacing arrangement 240 and spacers 100 resting upon shoulders 180 of person 11 .
  • FIG. 2G illustrates a side view of shoulder spacing arrangement 240 and spacers 100 resting upon the shoulders 180 of person 11 in accordance with one embodiment of the present invention.
  • Portions of shroud material 15 have been omitted from FIGS. 2F-2G to facilitate illustration.
  • spacing arrangement 240 will be described as being attached to shroud material 15 , it is understood that arrangement 240 may be attached to an undergarment 107 such as that described above. In this case, shroud material 15 rests on the spacing arrangement 240 , which attaches to the undergarment 107 and rests on the person's shoulders.
  • shoulder spacing arrangement 240 maintains a portion of shroud material 15 proximate to the shoulder spacing arrangement 240 distant from the person's shoulders 180 .
  • each spacer 100 is arranged to maintain shroud material 15 proximate to the spacer 100 distant from an outer surface 189 of shoulders 180 .
  • Spacers 100 also maintain shroud material 15 between the spacers 100 distant from an outer surface 189 of shoulders 180 .
  • Each spacer 100 includes a body 101 having a proximate portion 102 ( FIG. 3A ) that attaches to an inner portion of apparel 10 and a distal portion 104 ( FIG. 3A ) that neighbors shoulders 180 when person 11 wears apparel 10 .
  • Distal portion 214 or 104 is arranged to rest upon the person's shoulders 180 when person 11 wears apparel 10 . ‘Resting upon’ as the term used herein refers to the spacers laying on the shoulders and/or being supported by the shoulders. Since gravity pulls shroud material 15 downward when person 11 stands, and shoulders 180 counter the weight via the spacers, distal portion 214 or 104 is normally in contact with the shoulders 180 . However, depending on the size of person 11 , fit of apparel 10 and the temporary relationship between person 11 and apparel 10 , distal portion 214 or 104 may be closely situated to shoulders 180 , or relatively removed from shoulders 180 .
  • Shoulder spacing arrangement 240 employs numerous modular spacers 100 to maintain a shroud material 15 proximate to the shoulder spacing arrangement 240 distant from the person's shoulders 180 .
  • shoulder spacing arrangement 240 comprises fourteen shoulder spacers 100 : seven spacers 100 i - o to the left of neck 207 and seven spacers 100 to the right of neck 207 .
  • three spacers 100 are arranged on shroud material 15 to rest upon the top contour of shoulders 180
  • two spacers 100 are arranged on shroud material 15 to rest upon the front portion 180 a of shoulders 180
  • two spacers 100 are arranged on shroud material 15 to rest upon the back portion 180 b of shoulders 180 .
  • individual spacers 100 are positioned around shoulders 180 such that a spacing distance, D, between shroud material 15 and shoulders 180 is substantially maintained for shroud material 15 about shoulders 180 .
  • shroud material 15 is compliant and may be manipulated by external forces such that portions of shroud material 15 momentarily or intermittently contact the surface 189 of shoulders 180 . However, once the forces are removed, shroud material 15 returns to its position distant from surface 189 of shoulders 180 .
  • channels 115 are formed within apparel 10 between individual spacers 100 and between portions of person 11 and inner portions of apparel 10 .
  • channels 115 are bordered by shroud material 15 , surface 189 of shoulders 180 , and sides 103 of each spacer 100 .
  • channel 115 i comprises space within apparel 10 formed between spacer 100 i , spacer 100 j , shroud material 15 between proximate portions of spacer 100 i and spacer 100 j , and a portion of surface 189 between distal portions spacer 100 i and spacer 100 j .
  • channel 115 k FIG.
  • 2G comprises space within apparel 10 formed between spacer 100 k, spacer 100 j , shroud material 15 between proximate portions of spacer 100 k and spacer 100 j , and a portion of surface 189 between distal portions spacer 100 k and spacer 100 j .
  • shoulder spacing arrangement 240 creates and maintains numerous other channels 115 arranged between spacers 100 that rest upon shoulders 180 .
  • belts, elastic banding and other fasteners may be used to change the fit of shroud material 15 and apparel 10 .
  • a belt with two strips of material for tying or a belt with an adjustable clasp may be arranged about the set of spacers 140 .
  • the belt allows person 11 to alter the diameter and fit of shroud material 15 about person 11 , thereby decreasing any excess shroud material 15 about person 11 and increasing the fit of apparel 10 .
  • This also situates spacers 100 closer to person 11 , or in contact therewith. The spacers will maintain the distance between shroud material 15 and person 11 according to their size, and maintain any respective air channels.
  • Elastic banding arranged in the clothing about a circumferentially arranged set of spacers also acts to constrict shroud material 15 to conform with a particular size of person 11 .
  • Plastic tape may also be used to allow person 11 to adjust fit for particular portions of shroud material 15 and apparel 10 .
  • Numerous spacers within apparel 10 may provide a large network of low resistance airflow channels within shroud material 15 .
  • Blower 38 then moves cool inlet air through a large network of low resistance channels. This constant and easy supply of fresh inlet air across a large surface of person 11 eases heat management for the person.
  • shroud material 15 in the lower region of hood 20 opens directly into the space provided by spacers in the shoulder and chest region of person 11 .
  • Air inlet using blower 38 and air outlet arranged in the top of hood 20 creates an airflow system of relative high pressure at the inlet and relative low pressure in outlet. This results in continuous net airflow in through inlet filter 30 , over portions of the waist, over portions of the chest, over portions of the shoulders, over portions of the neck, over the face and head 85 of person 11 , and out the air outlets 32 .
  • a person wearing protective apparel often produces moisture in the apparel via perspiration and breathing. Due to the relationship between moisture and temperature in air in a contained or semi-contained volume, excess moisture in shroud material 15 may lead to thermoregulation issues for a person.
  • one or more desiccants are arranged within shroud material 15 to reduce moisture levels in the apparel. The predictable net airflow patterns within shroud material 15 may then be used to also assist moisture management within shroud material 15 . More specifically, desiccants may be arranged in airflow channels that guide air and moisture within the apparel, thereby permitting the strategically located desiccants to passively absorb moisture in apparel 10 .
  • desiccants are attached to the inner surfaces of shroud material adjacent to spacers 100 ( FIG. 2E ), thereby decreasing moisture within the apparel and increasing comfort of the apparel when worn for prolonged periods.
  • Protective apparel of the present invention finds wide use in shielding a wearer from an undesirable agent.
  • the present invention finds use in any environment where a person wears protective clothing to defend from an undesirable agent.
  • Undesirable agents may include gaseous or liquid agents, biological and/or chemical molecules, microorganisms, airborne contaminants that are in a gaseous, liquid or solid state, and other substances that the person wants minimal or no exposure to.
  • Apparel 10 is well suited to defend against threats related to SARS, ebola, anthrax, flu (including avian flus and influenzas), and other airborne or droplet based threats.
  • Apparel 10 is also well suited for use in other environments such as those associated with chemical and industrial environments where user contamination is to be minimized or avoided.
  • Protective apparel as described herein is also well suited for prolonged usage. Nurses commonly wear protective apparel for hours at a time, and thus may benefit from the present invention. There are numerous other applications in which a health-care practitioner or another individual benefits from protective apparel that is used to shield the person from a biological or chemical agent. For example, health care practitioners treating individuals that generate an airborne biological agent, such as a virus associated with a respiratory illness, may benefit from the full coverage protective apparel described herein. Alternatively, surgeons and other surgical staff in an operating room may rely on defense provided by protective apparel described herein against a liquid agent during surgery.
  • apparel described herein may include exhaust filters that filter air passing out from the apparel and is thus well suited for use by nurses and other practitioners in an operating room or surgical environment to protect a surgery patient.
  • Apparel 10 is also well suited for use in low contamination rooms and other places such as “clean rooms”. The latter is common in the semiconductor industry where contamination contributions by occupants are to be reduced.
  • a buffer volume 190 refers to a contiguous space within shroud material 15 of apparel 10 .
  • the buffer volume 190 within shroud material 15 mainly comprises space within the apparel created by spacers 100 , such as channels 115 . Other areas within apparel 10 may also contribute to the buffer volume, including spaces within hood 20 .
  • the buffer volume 190 within apparel 10 includes a volume of at least about four liters.
  • spacers 100 and channels 115 create a buffer volume 190 within apparel 10 of at least about seven liters.
  • the buffer volume 190 within apparel 10 includes a volume of at least about ten liters.
  • the buffer volume 190 may also vary with the fit of apparel 10 and the size of person 11 .
  • Apparel 10 may also be designed according to a sizing scheme (S, M, L) that approximates a buffer volume in the apparel greater than about ten times the respiratory capacity of a person for that size (based on an average respiratory capacity of 0.5 liters). In this manner, pressure for the buffer volume does not change by more than about ten percent during a normal inhalation.
  • Channels 115 within apparel 10 may be linked to provide a large buffer volume 190 .
  • the spacers 100 maintain channels 115 and buffer volume 190 , as well as maintain low resistance airflow communication within the buffer volume.
  • the buffer volume 190 allows person 11 to inhale and exhale without incurring uncomfortable pressure changes.
  • Neck airflow channel 154 comprises channels formed by spacers 100 between the chest of person 11 and the head of person 11 , and may receive spacing contributions from spacers 100 on the shoulders of person 11 or the upper chest.
  • FIG. 6 illustrates a process flow 300 for maintaining an environment internal to protective apparel in accordance with one embodiment of the invention.
  • Process flow 300 begins by creating a buffer volume of air within a body portion 12 of the apparel ( 302 ).
  • Numerous spacers within apparel 10 such as those described in sets 120 and 140 —provide a buffer volume comprising numerous low resistance airflow channels within body portion 12 and other internal portions apparel 10 .
  • Process flow 300 continues by creating an air channel between a space inside hood 20 and the buffer volume 190 ( 304 ).
  • One or more spacers 100 configured to neighbor a neck of the person creates a neck air channel 154 for apparel 10 .
  • Channel 154 permits easy low resistance movement between the buffer volume in body portion 12 into and out of hood 20 .
  • Blower 38 then moves fresh air from outside the apparel into the buffer volume 190 ( 306 ). Coupled with channel 154 , this constant supply of fresh air into a large buffer volume, including the upper body, head and neck, eases breathing for person 11 .
  • the spacers 100 also maintain air channel 154 between the space inside the hood and the buffer volume during an inhalation by the person ( 308 ). Inhalation may include a partial or full inhalation. In one embodiment, spacers 100 are arranged to maintain a distance of no less than one inch in neck air channel 154 during inhalation of person 11 . Air inlet using blower 38 arranged near hood 20 creates an airflow system of relative high pressure in hood 20 . This results in continuous net airflow into hood 20 , through neck air channel 154 , into body portion 120 and out any outlet filters disposed in body portion 12 .
  • the present invention also comprises one or more airflow directing spacers that are configured to direct airflow within the apparel.
  • the airflow directing spacers may be attached to shroud material 15 or an undergarment worn under the shroud material 15 .
  • FIG. 5A shows a schematic of dual airflow directing spacers 150 a and 150 b in accordance with one embodiment of present invention.
  • Person 11 and other portions apparel 10 have been omitted from of FIG. 5A to facilitate illustration.
  • Airflow directing spacers 150 a and 150 b are arranged on left and right sides of inlet filter 30 , respectively.
  • Proximate portions for each spacer 150 a and 150 b attach to an inner portion of shroud material 15 on either side of the aperture for filter 30 .
  • Distal portions for each spacer 15 neighbor a portion of person 11 corresponding to the placement of each spacer 15 on apparel 10 and the fit of apparel 10 .
  • FIG. 5A shows a schematic of dual airflow directing spacers 150 a and 150 b in accordance with one embodiment of present invention.
  • Person 11 and other portions apparel 10 have been omitted from of FIG. 5A to facilitate illustration.
  • Airflow directing spacers 150 a and 150 b are arranged on left and right sides of
  • distal portions for each spacer 150 a and 150 b neighbor a lower torso of person 11 on both lateral sides of inlet filter 30 .
  • spacers 150 a and 150 b neighbor an inlet filter 30 disposed on the back side of apparel 10 .
  • spacers 150 may be attached to an undergarment as described above.
  • Spacers 150 are similar in shape to that described above with respect to FIG. 3C , and include a rectangular shape with substantially orthogonal surfaces and roughly flat surfaces for distal portion 104 and proximate portion 102 .
  • Filtered air passes through inlet filter 30 —as moved by a blower (e.g., FIG. 2 B)—into an air channel formed between the two spacers 150 a and 150 b , shroud material 15 between the two spacers 150 a and 150 b , and the torso of person 11 between spacers 150 a and 150 b .
  • the body of person 11 proximate to inlet filter 30 acts as a large wall that redirects air perpendicular to its inlet direction.
  • Left airflow directing spacer 150 a prevents air provided through inlet filter 30 from moving immediately left.
  • Right airflow directing spacer 150 b prevents air provided through inlet filter 30 from moving immediately right.
  • the body of person 11 , the inside surface of shroud material 15 , and spacers 150 a and 150 b substantially direct air provided through inlet filter 30 upwards and downwards from the air inlet.
  • Airflow arrows 151 approximate the resultant airflow.
  • upwards moving air cools the torso of person 11
  • downwards moving air cools the groin and legs of person 11 before returning upwards to cool other portions of person 11 before exhaust.
  • Spacers 150 a and 150 b also prevent inlet filter 30 and the blower from contacting person 11 by providing support on both lateral sides of the blower. In some cases where the blower hangs from shroud material 15 (e.g., it is velcroed onto the shroud material), spacers 150 a and 150 b maintain blower 38 from contacting person 11 —and maintain the air channel 115 l (between the spacers 150 , shroud material 15 and person 11 ) that services the blower.
  • airflow directing spacers 150 maintain portions of apparel 10 proximate to the spacers distant from person 11 .
  • Portions of apparel 10 kept from continuous contact with person 11 may include shroud material 15 , inlet filter 30 , blower 38 , or any portions and components of apparel 10 in proximity to a spacer 150 .
  • FIG. 5B shows a schematic of an airflow directing spacer 150 c disposed below an air inlet 30 , with shroud material 15 removed to facilitate illustration, in accordance with another embodiment of present invention.
  • Airflow directing spacer 150 c is arranged below inlet filter 30 .
  • Spacer 150 c includes substantially rectangular surfaces for distal portion 104 and proximate portion 102 and substantially parallel sides that extend therebetween.
  • Airflow directing spacer 150 c prevents some air provided through inlet filter 30 from moving immediately downwards. In other words, spacer 150 c creates a higher pressure below filter 30 that facilitates movement of inlet air in directions other than down. Correspondingly, the body of person 11 and spacer 150 c direct more air provided through inlet filter 30 upward of the air inlet. Airflow arrows 153 approximate the resultant airflow. Spacer 150 c may also prevent inlet filter 30 and blower 38 from contacting person 11 by providing support below blower 38 .
  • FIG. 5C shows a schematic of an airflow directing spacer 150 d in relation to two waist spacers 100 l and 100 m of FIG. 2B , with shroud material 15 removed to facilitate illustration, in accordance with one embodiment of present invention.
  • inlet filter 30 is positioned to direct air into a channel 115 l between two spacers 100 l and 100 m .
  • spacer 150 d is arranged below inlet filter 30 and prevents air provided through inlet filter 30 from moving immediately downwards.
  • spacer 150 d is also larger in its width dimension and therefore redirects a greater amount of air upwards and to the lateral directions.
  • Airflow arrows 155 approximate the resultant airflow directed by spacer 150 d.
  • spacers 100 l and 100 m also act to redirect air moving laterally towards each spacer, although with less effect than spacer 150 d.
  • Airflow arrows 157 approximate the resultant airflow directed by spacers 100 .
  • FIG. 5D shows a schematic of an arrangement 250 of airflow directing spacers 150 a, 150 b and 100 disposed about an air inlet 30 , with shroud material 15 removed to facilitate illustration, in accordance with another embodiment of present invention.
  • Airflow directing spacers 150 a and 150 b were described above with respect to FIG. 5A .
  • Spacer 100 has been described above with respect to FIGS. 3A and 3B .
  • spacers 150 a, 150 b and 100 cooperate to substantially direct air provided through inlet filter 30 upwards from the air inlet.
  • Airflow arrows 159 approximate the resultant airflow directed by spacers 150 a, 150 b and 100 . Shaping air inflow in this manner allows the majority of air provided through inlet filter 30 to travel upwards.
  • arrangement 250 may be manipulated such that the spacers cooperate to direct air in another direction, e.g., downward, to a side, at a desired angle, etc. Shaping air inflow for a specific air inlet 30 in this manner is advantageous when multiple blowers are used, and the air inflow of one blower 38 may be directed within apparel 10 to cool specific portions of person 11 , as desired.
  • Spacers 150 a , 150 b and 100 also prevent inlet filter 30 and blower 38 from contacting person 11 by providing support on both lateral sides of, and below, a blower. This maintains the blower from contacting person 11 , and by maintains the air channel that services the blower.
  • the size, shape, and/or position of a spacer 150 may be adapted to achieve a desired airflow affect. More specifically, a spacer 150 proximate to inlet filter 30 may be enlarged to redirect a larger proportion of airflow, or decreased for an opposite effect. For example, spacer 150 d of FIG. 5C is substantially larger than spacer 50 c of FIG. 5B , and thus prevents a larger proportion of air provided through inlet filter 30 from moving immediately downwards. In addition, the proximity of a spacer 150 to inlet filter 30 may be increased to redirect a larger proportion of airflow, or decreased for an opposite effect. Spacer 150 may also be curved and otherwise shaped to achieve a desired local airflow effect. For example, although the embodiment shown in FIG. 5D shows three separate spacers, it is contemplated that a single spacer that spans three sides of inlet filter 30 may be implemented.
  • spacers 150 have primarily been described with respect to positioning proximate to inlet filter 30 , it is understood that spacers 150 may be employed in any location within apparel 10 where it is desirable to direct airflow within apparel 10 and maintain shroud material 15 proximate to the spacer distant from the person. Thus, any of the locations described above with respect to spacers 100 are suitable if the spacer 100 also functions to direct airflow.
  • apparel 10 may also employ less modular shoulder spacing arrangements with or without spacers 100 or 150 .
  • the shoulder spacing arrangements prevent continuous contact between the shoulder of person 11 and portions of apparel 10 , form air channels within apparel 10 that allow air to move through apparel 10 with relatively little resistance, and improve heat management within apparel 10 .
  • FIGS. 2G-2J illustrate a shoulder spacing arrangement 200 including extended shoulder spacers 210 in accordance with one embodiment of the present invention.
  • FIG. 2G illustrates a side view of a single extended shoulder spacer 210 b resting upon the shoulders 180 of person 11 in accordance with one embodiment of the present invention.
  • FIG. 2I illustrates a top view of shoulder spacing arrangement 200 and extended shoulder spacers 210 resting upon the shoulders 180 of person 11 .
  • FIG. 2J illustrates a front view of shoulder spacing arrangement 200 and extended shoulder spacers 210 in accordance with one embodiment of the present invention.
  • Portions of undergarment 107 , shroud material 15 and apparel 10 have been omitted from FIGS. 2G-2J to facilitate illustration.
  • shoulder spacing arrangements will now be discussed with respect to attachment to shroud material 15 , it is understood that each arrangement may be attached to an undergarment 107 as described above.
  • each extended shoulder spacer 210 is arranged to maintain shroud material 15 proximate to the spacer 210 distant from an outer surface 189 of shoulders 180 .
  • Each spacer 210 includes a body 211 having a proximate portion 212 ( FIG. 2G ) that attaches to an inner portion of apparel 10 and a distal portion 214 ( FIG. 2G ) that rests upon shoulders 180 when person 11 wears apparel 10 .
  • Spacers 210 also maintain shroud material 15 between the spacers 210 distant from an outer surface 189 of shoulders 180 .
  • each extended shoulder spacer 210 has a double arch structure with curved surfaces for distal portion 214 and proximate portion 212 .
  • Shoulder spacing arrangement 200 comprises four extended shoulder spacers 210 , with two spacers 210 resting upon shoulders 180 on the left side of the person's neck 207 and two spacers 210 resting upon shoulders 180 on the right side of the person's neck.
  • each extended shoulder spacers 210 comprises a proximate portion 212 , distal portion 214 , front portion 216 , back portion 218 , and body portion 229 .
  • Distal portion 214 is a surface that rests upon the shoulders 180 of person 11 when person 11 wears apparel 10 . Distal portion 214 curves to substantially match the upper contour of a person's shoulder, and may be varied to accommodate numerous users.
  • Proximate portion 212 is a surface that shroud material 15 attaches to and rests upon. Proximate portion 212 is also curved such that each shoulder spacer 210 maintains an average distance, D, from the shoulders 180 of person 11 to proximate portion 212 . In another embodiment, proximate portion 212 is substantially straight and the distance, D, to shoulders 180 varies.
  • a compressible material layer 221 is attached to the bottom side of distal portion 214 .
  • the compressible material layer 221 is designed in stiffness and thickness to slightly deform based on the weight of shroud 15 .
  • the compressible material layer 221 conforms to the contour of the person's shoulders 180 . This increases surface area interface with the top portion of shoulders 180 and minimizes localized and potentially uncomfortable forces on shoulders 180 .
  • a compressible foam or sponge is suitable for use with compressible material layer 221 .
  • Front portion 216 extends away from a front portion 180 a of shoulders 180 when the person 11 wears apparel 10 ( FIG. 2G ).
  • Shroud material 15 then drapes from the frontmost edge of front portion 216 down to any chest spacers located below front portion 216 ( FIG. 3C ).
  • Back portion 218 extends away from a back portion 180 b of shoulders 180 when the person 11 wears apparel 10 .
  • Shroud material 15 also drapes from the backmost edge of back portion 218 down to any chest spacers located below back portion 218 .
  • a body portion 229 for each extended shoulder spacer 210 is defined between distal surface 214 and proximate surface 212 .
  • body portion 229 comprises spacing arms 223 that separate proximate portion 212 from distal portion 214 .
  • Body portion 229 for spacer 210 includes a thin aspect ratio, defined as the ratio of the front/back length to the thickness of material between distal portion 214 and proximate portion 212 .
  • body portion 229 has an aspect ratio between about 2:1 and about 15:1.
  • Body portion 229 also comprises a hollow portion 231 between spacing arms 223 that reduces the weight of spacer 210 and allows airflow perpendicular to the longer front/back length.
  • Spacing arms 223 , proximate portion 212 , distal portion 214 , front portion 216 , back portion 218 , and support members 187 may comprise a thin, lightweight and rigid material, such as a suitably stiff plastic.
  • each extended shoulder spacer 210 is shaped and dimensioned such that shroud material 15 proximate to each shoulder spacer 210 maintains an average distance, D, from the shoulders 180 of person 11 . As shown in FIG. 2A , spacers 210 are dimensioned such that this average distance extends normal to shoulders 180 from back portion 180 b, over the top of shoulders 180 , to the front portion 180 a.
  • front portion 216 of spacer 210 is dimensioned to extend out from the front portion 180 a such that the average distance is maintained in a front portion 180 a of shoulders 180 .
  • a set of spacers is arranged in the chest region 105 , such as set 120 described with respect to FIG. 3C
  • the shoulder spacing arrangement 200 ( FIG. 2G ) and set 120 cumulatively maintain shroud material 15 away from an upper chest portion 185 of the person.
  • back portion 218 of extended shoulder spacer 210 extends out from a back portion 180 b of shoulders 180 such that the average distance is maintained in a back portion 180 b of the shoulders 180 .
  • the shoulder spacing arrangement 200 ( FIG. 2G ) and chest spacer set cumulatively maintain shroud material 15 away from an upper back portion of the person. Air channels are then formed between each extended shoulder spacer 210 , and vertically between spacers 210 and any spacers 100 in the chest region ( FIG. 2G ).
  • the shoulder spacing arrangement 200 includes support members 226 a - f arranged between adjacent spacers 210 .
  • Support members 226 attach to adjacent spacers 210 and substantially prevent relative motion between the adjacent spacers.
  • support member 226 a attaches to a back spacing arm 223 on adjacent spacers 210 a and 210 b.
  • Support member 226 f attaches to a front spacing arm 223 on spacers 210 a and 210 b.
  • two support members 226 are attached to the proximate portion 214 of each spacer 210 , between shroud material 15 and the proximate portion 214 , so as to not interfere with airflow in channels between the set of spacers 210 .
  • a single and thicker support member 226 is attached between two adjacent spacers 210 instead of multiple support members 226 .
  • FIG. 2K illustrates a front view of a shoulder spacing arrangement 280 and other spacers used in an upper portion of apparel 10 in accordance with another embodiment of the present invention.
  • Shoulder spacing arrangement 280 comprises two extended shoulder spacers 210 and eight spacers 100 : four spacers 100 to the left of neck 207 and four spacers 100 to the right of neck 207 .
  • Spacers 210 are arranged inside of spacers 100 .
  • Spacers 100 are arranged on the lateral outside of spacers 210 since spacers 100 may conform better to varying sizes of persons that wear apparel 10 .
  • the protective apparel is fully closed such that entry and exit of gases and liquids into and out from an environment internal to the apparel is controlled for the entire body of person 11 , as is shown in FIG. 1 .
  • the protective apparel does not provide protection to every portion of its wearer.
  • the apparel may not include gloves attached to the distal ends of the sleeves (e.g. elastic cuffs at the end of the sleeves), sleeves that extend only to a wearer's elbows, an open viewing window 24 with no solid protection, no head coverage, no boots, and/or no pants, etc.
  • advantages of the present invention may be achieved with apparel that only covers portions of the person and not the entirety.
  • apparel 10 is disposable. In some cases, all portions of apparel 10 are disposable except the blower, its associated power source, the headgear assembly, and/or an undergarment including spacers that is intended for re-use. These parts may be separated before disposal. Disposable apparel benefits health care environments and hospitals since practitioners may rid of contaminated materials readily.

Abstract

Described herein is protective apparel that comprises a set of spacers attached to an undergarment. Each spacer attaches to the undergarment and is arranged under shroud material that rests over top of the undergarment. Collectively, the spacers maintain the shroud material proximate to each spacer distant from the undergarment worn by the person, thereby preventing continuous contact between the person and portions of the shroud material near the spacers. Multiple spacers form air channels between the spacers, the undergarment and inner portions of the shroud material. The channels permit low resistance airflow within the shroud material. Low resistance airflow within the channels permits air to be easily moved underneath the shroud material to cool the person.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority under 35 U.S.C. §119(e) from U.S. Provisional Patent Application No. 61/095,574 filed on Sep. 9, 2008; this application is also a continuation-in-part and claims priority under 35 U.S.C. §120 from commonly-owned and co-pending U.S. patent application Ser. No. 10/887,648, filed Jul. 9, 2004 and titled “PROTECTIVE APPAREL SPACERS”, which claimed priority under 35 U.S.C. §119(e) from U.S. Provisional Patent Applications a) No. 60/486,274, b) No. 60/486,150, c) No. 60/486,232, d) No. 60/486,225, e) No. 60/486,151, f) No. 60/486,073, and g) No. 60/486,155, all filed on Jul. 10, 2003; each of the above referenced patent applications is incorporated herein by reference for all purposes.
  • FIELD OF THE INVENTION
  • The present invention relates to protective apparel. In particular, the invention relates to spacers used in protective apparel to improve comfort and thermal management, improve airflow internal to the apparel, and/or increase breathing volumes.
  • BACKGROUND
  • Protective apparel is used in many environments that offer an undesirable agent. Surgeons frequently operate on a patient who carries a communicable disease. Recent worldwide outbreaks of severe acute respiratory syndrome (SARS) and influenza have required health care practitioners to interact with patients that are knowingly afflicted. Practitioners in infectious disease and medical environments such as these are prone to contamination from airborne, blood-borne, and droplet-transmitted biological agents. Industrial and chemical environments also offer a variety of airborne, liquid and solid hazards. Protective apparel is also used in applications such as clean rooms and surgical rooms to maintain a sterile zone and prevent passage of contaminants from a person wearing the apparel to a sterile zone or patient.
  • Thermal discomfort is a repeated complaint for conventional protective apparel. Many health-care workers use surgical apparel designed for a surgeon that stands in one location. If a user walks considerably, or performs other physical tasks such as lifting sick patients, conventional surgical suits cannot manage the extra heat, which additionally raises discomfort.
  • Some applications require protective apparel to be worn for prolonged periods. Prolonged usage of thermally inadequate apparel amplifies discomfort.
  • Similar thermal management issues are found in clean room suits that lack an effective means for managing heat.
  • Based on the foregoing, it should be apparent that alternative protective apparel is desirable.
  • OVERVIEW
  • Protective apparel described herein comprises a set of spacers attached to an undergarment. Each spacer attaches to the undergarment and is arranged under shroud material that rests over top of the undergarment. Collectively, the spacers maintain the shroud material proximate to each spacer distant from the undergarment worn by the person, thereby preventing continuous contact between the person and portions of the shroud material near the spacers. Multiple spacers form air channels between the spacers, the undergarment and inner portions of the shroud material. The channels permit low resistance airflow within the shroud material. Low resistance airflow within the channels permits air to be easily moved underneath the shroud material to cool the person.
  • In one embodiment, the spacers are attached to an undergarment such as a vest worn under the shroud material or another layer of the protective apparel worn under the shroud material.
  • The spacers may comprise a compressible material, such as foam. The compressible material reduces forces on the person resulting from contact with an external object. When the compressible material has an elastic memory, elastic return of the compressible material causes each spacer to return to its initial shape after a deforming force is removed. The elastic return thus permits contact between the person or apparel and an external object without compromising airflow and heat management benefits over an extended period of time.
  • In one aspect, the present invention relates to protective apparel. The apparel includes a shroud material including a body portion configured to cover at least a portion of a torso of a person when the person wears the apparel, a first sleeve configured to receive a portion of a right arm of the person, and a second sleeve configured to receive a portion of a left arm of the person. The apparel also includes an undergarment configured to cover at least the portion of the torso of the person when the person wears the undergarment and adapted to be worn under the shroud material. The apparel further includes a set of spacers, each spacer in the set a) including a first portion that attaches to a portion of the undergarment, b) configured to rest between the portion of the undergarment and a portion of shroud material included in the body portion when the person wears the apparel, and c) configured to maintain shroud material proximate to the spacer distant from the portion of the undergarment.
  • In another aspect, the present invention relates to protective apparel that includes shroud material and a sleeveless undergarment. The shroud material includes a body portion configured to cover at least a portion of a torso of a person when the person wears the apparel, a first sleeve configured to receive a portion of a right arm of the person, and a second sleeve configured to receive a portion of a left arm of the person. The sleeveless undergarment includes a set of spacers, each spacer in the set a) including a first portion that attaches to a portion of the undergarment and a second portion configured to neighbor an inner portion of the shroud material when the person wears the apparel, and b) configured to maintain shroud material proximate to the spacer distant from the portion of the undergarment that the spacer attaches to.
  • In yet another aspect, the present invention relates to protective apparel that permits low resistance airflow within portions of the apparel. The apparel comprises shroud material, an undergarment, and a set of spacers. The shroud material includes a body portion, a first sleeve, and a second sleeve. The undergarment is configured to cover at least the portion of the torso of the person when the person wears the undergarment and adapted to be worn under the shroud material. The set of spacers is configured to form multiple air channels that are each bordered by a channel portion of the undergarment, a channel portion of the shroud material and two spacers in the set of spacers when the person wears the apparel, each spacer in the set a) including a first portion that attaches to a portion of the undergarment, b) configured to rest between the portion of the undergarment and a portion of shroud material included in the body portion when the person wears the apparel, and c) configured to maintain shroud material proximate to the spacer distant from the portion of the undergarment.
  • In still another aspect, the present invention relates to protective apparel that includes a set of spacers. Each spacer in the set includes a first portion that attaches to a portion of an undergarment and a second portion configured to neighbor a portion of a shroud material when the person wears the undergarment and shroud material. Each spacer is also configured to maintain shroud material proximate to the spacer distant from the undergarment and the person.
  • These and other features of the present invention will be presented in more detail in the following detailed description of the invention and the associated figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a front elevation view of protective apparel in accordance with one embodiment of the present invention.
  • FIG. 2A illustrates a vertical cross section of the person and apparel of FIG. 1 taken through a chest region of the person in accordance with one embodiment of the present invention.
  • FIG. 2B illustrates a vertical cross section of the person and apparel of FIG. 1 taken through a waist region of the person in accordance with one embodiment of the present invention.
  • FIG. 2C illustrates a vertical cross section of the person and apparel of FIG. 1 taken through a thigh region of person in accordance with one embodiment of the present invention.
  • FIG. 2D illustrates a top perspective view of the arc shoulder spacers of FIG. 3D positioned on a shoulder portion of a person in accordance with another embodiment of present invention.
  • FIG. 2E illustrates a front view of shoulder spacers attached to an undergarment and positioned about the chest and shoulders of a person in accordance with another embodiment of present invention.
  • FIG. 2F illustrates a front view of shoulder spacing arrangement and spacers resting on an undergarment over the shoulders of a person in accordance with another embodiment of present invention.
  • FIG. 2G illustrates a side view of the shoulder spacing arrangement of FIG. 2F in accordance with one embodiment of the present invention.
  • FIG. 2H illustrates a side view of a single extended shoulder spacer resting on an undergarment over the shoulders of a person in accordance with one embodiment of the present invention.
  • FIG. 2I illustrates a top view of a shoulder spacing arrangement that includes four extended shoulder spacers of FIG. 2H resting upon an undergarment over the shoulders of a person in accordance with one embodiment of the present invention.
  • FIG. 2J illustrates a front view of the shoulder spacing arrangement of FIG. 2I in accordance with one embodiment of the present invention.
  • FIG. 2K illustrates a front view of a shoulder spacing arrangement in accordance with another embodiment of the present invention.
  • FIG. 3A illustrates a top view of a spacer used in the apparel of FIG. 1 in accordance with one embodiment of the present invention.
  • FIG. 3B illustrates a top perspective view of the spacer of FIG. 3A in accordance with one embodiment of the present invention.
  • FIG. 3C illustrates a top perspective view of a spacer suitable for use in the apparel of FIG. 1 in accordance with another embodiment of the present invention.
  • FIG. 3D illustrates arc shoulder spacers in accordance with another embodiment of present invention.
  • FIG. 4A illustrates a side elevation view of a headgear assembly disposed within the hood of the apparel shown in FIG. 1 in accordance with one embodiment of the present invention.
  • FIG. 4B illustrates a top view of the headgear assembly of FIG. 4A in accordance with one embodiment of the present invention.
  • FIG. 5A shows a schematic of dual airflow directing spacers with the shroud material removed to facilitate illustration in accordance with one embodiment of present invention.
  • FIG. 5B shows a schematic of an airflow directing spacer disposed below an air inlet, with the shroud material removed to facilitate illustration, in accordance with another embodiment of present invention.
  • FIG. 5C shows a schematic of an airflow directing spacer in relation to two spacers, with the shroud material removed to facilitate illustration, in accordance with one embodiment of present invention.
  • FIG. 5D shows a schematic of an arrangement of airflow directing spacers disposed about an air inlet, with the shroud material removed to facilitate illustration, in accordance with another embodiment of present invention.
  • FIG. 6 illustrates a process flow for maintaining an environment internal to protective apparel in accordance with one embodiment of the invention.
  • DETAILED DESCRIPTION
  • The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.
  • Protective apparel described herein includes a set of spacers that maintain apparel proximate to the spacers distant from the apparel wearer. FIG. 1 illustrates an outer front elevation view of protective apparel 10 in accordance with one embodiment of the present invention. While the present invention will now be described as protective apparel useful for improving comfort and thermal management for its wearer, improving airflow internal to the apparel, and/or increasing breathing volumes, those skilled in the art will recognize that the subsequent description may also illustrate methods and discrete actions for improving ort and thermal management, improving airflow and/or increasing breathing volumes internal to apparel.
  • Apparel 10 generally refers to a garment assembly for use by a person 11. Apparel 10 comprises multiple components that are attached to form the garment assembly. As shown in FIG. 1, apparel 10 comprises body portion 12, sleeves 14, hood 20, pant legs 26, gloves 40 and boots 60. Apparel 10 also comprises a headgear assembly (FIGS. 4A and 4B) within hood 20, filters 30 and 32, and spacers (FIGS. 2A-3D). Materials suitable for each component are described below, in addition to description of suitable techniques for attaching the different components. In one embodiment, apparel 10 resembles a garment assembly or full-body suit that covers the entire body of person 12. In this case, apparel 10 creates an environment internal to apparel 10 and separates the internal environment from an environment external to apparel 10. In another embodiment, apparel 10 resembles a gown with an open bottom and no pant legs 26. The open gown may extend to the person's waist, ankles, or any height therebetween. Filters 30 and 32 regulate air and particulate passage through specific portions of apparel 10, while a blower neighbors one of the filters to supply fresh air into apparel 10 for breathing and/or cooling.
  • Shroud material 15 provides the main physical barrier between the environment internal to apparel 10 and the environment external to apparel 10. Shroud material 15 comprises a relatively thin, flaccid or semi-flaccid sheet. Shroud material 15 is included in most components of apparel 10, such as body portion 12, sleeves 14, pant legs 26, boots 60, and hood 20. In one embodiment, apparel 10 is designed to loosely fit about person 11. In this case, shroud material 15 loosely fits about person 11. In a specific embodiment, apparel 10 employs a single type of material for shroud material 15. In other cases, portions of apparel 10 may include different types of shroud material. For example, body portion 12 may include a substantially liquid impervious material while sleeves 14 include a lighter material that provides lesser protection, while hood comprises a separate material that increases breathability between the environment internal to apparel 10 and the external environment.
  • Body portion 12 includes shroud material 15 and covers at least a portion of the person's torso. For the embodiment shown in FIG. 1, body portion 12 extends perimetrically about the person's torso and downward from the person's shoulders to below the person's groin, thereby shrouding substantially the full torso. In one embodiment, body portion 12 may extend downward from the shoulders to the waist of person 11, or may extend lower than the waist to the knees, the ankles, a point between the thighs and knees, or a point between the knees and ankles. In one embodiment, body portion 12 includes no seams in the front hemisphere to provide a frontal piece that minimizes risk of penetration from liquid or other undesirable agents at a seam. As mentioned above, apparel 10 may resemble a gown where body portion 12 includes an open bottom and apparel 10 includes no pant legs 26.
  • Hood 20 substantially covers the wearer's head 85 and neck; and comprises hood shroud material 15 and a viewing window 24. A lower portion of the hood shroud material 15 attaches to an upper portion of body portion 12 at seam 21. Viewing window 24 is configured to rest in front of the person's face when person 11 wears apparel 10. Viewing window 24 allows person 11 to see out of hood 20. Viewing window 24 comprises a thin, lightweight and transparent barrier, such as a suitable plastic. In one embodiment, shroud material 15 included in hood 20 attaches to viewing window 24 about the perimeter of viewing window 24. Shroud material of hood 20 and viewing window 24 may be attached by taping, sewing, or with a suitable adhesive, for example. In one embodiment, shroud material 15 hangs from headgear assembly 80 (FIG. 4B) and viewing window 24 is configured to hang in front of a forward facial section of head 85 when person 11 wears apparel 10. One or more spacers may be attached to a bottom portion of viewing window 24, or to shroud material below viewing window 24, to maintain a distance between the bottom portion of viewing window 24 and person 11. Viewing window 24 may curve about the person's face to increase unobstructed viewing for person 11. In one embodiment, window 24 curves about the person's face and ends in front of the person's ears. In this case, shroud material 15 included in hood 20 is provided with slack such that person 11 may use a stethoscope while wearing apparel 10. In another embodiment, apparel 10 is an open-face design and viewing window 24 does not include a barrier but represents an open area with no material protection.
  • FIG. 4A illustrates a side elevation view of a headgear assembly 180 disposed within hood 20 in accordance with one embodiment of the present invention. FIG. 4B illustrates a top view of headgear assembly 180. Headgear assembly 180 rests upon the head 85 of person 11, lies underneath material of hood 20, and maintains shroud material 15 and viewing window 24 at a distance from head 85. Headgear assembly 180 includes a head interface 182 and spacing guards 184.
  • Head interface 182 comprises a headband 186, support 187 and one or more spacing members 188. Headband 186 circumferentially surrounds head 85 and fits to prevent rotational motion between assembly 180 and head 85. Headband 186 includes an adjustable fastener 189, usually in the back of headband 186, that allows person 11 to change the circumference of headband 86. Fastener 189 may include a ratcheting fastener, a hook and loop fastener (commonly marketed under the trademark name ‘Velcro’), or dual arms having mating plastic features that snap together and hold the arms together.
  • Support 187 attaches to headband 186 on one side of head 85, extends over the top of head 85 when the person wears headgear 180, and attaches to headband 186 on the other side of head 85. Support 187 provides vertical support to bear the weight of headgear assembly 180, shroud material 15 for hood 20, and viewing window 24. Support 187 includes dual arms having mating and adjustable plastic features that allow the person to adjust fit for the top support 187. In one embodiment, support 187 and headband 186 include a slightly compliant material to minimize any localized forces on head 85 and/or a soft padding attached to the underside to increase user comfort (such as foam band or cotton). Although FIG. 4A is illustrated with one support 187 extending over head 85, it is understood that headgear assembly 180 may include a larger number of supports, such as from 2 to 5. In another embodiment, supports 187 comprise a continuous net that extends over the entire head 85 while still allowing for gaseous communication with the top of head 85 for heat dissipation.
  • Forward spacing guard 184 a and rear spacing guard 184 b define the external dimensions of headgear assembly 180. Spacing guards 184 comprise rigid members shaped to contour around the person's head and maintain shroud material 15 from contacting head 85. Spacing guards 184 thus largely define an amount of space between the inner surface of shroud material 15 (or viewing window 24) and head 85 for hood 20. Spacing guards 184 attach to shroud material 15 at one or more places on its perimeter. As shown, male ends of a hook and loop fastener 191 are disposed in three places on spacing guards 184 to attach to mating females pieces on shroud material 15 in hood 20 (not shown). Spacing guards 184 thus position and support hood 20 and bear of the weight of shroud material 15 and viewing window 24. Spacing guards 184 also define the vertical cross-section shape of hood 20 (FIG. 4B). In one embodiment, spacing guards 184 are configured to substantially follow the perimetric contours of the human head. Shroud material 15 drops down from spacing guards 184 according to the contour of spacing guards 184.
  • Spacing members 188 extend down from support 187 and separate spacing guards 184 laterally from head interface 182. Spacing members 188 maintain spacing guards 184 in position relative to head 85 and thus help establish the amount of space between the inner surface of shroud material 15 and head 85 for hood 20. Spacing members 188 each connect a) at their proximate end to head interface 182, and b) at their distal end to a portion of spacing guards 184. Screws 193 are used to attach spacing guards 184 to each spacing member 188 on either side of the person's head 85. As shown, headgear assembly 180 includes two rigid members 188 symmetrically disposed on opposite sides of head 85. It is understood that a different number of members 188 may be used.
  • Since shroud material 15 is flaccid and drapes from spacing guards 184, headgear assembly 180 is then configured such that shroud material 15 is spaced above and away from head 85 to provide room for airflow around head 85. Spacing guards 184 also include a height that extends above head 85 to allow for space between material 15 and head 85 above the top of head 85. Thus, neither spacing guards 184 nor shroud material 15 supported by spacing guards 184 continuously contact head 85 during usage of apparel 10. This arrangement permits airflow, breathing circulation and cooling circulation around head 85 with minor resistance. In one embodiment, headgear assembly 180 is dimensioned to maintain an average or minimum distance, D, between shroud material 15 and head 85 (FIG. 4B). An average or minimum distance from about ½ inch to about 4 inches is suitable in some applications. In another embodiment, headgear assembly 80 is dimensioned such that the inner surface of shroud material 15 is, on average or minimum, from about 1 inch to about 2 inches away from head 85. In some cases, slack in shroud material 15 combines with positive pressure from a blower in apparel 10 to expand slack material 15 away from head 85 and thereby create additional space between shroud 15 and head 85. In this case, shroud 15 may rest even further from head 85 than provided passively by headgear assembly 180. Headgear assembly 180 preferably comprises lightweight materials so as to minimize encumbrance on person 11. For example, rigid members 92 may comprise a lightweight and stiff plastic. In a specific embodiment, headgear assembly 180 comprises two Willson V5N series headgear browguards assembled to one V5N series head interface as provided by Bacou Dalloz USA Inc. of Smithfield, R.I. Other headgear and headgear assemblies are suitable for use herein.
  • Returning back to FIG. 1, left and right sleeves 14 a and 14 b include shroud material 15 and integrally attach to a shoulder portion of body portion 12 at seams 28 a and 28 b, respectively. In another embodiment, the entire front portion of apparel 10 is constructed from a single piece of material and seams 28 do not exist between body portion 12 and sleeves 14 as shown. Sleeve 14 a is adapted to receive a left arm of person 11; and left sleeve 14 b is adapted to receive a right arm of person 11. While sleeves 14 are illustrated as extending up to the shoulder of person 11, it is understood that different designs and assemblies if apparel 10 will vary the extent of arm coverage provided by each sleeve 14. At the least, each sleeve 14 receives a portion of an arm, such as forearm to wrist, or an upper portion such as from shoulder to elbow. Seams 28 connect the separate pieces of shroud material 15 included in body portion 12 and sleeves 14; and may include stitching, tape, an ultrasonic seal and/or a heat seal, depending on the materials being connected and a desired level of protection.
  • Gloves 40 are worn at the distal end of each arm. In one embodiment, gloves 40 comprise a gaseous and liquid impermeable material such as polyethylene, latex, rubber, or the like. The person may tape or otherwise temporarily attach gloves 40 to sleeves 14. Attaching gloves 40 to sleeves 14 allows person 11 to remove apparel 10 as a single unit. In a specific embodiment, apparel 10 is provided with handwear integrally attached to the distal end of sleeves 14 that facilitates removal of gloves 40 worn over the handwear. The handwear is configured such that when a user doffs the handwear and outer glove 40, the handwear restrains the outer glove 40. Thus, when a user pulls the handwear and outer glove inside-out, the handwear may capture and contain the outer glove, which allows person 11 to remove apparel 10 as a single unit.
  • Left and right pant legs 26 a and 26 b include shroud material 15 and attach to a lower portion of body portion 12 at seams (not shown). In another embodiment, the entire front portion of apparel 10 is made from a single piece of material and seams do not exist between body portion 12 and pants legs 26. As shown in FIG. 1, pant legs 26 extend from body portion 12 from the midpoint of the person's thighs. In this case, each pant leg 26 only receives a portion of each leg from the thigh to the foot. As mentioned above, body portion 12 may extend down to a different part of person 11, such as the waist or the knees or below, which will determine the length of pant legs 26.
  • In the embodiment shown in FIG. 1, pant legs 26 extend and enclose the feet or shoes of person 11. Boots 60 attach to the distal ends of each pant leg 26. Boots 60 cover at least a portion of the shoes worn by person 11 and may include an abrasion resistant material on a bottom surface. One or more ties, rubber bands or elastics sewn into shroud material 15 may be used to secure excess material included in boots 60. The excess material assists user entry and exit into and out of boots 60. Plastic tape, hook and loop fasteners, male and females snaps, or other detachable binders may also be used other than ties or elastics to secure excess material of boots 60.
  • A filter 30 is sewn or otherwise suitably attached to shroud material 15 about a hole in shroud material 15 at a lower area of body portion 12. A blower (not shown) is arranged on the inside of apparel 10 to neighbor inlet filter 30. The blower moves air from the environment external to apparel 10 into the environment internal to apparel 10. Air provided by the blower ventilates the environment internal to apparel 10, cools the person wearing apparel 10 and provides fresh air for breathing. The blower may comprise a fan or other air moving apparatus suitably sized to provide a desired flow rate of air into and/or within apparel 10. Generally, the blower capacity should be sufficient to draw air into apparel 10, through inlet filter 30, and out of apparel 10 at an air flow rate sufficient for respiration and/or cooling of person 11. In one embodiment, an inlet airflow rate from about 5 to about 80 cubic feet per minute (c.f.m.) is suitable. In another embodiment, an inlet airflow rate from about 5 to about 20 c.f.m. is suitable. Larger and smaller airflow rates may be suitable depending on a number of factors, such as the size of apparel 10 and the number of blowers employed. The blower may comprise any conventional fan mechanism and may be powered by a rechargeable battery. Such devices are commercially available from a wide variety of vendors known to those of skill in the art. In a specific embodiment, the blower comprises a D series fan as provided by Pelonis Technologies Inc. of Malvern Pa. In one embodiment, person 11 wears a belt or vest under apparel 10 that supports the blower next to filter 30. In another embodiment, mating hook and loop fasteners are used to attach the blower or vest to shroud material 15 adjacent to filter 30 during usage.
  • Inlet filter 30 intercepts air before flow into apparel 10 and selectively regulates the passage of air and any particulates in the air, such as any undesirable agents, into apparel 10. In one embodiment, inlet filter 30 comprises a fabric that provides a minimal pressure drop for the blower. The inlet filter 30 material and type may also be varied according to the undesirable agent(s) to be selectively blocked for apparel 10. In a specific embodiment, inlet filter 30 comprises a sub-micron filter that has an effective porosity such that particles greater than a micron are not permitted to pass through. A HEPA rated filter may also be employed. Such filters are commercially available from vendors known to those skilled in the art. One suitable provider of bacterial and viral filters is Pall Canada Ltd. of Mississauga, Canada.
  • As shown in FIG. 1, inlet filter 30 is disposed in front of apparel 10 to provide air inlet to the front portion of apparel 10. Alternatively, filter 30 (and the neighboring blower) may be disposed in back of apparel 10, on a side of apparel 10, or in upper portions of apparel 10. In a specific embodiment, filter 30 is located just below a belt (not shown), which allows person 11 to constrict the diameter of apparel 10 about the waist of person 11. In another specific embodiment, filter 30 is located in the upper back region of apparel 10 to allow inlet air to proceed immediately towards hood 20 to facilitate breathing of fresh air. Apparel 10 may also include multiple inlet filters and blowers, such as a second filter 30 disposed on the backside of apparel 10. In this case, airflow suitable for respiration and cooling may be divided among the multiple inlets.
  • Air filter 32 exhausts air from an environment internal to apparel 10 to an environment external to apparel 10. Filter 32 is attached material about a hole in the shroud material 15 by sewing, taping, adhesive, etc. As shown in FIG. 1, outlet filter 32 forms a major portion of the top surface of hood 20. In another embodiment, a second filter 32 forms a large fraction of shroud material 15 on the backside of hood 20. Outlet filters 32 may also be included in other portions of apparel 10, such as the top of the person's shoulders, lower or middle regions of body portion 12, in sleeves 14 and/or in pant legs 26.
  • Inlet filters 30 and outlet filters 32 may be arranged to specifically move air along desired paths within apparel 10 or to draw airflow to a certain area within apparel 10. For example, an inlet filter 30 may be located within or near hood 20 to immediately provide air to this area, while one or more outlet filters are disposed at the waist of apparel 10 (e.g., switch the locations of inlet filter 30 and outlet filter 32 as shown). This arrangement creates a positive pressure about the head 85 and respiratory areas for person 11 and is well-suited for applications that desire positive-pressure respiratory apparel. It is understood that a breathable shroud material 15 will also permit air to escape therethrough.
  • Multiple inlet and outlet filters may also be sized and arranged to achieve a desired airflow distribution. In one embodiment, inlet filters 30, associated blowers and outlet filters 32 are arranged such that at least 50 percent of the of inlet air volume fist moves to hood 20 for breathing. In another embodiment, outlet filters 32 in a designated portion of apparel 10 are responsible for at least 50 percent of the of outlet air volume from apparel 10 and the shroud material 15 is breathable and passively exhausts the remainder. In another embodiment, outlet filters 32 are responsible for at least 75 percent of the of outlet air volume from apparel 10.
  • Inlet and outlet filters may also be configured to direct air for cooling of person 11. Thus, inlet and outlet filters may located and configured to increase airflow and cooling across the torso, neck and head of person 11, which are generally considered priorities for human thermoregulation. For example, air entering an inlet filet 30 in or near hood 20 to increase fresh air supply for breathing may subsequently pass along the body of person 11 for cooling before exhausting from a waist disposed outlet filter 32. In one embodiment, outlet filters 32 comprise the same filter material that is used in inlet filters 30. Correspondingly, brief pressure fluctuations, e.g., those resulting from breathing or movement within apparel 10, do not result in passage of undesirable agents from an environment external to apparel 10 through an intended outlet filter 32 and into the environment internal to apparel 10.
  • While the present invention has primarily referred to inlet filters that prevent undesirable agents from passing into apparel 10, it is understood that applications such as clean rooms and surgical rooms require apparel and filters that prevent escape of the undesirable agents. In this case, outlet filters 32 selectively transmit air and contaminants moving from the environment internal to the apparel to a clean environment outside the apparel, such as filtering out bacteria and microorganisms carried by person 11 to maintain a sterile zone for surgical applications.
  • Shroud material 15 typically comprises one or more relatively thin, flaccid sheets. Shroud material 15 forms a large portion of apparel 10 and is included in multiple parts of apparel 10 such as body portion 12, sleeves 14, pant legs 26, boots 60, and hood 20. The number of pieces of material 15 will depend on how apparel 10 is manufactured and assembled, as one skilled in the art will appreciate, and the present invention is not limited to any particular style, assembly or design of apparel 10. Usually, a single type of material is employed for shroud material 15, however, it is contemplated that multiple types of shroud material 15 may be used (e.g., one shroud material 15 for body portion 12 and another shroud material 15 for sleeves 14 and/or hood 20). In one embodiment, shroud material 15 comprises a breathable and selectively filtering material that prevents transmission of a targeted undesirable agent through shroud material 15. In another embodiment, shroud material 15 comprises a substantially air and/or liquid impermeable material, such as a suitable plastic or non-woven fabric. Shroud material 15 may also comprise a breathable or breathable and splash resistant material, such as a non-woven fabric. Breathable portions of material 15 may also operate as a filter for outlet of air from the environment internal to apparel 10 to the environment external to apparel 10. In addition, different materials may be added or combined to shroud material 15 to increase comfort, protection, strength, appearance or another property of apparel 10. For example, plastic materials may be combined with non-woven materials to increase protection. A commercially available material such as one of the Tyvek series as provided by DuPont of Wilmington, Del., is suitable for use in shroud material 15. A non-woven such as one of the Spunbond series as provided by Kimberly-Clark Health Care of Neena, Wis. may also be suitable. In a specific embodiment, one of ProVent 1000, 3000, 7000, 7500 or 10,000 as provided by Kappler of Guntersville, Ala., is suitable for use. Shroud material 15 may also comprise a material based on polymers and copolymers of vinyl chloride, vinylidene chloride, ethylene, acrylic acids and esters, methacrylic acids and esters, propylene amines such as polyamides and other polymerizable monomers, cotton and silk, compressed nylon, polyester, and/or spandex (which may be used to increase user comfort and fit).
  • Seams of the present invention (such as seam 21 between hood 20 and body portion 12) may include sewing, taping, heat sealing, an adhesive and/or solvent or sonic welding. The specific joining technique used will depend on the two materials being joined, cost, manufacturing ease, and the desired joint strength, as one skilled in the art will appreciate. Multiple joining techniques may also be implemented, such as sewing for seal strength and heat-sealing for seal integrity. Other joining techniques may be used.
  • In one embodiment, apparel 10 is airtight except for gaseous communication via inlet filters 30 and outlet filters 32. Apparel 10 then provides an isolated system in which air from the environment external to apparel 10 is transmitted into an environment internal to apparel 10 through inlet filters 30 and out through filters 32. Correspondingly, person 11 is isolated from the ambient environment except through controlled filtering. Air pressure within apparel 10 remains balanced based on the pressure drop across outlet filters 32 and influx pressure provided by the fan or blower. In some cases, apparel 10 is substantially impermeable to one or more undesirable agents. Impermeable as used herein refers to the quality not permitting passage. Thus, “impermeable to air or liquids” refers to a quality of substantially not permitting passage of air or liquids. “Impermeable to an undesirable agent” refers to substantially not permitting passage of the undesirable agent regardless of whether the agent is a solid particulate, gaseous or liquid substance.
  • Other apparel designs are contemplated other than that specifically shown in FIG. 1. For example, apparel 10 need not include a hood as shown or may include an open-face hood. In one embodiment, apparel 10 includes an aperture in the back or front of body portion 12 for donning and doffing. The aperture may be opened and closed with a zipper (not shown) and the zipper may be sealed internally with a flap (not shown) that covers the zipper and adheres to shroud material using plastic tape or mating hook and loop fasteners. In another embodiment, apparel 10 includes a transition portal to assist donning and doffing and to reduce the risk of cross-contamination when doffing. The transition portal attaches to the apparel proximate to one end of an aperture, which provides an exit for the protective apparel. When doffing, the transition portal extends away from the person, who exits the aperture. The transition portal is then pulled over the body along with any attached portions of the protective apparel. This turns the transition portal—and attached parts of the apparel—inside-out. After doffing, most portions of protective apparel are either a) inside-out, or b) contained within the inside-out transition portal and/or apparel. As a result, undesirable agents—that were initially on the outside of the apparel—are now inside the inside-out transition portal and apparel. Further description of a collapsible transition portal that facilitates donning and doffing is described in commonly owned patent application entitled “Protective Apparel with Improved Doffing”, filed on the same day as the present application, and naming William J. Plut et al. as inventors, which is incorporated by reference herein for all purposes.
  • To improve comfort and thermal management, improve airflow internal to the apparel, and/or increase breathing volumes for person 11, apparel 10 comprises a set of spacers that prevent continuous contact between person 11 (and garments worn by person 11) and shroud material 15. A set of spacers may be arranged to cooperatively form air channels, within the shroud material 15 of apparel 10, that allow air to move through apparel 10 with relatively little resistance.
  • FIG. 2A illustrates a vertical cross section of person 11 and apparel 10 taken through a chest region 105 of person 11 in accordance with one embodiment of the present invention. FIG. 2B illustrates a vertical cross section of person 11 and apparel 10 taken through a waist region 111 of person 11 in accordance with another embodiment of the present invention. FIG. 2C illustrates a vertical cross section of person 11 and apparel 10 taken through a thigh region 109 of the person's right leg 130 in accordance with another embodiment of the present invention.
  • FIG. 3A illustrates a top view of a spacer 100 in accordance with one embodiment of the present invention. FIG. 3B illustrates a top perspective view of the spacer 100. FIG. 3C illustrates a top perspective view of a spacer 150 in accordance with another embodiment of the present invention.
  • Referring to FIGS. 2A, 3A and 3B (or 3C), each spacer 100 (or 150) is configured to maintain shroud material 15 proximate to the spacer distant from an outer surface and an undergarment 107 and chest region 105 for person 11. Undergarment 107 is worn over chest region 105, may include a vest for example, and will be described in further detail below. In one embodiment, each spacer 100 includes a body 101 having a proximate portion 102 (FIG. 3A) that attaches to an inner portion of shroud material 15 and a distal portion 104 (FIG. 3A) that neighbors chest region 105 when person 11 wears apparel 10. In another embodiment, proximate portion 102 attaches to the outside of undergarment 107 and distal portion 104 neighbors shroud material 15 when person 11 wears apparel 10—thus keeping shroud material 15 distant from undergarment 107 and person 11 near each spacer 100. As shown in FIGS. 3A and 3B, each spacer 100 in apparel 10 has a truncated right rectangular shape with curved surfaces for distal portion 104 and proximate portion 102. Spacer 150 of FIG. 3C comprises a roughly rectangular block shape.
  • A portion of spacer 100 is referred to herein as proximate when it attaches to apparel 10 such as shroud material 15 or undergarment 107, while a portion is referred as distal when it is arranged away from shroud material 15 or undergarment 107. For spacer 100, proximate portion 102 is a surface, which attaches to shroud material 15 at a location on shroud material 15 such that spacer 100 neighbors a portion of person 11. In one embodiment, proximate portion 212 or 102 attaches to an inner surface of shroud material 15 by taping, sewing, or with a suitable adhesive, for example. Alternatively, proximate portion 102 may include a surface, which attaches to undergarment 107 at a location on undergarment 107 such that spacer 100 neighbors a portion of shroud material 15 when person 11 dons shroud material 15.
  • When spacer 100 attaches to shroud material 15, distal portion 104 neighbors a portion of person 11 when person 11 wears apparel 10. Neighboring in this sense refers to lying near in position or location. Depending on the size of person 11, fit of apparel 10 and the temporary relationship between person 11 and apparel 10, distal portion 104 may be in contact with a portion of person 11 (or clothing 62 worn by person 11), closely situated thereto, or relatively removed therefrom. Often, person 11 wears a clothing layer 60 under apparel 10, such as a T-shirt. The clothing covers one or more portions of the person's body, such as a T-shirt that covers surface 107 of chest region 105. If arranged over a portion of person 11 proximate to a spacer 100, clothing 62 will contact distal portion 104 and not person 11 directly. For sake of discussion, portions of person 11 as described herein neighbored by a spacer include any clothing 62 worn by person 11. In one embodiment, apparel 10 is designed and configured such that each spacer 100 is closely situated or in contact person 11 when person 11 wears apparel 10. When multiple spacers 100 attach to shroud material 15, which is generally flaccid, it is understood that each spacer 100 and its distal portion 104 may move relative to person 11. For example, shroud material 15 may be pulled away from person 11 as a result of motion by the person or an external force. This may temporarily remove a spacer 100 and distal portion 104 from contact with or close proximity to person 11. The apparel 10 and spacers 100 may then return to their initial position before the disturbance. In one embodiment, apparel 10 includes one or more straps or belts that allow person 11 to adjust fit for apparel 10, thereby maintaining one or more spacers 100 proximate to the belt closer to person 11.
  • In one embodiment, apparel 10 includes an undergarment 107 worn under shroud material 15. The undergarment 107 may resemble a vest, short-sleeved shirt, or long-sleeved shirt, for example, to position spacers about the chest and torso of person 11. Other undergarment designs are suitable for use. The undergarment has a set of spacers attached thereto. In one embodiment, proximate portion 212 or 102 attaches to undergarment 107 by taping, sewing, or with a suitable adhesive, for example. Each spacer in the set a) includes a proximate portion 102 that attaches to a portion of undergarment 107 and a distal portion 104 configured to neighbor an inner portion of shroud material 15 when the person wears the apparel. Undergarment 107 may or may not include sleeves. In another embodiment, undergarment 107 includes a porous material that permits air to pass therethrough and cool the wearer.
  • When spacer 100 attaches to undergarment 107, depending on the size of person 11, fit of apparel 10 and the temporary relationship between person 11 and apparel 10, distal portion 104 may be in contact with a portion of shroud material 15, closely situated thereto, or relatively removed therefrom. Since shroud material 15 is generally flaccid and often loose fitting, it is understood that each spacer 100 may contact a different portion of shroud material 15 at different times. For example, shroud material 15 may be pulled away from person 11 as a result of motion by the person or an external force. This may temporarily remove a spacer 100 and distal portion 104 from contact with shroud material 15. The shroud material 15 and spacers 100 may then return to contact at the same or a different location.
  • In one embodiment, spacer 100 is compliant. The compliance may be achieved with a material having a stiffness suitable to maintain shroud material 15 and apparel 10 distant from person 11 while allowing compression of spacer 100 when a threshold force is applied to the spacer. To achieve compliance, body 101 of spacer 100 may comprise a compressible material, such as a compressible foam or sponge. Alternately, a cylindrical spacer 100 may include a compression spring axially arranged to deflect along the distance between its contact locations on person 11 and shroud material 15. In another embodiment, only a portion of spacer 100 is compliant. For example, a compressible foam or sponge layer may be attached to the surface of distal portion 104 to interface with the body of person 11. Compliance and compressibility of spacer 100 increases comfort for person 11 and reduces forces on person 11 resulting from contact with an external object.
  • In a specific embodiment, the compliant material has an elastic memory and spacer 100 substantially returns to its initial shape after a deforming force is removed from the spacer 100. A compressible foam with elastic return is suitable. For example, a closed cell polyethylene foam available from New Dimension Industries of Moonachie, N.J., is well suitable for use with compressible spacers 100 in apparel 10. The foam may be dimensioned to a desired spacer shape, examples of which are described below. One of skill in the art will appreciate that a wide range of foams and materials offer a suitable stiffness range that allows portions of apparel 10 to maintain a distance from person 11 while providing compliance and elastic return to external deforming forces. The packaging industry, for example, relies on numerous foams that are tailored in stiffness for a particular application, such as closed cell polyethylene and polyurethane.
  • Compliance and elastic return of spacer 100 permits contact between person 11 or apparel 10 and an external object without compromising airflow and heat management benefits of apparel 10 over an extended period of time. This is useful for a health care practitioner wearing the apparel for prolonged periods in a surgical environment in which the practitioner intermittently leans against the operating table or bed. Alternatively, the compliance and elastic return is useful for individuals working in a clean room such as a semiconductor manufacturing facility where the individuals are required to perform dexterous duties while leaning and coming into contact with solid objects. Further, this is useful for nurses that frequently perform actions that require bodily contact, such as assisting an elderly patient. The compliance and compressibility of spacers 100 also reduces any lack of mobility that might be caused by the extra space associated with apparel 10, which is larger than the person alone, since the wearer may temporarily compress portion of the apparel that might inhibit movement.
  • FIG. 2A illustrates an exemplary set of spacers 120 as arranged circumferentially about a chest region 105 of person 11 when the person wears apparel 10. The set of spacers 120 comprises eight spacers 100 a-h: four spacers 100 b-e in the front hemisphere of person 11 and four spacers 100 a and 100 f-h in back. In the absence of a force that compresses any spacer 100 a-h, the set of spacers 120 maintains portions of shroud material 15 distant from an outer surface of undergarment 107 and chest 105 for person.
  • The set of spacers 120 also maintains shroud material 15 between individual spacers 100 distant from the outer surface of undergarment 107 and chest region 105. In one embodiment, the set of spacers 120 is suitably numbered and individual spacers 100 are sized such that, in the absence of a force that compresses any spacer 100 a-h or collapses shroud material 15 between spacers 100, the set of spacers 120 prevents shroud material 15 from contacting the outside surface of undergarment 107 and chest region 105 for the entire perimeter of undergarment 107 and chest region 105 (when the person's arms are lifted).
  • In a specific embodiment, individual spacers 100 in set 120 are positioned at high contour areas around chest region 105 such that a spacing distance, D, between shroud material 15 and chest region 105 is substantially maintained for shroud material 15 around the entire perimeter. It is understood that shroud material 15 is flaccid and may be manipulated by external forces such that portions of shroud material 15 momentarily or intermittently contact the a portion of outer surface of undergarment 107 and chest region 105. Once the forces are removed, shroud material 15 portions between spacers 100 typically return to their position distant from surface 107 of chest region 105.
  • As a result of the separation distance provided by spacers 100, channels 115 are formed within apparel 10 between individual spacers 100 and between portions of person 11 and inner portions of apparel 10. Channels described herein refer to spaces within apparel 10 that permit the flow of air therethrough. Cumulatively, numerous channels 115 inside apparel 10 may store a significant volume of air, the benefits of which will be described below. Referring to FIG. 2A, channels 115 are bordered by shroud material 15, outer surface of undergarment 107 and chest region 105, and sides 103 of each spacer 100. For example, channel 115 a comprises space within apparel 10 formed between spacer 100 a, spacer 100 b, shroud material 15 between proximate portions of spacer 100 a and spacer 100 b, and a portion of undergarment 107 between distal portions spacer 100 a and spacer 100 b. Similarly, the set of spacers 120 create and maintain eight airflow channels 115 a-h arranged circumferentially about chest region 105.
  • Inner surfaces of shroud material 15 are thus spaced away from undergarment 107 and person 11 to provide multiple airflow channels 115 within shroud material 15. This arrangement permits airflow and cooling circulation around person 11 with minimal airflow resistance, which facilitates cooling of the person 11 proximate to channels 115 and eases the travel of fresh air in apparel 10 for breathing. In one embodiment, individual spacers 100 are dimensioned and a set of spacers configured to maintain an average distance, D, between inner portions of shroud material 15 and portions of person 11 (FIG. 2A). An average distance from about ½ inch to about 4 inches is suitable in some applications. In another embodiment, spacers in a set are configured to maintain an average distance from about 1 inch to about 2 inches between the inner surface of shroud material 15 and person 11. Smaller and larger average separation distances are also possible. The separation distance provided by each spacer 100 may vary with where the spacer is located relative to person 11, a desired amount of airflow desired for the portion of person 11 proximate to the spacer 100, and whether the spacer 100 may potentially inhibit movement for person 11. For example, spacers 100 arranged on the outside of a leg may provide a larger separation distance than those arranged on the inside of the leg to minimize any interference on the legs during walking (FIG. 2C).
  • FIG. 2B illustrates an exemplary set of spacers 140 that is arranged circumferentially about a waist region 111 of person 11 when the person wears apparel 10. The set of spacers 140 comprises eight spacers 100 i-p arranged about waist region 111. In the absence of a force that compresses any spacer 100 i-p, the set of spacers 140 maintains portions of shroud material 15 proximate each spacer distant from a surface 117 of undergarment 107 around waist region 111. The set of spacers 140 also maintains shroud material 15 between individual spacers 100 distant from the surface 117 of undergarment 107 about waist region 111. In one embodiment, the set of spacers 140 is suitably numbered and individual spacers 100 are sized such that, in the absence of a force that compresses any spacer 100 i-p, the set of spacers 140 prevents shroud material 15 from contacting the outside surface 117 of undergarment 107 about waist region 111 for the entire perimeter of waist region 111. The set of spacers 140 thus maintain eight airflow channels 115 a-h arranged circumferentially about waist region 111.
  • FIG. 3B illustrates a top perspective view of a spacer 100 used in sets 120 and 140. A height 140 and a width 142 are used herein to describe dimensions of spacer 100. Width 142 may be reduced to increase the cross-sectional area of channels 115. Alternatively, when the spacers attach to shroud material 15, width 142 of either proximate portion 102 or distal portion 104 may be enlarged to increase the stability of spacer 100 in maintaining a constant position relative to person 11. Height 140 may also be reduced to increase space for channels and air movement within apparel 10. In one embodiment, spacer 100 has a height from about ¼ inches to about 8 inches. In another embodiment, spacer 100 has a height from about 1 inch to about 4 inches.
  • Cumulatively, the set of spacers 120 shown in FIG. 2A and the set of spacers 140 shown in FIG. 2B maintain shroud material 15 vertically between the set of spacers 120 and the set of spacers 140 distant from undergarment 107 and the torso of person 11. Given the relatively small height or volume of individual spacers 100, air channels are then formed vertically between the circumferentially arranged spacer sets 120 and 140. In other words, spacer sets 120 and 140 maintain shroud material 15 away from the torso of person 11 for a majority of the torso, including vertical portions between spacer sets 120 and 140. This permits relatively easy air travel around the torso of person 11 within shroud material 15 of apparel 10. Apparel 10 may also include shoulder spacers (such as spacers 100 or 150 or other shoulder spacers) that maintain shroud material 15 distant from the shoulders of person 11. Apparel 10 may further include spacers that maintain shroud material 15 distant from the buttocks and thighs of person 11. Cumulatively, the spacers arranged throughout apparel 10 maintain shroud material 15 away from person 11 according to the number, size and location of spacers employed.
  • In addition to improved heat management, the large volume of air within shroud material 15 of apparel 10 facilitates breathing. As will be described in further detail below, shroud material 15 included in hood 20 opens directly into this torso volume of space. In this case, the spacers 100 cumulatively provide a buffer volume 190 of air that allows a person to breath without incurring uncomfortable pressure changes internal to shroud material 15 of apparel 10. The buffer volume comprises space internal to apparel 10 between the person and inner surfaces of shroud material 15. Since the human respiratory capacity of one breath is generally about 0.5 liters, the large volume of air allows person 11 to take a breath without observing a substantial pressure change within apparel 10, as is common in many conventional protection apparel that do not include a large interior volume of air. Spacer sets 120 and 140 thus facilitate breathing within apparel 10 by reducing pressure fluctuations in the apparel during breathing. One or more spacers 100 may be employed and configured to establish a neck channel that permit low resistance airflow between the inside of hood 20 about the person's face and a buffer volume in body portion 12. Low resistance airflow within the channels permits air to be readily moved through the apparel and improves breathing ease by allowing the person to draw air from the buffer volume with negligible effort.
  • FIG. 2B also illustrates the positioning of blower 38 and inlet filter 30. In one embodiment, blower 38 and inlet filter 30 are arranged such that fresh air provided by blower 38 flows into a channel 115. As shown in FIG. 2B, blower 38 and inlet filter 30 are arranged such that blower 38 provides air into channel 115 l. This allows cooling and fresh air inlet with minimal resistance into the interior of apparel 10. Given the relatively small cross-sectional area or volume of individual spacers 100, spacer sets 120 and 140 thus provide a large volume of space and air within body portion 12 and apparel 10. In other words, when numerous spacers 100 maintain a majority of shroud material 15 away from the torso of person 11, including the shoulders and buttocks, this allows blower 38 to provide inlet cool air into a large volume internal to apparel 10, thereby providing relatively cool inlet air to cool a large surface of person 11.
  • Individual spacers 100 may be arranged to increase comfort of a full body suit. For example, channels 115 a and 115 e are arranged such that the arms of person 11 may rest in their natural position as the sides of person 11 without regular interference from a spacer 100. Channels 115 a and 115 e also permit forward and back motion of each arm without physical interference from a spacer 100, which is useful during walking.
  • Spacers 100 may also combine with natural movement of person 11 to facilitate cooling. More specifically, spacers 100 allow natural movements of person 11 to create pressure disturbances within the environment internal to shroud material 15. The pressure disturbances move air within shroud material 15, through channels 115, and across the body or clothing (such as undergarment 107) of person 11—thereby cooling person 11. For example, when person 11 lifts an arm, motion of the arm away from a position where person 11 has his arms at his sides creates a local negative pressure disturbance that moves air within apparel 10. This local negative pressure in channel 115 e draws air into channel 115 e, thereby cooling the portion of person 11 in this region. The movement also moves the air within apparel 10 from locations in apparel 10 where the air originated, cooling person 11 in these regions. Local pressure disturbances are not limited to movement of person 11 and may be the result of disturbances to shroud material 15. Thus, external forces that move shroud material 15 around channel 115 e may also move air for passive cooling of person 11. Alternatively, when person 11 returns his right arm to his side such that channel 115 e collapses, this creates a local positive pressure that pushes air out of channel 115 e, thereby moving air into other portions and channels 115 of apparel 10 affected by the local pressure increase. In general, any movements of person 11 and/or shroud material 15 may cause local disturbances move air to and cool of person 11. Indeed, an advantage of the present invention is that natural motions by the torso of person 11 may lead to air movement within body portion 12, such as those associated with walking and twisting. Since the muscles of person 11 that move a person's torso are relatively large, this allows a passive form of air distribution and cooling within apparel 10 that requires minimal added effort from person 11. For example, walking may lead to considerable air movement and circulation within apparel 10, thereby passively cooling person 11.
  • A set of spacers 100 as described herein includes any number of spacers configured to maintain shroud material proximate to the spacers distant from one or more portions of person 11. In one embodiment, apparel 10 comprises from 1 spacer to about 200 spacers. In a specific embodiment, apparel 10 comprises numerous small spacers—over 100, each of about an inch or less. In another embodiment, apparel 10 comprises from about 20 spacers to about 50 spacers.
  • A set of spacers may be locally defined and established for particular portions of person 11, such as sets 120 and 140 described above for chest region 105 and waist region 111, respectively. Spacers and spacers sets may also be arranged proximate to other portions of person 11 to maintain apparel proximate to the spacer and spacer set distant from a portion of the person, such as a buttocks portion, leg portions such as the thighs, knees and calves, a head or a neck portion, and arm portions such as the upper arm, elbows and forearms, etc. In a specific embodiment, a set of spacers is arranged circumferentially about a buttocks region of person 11 when the person wears apparel 10, similar to the arrangement shown in FIG. 2B. Generally, spacers 100 may be arranged anywhere such that they neighbor a desired portion of person 11 to maintain apparel proximate to the spacers distant from the portion of person 11. Portions of person 11 with high curvature where shroud material 15 would normally be expected to come in contact with person 11 are well suited. In one embodiment, a set of spacers is arranged to neighbor a high contour portion (shoulders, buttocks, outside portions of arms and legs, etc.) of person 11 such that the spacing distance, D, between shroud material 15 and portion of person 11 is substantially maintained for shroud material 15 around the high contour portion. Thus, in the absence of a force that compresses the spacers, the set of spacers 120 prevents shroud material 15 from contacting the high contour portion. In another embodiment, the number and density of spacers increases when neighboring a high contour portion of person 11.
  • While FIGS. 2A and 2B are illustrated with spacers 100 of the same size and shape, it is understood that spacers 100 employed in apparel 10 are not limited to common sizing or shaping. In one embodiment, spacers 100 may be sized and shaped to provide a localized interface between apparel 10 and person 11.
  • FIG. 2C illustrates a vertical cross section of person 11 and apparel 10 taken through a thigh region 109 of the person's right leg in accordance with one embodiment of the present invention. A set of spacers 160 arranged on shroud material 15 about thigh region 109 includes two sizes of spacers: smaller spacers 100 p and 100 q arranged on the inner side of thigh region 109, and larger spacers 100 r and 100 s arranged on the outer side of thigh region 109. Smaller spacers 100 p and 100 q minimize any interference on the legs of person 11 during walking. In the absence of a force that compresses any spacer 100 p-s, the set of spacers 160 maintains portions of shroud material 15 proximate to where each spacer attaches to shroud material 15 distant from a surface of the person's right leg for the entire leg perimeter. A similar arrangement as that shown in FIG. 2C may be used on other portions of pant leg 26, such as at the knee or calf. The spacers 100 at these portions may be smaller than those employed for set 160. Similarly, a smaller set of spacers may be arranged to neighbor outer portions (away from the body) of an arm for person 11.
  • Spacers 100 may also employ other shapes than that shown in FIGS. 3A and 3B. In other embodiments, spacer 100 is shaped to resemble a cylinder, a cone, a cube, a rectangular block, a truncated right angle cone body (or frustum), a truncated right pyramid with a square or rectangular base for distal portion 102, a ball-shape, or a hemisphere, etc. FIG. 3C illustrates a top perspective view of a spacer 150 in accordance with another embodiment of the present invention. Spacer 150 comprises substantially square distal and proximate surfaces 102 and 104, respectively. Any one of the side dimensions for spacer 150, such as height 152, may match the thickness of an off-the-shelf foam sheet. The simple shape of spacer 150 simplifies manufacture of numerous spacers 150. In one embodiment, numerous spacers 100 are manufactured (e.g., cut) from commercially available and inexpensive foam sheets, thereby simplifying manufacture and reducing cost of apparel 10. In a specific embodiment, one side of the sheet comprises a peel adhesive that allows the adhesive to be applied to all the spacers before cutting to further simplify manufacture.
  • It is also contemplated that different spacers 100 within apparel 10 may also include different shapes. FIG. 3D illustrates a shoulder spacer 170 in accordance with another embodiment of present invention. FIG. 2D illustrates a top perspective view of a set of four shoulder spacers 175 positioned about a shoulder portion 180 of person 11 in accordance with another embodiment of present invention. Spacers 175 may be attached to an undergarment 107 or vest or attached to shroud material 15. Other portions of person 11 and apparel 10, such as shroud material 15, have been omitted from of FIG. 2D to facilitate illustration. In another specific embodiment, shoulder spacers 170 may also be attached to undergarment 107 (see FIG. 2E) so that shroud material 15 moveably rests on the spacers 170.
  • Referring initially to FIG. 2D, the set of shoulder spacers 175 is arranged on apparel 10 such that two spacers 175 rest on each left and right side of the person's neck. Referring to FIG. 3D, each shoulder spacer 170 comprises a proximate surface 172 and distal surface 174. Distal surface 174 rests upon the shoulders 180 of person 11 when person 11 wears apparel 10. Shroud material 15 of apparel 10 thus rests upon the proximate surface 172 shoulder spacers 170. In one embodiment, shoulder spacer 170 comprises compressible foam that allows the distal portion 174 of each spacer 170 to conform to the shape of the person's shoulders. Thus, based on the weight of shroud 15, local portions of distal surface 174 compress and conform to the contour of the person's shoulders. Curved and compliant distal surfaces 174 increase surface area interface with the top portion of shoulders 180, thereby minimizing localized and potentially uncomfortable forces on the shoulders.
  • Each shoulder spacer 170 is shaped and dimensioned such that shroud material 15 proximate to each shoulder spacer 170 maintains an average distance, D, from the shoulders of person 11. As shown in FIG. 3D, spacers 170 are dimensioned such that this average distance extends normal to shoulders 180 from the back of shoulders 180, over the top of shoulders 180, to the front of shoulders 180. More specifically, a front portion 171 of shoulder spacers 170 is dimensioned to extend out from the front of the person's shoulders such that the average distance is maintained in front of the shoulders 180. If a set of spacers is arranged in the chest region 105, such as set 120 described with respect to FIG. 3D, the set of spacers 175 (FIG. 2A) and set 120 cumulatively maintain shroud material 15 away from an upper chest portion 185 of the person. Similarly, a back portion 173 of shoulder spacers 170 extends out from the back of shoulders 180 such that the average distance is maintained in a back portion of the shoulders. Again, if a set of spacers is arranged in the back portion of the chest, the set of spacers 175 (FIG. 2A) and chest set cumulatively maintain shroud material 15 away from an upper back portion of the person. Air channels are formed between each shoulder spacer 170, and between spacers 170 in set 175 and any spacers 100 in the chest region (FIG. 2A).
  • In one embodiment, the set of shoulder spacers 175 includes support members 187 arranged between adjacent spacers 175. Support members 187 attach to adjacent spacers 175 and substantially prevent relative motion between the adjacent spacers. Support members 187 comprise a thin, lightweight and rigid material, such as a suitably stiff plastic. As shown, two support members 187 are attached to the proximate portion 172 of each spacer 170, between shroud material 15 and the proximate portion 172, so as to not interfere with airflow in channels between the set of spacers 175. In another embodiment, a single and thicker support member 187 is attached between adjacent spacers 175 instead of multiple support members 187.
  • FIG. 2E illustrates a front view of spacers 150 attached to an undergarment 107 and worn about chest region 105 and shoulders 180 of a person in accordance with another embodiment of present invention. In this case, a set of spacers 150 is arranged on, and attached to, undergarment 107 outside of shoulders 180 and chest region 105. The spacers 150 permit low resistance airflow between air channels in the upper areas of body portion 12 and shoulder regions. The spacers 150 also create a buffer volume 190 within a large upper region of body portion 12, including space between air channels in the upper areas and shoulders of body portion 12.
  • In this case, undergarment 107 does not include sleeves of its own is donned like a vest before shroud material 15 is put on. Undergarment 107 includes buttons in the front that permit easy donning, and may also include a back elastic to increase fit about the waist. Alternatively, undergarment 107 may not include buttons or an elastic and provides a loose fit. Undergarment 107 also includes one or more pockets. In a specific embodiment, a pocket is adapted to hold a blower and positioned proximate to a filter on shroud material 15 when apparel 10 is worn.
  • FIGS. 2F-2G illustrate a shoulder spacing arrangement 240 including a set of spacers 100 in accordance with another embodiment of the present invention. FIG. 2F illustrates a front view of shoulder spacing arrangement 240 and spacers 100 resting upon shoulders 180 of person 11. FIG. 2G illustrates a side view of shoulder spacing arrangement 240 and spacers 100 resting upon the shoulders 180 of person 11 in accordance with one embodiment of the present invention. Portions of shroud material 15 have been omitted from FIGS. 2F-2G to facilitate illustration. Also, while spacing arrangement 240 will be described as being attached to shroud material 15, it is understood that arrangement 240 may be attached to an undergarment 107 such as that described above. In this case, shroud material 15 rests on the spacing arrangement 240, which attaches to the undergarment 107 and rests on the person's shoulders.
  • Referring to FIG. 2F, shoulder spacing arrangement 240 maintains a portion of shroud material 15 proximate to the shoulder spacing arrangement 240 distant from the person's shoulders 180. Specifically, each spacer 100 is arranged to maintain shroud material 15 proximate to the spacer 100 distant from an outer surface 189 of shoulders 180. Spacers 100 also maintain shroud material 15 between the spacers 100 distant from an outer surface 189 of shoulders 180. Each spacer 100 includes a body 101 having a proximate portion 102 (FIG. 3A) that attaches to an inner portion of apparel 10 and a distal portion 104 (FIG. 3A) that neighbors shoulders 180 when person 11 wears apparel 10.
  • Distal portion 214 or 104 is arranged to rest upon the person's shoulders 180 when person 11 wears apparel 10. ‘Resting upon’ as the term used herein refers to the spacers laying on the shoulders and/or being supported by the shoulders. Since gravity pulls shroud material 15 downward when person 11 stands, and shoulders 180 counter the weight via the spacers, distal portion 214 or 104 is normally in contact with the shoulders 180. However, depending on the size of person 11, fit of apparel 10 and the temporary relationship between person 11 and apparel 10, distal portion 214 or 104 may be closely situated to shoulders 180, or relatively removed from shoulders 180.
  • Shoulder spacing arrangement 240 employs numerous modular spacers 100 to maintain a shroud material 15 proximate to the shoulder spacing arrangement 240 distant from the person's shoulders 180. As shown, shoulder spacing arrangement 240 comprises fourteen shoulder spacers 100: seven spacers 100 i-o to the left of neck 207 and seven spacers 100 to the right of neck 207. Of the seven spacers on each side, three spacers 100 are arranged on shroud material 15 to rest upon the top contour of shoulders 180, two spacers 100 are arranged on shroud material 15 to rest upon the front portion 180 a of shoulders 180, and two spacers 100 are arranged on shroud material 15 to rest upon the back portion 180 b of shoulders 180.
  • In this case, individual spacers 100 are positioned around shoulders 180 such that a spacing distance, D, between shroud material 15 and shoulders 180 is substantially maintained for shroud material 15 about shoulders 180. It is understood that shroud material 15 is compliant and may be manipulated by external forces such that portions of shroud material 15 momentarily or intermittently contact the surface 189 of shoulders 180. However, once the forces are removed, shroud material 15 returns to its position distant from surface 189 of shoulders 180.
  • As a result of the separation distance provided by spacers 100, channels 115 are formed within apparel 10 between individual spacers 100 and between portions of person 11 and inner portions of apparel 10. Referring to FIG. 2F, channels 115 are bordered by shroud material 15, surface 189 of shoulders 180, and sides 103 of each spacer 100. For example, channel 115 i comprises space within apparel 10 formed between spacer 100 i, spacer 100 j, shroud material 15 between proximate portions of spacer 100 i and spacer 100 j, and a portion of surface 189 between distal portions spacer 100 i and spacer 100 j. Similarly, channel 115 k (FIG. 2G) comprises space within apparel 10 formed between spacer 100 k, spacer 100 j, shroud material 15 between proximate portions of spacer 100 k and spacer 100 j, and a portion of surface 189 between distal portions spacer 100 k and spacer 100 j. In addition, shoulder spacing arrangement 240 creates and maintains numerous other channels 115 arranged between spacers 100 that rest upon shoulders 180.
  • In one embodiment, belts, elastic banding and other fasteners may be used to change the fit of shroud material 15 and apparel 10. For example, a belt with two strips of material for tying or a belt with an adjustable clasp may be arranged about the set of spacers 140. The belt allows person 11 to alter the diameter and fit of shroud material 15 about person 11, thereby decreasing any excess shroud material 15 about person 11 and increasing the fit of apparel 10. This also situates spacers 100 closer to person 11, or in contact therewith. The spacers will maintain the distance between shroud material 15 and person 11 according to their size, and maintain any respective air channels. Elastic banding arranged in the clothing about a circumferentially arranged set of spacers also acts to constrict shroud material 15 to conform with a particular size of person 11. Plastic tape may also be used to allow person 11 to adjust fit for particular portions of shroud material 15 and apparel 10.
  • Numerous spacers within apparel 10—such as those described in sets 120, 140 and 175—may provide a large network of low resistance airflow channels within shroud material 15. Blower 38 then moves cool inlet air through a large network of low resistance channels. This constant and easy supply of fresh inlet air across a large surface of person 11 eases heat management for the person. In one embodiment, shroud material 15 in the lower region of hood 20 opens directly into the space provided by spacers in the shoulder and chest region of person 11. Air inlet using blower 38 and air outlet arranged in the top of hood 20 creates an airflow system of relative high pressure at the inlet and relative low pressure in outlet. This results in continuous net airflow in through inlet filter 30, over portions of the waist, over portions of the chest, over portions of the shoulders, over portions of the neck, over the face and head 85 of person 11, and out the air outlets 32.
  • A person wearing protective apparel often produces moisture in the apparel via perspiration and breathing. Due to the relationship between moisture and temperature in air in a contained or semi-contained volume, excess moisture in shroud material 15 may lead to thermoregulation issues for a person. In one embodiment, one or more desiccants are arranged within shroud material 15 to reduce moisture levels in the apparel. The predictable net airflow patterns within shroud material 15 may then be used to also assist moisture management within shroud material 15. More specifically, desiccants may be arranged in airflow channels that guide air and moisture within the apparel, thereby permitting the strategically located desiccants to passively absorb moisture in apparel 10. In a specific embodiment, desiccants are attached to the inner surfaces of shroud material adjacent to spacers 100 (FIG. 2E), thereby decreasing moisture within the apparel and increasing comfort of the apparel when worn for prolonged periods.
  • Protective apparel of the present invention finds wide use in shielding a wearer from an undesirable agent. Generally, the present invention finds use in any environment where a person wears protective clothing to defend from an undesirable agent. Undesirable agents may include gaseous or liquid agents, biological and/or chemical molecules, microorganisms, airborne contaminants that are in a gaseous, liquid or solid state, and other substances that the person wants minimal or no exposure to. Thus, health-care practitioners working in environments where biological agents are probable may benefit from wearing apparel described herein. Apparel 10 is well suited to defend against threats related to SARS, ebola, anthrax, flu (including avian flus and influenzas), and other airborne or droplet based threats. Apparel 10 is also well suited for use in other environments such as those associated with chemical and industrial environments where user contamination is to be minimized or avoided.
  • Protective apparel as described herein is also well suited for prolonged usage. Nurses commonly wear protective apparel for hours at a time, and thus may benefit from the present invention. There are numerous other applications in which a health-care practitioner or another individual benefits from protective apparel that is used to shield the person from a biological or chemical agent. For example, health care practitioners treating individuals that generate an airborne biological agent, such as a virus associated with a respiratory illness, may benefit from the full coverage protective apparel described herein. Alternatively, surgeons and other surgical staff in an operating room may rely on defense provided by protective apparel described herein against a liquid agent during surgery.
  • In addition, the present invention also addresses the dual function of preventing transfer of undesirable agents from the person wearing the apparel to environments and persons outside the apparel. Thus, apparel described herein may include exhaust filters that filter air passing out from the apparel and is thus well suited for use by nurses and other practitioners in an operating room or surgical environment to protect a surgery patient. Apparel 10 is also well suited for use in low contamination rooms and other places such as “clean rooms”. The latter is common in the semiconductor industry where contamination contributions by occupants are to be reduced.
  • As described herein, a buffer volume 190 (FIG. 2E) refers to a contiguous space within shroud material 15 of apparel 10. In one embodiment, the buffer volume 190 within shroud material 15 mainly comprises space within the apparel created by spacers 100, such as channels 115. Other areas within apparel 10 may also contribute to the buffer volume, including spaces within hood 20. In one embodiment, the buffer volume 190 within apparel 10 includes a volume of at least about four liters. In another embodiment, spacers 100 and channels 115 create a buffer volume 190 within apparel 10 of at least about seven liters. In an even more spacious embodiment, the buffer volume 190 within apparel 10 includes a volume of at least about ten liters. The buffer volume 190 may also vary with the fit of apparel 10 and the size of person 11. Apparel 10 may also be designed according to a sizing scheme (S, M, L) that approximates a buffer volume in the apparel greater than about ten times the respiratory capacity of a person for that size (based on an average respiratory capacity of 0.5 liters). In this manner, pressure for the buffer volume does not change by more than about ten percent during a normal inhalation.
  • Channels 115 within apparel 10 may be linked to provide a large buffer volume 190. In the absence of a force that compresses any spacer 100, the spacers 100 maintain channels 115 and buffer volume 190, as well as maintain low resistance airflow communication within the buffer volume. When the channels 115 in body portion 12 open into a neck airflow channel 154 (FIG. 2E) that provides low resistance airflow to the mouth and nose of person 11, the buffer volume 190 allows person 11 to inhale and exhale without incurring uncomfortable pressure changes. Neck airflow channel 154 comprises channels formed by spacers 100 between the chest of person 11 and the head of person 11, and may receive spacing contributions from spacers 100 on the shoulders of person 11 or the upper chest.
  • FIG. 6 illustrates a process flow 300 for maintaining an environment internal to protective apparel in accordance with one embodiment of the invention. Process flow 300 begins by creating a buffer volume of air within a body portion 12 of the apparel (302). Numerous spacers within apparel 10—such as those described in sets 120 and 140—provide a buffer volume comprising numerous low resistance airflow channels within body portion 12 and other internal portions apparel 10.
  • Process flow 300 continues by creating an air channel between a space inside hood 20 and the buffer volume 190 (304). One or more spacers 100 configured to neighbor a neck of the person creates a neck air channel 154 for apparel 10. Channel 154 permits easy low resistance movement between the buffer volume in body portion 12 into and out of hood 20. Blower 38 then moves fresh air from outside the apparel into the buffer volume 190 (306). Coupled with channel 154, this constant supply of fresh air into a large buffer volume, including the upper body, head and neck, eases breathing for person 11.
  • The spacers 100 also maintain air channel 154 between the space inside the hood and the buffer volume during an inhalation by the person (308). Inhalation may include a partial or full inhalation. In one embodiment, spacers 100 are arranged to maintain a distance of no less than one inch in neck air channel 154 during inhalation of person 11. Air inlet using blower 38 arranged near hood 20 creates an airflow system of relative high pressure in hood 20. This results in continuous net airflow into hood 20, through neck air channel 154, into body portion 120 and out any outlet filters disposed in body portion 12.
  • In another embodiment, the present invention also comprises one or more airflow directing spacers that are configured to direct airflow within the apparel. The airflow directing spacers may be attached to shroud material 15 or an undergarment worn under the shroud material 15.
  • FIG. 5A shows a schematic of dual airflow directing spacers 150 a and 150 b in accordance with one embodiment of present invention. Person 11 and other portions apparel 10 have been omitted from of FIG. 5A to facilitate illustration. Airflow directing spacers 150 a and 150 b are arranged on left and right sides of inlet filter 30, respectively. Proximate portions for each spacer 150 a and 150 b attach to an inner portion of shroud material 15 on either side of the aperture for filter 30. Distal portions for each spacer 15 neighbor a portion of person 11 corresponding to the placement of each spacer 15 on apparel 10 and the fit of apparel 10. For the embodiment shown in FIG. 1, distal portions for each spacer 150 a and 150 b neighbor a lower torso of person 11 on both lateral sides of inlet filter 30. In another embodiment, spacers 150 a and 150 b neighbor an inlet filter 30 disposed on the back side of apparel 10. Alternatively, spacers 150 may be attached to an undergarment as described above. Spacers 150 are similar in shape to that described above with respect to FIG. 3C, and include a rectangular shape with substantially orthogonal surfaces and roughly flat surfaces for distal portion 104 and proximate portion 102.
  • Filtered air passes through inlet filter 30—as moved by a blower (e.g., FIG. 2B)—into an air channel formed between the two spacers 150 a and 150 b, shroud material 15 between the two spacers 150 a and 150 b, and the torso of person 11 between spacers 150 a and 150 b. The body of person 11 proximate to inlet filter 30 acts as a large wall that redirects air perpendicular to its inlet direction. Left airflow directing spacer 150 a prevents air provided through inlet filter 30 from moving immediately left. Right airflow directing spacer 150 b prevents air provided through inlet filter 30 from moving immediately right. Cumulatively, the body of person 11, the inside surface of shroud material 15, and spacers 150 a and 150 b substantially direct air provided through inlet filter 30 upwards and downwards from the air inlet. Airflow arrows 151 approximate the resultant airflow. For apparel 10, upwards moving air cools the torso of person 11, and downwards moving air cools the groin and legs of person 11 before returning upwards to cool other portions of person 11 before exhaust.
  • Spacers 150 a and 150 b also prevent inlet filter 30 and the blower from contacting person 11 by providing support on both lateral sides of the blower. In some cases where the blower hangs from shroud material 15 (e.g., it is velcroed onto the shroud material), spacers 150 a and 150 b maintain blower 38 from contacting person 11—and maintain the air channel 115 l (between the spacers 150, shroud material 15 and person 11) that services the blower.
  • Thus, airflow directing spacers 150 maintain portions of apparel 10 proximate to the spacers distant from person 11. Portions of apparel 10 kept from continuous contact with person 11 may include shroud material 15, inlet filter 30, blower 38, or any portions and components of apparel 10 in proximity to a spacer 150.
  • FIG. 5B shows a schematic of an airflow directing spacer 150 c disposed below an air inlet 30, with shroud material 15 removed to facilitate illustration, in accordance with another embodiment of present invention. Airflow directing spacer 150 c is arranged below inlet filter 30. Spacer 150 c includes substantially rectangular surfaces for distal portion 104 and proximate portion 102 and substantially parallel sides that extend therebetween.
  • Airflow directing spacer 150 c prevents some air provided through inlet filter 30 from moving immediately downwards. In other words, spacer 150 c creates a higher pressure below filter 30 that facilitates movement of inlet air in directions other than down. Correspondingly, the body of person 11 and spacer 150 c direct more air provided through inlet filter 30 upward of the air inlet. Airflow arrows 153 approximate the resultant airflow. Spacer 150 c may also prevent inlet filter 30 and blower 38 from contacting person 11 by providing support below blower 38.
  • FIG. 5C shows a schematic of an airflow directing spacer 150 d in relation to two waist spacers 100 l and 100 m of FIG. 2B, with shroud material 15 removed to facilitate illustration, in accordance with one embodiment of present invention. As shown in FIGS. 5C and 2B, inlet filter 30 is positioned to direct air into a channel 115 l between two spacers 100 l and 100 m. Similar to the airflow directing spacer 150 c of FIG. 5C, spacer 150 d is arranged below inlet filter 30 and prevents air provided through inlet filter 30 from moving immediately downwards. However, spacer 150 d is also larger in its width dimension and therefore redirects a greater amount of air upwards and to the lateral directions. Airflow arrows 155 approximate the resultant airflow directed by spacer 150 d. For the arrangement shown in FIG. 5C, spacers 100 l and 100 m also act to redirect air moving laterally towards each spacer, although with less effect than spacer 150 d. Airflow arrows 157 approximate the resultant airflow directed by spacers 100.
  • FIG. 5D shows a schematic of an arrangement 250 of airflow directing spacers 150 a, 150 b and 100 disposed about an air inlet 30, with shroud material 15 removed to facilitate illustration, in accordance with another embodiment of present invention. Airflow directing spacers 150 a and 150 b were described above with respect to FIG. 5A. Spacer 100 has been described above with respect to FIGS. 3A and 3B. In this case, spacers 150 a, 150 b and 100 cooperate to substantially direct air provided through inlet filter 30 upwards from the air inlet. Airflow arrows 159 approximate the resultant airflow directed by spacers 150 a, 150 b and 100. Shaping air inflow in this manner allows the majority of air provided through inlet filter 30 to travel upwards.
  • Similarly, arrangement 250 may be manipulated such that the spacers cooperate to direct air in another direction, e.g., downward, to a side, at a desired angle, etc. Shaping air inflow for a specific air inlet 30 in this manner is advantageous when multiple blowers are used, and the air inflow of one blower 38 may be directed within apparel 10 to cool specific portions of person 11, as desired. Spacers 150 a, 150 b and 100 also prevent inlet filter 30 and blower 38 from contacting person 11 by providing support on both lateral sides of, and below, a blower. This maintains the blower from contacting person 11, and by maintains the air channel that services the blower.
  • The size, shape, and/or position of a spacer 150 may be adapted to achieve a desired airflow affect. More specifically, a spacer 150 proximate to inlet filter 30 may be enlarged to redirect a larger proportion of airflow, or decreased for an opposite effect. For example, spacer 150 d of FIG. 5C is substantially larger than spacer 50 c of FIG. 5B, and thus prevents a larger proportion of air provided through inlet filter 30 from moving immediately downwards. In addition, the proximity of a spacer 150 to inlet filter 30 may be increased to redirect a larger proportion of airflow, or decreased for an opposite effect. Spacer 150 may also be curved and otherwise shaped to achieve a desired local airflow effect. For example, although the embodiment shown in FIG. 5D shows three separate spacers, it is contemplated that a single spacer that spans three sides of inlet filter 30 may be implemented.
  • Although airflow directing spacers 150 have primarily been described with respect to positioning proximate to inlet filter 30, it is understood that spacers 150 may be employed in any location within apparel 10 where it is desirable to direct airflow within apparel 10 and maintain shroud material 15 proximate to the spacer distant from the person. Thus, any of the locations described above with respect to spacers 100 are suitable if the spacer 100 also functions to direct airflow.
  • In another embodiment, apparel 10 may also employ less modular shoulder spacing arrangements with or without spacers 100 or 150. The shoulder spacing arrangements prevent continuous contact between the shoulder of person 11 and portions of apparel 10, form air channels within apparel 10 that allow air to move through apparel 10 with relatively little resistance, and improve heat management within apparel 10.
  • FIGS. 2G-2J illustrate a shoulder spacing arrangement 200 including extended shoulder spacers 210 in accordance with one embodiment of the present invention. FIG. 2G illustrates a side view of a single extended shoulder spacer 210 b resting upon the shoulders 180 of person 11 in accordance with one embodiment of the present invention. FIG. 2I illustrates a top view of shoulder spacing arrangement 200 and extended shoulder spacers 210 resting upon the shoulders 180 of person 11. FIG. 2J illustrates a front view of shoulder spacing arrangement 200 and extended shoulder spacers 210 in accordance with one embodiment of the present invention. Portions of undergarment 107, shroud material 15 and apparel 10 have been omitted from FIGS. 2G-2J to facilitate illustration. In addition, although shoulder spacing arrangements will now be discussed with respect to attachment to shroud material 15, it is understood that each arrangement may be attached to an undergarment 107 as described above.
  • Referring to FIG. 2G, shoulder spacing arrangement 200 maintains a portion of shroud material 15 proximate to the shoulder spacing arrangement 200 distant from the person's shoulders 180. Specifically, each extended shoulder spacer 210 is arranged to maintain shroud material 15 proximate to the spacer 210 distant from an outer surface 189 of shoulders 180. Each spacer 210 includes a body 211 having a proximate portion 212 (FIG. 2G) that attaches to an inner portion of apparel 10 and a distal portion 214 (FIG. 2G) that rests upon shoulders 180 when person 11 wears apparel 10. Spacers 210 also maintain shroud material 15 between the spacers 210 distant from an outer surface 189 of shoulders 180. As shown in FIG. 2G, each extended shoulder spacer 210 has a double arch structure with curved surfaces for distal portion 214 and proximate portion 212.
  • Shoulder spacing arrangement 200 comprises four extended shoulder spacers 210, with two spacers 210 resting upon shoulders 180 on the left side of the person's neck 207 and two spacers 210 resting upon shoulders 180 on the right side of the person's neck. Referring to FIG. 2G, each extended shoulder spacers 210 comprises a proximate portion 212, distal portion 214, front portion 216, back portion 218, and body portion 229.
  • Distal portion 214 is a surface that rests upon the shoulders 180 of person 11 when person 11 wears apparel 10. Distal portion 214 curves to substantially match the upper contour of a person's shoulder, and may be varied to accommodate numerous users. Proximate portion 212 is a surface that shroud material 15 attaches to and rests upon. Proximate portion 212 is also curved such that each shoulder spacer 210 maintains an average distance, D, from the shoulders 180 of person 11 to proximate portion 212. In another embodiment, proximate portion 212 is substantially straight and the distance, D, to shoulders 180 varies.
  • In one embodiment, a compressible material layer 221 is attached to the bottom side of distal portion 214. The compressible material layer 221 is designed in stiffness and thickness to slightly deform based on the weight of shroud 15. Thus, based on the weight of shroud 15, local portions of the compressible material under distal portion 214 compress and the compressible material layer 221 conforms to the contour of the person's shoulders 180. This increases surface area interface with the top portion of shoulders 180 and minimizes localized and potentially uncomfortable forces on shoulders 180. A compressible foam or sponge is suitable for use with compressible material layer 221.
  • Front portion 216 extends away from a front portion 180 a of shoulders 180 when the person 11 wears apparel 10 (FIG. 2G). Shroud material 15 then drapes from the frontmost edge of front portion 216 down to any chest spacers located below front portion 216 (FIG. 3C). Back portion 218 extends away from a back portion 180 b of shoulders 180 when the person 11 wears apparel 10. Shroud material 15 also drapes from the backmost edge of back portion 218 down to any chest spacers located below back portion 218.
  • A body portion 229 for each extended shoulder spacer 210 is defined between distal surface 214 and proximate surface 212. In this case, body portion 229 comprises spacing arms 223 that separate proximate portion 212 from distal portion 214. Body portion 229 for spacer 210 includes a thin aspect ratio, defined as the ratio of the front/back length to the thickness of material between distal portion 214 and proximate portion 212. In one embodiment, body portion 229 has an aspect ratio between about 2:1 and about 15:1. Body portion 229 also comprises a hollow portion 231 between spacing arms 223 that reduces the weight of spacer 210 and allows airflow perpendicular to the longer front/back length. Spacing arms 223, proximate portion 212, distal portion 214, front portion 216, back portion 218, and support members 187 may comprise a thin, lightweight and rigid material, such as a suitably stiff plastic.
  • The amount of distance between front portion 216 and front shoulders 180 a, back portion 218 and back shoulders 180 b, and between proximate portion 212 and the top of shoulders 180 (the length of spacing arms 223), are all controlled by design. In one embodiment, each extended shoulder spacer 210 is shaped and dimensioned such that shroud material 15 proximate to each shoulder spacer 210 maintains an average distance, D, from the shoulders 180 of person 11. As shown in FIG. 2A, spacers 210 are dimensioned such that this average distance extends normal to shoulders 180 from back portion 180 b, over the top of shoulders 180, to the front portion 180 a. More specifically, front portion 216 of spacer 210 is dimensioned to extend out from the front portion 180 a such that the average distance is maintained in a front portion 180 a of shoulders 180. If a set of spacers is arranged in the chest region 105, such as set 120 described with respect to FIG. 3C, the shoulder spacing arrangement 200 (FIG. 2G) and set 120 cumulatively maintain shroud material 15 away from an upper chest portion 185 of the person. Similarly, back portion 218 of extended shoulder spacer 210 extends out from a back portion 180 b of shoulders 180 such that the average distance is maintained in a back portion 180 b of the shoulders 180. Again, if a set of spacers is arranged in the back portion of the chest, the shoulder spacing arrangement 200 (FIG. 2G) and chest spacer set cumulatively maintain shroud material 15 away from an upper back portion of the person. Air channels are then formed between each extended shoulder spacer 210, and vertically between spacers 210 and any spacers 100 in the chest region (FIG. 2G).
  • In one embodiment, the shoulder spacing arrangement 200 includes support members 226 a-f arranged between adjacent spacers 210. Support members 226 attach to adjacent spacers 210 and substantially prevent relative motion between the adjacent spacers. For example, support member 226 a attaches to a back spacing arm 223 on adjacent spacers 210 a and 210 b. Support member 226 f attaches to a front spacing arm 223 on spacers 210 a and 210 b. In one embodiment, two support members 226 are attached to the proximate portion 214 of each spacer 210, between shroud material 15 and the proximate portion 214, so as to not interfere with airflow in channels between the set of spacers 210. In another embodiment, a single and thicker support member 226 is attached between two adjacent spacers 210 instead of multiple support members 226.
  • FIG. 2K illustrates a front view of a shoulder spacing arrangement 280 and other spacers used in an upper portion of apparel 10 in accordance with another embodiment of the present invention. Shoulder spacing arrangement 280 comprises two extended shoulder spacers 210 and eight spacers 100: four spacers 100 to the left of neck 207 and four spacers 100 to the right of neck 207. Of the four spacers 100 on each side, two rest upon a top portion of shoulders 180, one rests upon a front portion 180 a of shoulders 180, and one rests upon a back portion 180 b of shoulders 180. Extended spacers 210 are arranged inside of spacers 100. Spacers 100 are arranged on the lateral outside of spacers 210 since spacers 100 may conform better to varying sizes of persons that wear apparel 10.
  • In one embodiment, the protective apparel is fully closed such that entry and exit of gases and liquids into and out from an environment internal to the apparel is controlled for the entire body of person 11, as is shown in FIG. 1. In another embodiment, the protective apparel does not provide protection to every portion of its wearer. In this case, the apparel may not include gloves attached to the distal ends of the sleeves (e.g. elastic cuffs at the end of the sleeves), sleeves that extend only to a wearer's elbows, an open viewing window 24 with no solid protection, no head coverage, no boots, and/or no pants, etc. Thus, advantages of the present invention may be achieved with apparel that only covers portions of the person and not the entirety.
  • In one embodiment, apparel 10 is disposable. In some cases, all portions of apparel 10 are disposable except the blower, its associated power source, the headgear assembly, and/or an undergarment including spacers that is intended for re-use. These parts may be separated before disposal. Disposable apparel benefits health care environments and hospitals since practitioners may rid of contaminated materials readily.
  • Although the foregoing invention has been described in some detail for purposes of clarity of understanding, those skilled in the art will recognize that various modifications may be made within the scope of the appended claims. For example, although the present invention has been described with respect to a garment assembly that provides full body coverage, one of skill in the art will appreciate that advantages of the present invention may be realized in a suit that covers less than the entire body. In addition, although the present invention has primarily been described with respect to compressible and compliant spacers 100, a collapsible material such as cardboard may also be used. The collapsible cardboard may have a hollow and frustoconical shape, for example. The invention is, therefore, not limited to the specific features and embodiments described herein and claimed in any of its forms or modifications within the scope of the appended claims.

Claims (20)

1. Protective apparel comprising:
a shroud material including a body portion configured to cover at least a portion of a torso of a person when the person wears the apparel, a first sleeve configured to receive a portion of a right arm of the person, and a second sleeve configured to receive a portion of a left arm of the person;
an undergarment configured to cover at least the portion of the torso of the person when the person wears the undergarment and adapted to be worn under the shroud material; and
a set of spacers, each spacer in the set a) including a first portion that attaches to a portion of the undergarment, b) configured to rest between the portion of the undergarment and a portion of shroud material included in the body portion when the person wears the apparel, and c) configured to maintain shroud material proximate to the spacer distant from the portion of the undergarment.
2. The apparel of claim 1 wherein the undergarment does not include sleeves.
3. The apparel of claim 1 wherein the undergarment further includes a pocket adapted to hold a blower that moves air between the undergarment and the shroud material.
4. The apparel of claim 1 wherein each spacer in the set of spacers is compliant.
5. The apparel of claim 4 wherein each spacer comprises a compressible material.
6. The apparel of claim 5 wherein the compressible material has an elastic shape memory and the spacer substantially returns to its initial shape after a deforming force is removed from the spacer.
7. The apparel of claim 6 wherein the compressible material comprises compressible foam.
8. The apparel of claim 1 wherein each spacer further includes an adhesive that attaches the spacer to the undergarment.
9. The apparel of claim 1 wherein each spacer is designed to maintain an average distance from about ½ inch to about 4 inches between the inner portion of the apparel and the portion of the person.
10. The apparel of claim 1 wherein the set of spacers forms a channel that is bordered by the person, a portion of the shroud material and two spacers in the set of spacers.
11. The apparel of claim 1 wherein the set of spacers is configured to neighbor a waist portion of the person when the person wears the apparel.
12. The apparel of claim 1 wherein the set of spacers is configured to neighbor a chest portion of the person when the person wears the apparel.
13. The apparel of claim 1 wherein the set of spacers is configured to neighbor shoulders portion of the person when the person wears the apparel.
14. The apparel of claim 1 wherein the shroud material includes a transition portal that attaches to the shroud material and is configured to provides an exit for the person when doffing the protective apparel.
15. Protective apparel comprising:
shroud material that includes a body portion configured to cover at least a portion of a torso of a person when the person wears the apparel, a first sleeve configured to receive a portion of a right arm of the person, and a second sleeve configured to receive a portion of a left arm of the person; and
a sleeveless undergarment that includes a set of spacers, each spacer in the set a) including a first portion that attaches to a portion of the undergarment and a second portion configured to neighbor an inner portion of the shroud material when the person wears the apparel, and b) configured to maintain shroud material proximate to the spacer distant from the portion of the undergarment that the spacer attaches to.
16. The apparel of claim 15 wherein the undergarment further includes a pocket adapted to hold a blower that moves air between the undergarment and the shroud material.
17. The apparel of claim 15 wherein each spacer in the set of spacers is compliant and includes a compressible material.
18. The apparel of claim 17 wherein the compressible material has an elastic shape memory and the spacer substantially returns to its initial shape after a deforming force is removed from the spacer.
19. The apparel of claim 15 wherein the set of spacers forms a channel that is bordered by the person, a portion of the shroud material and two spacers in the set of spacers.
20. Protective apparel comprising:
a shroud material including a body portion configured to cover at least a portion of a torso of a person when the person wears the apparel, a first sleeve configured to receive a portion of a right arm of the person, and a second sleeve configured to receive a portion of a left arm of the person;
an undergarment configured to cover at least the portion of the torso of the person when the person wears the undergarment and adapted to be worn under the shroud material; and
a set of spacers configured to form multiple air channels that are each bordered by a channel portion of the undergarment, a channel portion of the shroud material and two spacers in the set of spacers when the person wears the apparel, each spacer in the set a) including a first portion that attaches to a portion of the undergarment, b) configured to rest between the portion of the undergarment and a portion of shroud material included in the body portion when the person wears the apparel, and c) configured to maintain shroud material proximate to the spacer distant from the portion of the undergarment.
US12/554,981 2003-07-10 2009-09-07 Undergarment apparel spacers and low resistance air flow Abandoned US20100037375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/554,981 US20100037375A1 (en) 2003-07-10 2009-09-07 Undergarment apparel spacers and low resistance air flow

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
US48627403P 2003-07-10 2003-07-10
US48623203P 2003-07-10 2003-07-10
US48615003P 2003-07-10 2003-07-10
US48615503P 2003-07-10 2003-07-10
US48615103P 2003-07-10 2003-07-10
US48622503P 2003-07-10 2003-07-10
US48607303P 2003-07-10 2003-07-10
US10/887,648 US20050108813A1 (en) 2003-07-10 2004-07-09 Protective apparel spacers and low resistance air flow
US9557408P 2008-09-09 2008-09-09
US12/554,981 US20100037375A1 (en) 2003-07-10 2009-09-07 Undergarment apparel spacers and low resistance air flow

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/887,648 Continuation-In-Part US20050108813A1 (en) 2003-07-10 2004-07-09 Protective apparel spacers and low resistance air flow

Publications (1)

Publication Number Publication Date
US20100037375A1 true US20100037375A1 (en) 2010-02-18

Family

ID=41680232

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/554,981 Abandoned US20100037375A1 (en) 2003-07-10 2009-09-07 Undergarment apparel spacers and low resistance air flow

Country Status (1)

Country Link
US (1) US20100037375A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037613A1 (en) * 2010-09-24 2012-03-29 Carl Edward Casserly Personal cooling means
KR101283917B1 (en) * 2011-07-05 2013-07-16 충남대학교산학협력단 Bulletproof Vest Enhenced Thermal Comfort
CN104544633A (en) * 2015-01-27 2015-04-29 无锡市疾病预防控制中心 Medical disposable protective clothing
US20150250234A1 (en) * 2014-03-07 2015-09-10 Honeywell International Inc. Protective ventilated suit with integral hood
US20160366952A1 (en) * 2015-06-19 2016-12-22 Honeywood Technologies, Llc Biomechanical energy aired protective apparel
US20170367420A1 (en) * 2016-06-24 2017-12-28 Micronshield Llc System and garment for minimizing clean environment contamination
CN110473642A (en) * 2019-07-26 2019-11-19 重庆医科大学附属第一医院 A kind of intervention operation aeration type anti-radiation clothes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2439097A (en) * 1946-06-27 1948-04-06 Pierce Irving Undergarment
US3706102A (en) * 1971-03-15 1972-12-19 Andre Grenier Ventilated garments
US3783451A (en) * 1972-12-20 1974-01-08 E Malin Insect protective garment
US4195364A (en) * 1977-11-30 1980-04-01 Ab Eiser Garment for use in vigorous physical activities
US4451934A (en) * 1981-10-16 1984-06-05 Gioello Debbie A Ribbed ventilating undergarment for protective garments
US5038779A (en) * 1990-12-10 1991-08-13 Barry Kevin P Therapeutic garment
US5214797A (en) * 1991-09-17 1993-06-01 Michael Tisdale Method and apparatus for protection of skin against mosquitos and other insects
US5274849A (en) * 1988-11-30 1994-01-04 Grilliot William L Firefighter's garments having minimum weight and excellent protective qualities
US5515543A (en) * 1994-07-13 1996-05-14 Gioello; Debbie Multilayered ribbed ventilating garment
US7120938B2 (en) * 2001-02-23 2006-10-17 Seft Development Laboratory Co., Ltd. Cooling cloths

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2439097A (en) * 1946-06-27 1948-04-06 Pierce Irving Undergarment
US3706102A (en) * 1971-03-15 1972-12-19 Andre Grenier Ventilated garments
US3783451A (en) * 1972-12-20 1974-01-08 E Malin Insect protective garment
US4195364A (en) * 1977-11-30 1980-04-01 Ab Eiser Garment for use in vigorous physical activities
US4451934A (en) * 1981-10-16 1984-06-05 Gioello Debbie A Ribbed ventilating undergarment for protective garments
US5274849A (en) * 1988-11-30 1994-01-04 Grilliot William L Firefighter's garments having minimum weight and excellent protective qualities
US5038779A (en) * 1990-12-10 1991-08-13 Barry Kevin P Therapeutic garment
US5214797A (en) * 1991-09-17 1993-06-01 Michael Tisdale Method and apparatus for protection of skin against mosquitos and other insects
US5515543A (en) * 1994-07-13 1996-05-14 Gioello; Debbie Multilayered ribbed ventilating garment
US7120938B2 (en) * 2001-02-23 2006-10-17 Seft Development Laboratory Co., Ltd. Cooling cloths

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037613A1 (en) * 2010-09-24 2012-03-29 Carl Edward Casserly Personal cooling means
KR101283917B1 (en) * 2011-07-05 2013-07-16 충남대학교산학협력단 Bulletproof Vest Enhenced Thermal Comfort
US20150250234A1 (en) * 2014-03-07 2015-09-10 Honeywell International Inc. Protective ventilated suit with integral hood
US10104921B2 (en) * 2014-03-07 2018-10-23 Honeywell International Inc. Protective ventilated suit with integral hood
CN104544633A (en) * 2015-01-27 2015-04-29 无锡市疾病预防控制中心 Medical disposable protective clothing
US20160366952A1 (en) * 2015-06-19 2016-12-22 Honeywood Technologies, Llc Biomechanical energy aired protective apparel
US20170367420A1 (en) * 2016-06-24 2017-12-28 Micronshield Llc System and garment for minimizing clean environment contamination
CN110473642A (en) * 2019-07-26 2019-11-19 重庆医科大学附属第一医院 A kind of intervention operation aeration type anti-radiation clothes

Similar Documents

Publication Publication Date Title
US7636955B2 (en) Protective apparel breathing assistance
US8032952B2 (en) Protective apparel with improved disposal
US11654309B2 (en) Cowl neck barrier gown with attachments
US20100037375A1 (en) Undergarment apparel spacers and low resistance air flow
US7549179B1 (en) Self-donning surgical gown
EP1494733B1 (en) Patient comfort apparatus and system
AU703897B2 (en) Disposable mask and suction catheter
US5596985A (en) Surgical mask
US7246382B2 (en) Handwear that improves protective apparel doffing
US20200068965A1 (en) Protective apparel system with impervious protection
JPS60155702A (en) Gown apparatus for respiration of living body
US3804086A (en) Surgical vacuum apparel
US11612770B1 (en) PPE with rotating assembly providing multiple face covers
CN212233259U (en) Medical protective clothing
US20160366952A1 (en) Biomechanical energy aired protective apparel
CN111657577A (en) Non-integrated full-isolation protective clothing
CN212165027U (en) Protective clothing
CN212590498U (en) Protective garment comfortable to wear
CN111480920A (en) Totally-enclosed disposable medical protective clothing and application method thereof
US11259578B2 (en) PPE with rotating assembly providing multiple face covers
CN111150158A (en) Medical protective clothing
CN220734474U (en) Novel material isolation clothing
CN212994491U (en) Medical protective clothing
JPH0411644B2 (en)
CN217065479U (en) Medical protective clothing of adjustable size

Legal Events

Date Code Title Description
AS Assignment

Owner name: CYLENA MEDICAL TECHNOLOGY, INC.,ONTARIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PLUT, WILLIAM J;PATTI, MICHAEL B;SIGNING DATES FROM 20091019 TO 20091030;REEL/FRAME:023523/0979

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION