US20100025258A1 - Hydrogen generating apparatus with hydrogen concentration sensors - Google Patents

Hydrogen generating apparatus with hydrogen concentration sensors Download PDF

Info

Publication number
US20100025258A1
US20100025258A1 US12/514,947 US51494707A US2010025258A1 US 20100025258 A1 US20100025258 A1 US 20100025258A1 US 51494707 A US51494707 A US 51494707A US 2010025258 A1 US2010025258 A1 US 2010025258A1
Authority
US
United States
Prior art keywords
hydrogen generating
hydrogen
generating apparatus
selected concentration
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/514,947
Inventor
Andrew Harland Lindsay
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hy Drive Technologies Ltd
Original Assignee
Hy Drive Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hy Drive Technologies Ltd filed Critical Hy Drive Technologies Ltd
Assigned to HY-DRIVE TECHNOLOGIES LTD. reassignment HY-DRIVE TECHNOLOGIES LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LINDSAY, ANDREW HARLAND
Publication of US20100025258A1 publication Critical patent/US20100025258A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/10Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone
    • F02M25/12Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding acetylene, non-waterborne hydrogen, non-airborne oxygen, or ozone the apparatus having means for generating such gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention is directed to a hydrogen generating apparatus and in particular a hydrogen generating apparatus for a motor vehicle.
  • Hydrogen generating apparatus employing electrolysis technologies have been used on motor vehicles to supplement the fuel used to drive the vehicle.
  • the use of hydrogen as a supplemental fuel in motor vehicle engines has been proposed to increase the performance of the engine.
  • Hydrogen and oxygen when used as part of the air/fuel mixture for the operation of the engine, have been found to increase the performance of the engine by increasing the mileage and by reducing the amount of emissions from the engine.
  • the hydrogen and oxygen may be generated through electrolysis of an aqueous solution with the gases given off being mixed with the charge of fuel and air supplied to the engine.
  • a housing is provided that may be conveniently positioned on the vehicle, the housing enclosing one or more electrolysis cells and other internal components such as control systems, gas lines, electrical conduits, etc.
  • the enclosure is produced of durable materials that protect the cells and other internal components against the rigors of operation on a motor vehicle, the elements and by human manipulation.
  • the housing often includes an access cover which is generally lockable to control access to the cells and internal components.
  • a hydrogen generating apparatus comprising: a hydrogen generating cell including a container formed by liquid and gas tight walls and a plurality of electrodes within the container for generating hydrogen gas from an electrolyte liquid; a housing about the hydrogen generating cell; a gas delivery line extending from the hydrogen generating cell and passing out of the housing; a space between the hydrogen generating cell and the housing, a sensor in the housing capable of sensing a concentration of hydrogen in the space and a system for controlling operation of the hydrogen generating apparatus in response to a selected concentration of hydrogen being sensed at the sensor.
  • a method for operating a hydrogen generating apparatus comprising: providing a sensor capable of sensing a concentration of hydrogen and positioned to detect gas leaked from a hydrogen generating cell; monitoring the sensor to determine if a selected concentration of hydrogen gas is sensed at the sensor; and controlling operation of the hydrogen generating apparatus in response to the detection of the selected concentration of hydrogen gas at the sensor.
  • FIG. 1 is a schematic view of a hydrogen generating apparatus according to the present invention.
  • FIG. 2 is a schematic view of one possible system and method flow chart according to the present invention.
  • a hydrogen generating apparatus is shown in FIG. 1 including one or more hydrogen generating cells 10 , a housing 12 about the hydrogen generating cells, a space 14 between the hydrogen generating cell and the housing, a sensor 16 in the housing capable of sensing a concentration of hydrogen in the space and a system, generally indicated at 18 , for controlling operation, shown in this embodiments as output operations 19 A, 19 B, 19 C, of the hydrogen generating apparatus in response to a selected concentration of hydrogen being sensed at the sensor.
  • the space may accommodate gas lines, electrical lines, devices for operation control and/or monitoring of the hydrogen generating cell, etc. in addition to the sensor and the one or more hydrogen generating cells.
  • a housing of a hydrogen generating apparatus may include electrical components 20 such as onboard controllers such as control system 18 or other programmable logic controllers and/or circuit boards, electrical supplies and power controllers, electrical conduits, sensors, etc.
  • electrical components 20 such as onboard controllers such as control system 18 or other programmable logic controllers and/or circuit boards, electrical supplies and power controllers, electrical conduits, sensors, etc.
  • the housing may also enclose any or all of filters, electrolyte refilling systems, gas dryers, flame arrestors, etc.
  • Gas delivery lines 22 may extend from the cells and outwardly through the housing, providing a conduit for the gas generated in the cell through the space to the engine without releasing gas into the space.
  • the generated gases including hydrogen and oxygen are passed together through the gas delivery line to the engine.
  • the housing may take various forms.
  • the housing may be formed to protect the cell from tampering, from impact by objects or from the elements.
  • the housing may be formed for mounting internally in a vehicle or externally on the vehicle, as desired.
  • the housing is generally intended to be air filled and protected against entry into and containment of liquid in the space between the one or more cells and the housing.
  • An access port 24 may be provided as a discreet opening in the housing, as shown, or by removal of all or a portion of the housing. Any access may be controlled if desired, for example as by use of a cover 26 and/or a lock 28 .
  • a hydrogen generating cell often includes a container 30 formed by liquid and gas tight walls and a plurality of electrodes 32 within the container for generating hydrogen gas when an electrical current is passed therethrough in the presence of an electrolyte liquid 33 contained in the cell container.
  • Ports 34 through the walls provide for connection to gas delivery lines 22 and electrolyte supply lines and inlet of power lines.
  • Such ports 34 and connections thereto are generally selected to continue the liquid and gas tight envelope of the cell such that leakage of liquid and gas into the housing is substantially avoided under normal operating conditions.
  • a pressure relief valve may be provided in the container walls to avoid an explosion of a cell due to overpressuring. However, such a pressure relief may not generally be intended to constantly and under normal operating conditions release generated gases into the housing.
  • the hydrogen generating apparatus and the cells therein are often formed, selected and/or configured to accommodate high concentrations of hydrogen gas without a substantial risk of explosion.
  • leaks in the cell that permit a build up of hydrogen gas in the space between the cell and the housing may create an explosion risk. Leaks may occur at various places such as through the walls of the electrolysis cell container and/or gas lines and/or through connections between gas lines and containers and/or through pressure relief valves. Because the housing is generally closed and sealed to protect internal components against the elements and tampering, any such leaked gas may build up in the housing surrounding the cells.
  • the system for controlling operation of the hydrogen generating apparatus may be selected to respond to any concentration of hydrogen gas in the housing and which is not contained in the hydrogen generating cell and which is below the explosive limit for hydrogen gas. It is believed that the explosive limit of hydrogen gas is about 40,000 ppm.
  • the system may monitor for a selected concentration that is determined to be safe but of concern.
  • the selected concentration may be selected to be less than about 90% or possibly less than 75% of the explosive limit, such as for example in one embodiment less than about 30,000 ppm.
  • the selected concentration may be selected to be much less than the explosive limit such as less than 10,000 ppm or less than 7,500 ppm.
  • the system for controlling operation of the hydrogen generating apparatus may monitor and/or receive signals from the sensor and may generate an output operation to control the function of the hydrogen generating system based thereon such as for example, the system may include a function, illustrated by 19 A, for sending a signal 35 to an operator or a service display or operating system to report the detection of a selected hydrogen concentration.
  • the system for controlling operation of the hydrogen generating apparatus may include a function, illustrated by 19 B, for shutting down operation of the hydrogen generating cell such as by use of a switch 36 , in response to the detection of a selected hydrogen concentration.
  • the apparatus may include a gas exhaust for the housing, which may include for example, a fan 38 mounted in the housing that is operable to exhaust gases from the space and, thereby from the housing.
  • the system for controlling operation of the hydrogen generating apparatus may include a function, illustrated at 19 C, for starting operation of the gas exhaust in response to the selected concentration.
  • the system for controlling operation of the hydrogen generating apparatus may monitor 40 a sensor in the housing of a hydrogen generating apparatus to determine 41 if a hydrogen concentration of concern is present in the space surrounding the cells.
  • a first function of the system generates a signal 42 for the operator and drives operation of a gas exhaust 44 to exhaust gas from the housing.
  • sensor monitoring continues 46 and the system may include a second function that shuts down operation 48 of the hydrogen generating cell in response to the sensing of a second selected concentration that is higher than the concentration of interest and/or if the concentration of concern is not reduced, for example by the gas exhaust, after a selected period.
  • a lower concentration limit may be selected to drive exhaust of hydrogen gas from the housing space and a second limit higher than the lower limit is selected for a hydrogen gas generation shut down condition.
  • the second limit may be based on time, wherein if the exhaust function is not achieving a reduction of the hydrogen concentration below the lower concentration limit in a particular time period, the hydrogen generating apparatus will be shut down.
  • the control system may include a timing function for use in these embodiments.
  • the system can also include a counter function and can monitor the number of times the selected concentration is reached and may include a function for shutting down operation of the cell once a selected count limit is reached.
  • the apparatus may be configured to shut down if the selected concentration is reached 4 times or 6 times or more.
  • system may only be restarted after a shut down if the apparatus is serviced.
  • system includes a function that only permits a restart by entry of a pass code into system 18 , such as may be controlled and used only by a service representative.
  • the system may include a function to advise an operator of the apparatus that the system has been shut down, such as a function to generate a “Service Required” signal.
  • a function to generate a “Service Required” signal may be audible, visual, for storage in memory and/or for controlling further operations.
  • the sensor capable of sensing hydrogen gas concentration may be selected to include any of various devices, mechanisms and systems, as will be appreciated by a skilled person.
  • a sensor using a electrochemical operating principle may be useful.
  • an amperometric sensor may be used that uses hydrogen gas as a target gas to complete a circuit and generate a current through the sensor. The current generated may, for example, be proportional to the measured gas concentration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Fuel Cell (AREA)

Abstract

A hydrogen generating apparatus for controlling operation thereof in response to gas leaked from an electrolysis cell. The hydrogen generating apparatus may include: a hydrogen generating cell including a container formed by liquid and gas tight walls and a plurality of electrodes within the container for generating hydrogen gas from an electrolyte liquid; a housing about the hydrogen generating cell; a gas delivery line extending from the hydrogen generating cell and passing out of the housing; a space between the hydrogen generating cell and the housing, a sensor in the housing capable of sensing a concentration of hydrogen in the space and a system for controlling operation of the hydrogen generating apparatus in response to a selected concentration of hydrogen being sensed at the sensor

Description

    FIELD OF THE INVENTION
  • The present invention is directed to a hydrogen generating apparatus and in particular a hydrogen generating apparatus for a motor vehicle.
  • BACKGROUND
  • Hydrogen generating apparatus employing electrolysis technologies have been used on motor vehicles to supplement the fuel used to drive the vehicle. The use of hydrogen as a supplemental fuel in motor vehicle engines has been proposed to increase the performance of the engine. Hydrogen and oxygen, when used as part of the air/fuel mixture for the operation of the engine, have been found to increase the performance of the engine by increasing the mileage and by reducing the amount of emissions from the engine. The hydrogen and oxygen may be generated through electrolysis of an aqueous solution with the gases given off being mixed with the charge of fuel and air supplied to the engine.
  • For use on motor vehicles, hydrogen generating apparatus have been developed that offer secure enclosures for electrolysis cells. In these apparatus, a housing is provided that may be conveniently positioned on the vehicle, the housing enclosing one or more electrolysis cells and other internal components such as control systems, gas lines, electrical conduits, etc. Often the enclosure is produced of durable materials that protect the cells and other internal components against the rigors of operation on a motor vehicle, the elements and by human manipulation. The housing often includes an access cover which is generally lockable to control access to the cells and internal components.
  • Although hydrogen generating apparatus have proven useful, there are certain disadvantages that have limited their widespread acceptance. For example, some may be reticent to employ hydrogen generating apparatus because of a perception of risk of explosion by generation of hydrogen gas.
  • SUMMARY
  • In accordance with a broad aspect of the present invention, there is provided a hydrogen generating apparatus comprising: a hydrogen generating cell including a container formed by liquid and gas tight walls and a plurality of electrodes within the container for generating hydrogen gas from an electrolyte liquid; a housing about the hydrogen generating cell; a gas delivery line extending from the hydrogen generating cell and passing out of the housing; a space between the hydrogen generating cell and the housing, a sensor in the housing capable of sensing a concentration of hydrogen in the space and a system for controlling operation of the hydrogen generating apparatus in response to a selected concentration of hydrogen being sensed at the sensor.
  • In accordance with another broad aspect of the present invention, there is provided a method for operating a hydrogen generating apparatus, comprising: providing a sensor capable of sensing a concentration of hydrogen and positioned to detect gas leaked from a hydrogen generating cell; monitoring the sensor to determine if a selected concentration of hydrogen gas is sensed at the sensor; and controlling operation of the hydrogen generating apparatus in response to the detection of the selected concentration of hydrogen gas at the sensor.
  • It is to be understood that other aspects of the present invention will become readily apparent to those skilled in the art from the following detailed description, wherein various embodiments of the invention are shown and described by way of illustration. As will be realized, the invention is capable for other and different embodiments and its several details are capable of modification in various other respects, all without departing from the spirit and scope of the present invention. Accordingly the drawings and detailed description are to be regarded as illustrative in nature and not as restrictive.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Referring to the drawings wherein like reference numerals indicate similar parts throughout the several views, several aspects of the present invention are illustrated by way of example, and not by way of limitation, in detail in the figures, wherein:
  • FIG. 1 is a schematic view of a hydrogen generating apparatus according to the present invention; and
  • FIG. 2 is a schematic view of one possible system and method flow chart according to the present invention.
  • DESCRIPTION OF VARIOUS EMBODIMENTS
  • The detailed description set forth below in connection with the appended drawings is intended as a description of various embodiments of the present invention and is not intended to represent the only embodiments contemplated by the inventor. The detailed description includes specific details for the purpose of providing a comprehensive understanding of the present invention. However, it will be apparent to those skilled in the art that the present invention may be practiced without these specific details.
  • A hydrogen generating apparatus is shown in FIG. 1 including one or more hydrogen generating cells 10, a housing 12 about the hydrogen generating cells, a space 14 between the hydrogen generating cell and the housing, a sensor 16 in the housing capable of sensing a concentration of hydrogen in the space and a system, generally indicated at 18, for controlling operation, shown in this embodiments as output operations 19A, 19B, 19C, of the hydrogen generating apparatus in response to a selected concentration of hydrogen being sensed at the sensor.
  • The space may accommodate gas lines, electrical lines, devices for operation control and/or monitoring of the hydrogen generating cell, etc. in addition to the sensor and the one or more hydrogen generating cells. For example, in addition to one or more hydrogen generating cells, and the sensor, a housing of a hydrogen generating apparatus may include electrical components 20 such as onboard controllers such as control system 18 or other programmable logic controllers and/or circuit boards, electrical supplies and power controllers, electrical conduits, sensors, etc. Of course it is not always necessary to install all electrical components in the housing, but incorporation of all related components in the housing may facilitate installation and maintenance of the apparatus. The housing may also enclose any or all of filters, electrolyte refilling systems, gas dryers, flame arrestors, etc. Gas delivery lines 22 may extend from the cells and outwardly through the housing, providing a conduit for the gas generated in the cell through the space to the engine without releasing gas into the space. In the illustrated embodiment, the generated gases including hydrogen and oxygen are passed together through the gas delivery line to the engine.
  • The housing may take various forms. In one embodiment for example, the housing may be formed to protect the cell from tampering, from impact by objects or from the elements. The housing may be formed for mounting internally in a vehicle or externally on the vehicle, as desired. The housing is generally intended to be air filled and protected against entry into and containment of liquid in the space between the one or more cells and the housing. An access port 24 may be provided as a discreet opening in the housing, as shown, or by removal of all or a portion of the housing. Any access may be controlled if desired, for example as by use of a cover 26 and/or a lock 28.
  • A hydrogen generating cell often includes a container 30 formed by liquid and gas tight walls and a plurality of electrodes 32 within the container for generating hydrogen gas when an electrical current is passed therethrough in the presence of an electrolyte liquid 33 contained in the cell container. Ports 34 through the walls provide for connection to gas delivery lines 22 and electrolyte supply lines and inlet of power lines. Such ports 34 and connections thereto are generally selected to continue the liquid and gas tight envelope of the cell such that leakage of liquid and gas into the housing is substantially avoided under normal operating conditions. Of course, as will be appreciated, a pressure relief valve may be provided in the container walls to avoid an explosion of a cell due to overpressuring. However, such a pressure relief may not generally be intended to constantly and under normal operating conditions release generated gases into the housing.
  • The hydrogen generating apparatus and the cells therein are often formed, selected and/or configured to accommodate high concentrations of hydrogen gas without a substantial risk of explosion. However, leaks in the cell that permit a build up of hydrogen gas in the space between the cell and the housing may create an explosion risk. Leaks may occur at various places such as through the walls of the electrolysis cell container and/or gas lines and/or through connections between gas lines and containers and/or through pressure relief valves. Because the housing is generally closed and sealed to protect internal components against the elements and tampering, any such leaked gas may build up in the housing surrounding the cells.
  • Thus, the system for controlling operation of the hydrogen generating apparatus may be selected to respond to any concentration of hydrogen gas in the housing and which is not contained in the hydrogen generating cell and which is below the explosive limit for hydrogen gas. It is believed that the explosive limit of hydrogen gas is about 40,000 ppm.
  • In one embodiment therefore, the system may monitor for a selected concentration that is determined to be safe but of concern. For example, the selected concentration may be selected to be less than about 90% or possibly less than 75% of the explosive limit, such as for example in one embodiment less than about 30,000 ppm. However, the selected concentration may be selected to be much less than the explosive limit such as less than 10,000 ppm or less than 7,500 ppm.
  • In one embodiment, the system for controlling operation of the hydrogen generating apparatus may monitor and/or receive signals from the sensor and may generate an output operation to control the function of the hydrogen generating system based thereon such as for example, the system may include a function, illustrated by 19A, for sending a signal 35 to an operator or a service display or operating system to report the detection of a selected hydrogen concentration. In another embodiment, the system for controlling operation of the hydrogen generating apparatus may include a function, illustrated by 19B, for shutting down operation of the hydrogen generating cell such as by use of a switch 36, in response to the detection of a selected hydrogen concentration. In another embodiment, the apparatus may include a gas exhaust for the housing, which may include for example, a fan 38 mounted in the housing that is operable to exhaust gases from the space and, thereby from the housing. In such an embodiment, the system for controlling operation of the hydrogen generating apparatus may include a function, illustrated at 19C, for starting operation of the gas exhaust in response to the selected concentration.
  • In one possible embodiment shown in schematic form in FIG. 2, the system for controlling operation of the hydrogen generating apparatus may monitor 40 a sensor in the housing of a hydrogen generating apparatus to determine 41 if a hydrogen concentration of concern is present in the space surrounding the cells. When such a concentration is detected, a first function of the system generates a signal 42 for the operator and drives operation of a gas exhaust 44 to exhaust gas from the housing. Thereafter, sensor monitoring continues 46 and the system may include a second function that shuts down operation 48 of the hydrogen generating cell in response to the sensing of a second selected concentration that is higher than the concentration of interest and/or if the concentration of concern is not reduced, for example by the gas exhaust, after a selected period.
  • Where a two stage control is used, a lower concentration limit may be selected to drive exhaust of hydrogen gas from the housing space and a second limit higher than the lower limit is selected for a hydrogen gas generation shut down condition. Alternately, the second limit may be based on time, wherein if the exhaust function is not achieving a reduction of the hydrogen concentration below the lower concentration limit in a particular time period, the hydrogen generating apparatus will be shut down. As such, the control system may include a timing function for use in these embodiments.
  • In one embodiment, the system can also include a counter function and can monitor the number of times the selected concentration is reached and may include a function for shutting down operation of the cell once a selected count limit is reached. For example, the apparatus may be configured to shut down if the selected concentration is reached 4 times or 6 times or more.
  • It may be useful if the system may only be restarted after a shut down if the apparatus is serviced. Thus, it may be useful if the system includes a function that only permits a restart by entry of a pass code into system 18, such as may be controlled and used only by a service representative.
  • In addition or alternately to a signal generated to report a concentration of concern, the system may include a function to advise an operator of the apparatus that the system has been shut down, such as a function to generate a “Service Required” signal. Of course any such signals may be audible, visual, for storage in memory and/or for controlling further operations.
  • The sensor capable of sensing hydrogen gas concentration may be selected to include any of various devices, mechanisms and systems, as will be appreciated by a skilled person. In one embodiment, a sensor using a electrochemical operating principle may be useful. For example, an amperometric sensor may be used that uses hydrogen gas as a target gas to complete a circuit and generate a current through the sensor. The current generated may, for example, be proportional to the measured gas concentration.
  • The previous description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to those embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein, but is to be accorded the full scope consistent with the claims, wherein reference to an element in the singular, such as by use of the article “a” or “an” is not intended to mean “one and only one” unless specifically so stated, but rather “one or more”. All structural and functional equivalents to the elements of the various embodiments described throughout the disclosure that are know or later come to be known to those of ordinary skill in the art are intended to be encompassed by the elements of the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. If the claim is being considered under the law of the United States of America, no claim element is to be construed under the provisions of 35 USC 112, sixth paragraph, unless the element is expressly recited using the phrase “means for” or “step for”.

Claims (31)

1. A hydrogen generating apparatus comprising: a hydrogen generating cell including a container formed by liquid and gas tight walls and a plurality of electrodes within the container for generating hydrogen gas from an electrolyte liquid; a housing about the hydrogen generating cell; a gas delivery line extending from the hydrogen generating cell and passing out of the housing; a space between the hydrogen generating cell and the housing, a sensor in the housing capable of sensing a concentration of hydrogen in the space and a system for controlling operation of the hydrogen generating apparatus in response to a selected concentration of hydrogen being sensed at the sensor.
2. The hydrogen generating apparatus according to claim 1 wherein the selected concentration is below the explosion limit of hydrogen gas in air.
3. The hydrogen generating apparatus according to claim 1 wherein the selected concentration is below 90% of the explosion limit of hydrogen gas in air.
4. The hydrogen generating apparatus according to claim 1 wherein the selected concentration is below about 40,000 ppm.
5. The hydrogen generating apparatus according to claim 1 wherein the selected concentration is below about 30,000 ppm.
6. The hydrogen generating apparatus according to claim 1 wherein the hydrogen generating cell is selected to generate hydrogen gas and oxygen and the gas delivery line passes these gases in combination to the engine.
7. The hydrogen generating apparatus according to claim 1 wherein the system for controlling operation of the hydrogen generating apparatus includes a function for sending a signal to report the detection of the selected concentration of hydrogen.
8. The hydrogen generating apparatus according to claim 1 wherein the system for controlling operation of the hydrogen generating apparatus includes a function for shutting down operation of the hydrogen generating cell in response to the detection of the selected concentration.
9. The hydrogen generating apparatus according to claim 1 wherein the system for controlling operation of the hydrogen generating apparatus includes a function for initiating an exhaust of gases from the housing in response to the detection of the selected concentration.
10. The hydrogen generating apparatus according to claim 1 further comprising a gas exhaust for the housing and wherein the system for controlling operation of the hydrogen generating apparatus includes a function for starting operation of the gas exhaust in response to the selected concentration.
11. The hydrogen generating apparatus according to claim 10 wherein the gas exhaust is a fan operable to evacuate gas from the space.
12. The hydrogen generating apparatus according to claim 1 wherein the system for controlling operation of the hydrogen generating apparatus generates a first operation in response to the detection of the selected concentration and continues monitoring for the selected concentration at the sensor.
13. The hydrogen generating apparatus according to claim 1 wherein the system includes a counting function to monitor the number of occurrences of the selected concentration being sensed at the sensor.
14. The hydrogen generating apparatus according to claim 1 wherein the system includes a timing function to monitor a time period wherein the selected concentration is sensed at the sensor.
15. A method for operating a hydrogen generating apparatus, comprising: providing a sensor capable of sensing a concentration of hydrogen and positioned to detect gas leaked from a hydrogen generating cell; monitoring the sensor to determine if a selected concentration of hydrogen gas is sensed at the sensor; and controlling operation of the hydrogen generating apparatus in response to the detection of the selected concentration of hydrogen gas at the sensor.
16. The method according to claim 15 wherein the selected concentration is below the explosion limit of hydrogen gas in air.
17. The method according to claim 15 wherein the selected concentration is below 90% of the explosion limit of hydrogen gas in air.
18. The method according to claim 15 wherein the selected concentration is below about 40,000 ppm.
19. The method according to claim 15 wherein the selected concentration is below about 30,000 ppm.
20. The method according to claim 15 wherein the hydrogen generating cell is selected to generate hydrogen gas and oxygen, which are passed in combination to a vehicle engine.
21. The method according to claim 15 wherein controlling operation of the hydrogen generating apparatus includes sending a signal to report the detection of the selected concentration of hydrogen.
22. The method according to claim 15 wherein controlling operation of the hydrogen generating apparatus includes shutting down operation of the hydrogen generating cell in response to the detection of the selected concentration.
23. The method according to claim 15 wherein controlling operation of the hydrogen generating apparatus includes initiating an exhaust of gases from the housing in response to the detection of the selected concentration.
24. The method according to claim 15 further comprising a gas exhaust for the apparatus and wherein controlling operation of the hydrogen generating apparatus includes starting operation of the gas exhaust in response to the selected concentration.
25. The method according to claim 15 wherein controlling operation of the hydrogen generating apparatus includes generating a first operation in response to the detection of the selected concentration and continuing monitoring for the selected concentration at the sensor.
26. The method according to claim 15 wherein controlling operation of the hydrogen generating apparatus includes counting the number of occurrences of the selected concentration being sensed at the sensor.
27. The method according to claim 15 wherein controlling operation of the hydrogen generating apparatus includes monitoring the length of time that the selected concentration is sensed at the sensor.
28. The method according to claim 15 wherein controlling operation of the hydrogen generating apparatus includes shutting down operation of the hydrogen generating cell in response to the sensing of a second selected concentration that is higher than the selected concentration.
29. The method according to claim 15 wherein controlling operation of the hydrogen generating apparatus includes shutting down operation of the hydrogen generating cell if the selected concentration is not reduced after a selected period of time.
30. The method according to claim 15 wherein controlling operation of the hydrogen generating apparatus includes counting the number of times the selected concentration is reached and shutting down operation of the cell once a selected count limit is reached.
31. The method according to claim 15 wherein controlling operation includes shutting down operation of the hydrogen generating cell and permitting a restart after the apparatus is serviced.
US12/514,947 2006-01-27 2007-01-29 Hydrogen generating apparatus with hydrogen concentration sensors Abandoned US20100025258A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CA002534168A CA2534168A1 (en) 2006-01-27 2006-01-27 Hydrogen generating apparatus
CA2534168 2006-01-27
PCT/CA2007/000125 WO2007085092A1 (en) 2006-01-27 2007-01-29 Hydrogen generating apparatus with hydrogen concentration sensors

Publications (1)

Publication Number Publication Date
US20100025258A1 true US20100025258A1 (en) 2010-02-04

Family

ID=38308810

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/514,947 Abandoned US20100025258A1 (en) 2006-01-27 2007-01-29 Hydrogen generating apparatus with hydrogen concentration sensors

Country Status (3)

Country Link
US (1) US20100025258A1 (en)
CA (2) CA2534168A1 (en)
WO (1) WO2007085092A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100276296A1 (en) * 2008-11-17 2010-11-04 Etorus, Inc. Electrolytic hydrogen generating system
US20210254227A1 (en) * 2020-02-14 2021-08-19 Hyundai Motor Company Water electrolysis system and control method thereof
US20220251720A1 (en) * 2019-01-22 2022-08-11 Glock Ökoenergie Gmbh Electrolytic cell
JP7506689B2 (en) 2019-05-01 2024-06-26 アクセリス テクノロジーズ, インコーポレイテッド High Power Wafer Cooling

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2534604A1 (en) 2006-01-30 2007-07-30 Hy-Drive Technologies Ltd. Gas liquid separator for hydrogen generating apparatus
ITUD20100061A1 (en) * 2010-04-01 2011-10-02 Cappellari Roberto METHOD AND DEVICE FOR CONSUMPTION HYDROGEN PRODUCTION.

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6332434B1 (en) * 1998-06-29 2001-12-25 Fatpower Inc. Hydrogen generating apparatus and components therefor
US6336430B2 (en) * 1998-06-29 2002-01-08 Fatpower Inc. Hydrogen generating apparatus
US6468412B2 (en) * 2000-12-20 2002-10-22 United States Filter Corporation Apparatus and method for venting hydrogen from an electrolytic cell
US6524453B1 (en) * 1998-04-21 2003-02-25 Fatpower Inc. Electrode assembly
US20030118882A1 (en) * 2001-11-28 2003-06-26 Henry Voss Fuel cell system for operation at pressures below the pressure of the surrounding environment and method of operation thereof
US20040040838A1 (en) * 2002-08-28 2004-03-04 Fatpower Inc. Electrolyzer
US20040146755A1 (en) * 2003-01-23 2004-07-29 Jon Meredith Regulating the communication of power to components of a fuel cell system
US6817320B2 (en) * 2001-01-19 2004-11-16 Fat Power Inc. Hydrogen generating apparatus and components therefor
US20060157354A1 (en) * 2002-01-29 2006-07-20 Mitsubishi Corporation System and method for generating high pressure hydrogen
US20070151778A1 (en) * 2005-08-02 2007-07-05 Hy-Drive Technologies Ltd. Vehicle operation assembly
US20080257740A1 (en) * 2004-11-02 2008-10-23 Hy-Drive Technologies Ltd. Electrolysis Cell Electrolyte Pumping System

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105773A (en) * 1991-10-21 1992-04-21 Alternate Fuels, Inc. Method and apparatus for enhancing combustion in an internal combustion engine through electrolysis
CA2548767A1 (en) * 2003-12-03 2005-06-23 Proton Energy Systems, Inc. System for generating hydrogen and method thereof

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6524453B1 (en) * 1998-04-21 2003-02-25 Fatpower Inc. Electrode assembly
US6336430B2 (en) * 1998-06-29 2002-01-08 Fatpower Inc. Hydrogen generating apparatus
US6332434B1 (en) * 1998-06-29 2001-12-25 Fatpower Inc. Hydrogen generating apparatus and components therefor
US6468412B2 (en) * 2000-12-20 2002-10-22 United States Filter Corporation Apparatus and method for venting hydrogen from an electrolytic cell
US20050126515A1 (en) * 2001-01-19 2005-06-16 Fatpower Inc. Hydrogen generating apparatus and components therefor
US7240641B2 (en) * 2001-01-19 2007-07-10 Hy-Drive Technologies Ltd. Hydrogen generating apparatus and components therefor
US6817320B2 (en) * 2001-01-19 2004-11-16 Fat Power Inc. Hydrogen generating apparatus and components therefor
US20030118882A1 (en) * 2001-11-28 2003-06-26 Henry Voss Fuel cell system for operation at pressures below the pressure of the surrounding environment and method of operation thereof
US20060157354A1 (en) * 2002-01-29 2006-07-20 Mitsubishi Corporation System and method for generating high pressure hydrogen
US20070119707A1 (en) * 2002-08-28 2007-05-31 Joachim Helmke Electrolyzer
US20040040838A1 (en) * 2002-08-28 2004-03-04 Fatpower Inc. Electrolyzer
US20040146755A1 (en) * 2003-01-23 2004-07-29 Jon Meredith Regulating the communication of power to components of a fuel cell system
US20080257740A1 (en) * 2004-11-02 2008-10-23 Hy-Drive Technologies Ltd. Electrolysis Cell Electrolyte Pumping System
US20070151778A1 (en) * 2005-08-02 2007-07-05 Hy-Drive Technologies Ltd. Vehicle operation assembly

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100276296A1 (en) * 2008-11-17 2010-11-04 Etorus, Inc. Electrolytic hydrogen generating system
US20100276279A1 (en) * 2008-11-17 2010-11-04 Etorus, Inc. Electrolytic hydrogen generating system
US20100276295A1 (en) * 2008-11-17 2010-11-04 Etorus, Inc. Electrolytic hydrogen generating system
US20100314259A1 (en) * 2008-11-17 2010-12-16 Etorus, Inc. Electrolytic hydrogen generating system
US20220251720A1 (en) * 2019-01-22 2022-08-11 Glock Ökoenergie Gmbh Electrolytic cell
US11851779B2 (en) * 2019-01-22 2023-12-26 Glock Ökoenergie Gmbh Electrolytic cell
JP7506689B2 (en) 2019-05-01 2024-06-26 アクセリス テクノロジーズ, インコーポレイテッド High Power Wafer Cooling
US20210254227A1 (en) * 2020-02-14 2021-08-19 Hyundai Motor Company Water electrolysis system and control method thereof
US11746430B2 (en) * 2020-02-14 2023-09-05 Hyundai Motor Company Water electrolysis system and control method thereof

Also Published As

Publication number Publication date
WO2007085092A1 (en) 2007-08-02
CA2534168A1 (en) 2007-07-27
CA2670137A1 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
US20100025258A1 (en) Hydrogen generating apparatus with hydrogen concentration sensors
EP2776696B1 (en) Fuel supply system with leakage detection means
CN109860663A (en) A kind of hydrogen-feeding system at quick judgement hydrogen leak position
US20130073234A1 (en) Response to Low Voltage Electrolysis in a Battery Pack
EP2212957B1 (en) Racked power supply ventilation
JP2007231814A (en) Leak diagnosis device
CN113809360A (en) Hydrogen leakage detection method and system for hydrogen fuel cell system and rail transit vehicle
US8505368B2 (en) Fuel efficiency measuring system for fuel cell vehicle
KR20140083739A (en) Control method for hydrogen leak detecting system of fuel cell vehicle
CN110010810A (en) A kind of energy-storage battery cabinet with fire-fighting structure
KR20160034786A (en) Brown gas generator
CN110567657A (en) Hydrogen leakage monitoring method for hydrogen energy locomotive
KR101856824B1 (en) Remaining fuel level displaying method for fuel cell system and fuel cell equipped vehicle
KR20230088157A (en) Apparatus and method for sensing hydrogen leak of fuel cell vehicle
JP2015190348A (en) Fuel evaporation gas discharge restraining device
WO2013008294A1 (en) Airtightness error detection method for operating gas circulation-type gas engine, and operating gas circulation-type gas engine using said method
CN209929413U (en) Circulating system of hydrogen leak detection alarm for fuel cell
JP4642526B2 (en) Disaster prevention equipment
JP2003201921A (en) Gas fuel supplying device
CN110523025A (en) A kind of quick extinguishing cooling system for battery pack
EP2311755A1 (en) Salvaging device for dangerous chemical leak
US9194306B1 (en) Hazardous location diesel engine power unit with protected controls for automatic shutdown
US20120247522A1 (en) Decarbonization device
CN111156423B (en) Active safety protection system and method for hydrogen leakage
CN114420974A (en) External hydrogen supply system for fuel cell vehicle

Legal Events

Date Code Title Description
AS Assignment

Owner name: HY-DRIVE TECHNOLOGIES LTD.,CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LINDSAY, ANDREW HARLAND;REEL/FRAME:022701/0106

Effective date: 20070614

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION