US20100023080A1 - Implantable myocardial ischemia detection, indication and action technology - Google Patents
Implantable myocardial ischemia detection, indication and action technology Download PDFInfo
- Publication number
- US20100023080A1 US20100023080A1 US12/573,055 US57305509A US2010023080A1 US 20100023080 A1 US20100023080 A1 US 20100023080A1 US 57305509 A US57305509 A US 57305509A US 2010023080 A1 US2010023080 A1 US 2010023080A1
- Authority
- US
- United States
- Prior art keywords
- subject
- heart
- evidence
- pacemaker
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/38—Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
- A61N1/39—Heart defibrillators
- A61N1/3956—Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
- A61N1/3962—Implantable devices for applying electric shocks to the heart, e.g. for cardioversion in combination with another heart therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/28—Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
- A61B5/283—Invasive
- A61B5/287—Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4836—Diagnosis combined with treatment in closed-loop systems or methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/168—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
- A61M5/172—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
- A61M5/1723—Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/3627—Heart stimulators for treating a mechanical deficiency of the heart, e.g. congestive heart failure or cardiomyopathy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/37—Monitoring; Protecting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/726—Details of waveform analysis characterised by using transforms using Wavelet transforms
Definitions
- the present invention relates to methods and apparatus for detection and treatment of the disease process known as myocardial ischemia and/or infarction (MI/I).
- MI/I myocardial ischemia and/or infarction
- Ischemia occurs when the blood supply to the heart muscle is temporarily or permanently reduced, such as may result from the occlusion of a coronary artery. This occlusion may lead to local ischemia or infarction of the heart muscle. Ischemia may also occur over large sections of the heart muscle due to conditions such as cardiac arrest, heart failure, or a variety of arrhythmias.
- the ischemic event can be of the so called “silent type” described in medical literature (e.g. not manifesting itself in terms of symptoms experience by the patient or obvious external indications). The event can also be chronic with continuously evolving symptoms and severity due to underlying heart disease, or very abrupt and possibly even fatal due to infarction of large enough area of the heart to cause a large myocardial infarction.
- the ischemic event often causes the performance of the heart to be impaired and consequently manifests itself through changes in the electrical (e.g. the electrocardiogram signal), functional (e.g. pressure, flow, etc.) or metabolic (e.g. blood or tissue oxygen, pH, etc.) parameters of the cardiac function.
- electrical e.g. the electrocardiogram signal
- functional e.g. pressure, flow, etc.
- metabolic e.g. blood or tissue oxygen, pH, etc.
- the conventional approach to detection of MI/I is to analyze the electrocardiogram (ECG).
- ECG electrocardiogram
- An ischemic event results in changes in the electrophysiological properties of the heart muscle that eventually manifest themselves as changes in the ECG signal.
- the current state of the art is to record these ECG signals from the body surface using amplifiers and associated instrumentation.
- a standardized set of electrodes in an arrangement known as a 12-lead ECG has been developed.
- the conventional approach to the detection of ischemia and infarction relies on analysis and interpretation of characteristic features of the ECG signal such as the ST-segment, the T-wave or the Q-wave.
- Computer-based technology has been employed to monitor, display, and semi-automatically or automatically analyze the ischemic ECG changes described above.
- the present technology includes ECG machines used in doctor's office, portable ECG machines known has Holter recorders, bedside monitors with displays, and sophisticated computer-based system for automatic analysis of the ECG signals.
- thrombolytic therapy by external infusion of drugs such as TPA or streptokinase
- opening of the blocked vessels using a variety of angioplasty catheter devices.
- an external defibrillator may be used to shock the heart and restore the cardiac rhythm.
- Implantable therapeutic devices for treating electrical conduction disturbances or arrhythmias of the heart.
- These devices include implantable pacemakers, cardioverters and atrial and ventricular defibrillators, drug infusion pumps as well as cardiac assist devices.
- the implantable devices typically use intracavitary leads to sense the electrogram (EGM) and then provide electrical therapy (pacing or defibrillation) or mechanical therapy (pumping blood).
- EGM electrogram
- These devices sense the EGM and then utilize the features, such as improper conduction (in case of a pacemaker) or a fatal rhythm (in case of a defibrillator), or simply timing (to coordinate mechanical pumping).
- these devices do not specialize in the task of detecting, alerting the patient or treating ischemic heart disease.
- Ischemia detection and analyses are usually done manually by the expert cardiologist or by computers employing algorithms to detect ischemia-related changes in the ECG signals.
- the preferred features of the ischemia detecting computer algorithms are the ST-segment and the T-wave. These features show elevation, depression or inversion of these ECG signals associated with ischemia.
- the computer then carries out a careful measurement of the degree of elevation/depression in a specific lead. By identifying ischemia dependent changes from specific leads, the ischemic event is attributed to a specific region of the heart.
- the current approach to diagnosis is that after an ischemic event is perceived by the patient, they contact medical personnel such as the “911” system or their personal physician.
- the patient is often monitored using a short recording of the ECG signal which may be interpreted by a physician.
- the high risk patient may be continuously monitored at the bedside in a cardiac intensive care unit.
- Therapy may include using drugs such as TPA, use of catheters for angioplasty (opening the blocked coronary vessel using a balloon or laser), or providing life support back up such as defibrillation.
- cardiovascular medical monitoring technology and medical practice have several significant drawbacks in regard to the detection and treatment of coronary ischemia which can result in severe consequences to the patient up to and including death. They include the following:
- Certain embodiments of the present invention relate to methods and devices for detection of myocardial ischemia and/or infarction (MI/I).
- Preferred embodiments relate to electrodes and sensors, devices and methods for interpreting ischemic conditions, devices and methods for initiating the procedure to alert the patient and/or the care-giver, and devices and methods for connecting with a device that provides therapy.
- MI/I may be detected using implantable devices and methods according to certain embodiments of the present invention.
- Embodiments may include a stand alone device or a modification of another implantable device such as a pacemaker, cardioverter, defibrillator, drug delivery pump or an assist device.
- Embodiments may use a variety of in vivo sensors located inside the human torso and/or inside the heart.
- the sensor device preferably includes electrodes that are indwelling in the heart, on or in the vicinity of the heart, under the skin, under the musculature, implanted in the thoracic or abdominal cavity.
- the sensor device also includes strategic placement of the electrodes to capture the EGM signal from various positions and orientations with respect to the heart.
- the sensor device also preferably includes other hemodynamic or mechanical sensors that are sensitive to the condition of the heart in MI/I.
- MI/I may be recognized using analysis of the features of the signal, namely the EGM, recorded by the electrodes and sensors.
- the features of the EGM signal namely, depolarization and repolarization
- morphology e.g., morphology
- analytical information e.g., the spectrum, wavelet transform, time-frequency distribution and others.
- the hemodynamic namely, blood pO2, pH, conductance, etc.
- mechanical parameters blood pressure, blood flow, etc.
- Embodiments may detect this MI/I event and alert the patient using a variety of methods, including but not limited to vibration, electrical stimulation, auditory feedback, and telemetry.
- the device to alert the patient may in certain embodiments be incorporated within the instrument itself.
- the patient may be alerted by direct communication via electrical, sound, vibration or other means or indirect communication to an external device in an electromagnetic link with the implanted device.
- the device may also institute therapy, such as infusion of a thrombolytic agent or delivering life saving shock in case of an arrest, semi-automatically or automatically.
- the therapy giving device may be integrated with the MI/I detection, MI/I analysis, and/or patient alerting device into an integrated or separate stand alone system.
- Embodiments of the invention may be used to detect MI/I from inside the body as compared with the traditional approach of detection by placing electrodes on the outer body surface of the torso. This is made feasible in certain embodiments by using the MI/I detection technology in an implantable device.
- Embodiments utilize sensors, such as electrodes and leads, that record the EGM signal from inside the chest in the vicinity of the heart and/or from electrodes placed on the heart, and/or using catheters or leads placed inside the cavities (atria and ventricles).
- Embodiments may include built-in interfaces to electrodes, namely circuits for amplification and filtering of the signals, and the circuit for digitization (analog-to-digital conversion) and processing (microprocessor).
- Embodiments of the implantable device using its microprocessor, analyze the features of the EGM signal from these leads to detect an ischemic event.
- Embodiments also relate to the design, construction and placement of electrode sensors.
- Embodiments may include an electrode lead with multiple sensors capable of recording EGM from multiple, strategic locations in the chest or in and around the heart.
- This embodiment also includes utilization of the body of the instrument and single or multiple leads.
- Embodiments also relate to detection of the ischemic event including identifying particular features of the EGM signal. These features include depolarization (i.e. initial excitation of the heart when a beat is initiated, coincident with the body surface QRS complex) and repolarization (i.e. the subsequent repolarization of the heart coincident with the body surface ST-segment and T-wave).
- MI/I results in alteration in depolarization and repolarization waves in selected regions of the heart, for the case of focal ischemia, or the entire heart, for the case of global ischemia. These changes alter the action potential (of heart cells) as well as the conduction pattern (in selected regions or the whole heart).
- the alterations in action potential shape and conduction change together alter both the depolarization features as well as the repolarization features). Depending on where an electrode is placed, these features may be seen in different recordings.
- the electrodes pick up the local signal (from the heart muscle in its vicinity) as well as the distal signal (distal muscle areas as well as the whole heart).
- the characteristics of this signal are identified in the form of shape changes, and these shape changes can be identified in a variety of ways, including temporal, spectral, and combined approaches.
- the MI/I detection technology may also utilize non-electrical measures, including hemodynamic and mechanical parameters.
- An MI/I event may result in a degree of deprivation of oxygen to the heart muscle. This in turn may result in a decreased ability to perfuse the heart muscle as well as the body. This may result in a cyclical reduction in the mechanical performance in terms of contractility and pumping action of the heart.
- Sensors placed inside the blood stream pick up the changes in blood oxygen, pH, conductance, etc. resulting from the MI/I event.
- the MI/I event would lead to small changes in case of mild ischemia or infarct or significant changes in case of global ischemia or cardiac arrest.
- the sensors are usually placed inside a catheter or a lead, although some times in the body of the instrument, and then measurements may be made via the electronic circuit interfaces inside the implantable device.
- the mechanical function of the heart may be detected utilizing sensors and leads, including those for pressure, volume, movement, contractility, and flow.
- Embodiments also relate to methods and devices for signaling the host patient or others (such as medical personnel) to the incidence of MI/I.
- MI/I When MI/I is detected, it is imperative to take therapeutic actions rapidly and even immediately. Thus, the patient needs to be informed and the caregiver physician needs to be informed.
- Embodiments of the invention include devices and methods for communication between the implantable device and the host/physician. One of these approaches is to use radio-frequency or radiotelemetry, while another is to communicate through electrical stimulation. Other approaches, including sound, and magnetic fields are also devised.
- Embodiments may also utilize long distance, remote and wireless means of communication using telephone, telemetry, Internet and other communication schemes.
- Embodiments may also include the code of communication by which the information pertinent to MI/I is presented in detail.
- This code may be either analog or digital, relayed via the communication link, and then decoded by the receiving instrument or individual.
- the code primarily signals to the host patient, or the external device attached to the patient, or directly to the medical caregiver, the condition of MI/I.
- the code may include information about EGM, the MI/I condition, and other related diagnostic information.
- the code may also include recommendation and instructions to provide an immediate therapy to the patient to treat MI/I.
- Another aspect of certain embodiments of the invention includes coupling of the MI/I detection technology to a variety of therapeutic devices.
- the implantable MI/I detection technology makes it feasible to rapidly initiate therapy through direct access to the body, circulatory system or the heart.
- drug such as Streptokinase or TPA
- Other drugs may also be infused immediately or subsequently on a steady state basis.
- it is desirable to carry out procedures such as angioplasty.
- means to treat the arrhythmias to resuscitate the heart are disclosed. These may include use of electrical pacing, cardioversion and/or defibrillation.
- assist the heart In case the MI/I event leads to a failure of the heart, means to assist the heart are disclosed. These assistive devices include left or right ventricular assistive device and artificial heart pump. Embodiments may declare interface of the implantable myocardial ischemia detection technology to these therapeutic approaches and the use of these therapies upon discovery of MI/I by the implanted devices.
- the implantable device may include a hermetically sealed can, electronics, analog and digital logic, microprocessor, power source, leads and sensors, circuits and devices to alert the patient, communication link and interface to the external diagnostic and therapeutic means.
- Embodiments also include modification of implantable arrhythmia detection devices, pacemakers, defibrillators, infusion pumps, or assist devices to have the novel features described above.
- the technology used in embodiments of the present invention can be partially or fully integrated into these instruments.
- Embodiments further include hardware, software or firmware modification of the aforementioned devices to have MI/I detection, alerting and therapy initiating features.
- FIG. 1 illustrates a schematic illustration of the torso and heart which also includes the implantable device, its sensing lead, an alarm means, a therapy device, and a communication means to an external device according to an embodiment of the present invention.
- FIG. 2 illustrates a preferred embodiment including an implanted device such as a pacemaker with a full 12-lead electrocardiographic configuration (L, R, F and V 1 through V 6 , and ground reference) using an implantable intra-cavitary and intrathoracic lead; (b) illustrates a second preferred embodiment using an implanted device and a single suitably positioned intrathoracic lead with multiple sensors in the chest and the ventricular cavity of the heart; and (c) illustrates a third preferred embodiment with a suitably placed device with multiple electrical contact sensors on the implanted device can and a suitably threaded lead through the thoracic, abdominal and the ventricular cavity along with the sensor means.
- an implanted device such as a pacemaker with a full 12-lead electrocardiographic configuration (L, R, F and V 1 through V 6 , and ground reference) using an implantable intra-cavitary and intrathoracic lead
- (b) illustrates a second preferred embodiment using an implanted device and a single suitably positioned intrathoracic lead
- FIG. 3 illustrates a preferred embodiment, such as a cardioverter-defibrillator with suitable sensing or shocking lead with sensor means indwelling the heart and ventricular cavity and a series of sensors on the shocking lead on the epicardium or the thoracic, abdominal and ventricular cavity.
- FIG. 4 illustrates three of the many placements and shapes of the implanted device inside the thoracic or abdominal cavity, and the sensor means on each can of the implanted device with each sensor insulated from the can (see the inset), according to embodiments of the present invention.
- FIG. 5 illustrates three preferred embodiments with suitable implanted device in the thoracic cavity, placement of different electrode leads and sensors and their different configurations with respect to the heart.
- the sensor configuration includes leads with (a) unipolar, (b) bipolar sensing and (c) physiologic sensor means inside the ventricular cavity of the heart.
- FIG. 6 illustrates the (a) electronics and microprocessor system used in the implantable myocardial ischemia detection device, and (b) the circuit diagram for amplification and filtering of the EGM signal, according to embodiments of the present invention.
- FIG. 7 illustrates (a) the depolarization and repolarization signals of the electrocardiogram, the action potential, normal and ischemic EGM, the pressure signals, and time-frequency response characteristics of the EGM; and (b & c) the electrical activation pattern on the heart as visualized by isochronal conduction distribution in (b) normally conducting zones and (c) ischemic zones.
- FIG. 8 ( a ) illustrates various communication links between the implantable device and the external monitoring devices, including alerting the subject with the aide of a loud speaker, vibrator or electrical stimulation, communication to and external device via RF communication, audio communication, and magnetic field modulation according to embodiments of the present invention.
- FIG. 8 ( b ) illustrates the implantable MI/I detection technology piggy-backed or incorporated as a part of a modified implantable pacemaker or a cardioverter-defibrillator according to embodiments of the present invention.
- Certain embodiments of the invention pertain to methods and devices for detecting ischemia or infarction, diagnosing, alerting the patient and/or treating the ischemic heart disease.
- Embodiments include methods and devices to detect and treat MI/I.
- One embodiment of a method includes: i) placement/implantation of the device inside the chest or other body cavity, ii) placement and implantation of electrodes and sensors to selected areas of the myocardium, iii) connection of one or more of the electrodes and sensors to the implanted device, iv) detection of an ischemic event by the analysis of the EGM signal and sensor data, v) the method of analysis of the EGM signal using signal processing means in time and frequency domain, vi) communicating the stored EGM signals to an external device using telecommunication means, vii) alerting the patient of the event, vi) communication with the medical attendant using telecommunication means, and vii) initiating or implementing medical therapy for MI/I.
- Embodiments may include some or all of the above elements, which are described in more detail below.
- FIG. 1 One preferred embodiment is illustrated in FIG. 1 . It includes a plurality of devices ( 101 ) and sensors ( 102 ) that are implanted in the human body ( 103 ).
- this implementation may include one or more of the following steps: i) a device that would reside inside the body ( 103 ) and alert the patient ( 106 ) or the medical attendant of an impending or ongoing ischemic event and undertake therapeutic action, ii) one or more implanted sensors ( 102 ) positioned in selected areas of the heart ( 104 ), such as a ventricular cavity ( 105 ), and connected to the aforementioned device, iii) detecting an ischemic event, iv) alerting the patient of the event as depicted in ( 106 ), v) communication, as depicted in ( 107 ) with a device external to the body ( 108 ) or a medical attendant, vi) administration of medical therapy via an intracavitary pacing electrode ( 109 ), infusion of drug through the
- FIG. 2 ( a ) Another preferred embodiment of the device and its method of use is illustrated by FIG. 2 ( a ).
- the device ( 101 ) is implanted in the thoracic cavity under the skin or muscle in the vicinity of the heart ( 104 ).
- the sensing may be accomplished by a detailed electrocardiographic system that provides a device for biopotential recording from locations around the heart that result in a more complete assessment of the ischemic regions of the heart.
- the leads are positioned in one or more configurations within the chest to form an internal Einthoven's triangle (an external Einthoven's triangle is a concept known in the art). This configuration provides the advantage of enhanced signal sensitivity for discrete selectable areas of the myocardium and allows for easy determination of particular cardiac vectors.
- the resultant 12-lead electrocardiographic system is employed by those skilled in the art on (not internal to) the chest to provide projection of the cardiac dipole at various electric field orientations.
- a cardiologist or a computer program is then employed to determine the site and degree of MI/I by interpretation of the electrocardiogram.
- an intra-thoracic lead system is designed to record the EGM activity using a plurality of sensors situated to record projections of the cardiac dipole from inside the body in a manner analogous to the Einthoven's triangle and a 12-lead recording system from outside the chest.
- a lead ( 201 ) system comprises a biocompatible insulated carrier device with a plurality of electrically conducting metallic sensors that conduct the EGM signal from in or around the chest to the circuitry within the implanted device.
- the lead depicted in FIG. 2 carries three sensors ( 202 , 203 , 204 ) corresponding respectively to the left arm (L), the right arm (R) and the foot (F) projections of the 12-lead system.
- a Wilson's central terminal a central terminal derived through a resistive network, is provided to derive the leads I, II, III and the three augmented leads (external, but not internal, Wilson's central terminal and leads are concepts known to the art).
- the lead is attached to the body of the implanted, hermetically sealed device ( 101 ) via a connector ( 205 ) that provides a feed-through interface to the circuitry within.
- Another lead ( 206 ) carries additional sensors ( 207 through 212 ) corresponding respectively to the V 1 through V 6 projections of the 12-lead electrocardiographic system.
- the body of the device or a conducting sensor incorporated there in provides the ground or the circuit common reference G ( 213 ).
- the sensor signals are electrically connected via the lead to the circuitry within the implanted device.
- the EGM signals recorded from this lead system is analyzed for the features of MI/I.
- FIG. 2.2 ( b ) Another preferred embodiment shown in FIG. 2.2 ( b ) comprises an implanted device ( 221 ) in the abdominal or lower thoracic cavity ( 220 ) with a preferred lead system ( 222 ) with a plurality of sensors.
- the lead system ( 222 ) makes a connection through a feed-through connector ( 223 ) to the circuitry of the implanted device ( 221 ).
- the lead ( 222 ) is suitably implanted within the thoracic cavity and in and around the heart ( 105 ) to place the sensors at locations that allow recordings analogous to the aforementioned 12-lead electrocardiographic system.
- the design involves the placement of the conducting sensors so that their placement inside the thoracic areas of the body ( 103 ) and in and around the heart ( 104 , 105 ) preferably corresponds to the 12-lead electrocardiographic system.
- the sensors V 1 through V 6 and L, R, and F ( 224 ) along with the ground reference G on the body of the device ( 225 ) represents all the electrodes needed to reconstruct the full electrocardiographic system, comprising leads I, II, III, augmented leads, and chest leads, suitable for implantable technology.
- the EGM signals from this lead system ( 222 ) may then be analyzed for the indications of MI/I.
- FIG. 2 ( c ) Another embodiment is depicted in FIG. 2 ( c ).
- An implanted device ( 230 ) is located in the lower thoracic or abdominal cavity and a lead ( 231 ) with sensors therein is threaded through the intra-thoracic areas of the body ( 103 ) and in and around the heart ( 104 , 105 ).
- the lead carries the sensors L, R and F, while the body of the implanted device carries the sensors V 1 through V 6 , wherein the sensor array shown as ( 232 ).
- the body of the device ( 230 ) carries the ground or the circuit common G, while the conductive sensor elements shown as the open circles are insulated from the body of the device as shown by the dark rings around the circular sensor body ( 233 ).
- This lead system suitably captures the EGM signals from the various regions of the body which are then electrically conducted by the lead ( 231 ) to the implanted device ( 230 ).
- FIG. 3 Still another embodiment is illustrated in FIG. 3 .
- An implanted device ( 101 ) placed inside the body ( 103 ), utilizes a plurality of leads ( 301 ) and ( 306 ) and sensors therein.
- the lead ( 301 ) carries with it the sensors L, R and F for EGM sensing within and around the heart ( 104 , 105 ).
- the lead 301 also carries plurality of sensors ( 302 ) for mechanical or hemodynamic information from within the ventricular cavity ( 105 ).
- the lead ( 306 ) connects sensor element ( 307 ) carrying plurality of sensor V 1 through V 6 ( 308 ).
- the body of the device ( 101 ) carries the ground reference G.
- an implanted device is placed inside the chest in the proximity to the heart.
- the device is shaped in a manner so that it can carry on its case one or more leads (electrodes and their combination) suitable for recording multiple EGM signals.
- leads electrodes and their combination
- FIG. 4 shows the thoracic part of the body ( 103 ), the heart ( 104 ), and three of the suggested locations and shapes of the device ( 401 , 402 , 403 ), each one of these locations and electrode placements is to be used independently and exclusively. These locations allow preferred orientation of the electrodes and leads for detection of EGM signal.
- location ( 401 ) with three electrodes ( 405 , 406 , 407 ) give preferred orientation of the ECG in conventional left arm and lead I between ( 405 , 406 ) signal from the cardiac dipole.
- the three sensors also give other projections from the heart when taken in pairs ( 406 , 407 ) and ( 405 , 407 ).
- the body of the can or an additional metal sensor insulated from the can is used as a ground reference.
- the signals from the sensors ( 405 , 406 , 407 ) may be summed using resistive network, known, in external devices but not implanted devices, as Wilson's central terminal, to provide a common or reference signal.
- the location ( 403 ) analogously has 3 electrodes ( 408 , 409 , 410 ) which give the conventional right arm and lead I between ( 408 , 409 ) signal, and other differential pairs II and III between ( 409 , 410 ) and ( 408 , 410 ).
- the location ( 403 ) has sensors V 1 through V 6 ( 411 ) giving 6 chest lead signals. In all these designs and placements the sensors are mounted on the encasement of the device known as the can and hence do not require separate leads or wires going out from the can via the feed-through to the heart or to the body.
- the can and the associated sensors can be entirely hermetically sealed and contained in a single case.
- the can may be made of a biocompatible material including, but not limited to stainless steel, titanium or a biocompatible engineered polymer such as polysulfone or polycarbonate and the like.
- the inset in FIG. 4 shows the electrical sensor element ( 406 ) surrounded by insulating ring ( 407 ) mounted on the can ( 403 ).
- the conducting sensor element provides electrical connection to the circuitry inside the can of the implanted device.
- the electrical sensor or the body of the implanted device serves as the ground or the circuit common reference. While three preferred embodiments are illustrated, the exact location of the implanted device and the electrical sensor elements can be varied to provide sensing and the lead oriented to improve the sensitivity to detection of the MI/I from a particular region of the heart.
- a can at location ( 401 ) would pick up left and superior infarcts
- a can at location ( 402 ) would pick up right and superior infarct
- a can at location ( 403 ) would pick up left or right inferior infarcts.
- the container or can may be eliminated or integrated into one of the other components.
- an intracavitary indwelling lead system is used to sense the EGM signals.
- the implanted device ( 101 ) encases in the can the electronics while the body of the can serves as the ground or the reference G or otherwise a sensor on the lead serves as the ground or the reference ( 501 ).
- the intracavitary lead consists of a lead ( 502 ) going from the device ( 101 ) into the right ventricular cavity via the venous blood vessel by the methods well known in the art.
- the lead ( 502 ) may be preferentially threaded through the right or the left subclavian veins.
- the lead ( 502 ) may also be threaded through inferior vena cava or IVC.
- the lead ( 502 ) is placed in the atrial or the ventricular cavity or both.
- the lead ( 502 ) also may lodge in the SVC and through the septal region in the left ventricular cavity.
- the lead ( 502 ) may be placed in the left ventricle via the arterial vessel.
- the lead made of biocompatible material including, but not limited to polyurethane or silicon carries within it the metallic coil or wire for proper insertion of the lead ( 502 ).
- the lead ( 502 ) carries at its tip the pacing electrode ( 503 ) by which electrical stimulation is delivered to the heart muscle.
- the pacing electrode ( 503 ) may also be in contacting with atrial muscle or other suitable pacing regions on the heart surface.
- the sensing and the pacing electrodes may be designed into a single lead body or separate lead bodies.
- the atrial and ventricular chambers of the heart may be sensed and paced separately or jointly.
- the external body of the lead also carries the conducting sensor element such as ( 504 ) to contact and capture electrical signal from the cavity of the heart ( 105 ).
- a plurality of electrically conducting contact points ( 505 ) on the lead serve as sensor elements.
- these sensor elements ( 504 ) span the atrium to the ventricle, typically on the right side of the heart, these sensor elements ( 504 ) capture the EGM signal associated with that part of the heart.
- the sensor elements are arranged in the unipolar configuration wherein the sensor elements are well separated from one another, each capable of capturing electrical signal with respect to the ground reference G on the body of the can or electrode ( 501 ).
- the sensor elements are arranged in a bipolar configuration wherein pairs of sensor elements ( 506 , 507 ) are closely spaced.
- a plurality of sensor element pairs ( 508 ) are arranged in the region spanning the atrium, ventricle or both.
- the sensor element can be at or close the tip of the catheter ( 510 ) and may include one or more of many hemodynamic sensors (e.g. pressure, pO2, pH, temperature, conductivity, etc.) or mechanical sensors (strain gauge, accelerometer, etc.).
- hemodynamic sensors e.g. pressure, pO2, pH, temperature, conductivity, etc.
- mechanical sensors strain gauge, accelerometer, etc.
- the implanted device consists of a casing or a can made of biocompatible and hermetically sealed case consistent with long term implantation in the hostile environment of the body (with its warm temperature, humidity, blood, etc.).
- the can is shaped in a variety of forms illustrated in FIG. 2 and FIG. 3 .
- the circuitry associated with the sensor is housed inside this can and may be driven by battery power, typically one of the many contemporary pacemaker/defibrillator batteries using lithium or lithium ion or polymer battery technology well known in the art.
- the internal circuitry may utilize ultra-low power analog and digital circuit components built from miniaturized packages and running off the battery power supply.
- FIG. 1 One overall schematic design is illustrated in FIG.
- the input protection stage ( 601 ) which serves to protect the amplifier from possible shock hazards.
- This front-end should also meet electrical safety and leakage specifications conforming to safety standards as set by AAMI, American Heart Association and other standard setting bodies.
- This stage is followed by the amplifier ( 602 ) and followed by electrical isolation circuitry ( 603 ), if necessary. Isolation can be electrical or optical.
- the isolation circuit is followed by the output stage ( 604 ) which feeds all the analog signals from multiple channels into a multiplexer, MUX ( 605 ).
- the multiplexed signal is digitized using an A/D converter (analog to digital converter) ( 606 ) and then fed into a microprocessor ( 607 ).
- the principal circuit component is the EGM amplifier, which is designed using operational amplifiers as illustrated in FIG. 6 ( b ).
- the amplifier circuitry consists of protection ( 610 ) and filtering ( 611 ) components (including diodes, capacitors and inductive chokes), operational amplifier based instrumentation amplifier ( 612 ), and active circuit filters for band-pass filtering ( 613 ).
- the hardware implementation may use a low power, low voltage microprocessor or a custom-designed ASIC or a fully custom VLSI circuit.
- the hardware would be contained, or otherwise piggy-backed onto an implantable pacemaker or cardioverter-defibrillator.
- the ischemia detection technology would use information derived from the existing leads of the implanted pacemaker or defibrillator.
- the detection software would be embedded in the RAM or the ROM and executed by the microprocessor of the implanted pacemaker or cardioverter-defibrillator.
- the sensors of the implanted device are preferably configured to capture the EGM signal and other physiologic data. From these signals and data, algorithms implemented by the microprocessor and its software identify the ischemic event.
- Embodiments utilize the EGM signals from inside the body using a plurality of sensors placed inside the thorax and in and around the heart. The sensors preferably seek to mimic the internal or implanted form of the Einthoven triangle and the 12 lead electrocardiographic system. The complete 12 lead system may not always be used and the MI/I event can be captured from only a limited set of leads and electrodes. The complete or partial set of these sensors, so arranged, provide a projected view of the heart's dipole at various sensor locations.
- ECG signal ( 701 ) is accompanied by the action potential signal ( 702 ), the EGM signal ( 703 ) and the pressure signal ( 704 ). Under MI/I conditions, these respective signals may be modified as shown in ( 705 , 706 , 707 and 708 ). Note the appearance of notches in the QRS complex and depression of the ST-segment ( 705 and 710 ).
- the action potential ( 706 ) shows change in upstroke ( 713 ), duration and shape ( 714 ). Consequently, the EGM signal shows fractionation and multiple depolarization and changed shape ( 707 ). The ventricular pressure signal shows a reduction in magnitude as well as shape change ( 708 ).
- the ischemic conditions are some times localized to parts of the heart (focal ischemia or infarct) and at other times throughout the heart (global). Ischemia results in slowed conduction and possible fractionation of the conduction patterns.
- FIGS. 7 ( b ) and 7 ( c ) illustrate the conduction on the heart ( 750 ), with FIG.
- FIG. 7 ( b ) illustrating the conduction in normal conditions, with traces ( 752 ) showing isochronal lines t 1 through t 6 (places receiving simultaneous activation).
- An infarcted is indicated as a region 751 on the heart with no isochronal lines, and consequently it is a region which alters the conduction pattern. Therefore, under ischemic conditions, as illustrated in FIG. 7 ( c ), the conduction pattern ( 752 ) is altered as indicated by the isochrones t 1 through t 10 .
- the isochrones show different pathways, indicating dispersion and fractionation of conduction. This dispersion and fractionation of conduction produces the EGM signal depicted for ischemic hearts ( 707 ) and its features thereof ( 716 ).
- FIG. 7 ( a ) graphically illustrates the EGM signal for a healthy heart ( 703 ) with a relatively large major peak and related inflection and transition points corresponding to depolarization and repolorization events occurring during the cardiac cycle ( 702 ).
- the ischemic signal shown in ( 707 ) shows significantly more peaks and has unusual transitional points ( 716 ). This phenomenon is known as fragmentation and is readily distinguishable.
- An alternate approach is to detect ischemia in the frequency domain.
- FIG. 7 also illustrates the time-frequency analysis of the EGM signal.
- the EGM signal is analyzed through Fourier analysis which is well known in the art and its frequency components are thus obtained. Since the EGM signal is time-varying, time-frequency analysis is more suitable so as to obtain instantaneous frequencies at different times in the cardiac cycle. Magnitude of signal power, indicated by horizontal lines at various frequencies ( 717 ) and plotted versus time ( 718 ) is calculated. In this case, the ischemic EGM time-frequency distribution ( 719 ) is distinguished from the time-frequency distribution of the healthy EGM waveform ( 720 ) by a broader range of frequencies at one or more depolarization, repolarization and fractionation event locations.
- FIG. 7 ( a ) shows the cavitary pressure signal in normal ( 704 ) and ischemic ( 707 ) hearts. Analogously, a cavitary probe measuring conductance can obtain an estimate of the ventricular volume by methods well known in the art.
- the magnitude and morphology of the conductance signal is also indicative of MI/I.
- ventricular volume signal assessed by the aforementioned conductance method also identifies local changes in the conductance and proportionately the volume in the region of the ventricular cavity. Therefore, a comparison of such signals placed in different positions in the heart (e.g. 505 , 508 , 509 ), allows estimation of ventricular volumes at different points in the cardiac cycle and at different locations in heart.
- Information from the EGM signals (electrical conduction) and hemodynamic/mechanical signals may be used separately or combined by one or more algorithms, programmable devices or modified pacemaker, cardioverter, defibrillator systems seeking to detect an ischemic event.
- Ischemic diagnostic function may be further enhanced by combining analysis of ECG and hemodymanic data with metabolic/chemical data (e.g. PO2, CO2, pH, CK (creatine kinase)) collected using in dwelling sensors which may be chemical FETs, optical fibers or otherwise polarimetric or optical based, and the like, all well known in the art.
- metabolic/chemical data e.g. PO2, CO2, pH, CK (creatine kinase)
- ischemia detection sensors In another embodiment of the ischemia detection sensors, a use is made of the multiple sensors spanning the lead in the ventricular cavity.
- the sensors ( 505 or 508 or 509 ) in FIG. 5 capture the changes in the EGM signals in their vicinity. An analysis of the relative morphologies would help identify the ischemia in the vicinity of the electrode.
- the electrode sensors record the EGM signals whose morphology or frequency characteristics in normal or MI/I conditions is similarly analyzed by the methods illustrated in FIG. 7 ( a ).
- the EGM signal recorded and analyzed results from spontaneous heart beats or from paced beats. Spontaneous heart beats are produced by the heart's own natural rhythm. Paced beats are produced by a pacing electrode usually at the tip of the lead placed in the atrial or the ventricular cavity.
- the morphology and the frequency characteristics of the paced beats are analyzed for MI/I condition.
- FIG. 1 provided a scheme for the communication between the implanted device ( 101 ) and the subject ( 103 ) or the external device ( 108 ).
- FIG. 8 illustrates an implanted device ( 801 ) comprising its amplifier and data-acquisition system ( 802 ) and microprocessor ( 803 ) communicates data and message to the subject or the external device via a D/A converter ( 804 ), a parallel port ( 805 ), a serial port ( 806 or 807 ).
- the D/A converter is connected to an amplifier ( 808 ) which drives a loud speaker, buzzer or a vibrator ( 811 ).
- the external device may receive this information via a microphone ( 815 ).
- the subject may preferably receive the alert message via audio or vibratory signal ( 811 ).
- the subject may receive the indication of an MI/I via an electrical stimulus feedback delivered via a voltage to current converter, V-I ( 829 ) delivered to the case of the implanted device or to a stimulating lead.
- the serial port communicates the electrical signals via a modem ( 809 ), and a transmitter ( 812 ) to an antenna ( 815 ) for radio frequency or audio telemetry to the external device.
- the external device receives the radio telemetry communication via an antenna ( 816 ) and a receiver ( 817 ) and subsequently conveys these data to a computer connected to the receiver.
- the implanted device may use a serial port ( 807 ), connected to a modem ( 810 ) and a transmitting coil capable of generating and receiving magnetic fields ( 818 ).
- a message pertaining to the MI/I event or digitized data from the microprocessor ( 803 ) are relayed to the external device.
- An external coil capable of generating or receiving magnetic field communicates the message to and from the implanted device ( 819 ) via magnetic induction.
- the magnetic field fluctuations are processed and a message or data stream may be communicated to a computer connected to the external device.
- a computer connected to the external device may be operated/worn by the physician or the patient.
- Other communication technologies well known in the art may also be utilized.
- the implanted and the external device engage in a unidirectional (sending the MI/I alert or sending actual digital or analog data over the link) or bidirectional (external device sending commands, internal sending the data, for example).
- Certain embodiments also include devices and methods for taking a therapeutic action.
- the therapeutic action is possible because implanted device provides an early indication of an event of MI/I. Therefore, there may be adequate time for this system to perform therapeutic actions to prevent or minimize the development of an infarction.
- therapeutic actions may comprise: infusion of thrombolytic agents such as TPA and streptokinase or anticoagulant agents such as heparin. Since it is known that there is treatment window of several hours after infarction which can prevent more serious medical complications, a timely bolus or steady release of these medicines may prevent or otherwise ameliorate the conditions that may be precipitating the MI/I.
- FIG. 8 ( b ) illustrates the schema in which the implanted device ( 801 ) equipped with a lead ( 833 ) connected to a sensing means ( 831 ) initiates the action of transmitting a message via a transmitter ( 832 ) in a manner described previously. It also initiates infusion of any of the aforementioned drugs via an infusion line or a catheter ( 835 ).
- the drug may be in the catheter tip itself embedded in a slow release polymeric matrix whose release is actuated by the implanted device. Alternately, the drug may be in the device itself and released via infusion tubing ( 835 ).
- the acute MI/I may precipitate a life-threatening arrhythmia.
- the implanted device may initiate electrical rescue therapy, such as pacing, cardioversion or defibrillation.
- An electrical shock may be given via two leads, which may be a combination of the can of the implanted device ( 801 ) and an intracavitary lead ( 833 ) or a combination of subcutaneous or an epicardial or intrathoracic lead ( 834 ) and an intracavitary lead.
- the implanted device would initiate the therapeutic procedures semi-automatically by first alerting the patient or automatically via infusion of a drug or delivery of electrical rescue shock.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Physiology (AREA)
- Hospice & Palliative Care (AREA)
- Anesthesiology (AREA)
- Vascular Medicine (AREA)
- Diabetes (AREA)
- Hematology (AREA)
- Electrotherapy Devices (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Alarm Systems (AREA)
Abstract
One embodiment enables detection of MI/I and emerging infarction in an implantable system. A plurality of devices may be used to gather and interpret data from within the heart, from the heart surface, and/or from the thoracic cavity. The apparatus may further alert the patient and/or communicate the condition to an external device or medical caregiver. Additionally, the implanted apparatus may initiate therapy of MI/I and emerging infarction.
Description
- This application is a continuation of U.S. application Ser. No. 11/765,444, filed Jun. 19, 2007, which is a continuation of U.S. Pat. No. 7,277,745, filed Sep. 15, 2002, which is a divisional of U.S. Pat. No. 6,501,983, filed Aug. 6, 1999, which claims priority in Provisional Application No. 60/095,635, filed Aug. 7, 1998. U.S. application Ser. No. 11/765,444 is hereby incorporated by reference in its entirety. U.S. Pat. No. 7,277,745 is hereby incorporated by reference in its entirety. U.S. Pat. No. 6,501,983 is hereby incorporated by reference in its entirety. Provisional Application No. 60/095,635 is hereby incorporated by reference in its entirety.
- The present invention relates to methods and apparatus for detection and treatment of the disease process known as myocardial ischemia and/or infarction (MI/I).
- Ischemia occurs when the blood supply to the heart muscle is temporarily or permanently reduced, such as may result from the occlusion of a coronary artery. This occlusion may lead to local ischemia or infarction of the heart muscle. Ischemia may also occur over large sections of the heart muscle due to conditions such as cardiac arrest, heart failure, or a variety of arrhythmias. The ischemic event can be of the so called “silent type” described in medical literature (e.g. not manifesting itself in terms of symptoms experience by the patient or obvious external indications). The event can also be chronic with continuously evolving symptoms and severity due to underlying heart disease, or very abrupt and possibly even fatal due to infarction of large enough area of the heart to cause a large myocardial infarction.
- The ischemic event often causes the performance of the heart to be impaired and consequently manifests itself through changes in the electrical (e.g. the electrocardiogram signal), functional (e.g. pressure, flow, etc.) or metabolic (e.g. blood or tissue oxygen, pH, etc.) parameters of the cardiac function.
- The conventional approach to detection of MI/I is to analyze the electrocardiogram (ECG). An ischemic event results in changes in the electrophysiological properties of the heart muscle that eventually manifest themselves as changes in the ECG signal. The current state of the art is to record these ECG signals from the body surface using amplifiers and associated instrumentation. A standardized set of electrodes in an arrangement known as a 12-lead ECG has been developed. The conventional approach to the detection of ischemia and infarction relies on analysis and interpretation of characteristic features of the ECG signal such as the ST-segment, the T-wave or the Q-wave. Computer-based technology has been employed to monitor, display, and semi-automatically or automatically analyze the ischemic ECG changes described above. The present technology includes ECG machines used in doctor's office, portable ECG machines known has Holter recorders, bedside monitors with displays, and sophisticated computer-based system for automatic analysis of the ECG signals.
- Technology exists for providing therapy once ischemia is detected. The most common approach involves thrombolytic therapy (by external infusion of drugs such as TPA or streptokinase) or opening of the blocked vessels using a variety of angioplasty catheter devices. In the event that ischemic condition results in malignant arrhythmia or arrest of the heart, an external defibrillator may be used to shock the heart and restore the cardiac rhythm.
- Technology also exists for implanting therapeutic devices for treating electrical conduction disturbances or arrhythmias of the heart. These devices include implantable pacemakers, cardioverters and atrial and ventricular defibrillators, drug infusion pumps as well as cardiac assist devices. The implantable devices typically use intracavitary leads to sense the electrogram (EGM) and then provide electrical therapy (pacing or defibrillation) or mechanical therapy (pumping blood). These devices sense the EGM and then utilize the features, such as improper conduction (in case of a pacemaker) or a fatal rhythm (in case of a defibrillator), or simply timing (to coordinate mechanical pumping). Notably, these devices do not specialize in the task of detecting, alerting the patient or treating ischemic heart disease.
- Ischemia detection and analyses are usually done manually by the expert cardiologist or by computers employing algorithms to detect ischemia-related changes in the ECG signals. The preferred features of the ischemia detecting computer algorithms are the ST-segment and the T-wave. These features show elevation, depression or inversion of these ECG signals associated with ischemia. The computer then carries out a careful measurement of the degree of elevation/depression in a specific lead. By identifying ischemia dependent changes from specific leads, the ischemic event is attributed to a specific region of the heart.
- The current approach to diagnosis is that after an ischemic event is perceived by the patient, they contact medical personnel such as the “911” system or their personal physician. Within the clinical setting, the patient is often monitored using a short recording of the ECG signal which may be interpreted by a physician. Alternately, the high risk patient may be continuously monitored at the bedside in a cardiac intensive care unit. Therapy may include using drugs such as TPA, use of catheters for angioplasty (opening the blocked coronary vessel using a balloon or laser), or providing life support back up such as defibrillation.
- The aforementioned cardiovascular medical monitoring technology and medical practice have several significant drawbacks in regard to the detection and treatment of coronary ischemia which can result in severe consequences to the patient up to and including death. They include the following:
-
- 1) Not being able to immediately alert the patient and/or the physician of an ischemic event, particularly a life threatening event.
- 2) Not being ambulatory with the patient; and/or an inability to provide continuous monitoring to the patient and indication of the necessary diagnostic information to the physician.
- 3) Requiring input and interpretation of a physician or medical practitioner when one may not be present.
- 4) Requiring monitoring devices external to the body, such as an ECG monitor or external defibrillator, which are usually only available in medical centers and hospitals, and which further need special expertise and attention from medical personnel.
- 5) Reduced sensitivity or otherwise inability to detect ischemic events due to loss of sensitivity from use of external electrodes.
- 6) Loss of specificity as to the site of ischemia due to inadequate placement of electrodes in the vicinity of the ischemia or infarction.
- 7) Needing sophisticated expertise of a cardiologist to interpret the clinical condition or needing monitoring instruments with sophisticated computer-aided ECG signal analysis capabilities.
- 8) Over reliance on use of ECG signals for detection and inability to utilize and integrate other physiological data, (e.g. pressure, blood flow, and PO2).
- 9) Inability to immediately alert the patient or the physician of the impending or emerging ischemic condition.
- 10) Inability to provide immediate treatment, particularly for life-threatening events (e.g. myocardial infarction, cardiac arrest).
- Certain embodiments of the present invention relate to methods and devices for detection of myocardial ischemia and/or infarction (MI/I). Preferred embodiments relate to electrodes and sensors, devices and methods for interpreting ischemic conditions, devices and methods for initiating the procedure to alert the patient and/or the care-giver, and devices and methods for connecting with a device that provides therapy. MI/I may be detected using implantable devices and methods according to certain embodiments of the present invention.
- Embodiments may include a stand alone device or a modification of another implantable device such as a pacemaker, cardioverter, defibrillator, drug delivery pump or an assist device. Embodiments may use a variety of in vivo sensors located inside the human torso and/or inside the heart. The sensor device preferably includes electrodes that are indwelling in the heart, on or in the vicinity of the heart, under the skin, under the musculature, implanted in the thoracic or abdominal cavity. Preferably the sensor device also includes strategic placement of the electrodes to capture the EGM signal from various positions and orientations with respect to the heart. The sensor device also preferably includes other hemodynamic or mechanical sensors that are sensitive to the condition of the heart in MI/I. MI/I may be recognized using analysis of the features of the signal, namely the EGM, recorded by the electrodes and sensors. The features of the EGM signal (namely, depolarization and repolarization), morphology, and analytical information such as the spectrum, wavelet transform, time-frequency distribution and others, are utilized in the interpretation and recognition of the MI/I condition. Separately or in conjunction, the hemodynamic (namely, blood pO2, pH, conductance, etc.) and mechanical parameters (blood pressure, blood flow, etc.) are sensed according to the embodiments of this invention. MI/I is then recognized by integrating some or all of the sensor information. Embodiments may detect this MI/I event and alert the patient using a variety of methods, including but not limited to vibration, electrical stimulation, auditory feedback, and telemetry. The device to alert the patient may in certain embodiments be incorporated within the instrument itself. The patient may be alerted by direct communication via electrical, sound, vibration or other means or indirect communication to an external device in an electromagnetic link with the implanted device. Once the MI/I event is identified, the device may also institute therapy, such as infusion of a thrombolytic agent or delivering life saving shock in case of an arrest, semi-automatically or automatically. The therapy giving device may be integrated with the MI/I detection, MI/I analysis, and/or patient alerting device into an integrated or separate stand alone system.
- Embodiments of the invention may be used to detect MI/I from inside the body as compared with the traditional approach of detection by placing electrodes on the outer body surface of the torso. This is made feasible in certain embodiments by using the MI/I detection technology in an implantable device. Embodiments utilize sensors, such as electrodes and leads, that record the EGM signal from inside the chest in the vicinity of the heart and/or from electrodes placed on the heart, and/or using catheters or leads placed inside the cavities (atria and ventricles). Embodiments may include built-in interfaces to electrodes, namely circuits for amplification and filtering of the signals, and the circuit for digitization (analog-to-digital conversion) and processing (microprocessor). Embodiments of the implantable device, using its microprocessor, analyze the features of the EGM signal from these leads to detect an ischemic event.
- Embodiments also relate to the design, construction and placement of electrode sensors. Embodiments may include an electrode lead with multiple sensors capable of recording EGM from multiple, strategic locations in the chest or in and around the heart. This embodiment also includes utilization of the body of the instrument and single or multiple leads.
- Embodiments also relate to detection of the ischemic event including identifying particular features of the EGM signal. These features include depolarization (i.e. initial excitation of the heart when a beat is initiated, coincident with the body surface QRS complex) and repolarization (i.e. the subsequent repolarization of the heart coincident with the body surface ST-segment and T-wave). MI/I results in alteration in depolarization and repolarization waves in selected regions of the heart, for the case of focal ischemia, or the entire heart, for the case of global ischemia. These changes alter the action potential (of heart cells) as well as the conduction pattern (in selected regions or the whole heart). The alterations in action potential shape and conduction change together alter both the depolarization features as well as the repolarization features). Depending on where an electrode is placed, these features may be seen in different recordings. The electrodes pick up the local signal (from the heart muscle in its vicinity) as well as the distal signal (distal muscle areas as well as the whole heart). The characteristics of this signal are identified in the form of shape changes, and these shape changes can be identified in a variety of ways, including temporal, spectral, and combined approaches.
- The MI/I detection technology according to embodiments of the present invention, may also utilize non-electrical measures, including hemodynamic and mechanical parameters. An MI/I event may result in a degree of deprivation of oxygen to the heart muscle. This in turn may result in a decreased ability to perfuse the heart muscle as well as the body. This may result in a cyclical reduction in the mechanical performance in terms of contractility and pumping action of the heart. Sensors placed inside the blood stream pick up the changes in blood oxygen, pH, conductance, etc. resulting from the MI/I event. The MI/I event would lead to small changes in case of mild ischemia or infarct or significant changes in case of global ischemia or cardiac arrest. The sensors are usually placed inside a catheter or a lead, although some times in the body of the instrument, and then measurements may be made via the electronic circuit interfaces inside the implantable device. The mechanical function of the heart may be detected utilizing sensors and leads, including those for pressure, volume, movement, contractility, and flow.
- Embodiments also relate to methods and devices for signaling the host patient or others (such as medical personnel) to the incidence of MI/I. When MI/I is detected, it is imperative to take therapeutic actions rapidly and even immediately. Thus, the patient needs to be informed and the caregiver physician needs to be informed. Embodiments of the invention include devices and methods for communication between the implantable device and the host/physician. One of these approaches is to use radio-frequency or radiotelemetry, while another is to communicate through electrical stimulation. Other approaches, including sound, and magnetic fields are also devised. Embodiments may also utilize long distance, remote and wireless means of communication using telephone, telemetry, Internet and other communication schemes. Embodiments may also include the code of communication by which the information pertinent to MI/I is presented in detail. This code may be either analog or digital, relayed via the communication link, and then decoded by the receiving instrument or individual. The code primarily signals to the host patient, or the external device attached to the patient, or directly to the medical caregiver, the condition of MI/I. The code may include information about EGM, the MI/I condition, and other related diagnostic information. The code may also include recommendation and instructions to provide an immediate therapy to the patient to treat MI/I.
- Another aspect of certain embodiments of the invention includes coupling of the MI/I detection technology to a variety of therapeutic devices. The implantable MI/I detection technology makes it feasible to rapidly initiate therapy through direct access to the body, circulatory system or the heart. In some circumstances it is desirable to infuse drug such as Streptokinase or TPA to treat the patient. Other drugs may also be infused immediately or subsequently on a steady state basis. In other instances it is desirable to carry out procedures such as angioplasty. In case the MI/I event leads to a life-threatening arrhythmia or cardiac arrest, means to treat the arrhythmias to resuscitate the heart are disclosed. These may include use of electrical pacing, cardioversion and/or defibrillation. In case the MI/I event leads to a failure of the heart, means to assist the heart are disclosed. These assistive devices include left or right ventricular assistive device and artificial heart pump. Embodiments may declare interface of the implantable myocardial ischemia detection technology to these therapeutic approaches and the use of these therapies upon discovery of MI/I by the implanted devices.
- Another aspect of certain embodiments of the invention includes the use of the technology in an implantable device. The implantable device may include a hermetically sealed can, electronics, analog and digital logic, microprocessor, power source, leads and sensors, circuits and devices to alert the patient, communication link and interface to the external diagnostic and therapeutic means. Embodiments also include modification of implantable arrhythmia detection devices, pacemakers, defibrillators, infusion pumps, or assist devices to have the novel features described above. The technology used in embodiments of the present invention can be partially or fully integrated into these instruments. Embodiments further include hardware, software or firmware modification of the aforementioned devices to have MI/I detection, alerting and therapy initiating features.
- Certain embodiments of the invention are described with reference to the accompanying drawings which, for illustrative purposes, are not necessarily drawn to scale.
-
FIG. 1 illustrates a schematic illustration of the torso and heart which also includes the implantable device, its sensing lead, an alarm means, a therapy device, and a communication means to an external device according to an embodiment of the present invention. -
FIG. 2 : (a) illustrates a preferred embodiment including an implanted device such as a pacemaker with a full 12-lead electrocardiographic configuration (L, R, F and V1 through V6, and ground reference) using an implantable intra-cavitary and intrathoracic lead; (b) illustrates a second preferred embodiment using an implanted device and a single suitably positioned intrathoracic lead with multiple sensors in the chest and the ventricular cavity of the heart; and (c) illustrates a third preferred embodiment with a suitably placed device with multiple electrical contact sensors on the implanted device can and a suitably threaded lead through the thoracic, abdominal and the ventricular cavity along with the sensor means. -
FIG. 3 illustrates a preferred embodiment, such as a cardioverter-defibrillator with suitable sensing or shocking lead with sensor means indwelling the heart and ventricular cavity and a series of sensors on the shocking lead on the epicardium or the thoracic, abdominal and ventricular cavity. -
FIG. 4 illustrates three of the many placements and shapes of the implanted device inside the thoracic or abdominal cavity, and the sensor means on each can of the implanted device with each sensor insulated from the can (see the inset), according to embodiments of the present invention. -
FIG. 5 illustrates three preferred embodiments with suitable implanted device in the thoracic cavity, placement of different electrode leads and sensors and their different configurations with respect to the heart. The sensor configuration includes leads with (a) unipolar, (b) bipolar sensing and (c) physiologic sensor means inside the ventricular cavity of the heart. -
FIG. 6 illustrates the (a) electronics and microprocessor system used in the implantable myocardial ischemia detection device, and (b) the circuit diagram for amplification and filtering of the EGM signal, according to embodiments of the present invention. -
FIG. 7 illustrates (a) the depolarization and repolarization signals of the electrocardiogram, the action potential, normal and ischemic EGM, the pressure signals, and time-frequency response characteristics of the EGM; and (b & c) the electrical activation pattern on the heart as visualized by isochronal conduction distribution in (b) normally conducting zones and (c) ischemic zones. -
FIG. 8 (a) illustrates various communication links between the implantable device and the external monitoring devices, including alerting the subject with the aide of a loud speaker, vibrator or electrical stimulation, communication to and external device via RF communication, audio communication, and magnetic field modulation according to embodiments of the present invention. -
FIG. 8 (b) illustrates the implantable MI/I detection technology piggy-backed or incorporated as a part of a modified implantable pacemaker or a cardioverter-defibrillator according to embodiments of the present invention. - Certain embodiments of the invention pertain to methods and devices for detecting ischemia or infarction, diagnosing, alerting the patient and/or treating the ischemic heart disease.
- Implantable myocardial ischemia and/or infarction (MI/I) detection technology according to certain preferred embodiments is illustrated in
FIG. 1 . Embodiments include methods and devices to detect and treat MI/I. One embodiment of a method includes: i) placement/implantation of the device inside the chest or other body cavity, ii) placement and implantation of electrodes and sensors to selected areas of the myocardium, iii) connection of one or more of the electrodes and sensors to the implanted device, iv) detection of an ischemic event by the analysis of the EGM signal and sensor data, v) the method of analysis of the EGM signal using signal processing means in time and frequency domain, vi) communicating the stored EGM signals to an external device using telecommunication means, vii) alerting the patient of the event, vi) communication with the medical attendant using telecommunication means, and vii) initiating or implementing medical therapy for MI/I. Embodiments may include some or all of the above elements, which are described in more detail below. - One preferred embodiment is illustrated in
FIG. 1 . It includes a plurality of devices (101) and sensors (102) that are implanted in the human body (103). Referring toFIG. 1 , this implementation may include one or more of the following steps: i) a device that would reside inside the body (103) and alert the patient (106) or the medical attendant of an impending or ongoing ischemic event and undertake therapeutic action, ii) one or more implanted sensors (102) positioned in selected areas of the heart (104), such as a ventricular cavity (105), and connected to the aforementioned device, iii) detecting an ischemic event, iv) alerting the patient of the event as depicted in (106), v) communication, as depicted in (107) with a device external to the body (108) or a medical attendant, vi) administration of medical therapy via an intracavitary pacing electrode (109), infusion of drug through the body of the lead (102) or shocking the heart between leads (102 and 110). - Another preferred embodiment of the device and its method of use is illustrated by
FIG. 2 (a). The device (101) is implanted in the thoracic cavity under the skin or muscle in the vicinity of the heart (104). The sensing may be accomplished by a detailed electrocardiographic system that provides a device for biopotential recording from locations around the heart that result in a more complete assessment of the ischemic regions of the heart. The leads are positioned in one or more configurations within the chest to form an internal Einthoven's triangle (an external Einthoven's triangle is a concept known in the art). This configuration provides the advantage of enhanced signal sensitivity for discrete selectable areas of the myocardium and allows for easy determination of particular cardiac vectors. The resultant 12-lead electrocardiographic system is employed by those skilled in the art on (not internal to) the chest to provide projection of the cardiac dipole at various electric field orientations. A cardiologist or a computer program is then employed to determine the site and degree of MI/I by interpretation of the electrocardiogram. In the present invention, an intra-thoracic lead system is designed to record the EGM activity using a plurality of sensors situated to record projections of the cardiac dipole from inside the body in a manner analogous to the Einthoven's triangle and a 12-lead recording system from outside the chest. A lead (201) system comprises a biocompatible insulated carrier device with a plurality of electrically conducting metallic sensors that conduct the EGM signal from in or around the chest to the circuitry within the implanted device. The lead depicted inFIG. 2 carries three sensors (202, 203, 204) corresponding respectively to the left arm (L), the right arm (R) and the foot (F) projections of the 12-lead system. A Wilson's central terminal, a central terminal derived through a resistive network, is provided to derive the leads I, II, III and the three augmented leads (external, but not internal, Wilson's central terminal and leads are concepts known to the art). The lead is attached to the body of the implanted, hermetically sealed device (101) via a connector (205) that provides a feed-through interface to the circuitry within. Another lead (206) carries additional sensors (207 through 212) corresponding respectively to the V1 through V6 projections of the 12-lead electrocardiographic system. The body of the device or a conducting sensor incorporated there in provides the ground or the circuit common reference G (213). The sensor signals are electrically connected via the lead to the circuitry within the implanted device. The EGM signals recorded from this lead system is analyzed for the features of MI/I. - Another preferred embodiment shown in
FIG. 2.2 (b) comprises an implanted device (221) in the abdominal or lower thoracic cavity (220) with a preferred lead system (222) with a plurality of sensors. The lead system (222) makes a connection through a feed-through connector (223) to the circuitry of the implanted device (221). The lead (222) is suitably implanted within the thoracic cavity and in and around the heart (105) to place the sensors at locations that allow recordings analogous to the aforementioned 12-lead electrocardiographic system. The design involves the placement of the conducting sensors so that their placement inside the thoracic areas of the body (103) and in and around the heart (104,105) preferably corresponds to the 12-lead electrocardiographic system. Thus, the sensors V1 through V6 and L, R, and F (224) along with the ground reference G on the body of the device (225) represents all the electrodes needed to reconstruct the full electrocardiographic system, comprising leads I, II, III, augmented leads, and chest leads, suitable for implantable technology. The EGM signals from this lead system (222) may then be analyzed for the indications of MI/I. - Another embodiment is depicted in
FIG. 2 (c). An implanted device (230) is located in the lower thoracic or abdominal cavity and a lead (231) with sensors therein is threaded through the intra-thoracic areas of the body (103) and in and around the heart (104,105). The lead carries the sensors L, R and F, while the body of the implanted device carries the sensors V1 through V6, wherein the sensor array shown as (232). The body of the device (230) carries the ground or the circuit common G, while the conductive sensor elements shown as the open circles are insulated from the body of the device as shown by the dark rings around the circular sensor body (233). This lead system suitably captures the EGM signals from the various regions of the body which are then electrically conducted by the lead (231) to the implanted device (230). - Still another embodiment is illustrated in
FIG. 3 . An implanted device (101) placed inside the body (103), utilizes a plurality of leads (301) and (306) and sensors therein. The lead (301) carries with it the sensors L, R and F for EGM sensing within and around the heart (104, 105). Thelead 301 also carries plurality of sensors (302) for mechanical or hemodynamic information from within the ventricular cavity (105). The lead (306) connects sensor element (307) carrying plurality of sensor V1 through V6 (308). The body of the device (101) carries the ground reference G. - In yet another embodiment of the present invention, an implanted device is placed inside the chest in the proximity to the heart. The device is shaped in a manner so that it can carry on its case one or more leads (electrodes and their combination) suitable for recording multiple EGM signals. There are several locations that are preferred.
FIG. 4 shows the thoracic part of the body (103), the heart (104), and three of the suggested locations and shapes of the device (401, 402, 403), each one of these locations and electrode placements is to be used independently and exclusively. These locations allow preferred orientation of the electrodes and leads for detection of EGM signal. For example, location (401) with three electrodes (405, 406, 407) give preferred orientation of the ECG in conventional left arm and lead I between (405, 406) signal from the cardiac dipole. The three sensors also give other projections from the heart when taken in pairs (406, 407) and (405, 407). The body of the can or an additional metal sensor insulated from the can is used as a ground reference. Alternately, the signals from the sensors (405, 406, 407) may be summed using resistive network, known, in external devices but not implanted devices, as Wilson's central terminal, to provide a common or reference signal. The location (403) analogously has 3 electrodes (408, 409, 410) which give the conventional right arm and lead I between (408, 409) signal, and other differential pairs II and III between (409, 410) and (408, 410). The location (403) has sensors V1 through V6 (411) giving 6 chest lead signals. In all these designs and placements the sensors are mounted on the encasement of the device known as the can and hence do not require separate leads or wires going out from the can via the feed-through to the heart or to the body. The can and the associated sensors can be entirely hermetically sealed and contained in a single case. The can may be made of a biocompatible material including, but not limited to stainless steel, titanium or a biocompatible engineered polymer such as polysulfone or polycarbonate and the like. The inset inFIG. 4 shows the electrical sensor element (406) surrounded by insulating ring (407) mounted on the can (403). The conducting sensor element provides electrical connection to the circuitry inside the can of the implanted device. The electrical sensor or the body of the implanted device serves as the ground or the circuit common reference. While three preferred embodiments are illustrated, the exact location of the implanted device and the electrical sensor elements can be varied to provide sensing and the lead oriented to improve the sensitivity to detection of the MI/I from a particular region of the heart. For example, a can at location (401) would pick up left and superior infarcts, a can at location (402) would pick up right and superior infarct, and a can at location (403) would pick up left or right inferior infarcts. In addition, in certain embodiments the container or can may be eliminated or integrated into one of the other components. - In a preferred embodiment of the device, an intracavitary indwelling lead system, as depicted in
FIG. 5 , is used to sense the EGM signals. Referring toFIG. 5 (a), the implanted device (101) encases in the can the electronics while the body of the can serves as the ground or the reference G or otherwise a sensor on the lead serves as the ground or the reference (501). The intracavitary lead consists of a lead (502) going from the device (101) into the right ventricular cavity via the venous blood vessel by the methods well known in the art. The lead (502) may be preferentially threaded through the right or the left subclavian veins. The lead (502) may also be threaded through inferior vena cava or IVC. The lead (502) is placed in the atrial or the ventricular cavity or both. The lead (502) also may lodge in the SVC and through the septal region in the left ventricular cavity. The lead (502) may be placed in the left ventricle via the arterial vessel. The lead made of biocompatible material including, but not limited to polyurethane or silicon carries within it the metallic coil or wire for proper insertion of the lead (502). The lead (502) carries at its tip the pacing electrode (503) by which electrical stimulation is delivered to the heart muscle. Although depicted in this figure as being in contact with the ventricular muscle, the pacing electrode (503) may also be in contacting with atrial muscle or other suitable pacing regions on the heart surface. The sensing and the pacing electrodes may be designed into a single lead body or separate lead bodies. The atrial and ventricular chambers of the heart may be sensed and paced separately or jointly. The external body of the lead also carries the conducting sensor element such as (504) to contact and capture electrical signal from the cavity of the heart (105). A plurality of electrically conducting contact points (505) on the lead serve as sensor elements. As these sensor elements (504) span the atrium to the ventricle, typically on the right side of the heart, these sensor elements (504) capture the EGM signal associated with that part of the heart. In the preferred embodiment inFIG. 5 (a), the sensor elements are arranged in the unipolar configuration wherein the sensor elements are well separated from one another, each capable of capturing electrical signal with respect to the ground reference G on the body of the can or electrode (501). In another preferred embodiment illustrated inFIG. 5 (b), the sensor elements are arranged in a bipolar configuration wherein pairs of sensor elements (506, 507) are closely spaced. A plurality of sensor element pairs (508) are arranged in the region spanning the atrium, ventricle or both. In another preferred embodiment, illustrated inFIG. 5 (c), the sensor element can be at or close the tip of the catheter (510) and may include one or more of many hemodynamic sensors (e.g. pressure, pO2, pH, temperature, conductivity, etc.) or mechanical sensors (strain gauge, accelerometer, etc.). - Preferably the implanted device consists of a casing or a can made of biocompatible and hermetically sealed case consistent with long term implantation in the hostile environment of the body (with its warm temperature, humidity, blood, etc.). The can is shaped in a variety of forms illustrated in
FIG. 2 andFIG. 3 . The circuitry associated with the sensor is housed inside this can and may be driven by battery power, typically one of the many contemporary pacemaker/defibrillator batteries using lithium or lithium ion or polymer battery technology well known in the art. The internal circuitry may utilize ultra-low power analog and digital circuit components built from miniaturized packages and running off the battery power supply. One overall schematic design is illustrated inFIG. 6 (a) and consists of the input protection stage (601) which serves to protect the amplifier from possible shock hazards. This front-end should also meet electrical safety and leakage specifications conforming to safety standards as set by AAMI, American Heart Association and other standard setting bodies. This stage is followed by the amplifier (602) and followed by electrical isolation circuitry (603), if necessary. Isolation can be electrical or optical. The isolation circuit is followed by the output stage (604) which feeds all the analog signals from multiple channels into a multiplexer, MUX (605). The multiplexed signal is digitized using an A/D converter (analog to digital converter) (606) and then fed into a microprocessor (607). The principal circuit component is the EGM amplifier, which is designed using operational amplifiers as illustrated inFIG. 6 (b). The amplifier circuitry consists of protection (610) and filtering (611) components (including diodes, capacitors and inductive chokes), operational amplifier based instrumentation amplifier (612), and active circuit filters for band-pass filtering (613). In various embodiments, the hardware implementation may use a low power, low voltage microprocessor or a custom-designed ASIC or a fully custom VLSI circuit. In an alternative embodiment, the hardware would be contained, or otherwise piggy-backed onto an implantable pacemaker or cardioverter-defibrillator. In this case the ischemia detection technology would use information derived from the existing leads of the implanted pacemaker or defibrillator. Also, the detection software would be embedded in the RAM or the ROM and executed by the microprocessor of the implanted pacemaker or cardioverter-defibrillator. - The sensors of the implanted device are preferably configured to capture the EGM signal and other physiologic data. From these signals and data, algorithms implemented by the microprocessor and its software identify the ischemic event. Embodiments utilize the EGM signals from inside the body using a plurality of sensors placed inside the thorax and in and around the heart. The sensors preferably seek to mimic the internal or implanted form of the Einthoven triangle and the 12 lead electrocardiographic system. The complete 12 lead system may not always be used and the MI/I event can be captured from only a limited set of leads and electrodes. The complete or partial set of these sensors, so arranged, provide a projected view of the heart's dipole at various sensor locations. The signals recorded from a sensor then give an indication of the MI/I event in its vicinity and the recorded pattern is indicative of the degree of severity of the MI/I event. Certain embodiments utilize both depolarization and repolarization signal components of the EGM signal to detect ischemia events. As illustrated in
FIG. 7 , ECG signal (701) is accompanied by the action potential signal (702), the EGM signal (703) and the pressure signal (704). Under MI/I conditions, these respective signals may be modified as shown in (705, 706, 707 and 708). Note the appearance of notches in the QRS complex and depression of the ST-segment (705 and 710). Correspondingly, the action potential (706) shows change in upstroke (713), duration and shape (714). Consequently, the EGM signal shows fractionation and multiple depolarization and changed shape (707). The ventricular pressure signal shows a reduction in magnitude as well as shape change (708). The ischemic conditions are some times localized to parts of the heart (focal ischemia or infarct) and at other times throughout the heart (global). Ischemia results in slowed conduction and possible fractionation of the conduction patterns.FIGS. 7 (b) and 7 (c) illustrate the conduction on the heart (750), withFIG. 7 (b) illustrating the conduction in normal conditions, with traces (752) showing isochronal lines t1 through t6 (places receiving simultaneous activation). An infarcted is indicated as aregion 751 on the heart with no isochronal lines, and consequently it is a region which alters the conduction pattern. Therefore, under ischemic conditions, as illustrated inFIG. 7 (c), the conduction pattern (752) is altered as indicated by the isochrones t1 through t10. The isochrones show different pathways, indicating dispersion and fractionation of conduction. This dispersion and fractionation of conduction produces the EGM signal depicted for ischemic hearts (707) and its features thereof (716). - The EGM signal for normal versus ischemic myocardial tissue can be distinguished using a variety of means including waveform analysis done in both the temporal and frequency domain and combination of both, which is called a time-frequency method.
FIG. 7 (a) graphically illustrates the EGM signal for a healthy heart (703) with a relatively large major peak and related inflection and transition points corresponding to depolarization and repolorization events occurring during the cardiac cycle (702). In contrast, the ischemic signal shown in (707) shows significantly more peaks and has unusual transitional points (716). This phenomenon is known as fragmentation and is readily distinguishable. An alternate approach is to detect ischemia in the frequency domain.FIG. 7 also illustrates the time-frequency analysis of the EGM signal. The EGM signal is analyzed through Fourier analysis which is well known in the art and its frequency components are thus obtained. Since the EGM signal is time-varying, time-frequency analysis is more suitable so as to obtain instantaneous frequencies at different times in the cardiac cycle. Magnitude of signal power, indicated by horizontal lines at various frequencies (717) and plotted versus time (718) is calculated. In this case, the ischemic EGM time-frequency distribution (719) is distinguished from the time-frequency distribution of the healthy EGM waveform (720) by a broader range of frequencies at one or more depolarization, repolarization and fractionation event locations. Further during repolarization, there is shift towards lower frequencies corresponding to the ST-segment elevation or depression and T-wave morphology changes in the ECG. Several different approaches of time-frequency and time-scale analyses are applicable to calculating localized frequency information at various instants of the EGM signals. Normal and ischemic EGM waveforms/signals are thus distinguished and the electrodes or sensors displaying the characteristic changes identify ischemia in their vicinity. This approach is extended to analysis of signals from various sensors.FIG. 7 (a) shows the cavitary pressure signal in normal (704) and ischemic (707) hearts. Analogously, a cavitary probe measuring conductance can obtain an estimate of the ventricular volume by methods well known in the art. The magnitude and morphology of the conductance signal is also indicative of MI/I. Analogously, ventricular volume signal assessed by the aforementioned conductance method also identifies local changes in the conductance and proportionately the volume in the region of the ventricular cavity. Therefore, a comparison of such signals placed in different positions in the heart (e.g. 505, 508, 509), allows estimation of ventricular volumes at different points in the cardiac cycle and at different locations in heart. Information from the EGM signals (electrical conduction) and hemodynamic/mechanical signals (conductance, pressure, ventricular volume, blood volume, velocity etc.), may be used separately or combined by one or more algorithms, programmable devices or modified pacemaker, cardioverter, defibrillator systems seeking to detect an ischemic event. Ischemic diagnostic function may be further enhanced by combining analysis of ECG and hemodymanic data with metabolic/chemical data (e.g. PO2, CO2, pH, CK (creatine kinase)) collected using in dwelling sensors which may be chemical FETs, optical fibers or otherwise polarimetric or optical based, and the like, all well known in the art. - In another embodiment of the ischemia detection sensors, a use is made of the multiple sensors spanning the lead in the ventricular cavity. The sensors (505 or 508 or 509) in
FIG. 5 capture the changes in the EGM signals in their vicinity. An analysis of the relative morphologies would help identify the ischemia in the vicinity of the electrode. The electrode sensors record the EGM signals whose morphology or frequency characteristics in normal or MI/I conditions is similarly analyzed by the methods illustrated inFIG. 7 (a). The EGM signal recorded and analyzed results from spontaneous heart beats or from paced beats. Spontaneous heart beats are produced by the heart's own natural rhythm. Paced beats are produced by a pacing electrode usually at the tip of the lead placed in the atrial or the ventricular cavity. The morphology and the frequency characteristics of the paced beats are analyzed for MI/I condition. - Once an incident of MI/I is detected, the patient or the medical care giver needs to be informed so that quick intervention may be taken. Noting that certain aspects of embodiments relate to an implanted device, the device needs to communicate the signal out to the patient and/or the physician.
FIG. 1 provided a scheme for the communication between the implanted device (101) and the subject (103) or the external device (108). Now, for further detail,FIG. 8 illustrates an implanted device (801) comprising its amplifier and data-acquisition system (802) and microprocessor (803) communicates data and message to the subject or the external device via a D/A converter (804), a parallel port (805), a serial port (806 or 807). The D/A converter is connected to an amplifier (808) which drives a loud speaker, buzzer or a vibrator (811). The external device may receive this information via a microphone (815). The subject may preferably receive the alert message via audio or vibratory signal (811). Alternately, the subject may receive the indication of an MI/I via an electrical stimulus feedback delivered via a voltage to current converter, V-I (829) delivered to the case of the implanted device or to a stimulating lead. The serial port communicates the electrical signals via a modem (809), and a transmitter (812) to an antenna (815) for radio frequency or audio telemetry to the external device. The external device receives the radio telemetry communication via an antenna (816) and a receiver (817) and subsequently conveys these data to a computer connected to the receiver. Alternately, the implanted device may use a serial port (807), connected to a modem (810) and a transmitting coil capable of generating and receiving magnetic fields (818). By pulsed or alternating magnetic field, a message pertaining to the MI/I event or digitized data from the microprocessor (803) are relayed to the external device. An external coil capable of generating or receiving magnetic field communicates the message to and from the implanted device (819) via magnetic induction. The magnetic field fluctuations are processed and a message or data stream may be communicated to a computer connected to the external device. These are among many alternative means to enable communication between the implanted device and the external device may be operated/worn by the physician or the patient. Other communication technologies well known in the art may also be utilized. The implanted and the external device engage in a unidirectional (sending the MI/I alert or sending actual digital or analog data over the link) or bidirectional (external device sending commands, internal sending the data, for example). - Certain embodiments also include devices and methods for taking a therapeutic action. The therapeutic action is possible because implanted device provides an early indication of an event of MI/I. Therefore, there may be adequate time for this system to perform therapeutic actions to prevent or minimize the development of an infarction. In various embodiments of the invention, therapeutic actions may comprise: infusion of thrombolytic agents such as TPA and streptokinase or anticoagulant agents such as heparin. Since it is known that there is treatment window of several hours after infarction which can prevent more serious medical complications, a timely bolus or steady release of these medicines may prevent or otherwise ameliorate the conditions that may be precipitating the MI/I.
FIG. 8 (b) illustrates the schema in which the implanted device (801) equipped with a lead (833) connected to a sensing means (831) initiates the action of transmitting a message via a transmitter (832) in a manner described previously. It also initiates infusion of any of the aforementioned drugs via an infusion line or a catheter (835). For example, the drug may be in the catheter tip itself embedded in a slow release polymeric matrix whose release is actuated by the implanted device. Alternately, the drug may be in the device itself and released via infusion tubing (835). The acute MI/I may precipitate a life-threatening arrhythmia. In case such an event, involving arrhythmias such as ventricular tachycardia or fibrillation, the implanted device may initiate electrical rescue therapy, such as pacing, cardioversion or defibrillation. An electrical shock may be given via two leads, which may be a combination of the can of the implanted device (801) and an intracavitary lead (833) or a combination of subcutaneous or an epicardial or intrathoracic lead (834) and an intracavitary lead. Thus, the implanted device would initiate the therapeutic procedures semi-automatically by first alerting the patient or automatically via infusion of a drug or delivery of electrical rescue shock. - While aspects of the present invention have been described with reference to the aforementioned applications, this description of various embodiments and methods shall not be construed in a limiting sense. The aforementioned is presented for purposes of illustration and description. It shall be understood that all aspects of the invention are not limited to the specific depictions, configurations or relative proportions set forth herein which may depend upon a variety of conditions and variables. The specification is not intended to be exhaustive or to limit the invention to the precise forms disclosed herein. Various modifications and changes in form and detail of the particular embodiments of the disclosed invention, as well as other variations of the invention, will be apparent to a person skilled in the art upon reference to the present disclosure. For example, the logic to perform various analyses as discussed above and recited in the claims may be implemented using a variety of techniques and devices, including software under microprocessor control or embedded in microcode, or implemented using hard wired logic.
- While the invention described above presents some of the preferred embodiments, it is to be understood that the invention in not limited to the disclosed embodiment but rather covers various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Claims (20)
1. A method of monitoring a heart for evidence of myocardial ischemia/infarction (MI/I), comprising:
monitoring the heart using a pacemaker device implanted into a subject, the pacemaker device including a pacing electrode and a plurality of electrical sensors adapted to sense an electrogram signal, the electrical sensors being positioned at locations including the heart and vascular system, wherein only one of the electrical sensors adapted to sense an electrogram signal is positioned in the heart; and
determining whether evidence of MI/I is present in the subject, using the electrogram signal;
wherein at least some of the electrical sensors used in determining whether evidence of MI/I is present in the subject are also used to sense a need to pace the heart.
2. The method of claim 1 , further comprising alerting the subject when a determination is made that there is evidence of MI/I present in the subject.
3. The method of claim 1 , further comprising wirelessly communicating from the device implanted into the subject to a device external of the subject.
4. The method of claim 1 , wherein the pacemaker device implanted into the subject is a first device, the method further comprising:
wirelessly communicating from the first device to a second device, the second device external to the subject; and
communicating from the second device to a third device using an internet communication scheme.
5. The method of claim 1 , further comprising initiating therapy within the subject after detecting evidence of MI/I in the subject.
6. The method of claim 1 , further comprising providing a supply of a medicine as part of the device implanted into the subject, and supplying a dose of the medicine to the subject after the device makes a determination that there is evidence that MI/I is present in the subject.
7. A method of monitoring a heart for evidence of myocardial ischemia/infarction (MI/I), comprising:
monitoring the heart using a pacemaker device implanted into a subject, the pacemaker device including a pacing electrode and plurality of electrical sensors adapted to sense an electrogram signal, wherein all the electrical sensors adapted to sense an electrogram signal are positioned within the heart; and
determining whether evidence of MI/I is present in the subject, using the electrogram signal;
wherein at least some of the electrical sensors used in determining whether evidence of MI/I is present in the subject are also used to sense a need to pace the heart.
8. The method of claim 7 , further comprising alerting the subject when a determination is made that there is evidence of MI/I present in the subject.
9. The method of claim 7 , further comprising wirelessly communicating from the device implanted into the subject to a device external of the subject.
10. The method of claim 7 , wherein the device implanted into the subject is a first device, the method further comprising:
wirelessly communicating from the first device to a second device, the second device external to the subject; and
communicating from the second device to a third device using an internet communication scheme.
11. The method of claim 7 , further comprising initiating therapy within the subject after detecting evidence of MI/I in the subject.
12. The method of claim 7 , further comprising providing a supply of a medicine as part of the device implanted into the subject, and supplying a dose of the medicine to the subject after the device makes a determination that there is evidence that MI/I is present in the subject.
13. An implantable pacemaker adapted to monitor a heart for evidence of myocardial ischemia/infarction (MI/I), comprising:
a pacing electrode and plurality of electrical sensors adapted to sense an electrogram signal, the electrical sensors adapted to be positioned at locations including the heart and vascular system, wherein only one of the electrical sensors adapted to sense an electrogram signal is adapted to be positioned in the heart; and
a computer adapted to determine whether evidence of MI/I is present in the subject, using the electrogram signal obtained using the electrical sensors;
wherein the pacemaker is configured so that at least some of the sensors used in the determining whether evidence of MI/I is present in the subject are also used to sense a need to pace the heart.
14. The implantable pacemaker of claim 13 , wherein the computer uses at least one of the depolarization and the repolarization portions of the electrogram signal to determine whether evidence of MI/I is present in the subject, wherein if the depolarization portion is used, the depolarization portion is analyzed in at least one of time, frequency, and time-frequency domains, and wherein if the repolarization portion is used, the repolarization portion is analyzed in at least one of time, frequency, and time-frequency domains.
15. The implantable pacemaker of claim 13 , wherein the sensors are positioned in a unipolar configuration.
16. The implantable pacemaker of claim 13 , wherein the sensors are positioned in a bipolar configuration.
17. The implantable pacemaker of claim 13 , further comprising a device adapted to alert the subject when a determination is made that there is evidence of MI/I present in the subject.
18. The implantable pacemaker of claim 13 , further comprising a device adapted to wirelessly communicate with a device external to the implantable pacemaker.
19. The implantable pacemaker of claim 18 , wherein the device is adapted to wirelessly communication with a device external to the implantable pacemaker using an internet communication scheme.
20. The implantable pacemaker of claim 13 , further comprising a supply of a medicine as part of the implantable pacemaker, and a device to deliver a dose of the medicine to the subject after the computer makes a determination that there is evidence that MI/I is present in the subject.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/573,055 US20100023080A1 (en) | 1998-08-07 | 2009-10-02 | Implantable myocardial ischemia detection, indication and action technology |
US13/149,872 US8755870B2 (en) | 1998-08-07 | 2011-05-31 | Implantable myocardial ischemia detection, indication and action technology |
US14/195,761 US20140180149A1 (en) | 1998-08-07 | 2014-03-03 | Implantable myocardial ischemia detection, indication and action technology |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9563598P | 1998-08-07 | 1998-08-07 | |
PCT/US1999/017847 WO2000007497A1 (en) | 1998-08-07 | 1999-08-05 | Implantable myocardial ischemia detection, indication and action technology |
USPCT/US99/17847 | 1999-08-05 | ||
US09/369,576 US6501983B1 (en) | 1998-08-07 | 1999-08-06 | Implantable myocardial ischemia detection, indication and action technology |
US10/243,701 US7277745B2 (en) | 1998-08-07 | 2002-09-15 | Implantable myocardial ischemia detection, indication and action technology |
US11/765,444 US20070244403A1 (en) | 1998-08-07 | 2007-06-19 | Implantable myocardial ischemia detection, indication and action technology |
US12/573,055 US20100023080A1 (en) | 1998-08-07 | 2009-10-02 | Implantable myocardial ischemia detection, indication and action technology |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/765,444 Continuation US20070244403A1 (en) | 1998-08-07 | 2007-06-19 | Implantable myocardial ischemia detection, indication and action technology |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/149,872 Continuation US8755870B2 (en) | 1998-08-07 | 2011-05-31 | Implantable myocardial ischemia detection, indication and action technology |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100023080A1 true US20100023080A1 (en) | 2010-01-28 |
Family
ID=22252892
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/369,576 Expired - Lifetime US6501983B1 (en) | 1998-08-07 | 1999-08-06 | Implantable myocardial ischemia detection, indication and action technology |
US10/243,701 Expired - Fee Related US7277745B2 (en) | 1998-08-07 | 2002-09-15 | Implantable myocardial ischemia detection, indication and action technology |
US11/765,444 Abandoned US20070244403A1 (en) | 1998-08-07 | 2007-06-19 | Implantable myocardial ischemia detection, indication and action technology |
US12/573,055 Abandoned US20100023080A1 (en) | 1998-08-07 | 2009-10-02 | Implantable myocardial ischemia detection, indication and action technology |
US13/149,872 Expired - Fee Related US8755870B2 (en) | 1998-08-07 | 2011-05-31 | Implantable myocardial ischemia detection, indication and action technology |
US14/195,761 Abandoned US20140180149A1 (en) | 1998-08-07 | 2014-03-03 | Implantable myocardial ischemia detection, indication and action technology |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/369,576 Expired - Lifetime US6501983B1 (en) | 1998-08-07 | 1999-08-06 | Implantable myocardial ischemia detection, indication and action technology |
US10/243,701 Expired - Fee Related US7277745B2 (en) | 1998-08-07 | 2002-09-15 | Implantable myocardial ischemia detection, indication and action technology |
US11/765,444 Abandoned US20070244403A1 (en) | 1998-08-07 | 2007-06-19 | Implantable myocardial ischemia detection, indication and action technology |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/149,872 Expired - Fee Related US8755870B2 (en) | 1998-08-07 | 2011-05-31 | Implantable myocardial ischemia detection, indication and action technology |
US14/195,761 Abandoned US20140180149A1 (en) | 1998-08-07 | 2014-03-03 | Implantable myocardial ischemia detection, indication and action technology |
Country Status (6)
Country | Link |
---|---|
US (6) | US6501983B1 (en) |
EP (1) | EP1102560A4 (en) |
JP (1) | JP2002522103A (en) |
AU (1) | AU5394099A (en) |
CA (1) | CA2339506C (en) |
WO (1) | WO2000007497A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110230929A1 (en) * | 1998-08-07 | 2011-09-22 | Ananth Natarajan | Implantable myocardial ischemia detection, indication and action technology |
US20180269790A1 (en) * | 2015-11-30 | 2018-09-20 | Murata Manufacturing Co., Ltd. | Switching power supply apparatus and error correction method |
US20190140011A1 (en) * | 2017-11-07 | 2019-05-09 | Samsung Electro-Mechanics Co., Ltd. | Fan-out sensor package and camera module |
Families Citing this family (311)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR0013004B1 (en) * | 1999-08-12 | 2009-01-13 | medical implant apparatus with wireless power transmission. | |
US6464628B1 (en) | 1999-08-12 | 2002-10-15 | Obtech Medical Ag | Mechanical anal incontinence |
US6440082B1 (en) | 1999-09-30 | 2002-08-27 | Medtronic Physio-Control Manufacturing Corp. | Method and apparatus for using heart sounds to determine the presence of a pulse |
US20040039419A1 (en) | 1999-09-30 | 2004-02-26 | Stickney Ronald E. | Apparatus, software, and methods for cardiac pulse detection using a piezoelectric sensor |
US9248306B2 (en) | 1999-09-30 | 2016-02-02 | Physio-Control, Inc. | Pulse detection apparatus, software, and methods using patient physiological signals |
US20030109790A1 (en) | 2001-12-06 | 2003-06-12 | Medtronic Physio-Control Manufacturing Corp. | Pulse detection method and apparatus using patient impedance |
US20050154370A1 (en) | 1999-10-29 | 2005-07-14 | Medtronic, Inc. | Methods and systems for providing therapies into the pericardial space |
US8298150B2 (en) | 2000-01-11 | 2012-10-30 | Cedars-Sinai Medical Center | Hemodynamic waveform-based diagnosis and treatment |
US6970742B2 (en) | 2000-01-11 | 2005-11-29 | Savacor, Inc. | Method for detecting, diagnosing, and treating cardiovascular disease |
US6328699B1 (en) * | 2000-01-11 | 2001-12-11 | Cedars-Sinai Medical Center | Permanently implantable system and method for detecting, diagnosing and treating congestive heart failure |
BR0108307B1 (en) | 2000-02-14 | 2009-12-01 | Prosthesis apparatus for the treatment of male sexual impotence with wireless power supply device. | |
DE60111019T2 (en) | 2000-02-14 | 2006-05-11 | Potencia Medical Ag | PROSTHESIS |
US6699200B2 (en) * | 2000-03-01 | 2004-03-02 | Medtronic, Inc. | Implantable medical device with multi-vector sensing electrodes |
US6496705B1 (en) * | 2000-04-18 | 2002-12-17 | Motorola Inc. | Programmable wireless electrode system for medical monitoring |
US6754528B2 (en) | 2001-11-21 | 2004-06-22 | Cameraon Health, Inc. | Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator |
US6721597B1 (en) | 2000-09-18 | 2004-04-13 | Cameron Health, Inc. | Subcutaneous only implantable cardioverter defibrillator and optional pacer |
US7069080B2 (en) * | 2000-09-18 | 2006-06-27 | Cameron Health, Inc. | Active housing and subcutaneous electrode cardioversion/defibrillating system |
US7146212B2 (en) | 2000-09-18 | 2006-12-05 | Cameron Health, Inc. | Anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator |
EP1584351A1 (en) | 2000-11-22 | 2005-10-12 | Medtronic, Inc. | Apparatus for detecting and treating ventricular arrhythmia |
US20030191402A1 (en) * | 2001-05-22 | 2003-10-09 | Arzbaecher Robert C. | Implantable cardiac arrest monitor and alarm system |
US20030023175A1 (en) * | 2001-05-22 | 2003-01-30 | Arzbaecher Robert C. | Implantable cardiac arrest monitor and alarm system |
US20050065445A1 (en) * | 2001-05-22 | 2005-03-24 | Arzbaecher Robert C. | Cardiac arrest monitor and alarm system |
US7209783B2 (en) * | 2001-06-15 | 2007-04-24 | Cardiac Pacemakers, Inc. | Ablation stent for treating atrial fibrillation |
US6937899B2 (en) * | 2001-08-30 | 2005-08-30 | Medtronic, Inc. | Ischemia detection |
US6577102B1 (en) * | 2001-09-21 | 2003-06-10 | Defibtech Llc | Medical device battery system including a secondary power supply |
NO20016385L (en) * | 2001-12-27 | 2003-06-30 | Medinnova Sf | System for monitoring heart rate changes, preferably a heart muscle |
US6955657B1 (en) * | 2001-12-31 | 2005-10-18 | Advanced Cardiovascular Systems, Inc. | Intra-ventricular substance delivery catheter system |
US6865420B1 (en) | 2002-01-14 | 2005-03-08 | Pacesetter, Inc. | Cardiac stimulation device for optimizing cardiac output with myocardial ischemia protection |
US6985771B2 (en) * | 2002-01-22 | 2006-01-10 | Angel Medical Systems, Inc. | Rapid response system for the detection and treatment of cardiac events |
US20030149423A1 (en) * | 2002-02-04 | 2003-08-07 | Fischell Robert E. | Methods for the detection and treatment of cardiac events |
US7236821B2 (en) | 2002-02-19 | 2007-06-26 | Cardiac Pacemakers, Inc. | Chronically-implanted device for sensing and therapy |
US7108680B2 (en) * | 2002-03-06 | 2006-09-19 | Codman & Shurtleff, Inc. | Closed-loop drug delivery system |
US20030176797A1 (en) * | 2002-03-12 | 2003-09-18 | Fernando Anzellini | Thrombust; implantable delivery system sensible to self diagnosis of acute myocardial infarction for thrombolysis in the first minutes of chest pain |
US7039462B2 (en) | 2002-06-14 | 2006-05-02 | Cardiac Pacemakers, Inc. | Method and apparatus for detecting oscillations in cardiac rhythm |
US7621879B2 (en) * | 2002-05-14 | 2009-11-24 | Pacesetter, Inc. | System for calibrating implanted sensors |
US7862513B2 (en) * | 2002-05-14 | 2011-01-04 | Pacesetter, Inc. | Apparatus for minimally invasive calibration of implanted pressure transducers |
US20040116969A1 (en) | 2002-08-26 | 2004-06-17 | Owen James M. | Pulse detection using patient physiological signals |
US20040039420A1 (en) * | 2002-08-26 | 2004-02-26 | Medtronic Physio-Control Manufacturing Corp. | Apparatus, software, and methods for cardiac pulse detection using accelerometer data |
US8630702B2 (en) * | 2002-09-20 | 2014-01-14 | Angel Medical Systems, Inc. | System for detection of different types of cardiac events |
US7801596B2 (en) * | 2002-09-20 | 2010-09-21 | Angel Medical Systems, Inc. | Physician's programmer for implantable devices having cardiac diagnostic and patient alerting capabilities |
US7558623B2 (en) * | 2002-09-20 | 2009-07-07 | Angel Medical Systems, Inc. | Means and method for the detection of cardiac events |
US7991460B2 (en) | 2002-09-20 | 2011-08-02 | Angel Medical Systems, Inc. | Methods and apparatus for detecting cardiac events based on heart rate sensitive parameters |
US6609023B1 (en) * | 2002-09-20 | 2003-08-19 | Angel Medical Systems, Inc. | System for the detection of cardiac events |
US20080139954A1 (en) * | 2002-09-20 | 2008-06-12 | Mary Carol Day | System for at least two types of patient alerting associated with cardiac events |
DE60331455D1 (en) * | 2002-10-04 | 2010-04-08 | Microchips Inc | MEDICAL DEVICE FOR THE CONTROLLED MEDICAMENTAL ADMINISTRATION AND HEART CONTROL AND / OR HEART STIMULATION |
US7072711B2 (en) * | 2002-11-12 | 2006-07-04 | Cardiac Pacemakers, Inc. | Implantable device for delivering cardiac drug therapy |
US7066891B2 (en) * | 2002-12-20 | 2006-06-27 | Medtronic, Inc. | Method and apparatus for gauging severity of myocardial ischemic episodes |
US7445605B2 (en) * | 2003-01-31 | 2008-11-04 | The Board Of Trustees Of The Leland Stanford Junior University | Detection of apex motion for monitoring cardiac dysfunction |
WO2004066825A2 (en) * | 2003-01-31 | 2004-08-12 | The Board Of Trustees Of The Leland Stanford Junior University | Detection of apex motion for monitoring cardiac dysfunction |
US7865233B2 (en) * | 2003-04-11 | 2011-01-04 | Cardiac Pacemakers, Inc. | Subcutaneous cardiac signal discrimination employing non-electrophysiologic signal |
US7302294B2 (en) | 2003-04-11 | 2007-11-27 | Cardiac Pacemakers, Inc. | Subcutaneous cardiac sensing and stimulation system employing blood sensor |
US7074194B2 (en) * | 2003-05-19 | 2006-07-11 | Ischemia Technologies, Inc. | Apparatus and method for risk stratification of patients with chest pain of suspected cardiac origin |
US7225015B1 (en) * | 2003-06-24 | 2007-05-29 | Pacesetter, Inc. | System and method for detecting cardiac ischemia based on T-waves using an implantable medical device |
US7274959B1 (en) | 2003-06-24 | 2007-09-25 | Pacesetter, Inc. | System and method for detecting cardiac ischemia using an implantable medical device |
US7218960B1 (en) | 2003-06-24 | 2007-05-15 | Pacesetter, Inc. | System and method for detecting cardiac ischemia based on T-waves using an implantable medical device |
JP2005031840A (en) * | 2003-07-09 | 2005-02-03 | Seiko Instruments Inc | Emergency notifying device |
US20190357827A1 (en) | 2003-08-01 | 2019-11-28 | Dexcom, Inc. | Analyte sensor |
US7320675B2 (en) | 2003-08-21 | 2008-01-22 | Cardiac Pacemakers, Inc. | Method and apparatus for modulating cellular metabolism during post-ischemia or heart failure |
US8086323B2 (en) * | 2003-09-23 | 2011-12-27 | Medtronic Minimed, Inc. | Implantable multi-parameter sensing system and method |
US7315760B2 (en) * | 2003-10-15 | 2008-01-01 | Ge Medical Systems Information Technologies, Inc. | Detection of function of implanted medical devices |
US20050113886A1 (en) * | 2003-11-24 | 2005-05-26 | Fischell David R. | Implantable medical system with long range telemetry |
US7512438B2 (en) * | 2003-11-26 | 2009-03-31 | Angel Medical Systems, Inc. | Implantable system for monitoring the condition of the heart |
US8244338B2 (en) | 2003-11-26 | 2012-08-14 | Angel Medical Systems, Inc. | Cardiac event detection over varying time scale |
US9050469B1 (en) | 2003-11-26 | 2015-06-09 | Flint Hills Scientific, Llc | Method and system for logging quantitative seizure information and assessing efficacy of therapy using cardiac signals |
US20050113885A1 (en) * | 2003-11-26 | 2005-05-26 | Haubrich Gregory J. | Patient notification of medical device telemetry session |
US7766826B2 (en) * | 2003-11-26 | 2010-08-03 | Medtronic, Inc. | Multi-level averaging scheme for acquiring hemodynamic data |
US7383080B1 (en) | 2003-12-12 | 2008-06-03 | Pacesetter, Inc. | System and method for emulating a surface EKG using internal cardiac signals sensed by an implantable medical device |
US7546157B1 (en) | 2003-12-12 | 2009-06-09 | Pacesetter, Inc. | System and method for emulating a surface EKG using internal cardiac signals sensed by an implantable medical device |
US7933643B1 (en) | 2003-12-12 | 2011-04-26 | Pacesetter, Inc. | System and method for displaying an emulated surface EKG using an external programming device |
US7945314B1 (en) | 2003-12-12 | 2011-05-17 | Pacesetter, Inc. | System and method for emulating a surface EKG for use with transtelephonic monitoring of an implantable medical device |
US7349732B1 (en) * | 2003-12-12 | 2008-03-25 | Pacesetter, Inc. | System and method for emulating a surface EKG using internal cardiac signals sensed by an implantable medical device |
US20050165456A1 (en) * | 2003-12-19 | 2005-07-28 | Brian Mann | Digital electrode for cardiac rhythm management |
US20050137483A1 (en) * | 2003-12-22 | 2005-06-23 | Fischell Robert E. | Electrogram signal filtering in systems for detecting ischemia |
US20070129639A1 (en) * | 2004-01-11 | 2007-06-07 | Hongxuan Zhang | Methods and analysis for cardiac ischemia detection |
US20050159666A1 (en) * | 2004-01-21 | 2005-07-21 | Christopher Pearce | Apparatus and methods for documenting myocardial ischemia |
DE102004005179B4 (en) * | 2004-02-02 | 2006-07-13 | Wobben, Aloys, Dipl.-Ing. | Wind turbine |
US7840263B2 (en) | 2004-02-27 | 2010-11-23 | Cardiac Pacemakers, Inc. | Method and apparatus for device controlled gene expression |
US7181269B1 (en) | 2004-04-12 | 2007-02-20 | Pacesetter, Inc. | Implantable device that diagnoses ischemia and myocardial infarction and method |
WO2005112749A1 (en) * | 2004-05-12 | 2005-12-01 | Zoll Medical Corporation | Ecg rhythm advisory method |
US7860559B2 (en) * | 2004-05-26 | 2010-12-28 | Angel Medical Systems, Inc. | Means and method for the detection of cardiac events |
US7996083B2 (en) * | 2004-06-02 | 2011-08-09 | Cardiac Pacemakers, Inc. | Far-field sensing channel for implantable cardiac device |
US7764995B2 (en) * | 2004-06-07 | 2010-07-27 | Cardiac Pacemakers, Inc. | Method and apparatus to modulate cellular regeneration post myocardial infarct |
US20050277841A1 (en) * | 2004-06-10 | 2005-12-15 | Adnan Shennib | Disposable fetal monitor patch |
US7610092B2 (en) * | 2004-12-21 | 2009-10-27 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US7765001B2 (en) | 2005-08-31 | 2010-07-27 | Ebr Systems, Inc. | Methods and systems for heart failure prevention and treatments using ultrasound and leadless implantable devices |
US7729761B2 (en) | 2004-07-14 | 2010-06-01 | Cardiac Pacemakers, Inc. | Method and apparatus for controlled gene or protein delivery |
US7356366B2 (en) | 2004-08-02 | 2008-04-08 | Cardiac Pacemakers, Inc. | Device for monitoring fluid status |
US20060030781A1 (en) * | 2004-08-05 | 2006-02-09 | Adnan Shennib | Emergency heart sensor patch |
US20060030782A1 (en) * | 2004-08-05 | 2006-02-09 | Adnan Shennib | Heart disease detection patch |
US7828711B2 (en) | 2004-08-16 | 2010-11-09 | Cardiac Pacemakers, Inc. | Method and apparatus for modulating cellular growth and regeneration using ventricular assist device |
US7567841B2 (en) | 2004-08-20 | 2009-07-28 | Cardiac Pacemakers, Inc. | Method and apparatus for delivering combined electrical and drug therapies |
US9820658B2 (en) | 2006-06-30 | 2017-11-21 | Bao Q. Tran | Systems and methods for providing interoperability among healthcare devices |
CA2481631A1 (en) * | 2004-09-15 | 2006-03-15 | Dspfactory Ltd. | Method and system for physiological signal processing |
US7532933B2 (en) | 2004-10-20 | 2009-05-12 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
WO2006045075A1 (en) | 2004-10-20 | 2006-04-27 | Boston Scientific Limited | Leadless cardiac stimulation systems |
US7981065B2 (en) | 2004-12-20 | 2011-07-19 | Cardiac Pacemakers, Inc. | Lead electrode incorporating extracellular matrix |
US8014861B2 (en) * | 2004-12-20 | 2011-09-06 | Cardiac Pacemakers, Inc. | Systems, devices and methods relating to endocardial pacing for resynchronization |
US8874204B2 (en) | 2004-12-20 | 2014-10-28 | Cardiac Pacemakers, Inc. | Implantable medical devices comprising isolated extracellular matrix |
US8060219B2 (en) | 2004-12-20 | 2011-11-15 | Cardiac Pacemakers, Inc. | Epicardial patch including isolated extracellular matrix with pacing electrodes |
US7558631B2 (en) * | 2004-12-21 | 2009-07-07 | Ebr Systems, Inc. | Leadless tissue stimulation systems and methods |
US7606621B2 (en) * | 2004-12-21 | 2009-10-20 | Ebr Systems, Inc. | Implantable transducer devices |
US20060149324A1 (en) * | 2004-12-30 | 2006-07-06 | Brian Mann | Cardiac rhythm management with interchangeable components |
US20060149330A1 (en) * | 2004-12-30 | 2006-07-06 | Brian Mann | Digitally controlled cardiac rhythm management |
US7295874B2 (en) * | 2005-01-06 | 2007-11-13 | Cardiac Pacemakers, Inc. | Intermittent stress augmentation pacing for cardioprotective effect |
US7662104B2 (en) | 2005-01-18 | 2010-02-16 | Cardiac Pacemakers, Inc. | Method for correction of posture dependence on heart sounds |
US7502644B2 (en) * | 2005-01-25 | 2009-03-10 | Pacesetter, Inc. | System and method for distinguishing among cardiac ischemia, hypoglycemia and hyperglycemia using an implantable medical device |
US7756572B1 (en) | 2005-01-25 | 2010-07-13 | Pacesetter, Inc. | System and method for efficiently distinguishing among cardiac ischemia, hypoglycemia and hyperglycemia using an implantable medical device and an external system |
US7962208B2 (en) | 2005-04-25 | 2011-06-14 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
US7590443B2 (en) * | 2005-04-27 | 2009-09-15 | Pacesetter, Inc | System and method for detecting hypoglycemia based on a paced depolarization integral using an implantable medical device |
US7894896B2 (en) | 2005-05-13 | 2011-02-22 | Cardiac Pacemakers, Inc. | Method and apparatus for initiating and delivering cardiac protection pacing |
US20060259088A1 (en) * | 2005-05-13 | 2006-11-16 | Pastore Joseph M | Method and apparatus for delivering pacing pulses using a coronary stent |
US7917210B2 (en) * | 2005-05-13 | 2011-03-29 | Cardiac Pacemakers, Inc. | Method and apparatus for cardiac protection pacing |
US8688189B2 (en) * | 2005-05-17 | 2014-04-01 | Adnan Shennib | Programmable ECG sensor patch |
US7542794B1 (en) | 2005-05-24 | 2009-06-02 | Infinite Biomedical Technologies, Llc | Method of extracting and evaluating paced heart beats using max-min transform analysis |
US7922669B2 (en) | 2005-06-08 | 2011-04-12 | Cardiac Pacemakers, Inc. | Ischemia detection using a heart sound sensor |
US20070016089A1 (en) * | 2005-07-15 | 2007-01-18 | Fischell David R | Implantable device for vital signs monitoring |
US7813778B2 (en) * | 2005-07-29 | 2010-10-12 | Spectros Corporation | Implantable tissue ischemia sensor |
US7706867B1 (en) * | 2005-08-04 | 2010-04-27 | Pacesetter, Inc. | Methods and systems to correlate arrhythmic and ischemic events |
DE102005038148B4 (en) * | 2005-08-12 | 2013-02-07 | Dräger Medical GmbH | Recording system for a medical sensor |
WO2007027691A1 (en) | 2005-08-31 | 2007-03-08 | University Of Virginia Patent Foundation | Improving the accuracy of continuous glucose sensors |
US8838215B2 (en) * | 2006-03-01 | 2014-09-16 | Angel Medical Systems, Inc. | Systems and methods of medical monitoring according to patient state |
US7774057B2 (en) | 2005-09-06 | 2010-08-10 | Cardiac Pacemakers, Inc. | Method and apparatus for device controlled gene expression for cardiac protection |
US7702392B2 (en) * | 2005-09-12 | 2010-04-20 | Ebr Systems, Inc. | Methods and apparatus for determining cardiac stimulation sites using hemodynamic data |
US7460900B1 (en) | 2005-09-14 | 2008-12-02 | Pacesetter, Inc. | Method and apparatus for detecting ischemia using changes in QRS morphology |
US9168383B2 (en) | 2005-10-14 | 2015-10-27 | Pacesetter, Inc. | Leadless cardiac pacemaker with conducted communication |
US8010209B2 (en) | 2005-10-14 | 2011-08-30 | Nanostim, Inc. | Delivery system for implantable biostimulator |
US7616990B2 (en) | 2005-10-24 | 2009-11-10 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
US8108034B2 (en) | 2005-11-28 | 2012-01-31 | Cardiac Pacemakers, Inc. | Systems and methods for valvular regurgitation detection |
US7848823B2 (en) | 2005-12-09 | 2010-12-07 | Boston Scientific Scimed, Inc. | Cardiac stimulation system |
US7885710B2 (en) | 2005-12-23 | 2011-02-08 | Cardiac Pacemakers, Inc. | Method and apparatus for tissue protection against ischemia using remote conditioning |
US7567836B2 (en) * | 2006-01-30 | 2009-07-28 | Cardiac Pacemakers, Inc. | ECG signal power vector detection of ischemia or infarction |
US7577478B1 (en) * | 2006-02-01 | 2009-08-18 | Pacesetter, Inc. | Ischemia detection for anti-arrhythmia therapy |
US20070191728A1 (en) * | 2006-02-10 | 2007-08-16 | Adnan Shennib | Intrapartum monitor patch |
US20070255184A1 (en) * | 2006-02-10 | 2007-11-01 | Adnan Shennib | Disposable labor detection patch |
US7848808B2 (en) * | 2006-02-28 | 2010-12-07 | Medtronic, Inc. | System and method for delivery of cardiac pacing in a medical device in response to ischemia |
US8781566B2 (en) * | 2006-03-01 | 2014-07-15 | Angel Medical Systems, Inc. | System and methods for sliding-scale cardiac event detection |
US8002701B2 (en) | 2006-03-10 | 2011-08-23 | Angel Medical Systems, Inc. | Medical alarm and communication system and methods |
US20070213626A1 (en) * | 2006-03-10 | 2007-09-13 | Michael Sasha John | Baseline correction in systems for detecting ischemia |
US9675290B2 (en) | 2012-10-30 | 2017-06-13 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
US8224415B2 (en) | 2009-01-29 | 2012-07-17 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
US7610086B1 (en) * | 2006-03-31 | 2009-10-27 | Pacesetter, Inc. | System and method for detecting cardiac ischemia in real-time using a pattern classifier implemented within an implanted medical device |
US9326709B2 (en) | 2010-03-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
US8600497B1 (en) | 2006-03-31 | 2013-12-03 | Pacesetter, Inc. | Systems and methods to monitor and treat heart failure conditions |
US7794404B1 (en) * | 2006-03-31 | 2010-09-14 | Pacesetter, Inc | System and method for estimating cardiac pressure using parameters derived from impedance signals detected by an implantable medical device |
US8219173B2 (en) | 2008-09-30 | 2012-07-10 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
US9392969B2 (en) | 2008-08-31 | 2016-07-19 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
US7630748B2 (en) | 2006-10-25 | 2009-12-08 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
US8712519B1 (en) | 2006-03-31 | 2014-04-29 | Pacesetter, Inc. | Closed-loop adaptive adjustment of pacing therapy based on cardiogenic impedance signals detected by an implantable medical device |
US7539532B2 (en) * | 2006-05-12 | 2009-05-26 | Bao Tran | Cuffless blood pressure monitoring appliance |
US8323189B2 (en) | 2006-05-12 | 2012-12-04 | Bao Tran | Health monitoring appliance |
US9060683B2 (en) | 2006-05-12 | 2015-06-23 | Bao Tran | Mobile wireless appliance |
US8968195B2 (en) | 2006-05-12 | 2015-03-03 | Bao Tran | Health monitoring appliance |
US7558622B2 (en) | 2006-05-24 | 2009-07-07 | Bao Tran | Mesh network stroke monitoring appliance |
US7539533B2 (en) | 2006-05-16 | 2009-05-26 | Bao Tran | Mesh network monitoring appliance |
US20100312130A1 (en) * | 2006-06-27 | 2010-12-09 | Yi Zhang | Graded response to myocardial ischemia |
US8000780B2 (en) * | 2006-06-27 | 2011-08-16 | Cardiac Pacemakers, Inc. | Detection of myocardial ischemia from the time sequence of implanted sensor measurements |
US7840281B2 (en) | 2006-07-21 | 2010-11-23 | Boston Scientific Scimed, Inc. | Delivery of cardiac stimulation devices |
US8290600B2 (en) | 2006-07-21 | 2012-10-16 | Boston Scientific Scimed, Inc. | Electrical stimulation of body tissue using interconnected electrode assemblies |
WO2008034005A2 (en) | 2006-09-13 | 2008-03-20 | Boston Scientific Scimed, Inc. | Cardiac stimulation using leadless electrode assemblies |
US8219210B2 (en) * | 2006-10-02 | 2012-07-10 | Cardiac Pacemakers, Inc. | Method and apparatus for identification of ischemic/infarcted regions and therapy optimization |
US8108035B1 (en) | 2006-10-18 | 2012-01-31 | Pacesetter, Inc. | Systems and methods for detecting and compensating for changes in posture during ischemia detection a using an implantable medical device |
US8155731B1 (en) | 2006-10-18 | 2012-04-10 | Pacesetter, Inc. | Systems and methods for detecting and compensating for changes in posture during ischemia detection using an implantable medical device |
US8135548B2 (en) | 2006-10-26 | 2012-03-13 | Abbott Diabetes Care Inc. | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
US7717855B2 (en) * | 2006-12-06 | 2010-05-18 | The Hospital For Sick Children | System for performing remote ischemic preconditioning |
WO2008077091A2 (en) * | 2006-12-19 | 2008-06-26 | Cherik Bulkes | Signal sensing in an implanted apparatus with an internal reference |
US20080177156A1 (en) * | 2007-01-19 | 2008-07-24 | Cardiac Pacemakers, Inc. | Ischemia detection using pressure sensor |
US7736319B2 (en) | 2007-01-19 | 2010-06-15 | Cardiac Pacemakers, Inc. | Ischemia detection using heart sound timing |
US8265739B1 (en) | 2007-01-19 | 2012-09-11 | Pacesetter, Inc. | Systems and methods for distinguishing cardiac ischemia from systemic influences on IEGM morphology using an implantable medical device |
US7894884B2 (en) * | 2007-01-31 | 2011-02-22 | Medtronic, Inc. | System and method for ischemia classification with implantable medical device |
US8798723B2 (en) * | 2007-01-31 | 2014-08-05 | Medtronic, Inc. | System and method for ischemia classification with implantable medical device |
US8275463B1 (en) | 2007-02-01 | 2012-09-25 | Pacesetter, Inc. | Recording a context for sensed biological data |
AU2008213677A1 (en) | 2007-02-06 | 2008-08-14 | Glumetrics, Inc. | Optical systems and methods for rationmetric measurement of blood glucose concentration |
US20090018426A1 (en) * | 2007-05-10 | 2009-01-15 | Glumetrics, Inc. | Device and methods for calibrating analyte sensors |
US7751863B2 (en) | 2007-02-06 | 2010-07-06 | Glumetrics, Inc. | Optical determination of ph and glucose |
US8155756B2 (en) | 2007-02-16 | 2012-04-10 | Pacesetter, Inc. | Motion-based optimization for placement of cardiac stimulation electrodes |
US8732188B2 (en) | 2007-02-18 | 2014-05-20 | Abbott Diabetes Care Inc. | Method and system for providing contextual based medication dosage determination |
US8930203B2 (en) | 2007-02-18 | 2015-01-06 | Abbott Diabetes Care Inc. | Multi-function analyte test device and methods therefor |
US20100280563A1 (en) * | 2007-02-28 | 2010-11-04 | Anne Norlin-Weissenrieder | Device and method for detecting and treating a myocardial infarction using photobiomodulation |
US8615296B2 (en) | 2007-03-06 | 2013-12-24 | Cardiac Pacemakers, Inc. | Method and apparatus for closed-loop intermittent cardiac stress augmentation pacing |
US9179852B2 (en) | 2007-03-12 | 2015-11-10 | Medtronic, Inc. | Heart monitoring systems, apparatus and methods adapted to detect myocardial ischemia |
US7949388B1 (en) | 2007-03-16 | 2011-05-24 | Pacesetter, Inc. | Methods and systems to characterize ST segment variation over time |
US8504153B2 (en) | 2007-04-04 | 2013-08-06 | Pacesetter, Inc. | System and method for estimating cardiac pressure based on cardiac electrical conduction delays using an implantable medical device |
US8208999B2 (en) | 2007-04-04 | 2012-06-26 | Pacesetter, Inc. | System and method for estimating electrical conduction delays from immittance values measured using an implantable medical device |
CA2686065A1 (en) | 2007-05-10 | 2008-11-20 | Glumetrics, Inc. | Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement |
US8718773B2 (en) | 2007-05-23 | 2014-05-06 | Ebr Systems, Inc. | Optimizing energy transmission in a leadless tissue stimulation system |
US20100105993A1 (en) * | 2007-05-23 | 2010-04-29 | Ic Therapeutics, Inc. | Methods and apparatus for noninvasive ischemic conditioning |
WO2008148062A1 (en) * | 2007-05-23 | 2008-12-04 | Ic Therapeutics, Inc. | Apparatus and methods for controlled ischemic conditioning |
US7769436B1 (en) | 2007-06-04 | 2010-08-03 | Pacesetter, Inc. | System and method for adaptively adjusting cardiac ischemia detection thresholds and other detection thresholds used by an implantable medical device |
US7865232B1 (en) | 2007-08-07 | 2011-01-04 | Pacesetter, Inc. | Method and system for automatically calibrating ischemia detection parameters |
US8019410B1 (en) | 2007-08-22 | 2011-09-13 | Pacesetter, Inc. | System and method for detecting hypoglycemia using an implantable medical device based on pre-symptomatic physiological responses |
JP2010537748A (en) * | 2007-08-31 | 2010-12-09 | ユニヴァーシティ オブ ピッツバーグ オブ ザ コモンウェルス システム オブ ハイアー エデュケイション | Implantable device, system including the device, and method of using the device |
WO2009036256A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Injectable physiological monitoring system |
US8790257B2 (en) | 2007-09-14 | 2014-07-29 | Corventis, Inc. | Multi-sensor patient monitor to detect impending cardiac decompensation |
EP3922171A1 (en) | 2007-09-14 | 2021-12-15 | Medtronic Monitoring, Inc. | Adherent cardiac monitor with advanced sensing capabilities |
EP2194858B1 (en) | 2007-09-14 | 2017-11-22 | Corventis, Inc. | Medical device automatic start-up upon contact to patient tissue |
EP2194847A1 (en) | 2007-09-14 | 2010-06-16 | Corventis, Inc. | Adherent device with multiple physiological sensors |
US20090076346A1 (en) | 2007-09-14 | 2009-03-19 | Corventis, Inc. | Tracking and Security for Adherent Patient Monitor |
WO2009037748A1 (en) * | 2007-09-19 | 2009-03-26 | Drug Safety Testing Center Co., Ltd. | Safety pharmacological test method |
US8200318B2 (en) * | 2007-09-21 | 2012-06-12 | University of Pittsburgh—of the Commonwealth System of Higher Education | Electrocardiogram reconstruction from implanted device electrograms |
US9980661B2 (en) | 2007-09-21 | 2018-05-29 | University of Pittsburgh—of the Commonwealth System of Higher Education | Electrocardiogram reconstruction from implanted device electrograms |
US8469897B2 (en) * | 2007-10-15 | 2013-06-25 | Pacesetter, Inc. | Method and system for tracking quality of life in patients with angina |
US8216138B1 (en) | 2007-10-23 | 2012-07-10 | Abbott Diabetes Care Inc. | Correlation of alternative site blood and interstitial fluid glucose concentrations to venous glucose concentration |
US8396541B2 (en) | 2007-10-24 | 2013-03-12 | Siemens Medical Solutions Usa, Inc. | Signal analysis of cardiac and other patient medical signals |
JP5631215B2 (en) | 2007-11-21 | 2014-11-26 | メドトロニック ミニメド インコーポレイテッド | Blood sugar management maintenance system |
US8204592B1 (en) | 2007-12-03 | 2012-06-19 | Pacesetter, Inc. | System and method for generating and using cardiac ischemia diagnostics based on arrhythmia precursors and arrhythmia episodes |
JP5667448B2 (en) * | 2007-12-18 | 2015-02-12 | コーニンクレッカ フィリップス エヌ ヴェ | Automatic identification of suspect coronary arteries using anatomically oriented ECG data display |
US20090164239A1 (en) | 2007-12-19 | 2009-06-25 | Abbott Diabetes Care, Inc. | Dynamic Display Of Glucose Information |
US8382667B2 (en) | 2010-10-01 | 2013-02-26 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8571643B2 (en) | 2010-09-16 | 2013-10-29 | Flint Hills Scientific, Llc | Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex |
US8337404B2 (en) | 2010-10-01 | 2012-12-25 | Flint Hills Scientific, Llc | Detecting, quantifying, and/or classifying seizures using multimodal data |
US8548586B2 (en) | 2008-01-29 | 2013-10-01 | Cardiac Pacemakers, Inc. | Configurable intermittent pacing therapy |
EP2254663B1 (en) | 2008-02-07 | 2012-08-01 | Cardiac Pacemakers, Inc. | Wireless tissue electrostimulation |
WO2009114548A1 (en) | 2008-03-12 | 2009-09-17 | Corventis, Inc. | Heart failure decompensation prediction based on cardiac rhythm |
WO2009120636A1 (en) * | 2008-03-25 | 2009-10-01 | Ebr Systems, Inc. | Temporary electrode connection for wireless pacing systems |
WO2009129186A2 (en) * | 2008-04-17 | 2009-10-22 | Glumetrics, Inc. | Sensor for percutaneous intravascular deployment without an indwelling cannula |
WO2009146214A1 (en) | 2008-04-18 | 2009-12-03 | Corventis, Inc. | Method and apparatus to measure bioelectric impedance of patient tissue |
US8019409B2 (en) | 2008-06-09 | 2011-09-13 | Pacesetter, Inc. | Cardiac resynchronization therapy optimization using electromechanical delay from realtime electrode motion tracking |
US9409012B2 (en) | 2008-06-19 | 2016-08-09 | Cardiac Pacemakers, Inc. | Pacemaker integrated with vascular intervention catheter |
US8639357B2 (en) | 2008-06-19 | 2014-01-28 | Cardiac Pacemakers, Inc. | Pacing catheter with stent electrode |
US8457738B2 (en) | 2008-06-19 | 2013-06-04 | Cardiac Pacemakers, Inc. | Pacing catheter for access to multiple vessels |
US8244352B2 (en) | 2008-06-19 | 2012-08-14 | Cardiac Pacemakers, Inc. | Pacing catheter releasing conductive liquid |
US9037235B2 (en) | 2008-06-19 | 2015-05-19 | Cardiac Pacemakers, Inc. | Pacing catheter with expandable distal end |
US20100023081A1 (en) * | 2008-07-28 | 2010-01-28 | Sarah Anne Audet | Comprehensive System for Detection of Coronary Syndrome, Cardiac Ischemia and Myocardial Infarction |
US20100057158A1 (en) * | 2008-08-26 | 2010-03-04 | Pacesetter, Inc. | Neurostimulation Based On Glycemic Condition |
WO2010030454A1 (en) * | 2008-09-12 | 2010-03-18 | Cardiac Pacemakers, Inc. | Chronically implanted abdominal pressure sensor for continuous ambulatory assessment of renal functions |
US8417344B2 (en) | 2008-10-24 | 2013-04-09 | Cyberonics, Inc. | Dynamic cranial nerve stimulation based on brain state determination from cardiac data |
US9301698B2 (en) | 2008-10-31 | 2016-04-05 | Medtronic, Inc. | Method and apparatus to detect ischemia with a pressure sensor |
US9326707B2 (en) | 2008-11-10 | 2016-05-03 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
US8457724B2 (en) * | 2008-12-11 | 2013-06-04 | Siemens Medical Solutions Usa, Inc. | System for heart performance characterization and abnormality detection |
US8103456B2 (en) | 2009-01-29 | 2012-01-24 | Abbott Diabetes Care Inc. | Method and device for early signal attenuation detection using blood glucose measurements |
US8527068B2 (en) | 2009-02-02 | 2013-09-03 | Nanostim, Inc. | Leadless cardiac pacemaker with secondary fixation capability |
US20100234692A1 (en) * | 2009-03-13 | 2010-09-16 | Bo-Jau Kuo | System for health management used in vehicle and method thereof |
US8630692B2 (en) | 2009-04-30 | 2014-01-14 | Pacesetter, Inc. | Method and implantable system for blood-glucose concentration monitoring using parallel methodologies |
EP2419015A4 (en) | 2009-04-16 | 2014-08-20 | Abbott Diabetes Care Inc | Analyte sensor calibration management |
US8827912B2 (en) | 2009-04-24 | 2014-09-09 | Cyberonics, Inc. | Methods and systems for detecting epileptic events using NNXX, optionally with nonlinear analysis parameters |
US8239028B2 (en) | 2009-04-24 | 2012-08-07 | Cyberonics, Inc. | Use of cardiac parameters in methods and systems for treating a chronic medical condition |
US8391964B2 (en) * | 2009-05-11 | 2013-03-05 | Medtronic, Inc. | Detecting electrical conduction abnormalities in a heart |
DK2429477T3 (en) * | 2009-05-13 | 2013-10-21 | Hospital For Sick Children | performance improvement |
WO2010132203A1 (en) | 2009-05-15 | 2010-11-18 | Cardiac Pacemakers, Inc. | Pacing system with safety control during mode transition |
US8958873B2 (en) | 2009-05-28 | 2015-02-17 | Cardiac Pacemakers, Inc. | Method and apparatus for safe and efficient delivery of cardiac stress augmentation pacing |
US8672855B2 (en) | 2009-07-08 | 2014-03-18 | Pacesetter, Inc. | Methods and systems that monitor for an impending myocardial infarction |
US8812104B2 (en) | 2009-09-23 | 2014-08-19 | Cardiac Pacemakers, Inc. | Method and apparatus for automated control of pacing post-conditioning |
WO2011041469A1 (en) | 2009-09-29 | 2011-04-07 | Abbott Diabetes Care Inc. | Method and apparatus for providing notification function in analyte monitoring systems |
EP2483679A4 (en) | 2009-09-30 | 2013-04-24 | Glumetrics Inc | Sensors with thromboresistant coating |
JP5503012B2 (en) | 2009-10-30 | 2014-05-28 | カーディアック ペースメイカーズ, インコーポレイテッド | Pacemaker using vagus surge and response |
WO2011053881A1 (en) | 2009-10-30 | 2011-05-05 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
US8467843B2 (en) | 2009-11-04 | 2013-06-18 | Glumetrics, Inc. | Optical sensor configuration for ratiometric correction of blood glucose measurement |
US20110152658A1 (en) * | 2009-12-17 | 2011-06-23 | Glumetrics, Inc. | Identification of aberrant measurements of in vivo glucose concentration using temperature |
EP2531163A1 (en) * | 2010-02-01 | 2012-12-12 | The Hospital For Sick Children | Remote ischemic conditioning for treatment and preventon of restenosis |
CA2795053A1 (en) | 2010-03-31 | 2011-10-06 | The Hospital For Sick Children | Use of remote ischemic conditioning to improve outcome after myocardial infarction |
US9393025B2 (en) | 2010-04-08 | 2016-07-19 | The Hospital For Sick Children | Use of remote ischemic conditioning for traumatic injury |
US10238362B2 (en) | 2010-04-26 | 2019-03-26 | Gary And Mary West Health Institute | Integrated wearable device for detection of fetal heart rate and material uterine contractions with wireless communication capability |
US8649871B2 (en) | 2010-04-29 | 2014-02-11 | Cyberonics, Inc. | Validity test adaptive constraint modification for cardiac data used for detection of state changes |
US8562536B2 (en) | 2010-04-29 | 2013-10-22 | Flint Hills Scientific, Llc | Algorithm for detecting a seizure from cardiac data |
US8831732B2 (en) | 2010-04-29 | 2014-09-09 | Cyberonics, Inc. | Method, apparatus and system for validating and quantifying cardiac beat data quality |
WO2011140518A1 (en) * | 2010-05-06 | 2011-11-10 | West Wireless Health Institute | Multipurpose, modular platform for mobile medical instrumentation |
US8679009B2 (en) | 2010-06-15 | 2014-03-25 | Flint Hills Scientific, Llc | Systems approach to comorbidity assessment |
US8635046B2 (en) | 2010-06-23 | 2014-01-21 | Abbott Diabetes Care Inc. | Method and system for evaluating analyte sensor response characteristics |
US10092229B2 (en) | 2010-06-29 | 2018-10-09 | Abbott Diabetes Care Inc. | Calibration of analyte measurement system |
US8641646B2 (en) | 2010-07-30 | 2014-02-04 | Cyberonics, Inc. | Seizure detection using coordinate data |
US8684921B2 (en) | 2010-10-01 | 2014-04-01 | Flint Hills Scientific Llc | Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis |
US8543205B2 (en) | 2010-10-12 | 2013-09-24 | Nanostim, Inc. | Temperature sensor for a leadless cardiac pacemaker |
US9060692B2 (en) | 2010-10-12 | 2015-06-23 | Pacesetter, Inc. | Temperature sensor for a leadless cardiac pacemaker |
JP2013540022A (en) | 2010-10-13 | 2013-10-31 | ナノスティム・インコーポレイテッド | Leadless cardiac pacemaker with screw anti-rotation element |
US8688200B2 (en) | 2010-10-29 | 2014-04-01 | Medtronic, Inc. | Ischemia detection and classification |
US9717412B2 (en) | 2010-11-05 | 2017-08-01 | Gary And Mary West Health Institute | Wireless fetal monitoring system |
US8868168B2 (en) | 2010-11-11 | 2014-10-21 | Siemens Medical Solutions Usa, Inc. | System for cardiac condition characterization using electrophysiological signal data |
US8818494B2 (en) | 2010-11-29 | 2014-08-26 | Siemens Medical Solutions Usa, Inc. | System for ventricular function abnormality detection and characterization |
US8615310B2 (en) | 2010-12-13 | 2013-12-24 | Pacesetter, Inc. | Delivery catheter systems and methods |
EP3090779B1 (en) | 2010-12-13 | 2017-11-08 | Pacesetter, Inc. | Pacemaker retrieval systems |
CN103328040B (en) | 2010-12-20 | 2016-09-14 | 内诺斯蒂姆股份有限公司 | There is the pacemaker without wire of radially fixed mechanism |
US9504390B2 (en) | 2011-03-04 | 2016-11-29 | Globalfoundries Inc. | Detecting, assessing and managing a risk of death in epilepsy |
WO2012142502A2 (en) | 2011-04-15 | 2012-10-18 | Dexcom Inc. | Advanced analyte sensor calibration and error detection |
US8764789B2 (en) | 2011-04-15 | 2014-07-01 | CellAegis Devices Inc. | System for performing remote ischemic conditioning |
US9498162B2 (en) | 2011-04-25 | 2016-11-22 | Cyberonics, Inc. | Identifying seizures using heart data from two or more windows |
US9402550B2 (en) | 2011-04-29 | 2016-08-02 | Cybertronics, Inc. | Dynamic heart rate threshold for neurological event detection |
US8684942B2 (en) | 2011-05-25 | 2014-04-01 | Siemens Medical Solutions Usa, Inc. | System for cardiac impairment detection based on signal regularity |
US8989852B2 (en) | 2011-08-10 | 2015-03-24 | Pacesetter, Inc. | Systems and methods for use by implantable medical devices for detecting and discriminating stroke and cardiac ischemia using electrocardiac signals |
US9549677B2 (en) | 2011-10-14 | 2017-01-24 | Flint Hills Scientific, L.L.C. | Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm |
US9622691B2 (en) | 2011-10-31 | 2017-04-18 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
WO2013067496A2 (en) | 2011-11-04 | 2013-05-10 | Nanostim, Inc. | Leadless cardiac pacemaker with integral battery and redundant welds |
US8903480B2 (en) | 2012-04-11 | 2014-12-02 | Siemens Medical Solutions Usa, Inc. | System for cardiac condition detection using heart waveform area associated analysis |
US10448839B2 (en) | 2012-04-23 | 2019-10-22 | Livanova Usa, Inc. | Methods, systems and apparatuses for detecting increased risk of sudden death |
US10905884B2 (en) | 2012-07-20 | 2021-02-02 | Cardialen, Inc. | Multi-stage atrial cardioversion therapy leads |
EP2879758B1 (en) | 2012-08-01 | 2018-04-18 | Pacesetter, Inc. | Biostimulator circuit with flying cell |
US10095659B2 (en) | 2012-08-03 | 2018-10-09 | Fluke Corporation | Handheld devices, systems, and methods for measuring parameters |
USD708338S1 (en) | 2012-08-15 | 2014-07-01 | CellAegis Devices Inc. | Cuff for remote ischemic conditioning |
US8888709B2 (en) | 2012-09-12 | 2014-11-18 | Boston Scientific Scimed, Inc. | Method and apparatus for sensing and avoiding cardiac conduction system during valve deployment |
WO2014052136A1 (en) | 2012-09-26 | 2014-04-03 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
US9865176B2 (en) | 2012-12-07 | 2018-01-09 | Koninklijke Philips N.V. | Health monitoring system |
US10220211B2 (en) | 2013-01-22 | 2019-03-05 | Livanova Usa, Inc. | Methods and systems to diagnose depression |
US9020583B2 (en) | 2013-03-13 | 2015-04-28 | Siemens Medical Solutions Usa, Inc. | Patient signal analysis and characterization |
US9474475B1 (en) | 2013-03-15 | 2016-10-25 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
WO2014167423A2 (en) | 2013-03-15 | 2014-10-16 | The Hospital For Sick Children | Methods for modulating autophagy using remote ischemic conditioning |
JP6586076B2 (en) * | 2013-03-15 | 2019-10-02 | フルークコーポレイションFluke Corporation | Visual audiovisual annotation on infrared images using a separate wireless mobile device |
CA2904504A1 (en) | 2013-03-15 | 2014-09-18 | The Hospital For Sick Children | Treatment of erectile dysfunction using remote ischemic conditioning |
US10433773B1 (en) | 2013-03-15 | 2019-10-08 | Abbott Diabetes Care Inc. | Noise rejection methods and apparatus for sparsely sampled analyte sensor data |
US10076285B2 (en) | 2013-03-15 | 2018-09-18 | Abbott Diabetes Care Inc. | Sensor fault detection using analyte sensor data pattern comparison |
AU2013203746B2 (en) | 2013-03-15 | 2015-05-07 | Cellaegis Devices, Inc. | Gas Powered System for Performing Remote Ischemic Conditioning |
WO2014199239A2 (en) | 2013-03-15 | 2014-12-18 | The Hospital For Sick Children | Methods relating to the use of remote ischemic conditioning |
US9192315B2 (en) | 2013-06-05 | 2015-11-24 | Siemens Medical Solutions Usa, Inc. | Patient signal analysis and characterization based on late potentials |
US9277889B2 (en) | 2013-12-16 | 2016-03-08 | Siemens Medical Solutions Usa, Inc. | Patient signal analysis based on actiniform segmentation |
US9766270B2 (en) | 2013-12-30 | 2017-09-19 | Fluke Corporation | Wireless test measurement |
WO2015153482A1 (en) | 2014-03-30 | 2015-10-08 | Abbott Diabetes Care Inc. | Method and apparatus for determining meal start and peak events in analyte monitoring systems |
US9782092B2 (en) | 2014-11-14 | 2017-10-10 | Siemens Medical Solutions Usa, Inc. | Patient signal analysis based on vector analysis |
WO2018062207A1 (en) | 2016-09-27 | 2018-04-05 | テルモ株式会社 | Myocardial infarction detection method, myocardial infarction detection apparatus, and medical instrument |
WO2018089311A1 (en) | 2016-11-08 | 2018-05-17 | Cardiac Pacemakers, Inc | Implantable medical device for atrial deployment |
US11331022B2 (en) | 2017-10-24 | 2022-05-17 | Dexcom, Inc. | Pre-connected analyte sensors |
US11943876B2 (en) | 2017-10-24 | 2024-03-26 | Dexcom, Inc. | Pre-connected analyte sensors |
US10973429B2 (en) * | 2018-01-23 | 2021-04-13 | Chelak Iecg, Inc. | Precise localization of cardiac arrhythmia using internal electrocardiograph (ECG) signals sensed and stored by implantable device |
WO2022040235A1 (en) | 2020-08-17 | 2022-02-24 | Ebr Systems, Inc. | Implantable stimulation assemblies having tissue engagement mechanisms, and associated systems and methods |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5135004A (en) * | 1991-03-12 | 1992-08-04 | Incontrol, Inc. | Implantable myocardial ischemia monitor and related method |
US5330505A (en) * | 1992-05-08 | 1994-07-19 | Leonard Bloom | System for and method of treating a malfunctioning heart |
US5531768A (en) * | 1995-02-21 | 1996-07-02 | Incontrol, Inc. | Implantable atrial defibrillator having ischemia coordinated intervention therapy and method |
US5999853A (en) * | 1998-03-02 | 1999-12-07 | Vitatron Medical, B.V. | Dual chamber pacemaker with single pass lead and with bipolar and unipolar signal processing capability |
US6057758A (en) * | 1998-05-20 | 2000-05-02 | Hewlett-Packard Company | Handheld clinical terminal |
Family Cites Families (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4172451A (en) | 1978-04-06 | 1979-10-30 | Medical Evaluation Devices And Instruments Corp. | Intracardial electrode and a method of manufacture thereof |
US4681117A (en) | 1983-02-15 | 1987-07-21 | Brodman Richard F | Intracardiac catheter and a method for detecting myocardial ischemia |
US4595012A (en) | 1984-01-13 | 1986-06-17 | American Hospital Supply Corporation | Lumen mounted electrodes for pacing and intra-cardiac ECG sensing |
US4727877A (en) | 1984-12-18 | 1988-03-01 | Medtronic, Inc. | Method and apparatus for low energy endocardial defibrillation |
US4751471A (en) * | 1985-08-21 | 1988-06-14 | Spring Creek Institute, Inc. | Amplifying circuit particularly adapted for amplifying a biopotential input signal |
US4798211A (en) | 1986-04-25 | 1989-01-17 | Daniel Goor | Diagnostic methods and apparatus employing monitoring of myocardial ischemia |
US4830006B1 (en) | 1986-06-17 | 1997-10-28 | Intermedics Inc | Implantable cardiac stimulator for detection and treatment of ventricular arrhythmias |
US5014696A (en) | 1987-01-14 | 1991-05-14 | Medtronic, Inc. | Endocardial defibrillation electrode system |
US5365426A (en) | 1987-03-13 | 1994-11-15 | The University Of Maryland | Advanced signal processing methodology for the detection, localization and quantification of acute myocardial ischemia |
US4974162A (en) | 1987-03-13 | 1990-11-27 | University Of Maryland | Advanced signal processing methodology for the detection, localization and quantification of acute myocardial ischemia |
US4930075A (en) | 1987-07-13 | 1990-05-29 | The Board Of Trustees Of The Leland Stanford Junior University | Technique to evaluate myocardial ischemia from ECG parameters |
DE3732640C1 (en) | 1987-09-28 | 1989-05-18 | Alt Eckhard | Medical device for determining physiological functional parameters |
US4924875A (en) | 1987-10-09 | 1990-05-15 | Biometrak Corporation | Cardiac biopotential analysis system and method |
US5010888A (en) | 1988-03-25 | 1991-04-30 | Arzco Medical Electronics, Inc. | Method and apparatus for detection of posterior ischemia |
CA1327838C (en) * | 1988-06-13 | 1994-03-15 | Fred Zacouto | Implantable device to prevent blood clotting disorders |
FR2637807B1 (en) * | 1988-10-14 | 1997-10-31 | Zacouto Fred | DEVICE FOR PROTECTION AGAINST BLOOD-RELATED CONDITIONS, IN PARTICULAR THROMBOSIS, EMBOLIES, HEMORRHAGIA, HEMOPATHIES AND PRESENCE OF ABNORMAL ELEMENTS IN THE BLOOD |
US5025786A (en) | 1988-07-21 | 1991-06-25 | Siegel Sharon B | Intracardiac catheter and method for detecting and diagnosing myocardial ischemia |
US4932407A (en) | 1988-12-15 | 1990-06-12 | Medtronic, Inc. | Endocardial defibrillation electrode system |
US5046504A (en) * | 1989-02-01 | 1991-09-10 | Corazonix Corporation | Method and apparatus for analyzing and interpreting electrocardiograms using spectro-temporal mapping |
US5111816A (en) | 1989-05-23 | 1992-05-12 | Ventritex | System configuration for combined defibrillator/pacemaker |
US5077667A (en) * | 1989-07-10 | 1991-12-31 | The Ohio State University | Measurement of the approximate elapsed time of ventricular fibrillation and monitoring the response of the heart to therapy |
WO1991013587A1 (en) | 1990-03-16 | 1991-09-19 | Seismed Instruments, Inc. | Myocardial ischemia detection system |
US5713926A (en) * | 1990-04-25 | 1998-02-03 | Cardiac Pacemakers, Inc. | Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode |
US5203348A (en) | 1990-06-06 | 1993-04-20 | Cardiac Pacemakers, Inc. | Subcutaneous defibrillation electrodes |
JPH04250169A (en) * | 1990-07-20 | 1992-09-07 | Telectronics Nv | Patient treating apparatus and method |
US5113869A (en) * | 1990-08-21 | 1992-05-19 | Telectronics Pacing Systems, Inc. | Implantable ambulatory electrocardiogram monitor |
US5105826A (en) | 1990-10-26 | 1992-04-21 | Medtronic, Inc. | Implantable defibrillation electrode and method of manufacture |
US5158079A (en) * | 1991-02-25 | 1992-10-27 | Incontrol, Inc. | Implantable device for preventing tachyarrhythmias |
US5199428A (en) * | 1991-03-22 | 1993-04-06 | Medtronic, Inc. | Implantable electrical nerve stimulator/pacemaker with ischemia for decreasing cardiac workload |
DE69213657T2 (en) * | 1991-11-04 | 1997-01-23 | Cardiac Pacemakers | Implantable device for monitoring and stimulating the heart for diagnosis and therapy |
US5313953A (en) * | 1992-01-14 | 1994-05-24 | Incontrol, Inc. | Implantable cardiac patient monitor |
US5403351A (en) | 1993-01-11 | 1995-04-04 | Saksena; Sanjeev | Method of transvenous defibrillation/cardioversion employing an endocardial lead system |
IT1266217B1 (en) * | 1993-01-18 | 1996-12-27 | Xtrode Srl | ELECTROCATHETER FOR MAPPING AND INTERVENTION ON HEART CAVITIES. |
US5433198A (en) * | 1993-03-11 | 1995-07-18 | Desai; Jawahar M. | Apparatus and method for cardiac ablation |
DE4310412C1 (en) * | 1993-03-31 | 1994-07-21 | Manfred Dr Zehender | Device for signal analysis of the electrical potential profile of the heart excitation |
US5515859A (en) | 1993-08-24 | 1996-05-14 | Colorado Health Care Research Corp. | Myocardial infarction and ischemia detection method and apparatus |
US5431681A (en) | 1993-09-22 | 1995-07-11 | Pacesetter, Inc. | Combination pacing and defibrillating lead having sensing capability |
US5549652A (en) * | 1993-11-15 | 1996-08-27 | Pacesetter, Inc. | Cardiac wall motion-based automatic capture verification system and method |
US5411031A (en) * | 1993-11-24 | 1995-05-02 | Incontrol, Inc. | Implantable cardiac patient monitor |
US5419338A (en) * | 1994-02-22 | 1995-05-30 | City Of Hope | Autonomic nervous system testing by bi-variate spectral analysis of heart period and QT interval variability |
EP0688579B1 (en) * | 1994-06-24 | 2001-08-22 | St. Jude Medical AB | Device for heart therapy |
US5527344A (en) * | 1994-08-01 | 1996-06-18 | Illinois Institute Of Technology | Pharmacologic atrial defibrillator and method |
US5520191A (en) | 1994-10-07 | 1996-05-28 | Ortivus Medical Ab | Myocardial ischemia and infarction analysis and monitoring method and apparatus |
US6424860B1 (en) | 1994-10-07 | 2002-07-23 | Ortivus Ab | Myocardial ischemia and infarction analysis and monitoring method and apparatus |
US5545183A (en) | 1994-12-07 | 1996-08-13 | Ventritex, Inc. | Method and apparatus for delivering defibrillation therapy through a sensing electrode |
US6058328A (en) * | 1996-08-06 | 2000-05-02 | Pacesetter, Inc. | Implantable stimulation device having means for operating in a preemptive pacing mode to prevent tachyarrhythmias and method thereof |
SE9700181D0 (en) | 1997-01-22 | 1997-01-22 | Pacesetter Ab | Ischemia detector and heart stimulator provided with such an ischemia detector |
US6086582A (en) * | 1997-03-13 | 2000-07-11 | Altman; Peter A. | Cardiac drug delivery system |
SE9701121D0 (en) | 1997-03-26 | 1997-03-26 | Pacesetter Ab | Implantable heart stimulator |
SE9701122D0 (en) * | 1997-03-26 | 1997-03-26 | Pacesetter Ab | Medical implant |
US6148228A (en) * | 1998-03-05 | 2000-11-14 | Fang; Dan Oun | System and method for detecting and locating heart disease |
EP1102560A4 (en) | 1998-08-07 | 2003-03-12 | Infinite Biomedical Technologi | Implantable myocardial ischemia detection, indication and action technology |
US6112116A (en) * | 1999-02-22 | 2000-08-29 | Cathco, Inc. | Implantable responsive system for sensing and treating acute myocardial infarction |
US6115630A (en) * | 1999-03-29 | 2000-09-05 | Medtronic, Inc. | Determination of orientation of electrocardiogram signal in implantable medical devices |
US6128526A (en) * | 1999-03-29 | 2000-10-03 | Medtronic, Inc. | Method for ischemia detection and apparatus for using same |
US6115628A (en) * | 1999-03-29 | 2000-09-05 | Medtronic, Inc. | Method and apparatus for filtering electrocardiogram (ECG) signals to remove bad cycle information and for use of physiologic signals determined from said filtered ECG signals |
-
1999
- 1999-08-05 EP EP99939696A patent/EP1102560A4/en not_active Withdrawn
- 1999-08-05 WO PCT/US1999/017847 patent/WO2000007497A1/en active Application Filing
- 1999-08-05 CA CA2339506A patent/CA2339506C/en not_active Expired - Lifetime
- 1999-08-05 AU AU53940/99A patent/AU5394099A/en not_active Abandoned
- 1999-08-05 JP JP2000563185A patent/JP2002522103A/en active Pending
- 1999-08-06 US US09/369,576 patent/US6501983B1/en not_active Expired - Lifetime
-
2002
- 2002-09-15 US US10/243,701 patent/US7277745B2/en not_active Expired - Fee Related
-
2007
- 2007-06-19 US US11/765,444 patent/US20070244403A1/en not_active Abandoned
-
2009
- 2009-10-02 US US12/573,055 patent/US20100023080A1/en not_active Abandoned
-
2011
- 2011-05-31 US US13/149,872 patent/US8755870B2/en not_active Expired - Fee Related
-
2014
- 2014-03-03 US US14/195,761 patent/US20140180149A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5135004A (en) * | 1991-03-12 | 1992-08-04 | Incontrol, Inc. | Implantable myocardial ischemia monitor and related method |
US5330505A (en) * | 1992-05-08 | 1994-07-19 | Leonard Bloom | System for and method of treating a malfunctioning heart |
US5531768A (en) * | 1995-02-21 | 1996-07-02 | Incontrol, Inc. | Implantable atrial defibrillator having ischemia coordinated intervention therapy and method |
US5999853A (en) * | 1998-03-02 | 1999-12-07 | Vitatron Medical, B.V. | Dual chamber pacemaker with single pass lead and with bipolar and unipolar signal processing capability |
US6057758A (en) * | 1998-05-20 | 2000-05-02 | Hewlett-Packard Company | Handheld clinical terminal |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110230929A1 (en) * | 1998-08-07 | 2011-09-22 | Ananth Natarajan | Implantable myocardial ischemia detection, indication and action technology |
US8755870B2 (en) | 1998-08-07 | 2014-06-17 | Infinite Biomedical Technologies, Llc | Implantable myocardial ischemia detection, indication and action technology |
US20180269790A1 (en) * | 2015-11-30 | 2018-09-20 | Murata Manufacturing Co., Ltd. | Switching power supply apparatus and error correction method |
US20190140011A1 (en) * | 2017-11-07 | 2019-05-09 | Samsung Electro-Mechanics Co., Ltd. | Fan-out sensor package and camera module |
Also Published As
Publication number | Publication date |
---|---|
AU5394099A (en) | 2000-02-28 |
US20070244403A1 (en) | 2007-10-18 |
US20140180149A1 (en) | 2014-06-26 |
US20030013974A1 (en) | 2003-01-16 |
EP1102560A1 (en) | 2001-05-30 |
US7277745B2 (en) | 2007-10-02 |
WO2000007497A1 (en) | 2000-02-17 |
US8755870B2 (en) | 2014-06-17 |
US6501983B1 (en) | 2002-12-31 |
JP2002522103A (en) | 2002-07-23 |
US20110230929A1 (en) | 2011-09-22 |
EP1102560A4 (en) | 2003-03-12 |
CA2339506C (en) | 2011-05-31 |
CA2339506A1 (en) | 2000-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8755870B2 (en) | Implantable myocardial ischemia detection, indication and action technology | |
US8034000B2 (en) | Ischemia detection using a heart sound sensor | |
JP5103482B2 (en) | Heart attack detector | |
US6865419B2 (en) | Method and apparatus for measurement of mean pulmonary artery pressure from a ventricle in an ambulatory monitor | |
US7668594B2 (en) | Method and apparatus for delivering chronic and post-ischemia cardiac therapies | |
EP1423163B1 (en) | System for detecting myocardial ischemia | |
US8620416B2 (en) | System and method for ischemia classification with implantable medical device | |
PT655260E (en) | DEVICE FOR DETERMINING THE FUNCTIONING OF THE MYOCARDIO AND CORRESPONDING PROCESS | |
US10201289B2 (en) | Measuring atrial fibrillation burden using implantable device based sensors | |
US9538922B2 (en) | Monitoring an interval within the cardiac cycle | |
US8099164B2 (en) | Selectively implementable digital signal processing circuit for an implantable medical device | |
US8798723B2 (en) | System and method for ischemia classification with implantable medical device | |
US20140257070A1 (en) | Processing of lap signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |