US20090326284A1 - Method for producing pentafluoroethane - Google Patents

Method for producing pentafluoroethane Download PDF

Info

Publication number
US20090326284A1
US20090326284A1 US12/302,645 US30264507A US2009326284A1 US 20090326284 A1 US20090326284 A1 US 20090326284A1 US 30264507 A US30264507 A US 30264507A US 2009326284 A1 US2009326284 A1 US 2009326284A1
Authority
US
United States
Prior art keywords
catalyst
temperature
hydrofluoric acid
fraction
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/302,645
Other versions
US8269052B2 (en
Inventor
Bertrand Collier
Géraldine Cavallini
Béatrice Boussand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Assigned to ARKEMA FRANCE reassignment ARKEMA FRANCE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOUSSAND, BEATRICE, COLLIER, BERTRAND, CAVALLINI, GERALDINE
Publication of US20090326284A1 publication Critical patent/US20090326284A1/en
Application granted granted Critical
Publication of US8269052B2 publication Critical patent/US8269052B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/21Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms with simultaneous increase of the number of halogen atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • the present invention relates to a method for producing pentafluoroethane and more particularly relates to a method for producing pentafluoroethane by reacting perchloroethylene (PER) with hydrofluoric acid (HF), in the gas phase, in the presence of a catalyst.
  • PER perchloroethylene
  • HF hydrofluoric acid
  • CFCs chlorofluorocarbons
  • foams swelling and insulating agents
  • aerosols propellants
  • refrigeration or as intermediates for the synthesis of these constituents.
  • Efficient methods for the industrial production of pentafluoroethane are currently being sought.
  • Document EP 687660 discloses a method for producing pentafluoroethane in which reactions are set up in two reaction zones comprising a first reaction zone in which perchloroethylene is reacted with hydrogen fluoride, in the gas phase, in the presence of a catalyst, under a pressure of between 3 bar absolute and 30 bar absolute and at a temperature of between 200° C.
  • Document EP 754170 describes a method for producing pentafluoroethane, which comprises (i) bringing perchloroethylene into contact with hydrogen fluoride, in the gas phase, in the presence of a first fluorination catalyst comprising chromic oxide, so as to form a stream of product comprising hydrochlorofluoroethane of formula C 2 H 1 Cl 1+x F 1+y , where x and y are each independently 0, 1, 2 or 3, it being understood that x+y is 3, and (ii) bringing the stream of product from step (i) into contact with hydrogen fluoride, in the gas phase, and in the presence of a second fluorination catalyst comprising zinc and/or nickel or a zinc and/or nickel compound deposited on chromic oxide, chromium fluoride or chromium oxyfluoride, so as to produce pentafluoroethane.
  • the present invention provides a method for producing pentafluoroethane from perchloroethylene which makes it possible to partly or completely solve the above-mentioned drawbacks.
  • the method according to the present invention is characterized in that it comprises a step during which perchloroethylene reacts with hydrofluoric acid, in the gas phase, in the presence of a catalyst in an adiabatic multistage reactor.
  • the temperature at the inlet of the first stage of the adiabatic reactor is between 280 and 350° C., advantageously between 320 and 340° C.
  • the temperature at the inlet of the subsequent stages of the adiabatic reactor may also range between 280 and 350° C., preferably between 320 and 340° C.
  • the temperature at the inlet is in general lower than that at the outlet. Furthermore, the temperature at the inlet of the preceding stage is preferably lower than that at the inlet of the following stage.
  • the method according to the present invention is advantageously carried out in such a way that the temperature in the adiabatic multi-stage reactor does not exceed 410° C., preferably does not exceed 380° C.
  • the adiabatic reactor may comprise between 2 and 6 stages. A number of stages of between 2 and 4 is, however, preferred.
  • the fluorination step may be carried out in a wide pressure range, it is preferred to operate at an absolute pressure of between 1 and 10 bar, and advantageously between 1 and 4 bar.
  • the reactants are pre-vaporized before the fluorination step, and preferably vaporized and preheated to a temperature below that of the adiabatic reactor, and advantageously to a temperature of between 320 and 340° C.
  • the major part, preferably more than 90% by weight, of the vaporized and preheated reactants is introduced at the inlet of the first stage of the reactor.
  • a small part, preferably less than 10% by weight, of the vaporized and preheated reactants, preferably preheated to a temperature of between 150 and 200° C., are introduced at the inter-stage level so as to have better control of the temperature of the adiabatic reactor.
  • the preheated reactants introduced at the inlet of the first stage of the reactor are at a temperature above that of the reactants introduced at the inter-stage level.
  • the stream leaving the adiabatic multi-stage reactor is subjected to a separating step in order to obtain a fraction of light products, for instance pentafluoroethane and hydrogen chloride, and a fraction of heavy products, for instance unreacted perchloroethylene, unreacted hydrofluoric acid, and the intermediate compounds, in particular 2,2-dichloro-1,1,1-trifluoroethane ( 123 ), and 2-chloro-1,1,1,2-tetrafluoroethane ( 124 ).
  • the fraction of heavy products, after vaporization and preheating, is subsequently recycled to the reactor.
  • the intermediate compounds such as 2,2-dichloro-1,1,1-trifluoroethane and 2-chloro-1,1,1,2-tetrafluoroethane also react with hydrofluoric acid.
  • the method may be carried out continuously or batchwise, but it is preferred to carry it out continuously.
  • the HF/organic reactants molar ratio is in general between 5 and 50, preferably between 10 and 30, and advantageously between 10 and 20.
  • the contact time calculated as being the time taken for the gases to pass (under the reaction conditions) through the volume of catalyst, is preferably between 5 and 40 s, advantageously between 10 and 20 s.
  • the pressure of the fluorination step is less than 4 bar absolute, it is often advantageous to compress the reaction products before subjecting them to the separating step.
  • This compression may be carried out using a compressor, and makes it possible to perform the separation, when it is, for example, a distillation, under favorable energy conditions. In addition, it makes it possible to recover more than 99% of the unreacted hydrofluoric acid.
  • Any fluorination catalyst may be suitable for the method of the present invention.
  • the catalyst used preferably comprises the oxides, halides, oxyhalides or mineral salts of chromium, of aluminum, of cobalt, of manganese, of nickel, of iron or of zinc, and may be supported.
  • a chromium oxide (Cr 2 O 3 )-based catalyst optionally including another metal in an oxidation state above zero and selected from Ni, Co, Mn and Zn, is preferably used.
  • this catalyst may be supported on alumina, fluorinated aluminum or aluminum oxyfluoride.
  • This catalyst may be prepared in a manner known per se, from activated alumina.
  • the latter may, in a first step, be converted to aluminum fluoride or to a mixture of aluminum fluoride and alumina, by fluorination using hydrofluoric acid, optionally in the presence of air or of an inert gas such as nitrogen, at a temperature in general of between 200 and 450° C., preferably between 250 and 400° C.
  • the support is subsequently impregnated with aqueous solutions of chromium salts and nickel salts or with aqueous solutions of chromic acid, of nickel salt and of a chromium-reducing agent such as methanol.
  • chromic acid CrO 3
  • this chromium can be reduced by any means known to those skilled in the art, provided that the technique used is not harmful to the properties of the catalyst and therefore to the activity thereof.
  • the preferred reducing agent is methanol.
  • chromium and nickel salts use is preferably made of chlorides, but it is also possible to use other salts, such as, for example, oxalates, formates, acetates, nitrates and sulfates, or nickel dichromate, provided that these salts are soluble in the amount of water likely to be absorbed by the support.
  • the mixed catalyst used in the method according to the invention may also be prepared by direct impregnation of alumina with solutions of the chromium and nickel compounds mentioned above. In this case, the conversion of at least a part of the alumina to aluminum fluoride is carried out during the catalyst-activation step.
  • the activated aluminas to be used for the preparation of the mixed catalyst are well-known products that are commercially available. They are generally prepared by calcining alumina hydrates at a temperature of between 300 and 800° C.
  • the activated aluminas that can be used in the context of the present invention may contain large contents (up to 100 ppm) of sodium, without this harming the catalytic activity.
  • the mixed catalyst may contain, by mass, from 0.5% to 20% of chromium and from 0.5% to 20% of nickel, and preferably between 2% and 10% of each of the metals in a nickel/chromium atomic ratio of between 0.5 and 5, preferably in the region of 1.
  • the catalytic solid Before use in the perchloroethylene fluorination reaction, the catalytic solid is subjected beforehand to an activation process.
  • This treatment carried out “in situ” (in the fluorination reactor) or in an appropriate apparatus, generally comprises the following steps:
  • oxygen in a low amount. This amount may, according to the operating conditions, range from 0.02 mol % to 1 mol % relative to the reactants that go into the reactor.
  • the oxygen may be introduced into the reactor either in a pure state or diluted in an inert gas such as nitrogen.
  • the oxygen may also be introduced in the form of air. The introduction of oxygen, whatever the form adopted, may be carried out continuously or sequentially.
  • the adiabatic reactor may be made from materials resistant to corrosive media comprising hydrofluoric acid, for example Hastelloy and Inconel.
  • the method according to the present invention makes it possible to have good control of the exothermicity of the reaction and therefore to partly or completely avoid the drawbacks such as premature deactivation of the catalyst.
  • the method makes it possible to obtain a very high pentafluoroethane productivity.
  • this method makes it possible to recycle the unreacted reactants and the intermediate compounds without prior purification.
  • the gas stream ( 105 ) is preheated to 300° C.
  • the second stage of the reactor is fed with the gas stream from the first stage and, optionally, with the gas stream ( 106 ) comprising the reactants preheated to 180° C. and, optionally, air.
  • the temperature at the inlet of the second stage is also maintained between 320 and 340° C.
  • the third stage of the reactor is fed with the gas stream derived from the second stage and, optionally, with the gas stream ( 107 ) comprising the reactants preheated to 180° C. and, optionally, air.
  • the temperature at the inlet of the third stage is also maintained between 320 and 340° C.
  • the gas stream ( 108 ) leaving the reactor is sent to the distillation column ( 111 ), so as to give, at the top, a fraction of light products ( 109 ) comprising in particular pentafluoroethane and HCl, and at the bottom, a fraction of heavy products comprising HF, PER and intermediate compounds (predominantly 2,2-dichloro-1,1,1-trifluoroethane and 2-chloro-1,1,1,2-tetrafluoroethane).
  • the fraction of heavy products leaves the distillation column via the bottom and is subsequently recycled to the reactor, while the fraction of light products is subjected to a distillation step ( 112 ) so as to separate the HCl from the pentafluoroethane.
  • the pentafluoroethane is subsequently purified.
  • the temperature of the multi-stage reactor is maintained at no higher than 380° C., and the absolute pressure is approximately 3 bar.

Abstract

The invention relates to a method for producing pentafluoroethane, and especially to a method comprising (i) a step during which perchloroethylene and optionally 2,2-dichloro-1,1,1-trifluoroethane and/or 2-chloro-1,1,1,2-tetrafluoroethane react(s) with hydrofluoric acid in a gaseous phase in the presence of a catalyst in an adiabatic multi-stage reactor, and optionally (ii) a step of separating the flow produced in step (i) in order to obtain a fraction of light products and a fraction of heavy products.

Description

  • The present invention relates to a method for producing pentafluoroethane and more particularly relates to a method for producing pentafluoroethane by reacting perchloroethylene (PER) with hydrofluoric acid (HF), in the gas phase, in the presence of a catalyst.
  • The reaction for fluorination of perchloroethylene with HF in the gas phase in the presence of a catalyst is known. It generally results in the formation of 2,2-dichloro-1,1,1-trifluoroethane (123), 2-chloro-1,1,1,2-tetrafluoroethane (124) and pentafluoroethane (125), with 123 as predominant product.
  • These compounds (denoted hereinafter, overall, by the expression “120 series”) can be used either as substitutes for chlorofluorocarbons (CFCs) in the fields of foams (swelling and insulating agents) or aerosols (propellants) or in refrigeration, or as intermediates for the synthesis of these constituents. Efficient methods for the industrial production of pentafluoroethane are currently being sought.
  • Since the reaction for fluorination of perchloroethylene to pentafluoroethane is a strongly exothermic reaction (25-30 Kcal/mol), its use on the industrial scale poses many problems: the reaction is difficult to control, the catalyst degrades and by-products are formed in large amounts.
  • Document EP 687660 discloses a method for producing pentafluoroethane in which reactions are set up in two reaction zones comprising a first reaction zone in which perchloroethylene is reacted with hydrogen fluoride, in the gas phase, in the presence of a catalyst, under a pressure of between 3 bar absolute and 30 bar absolute and at a temperature of between 200° C. and 450° C., and a second reaction zone in which 2,2-dichloro-1,1,1-trifluoroethane and/or 2-chloro-1,1,1,2-tetrafluoroethane contained in the gases produced in the first reaction zone is (are) reacted with hydrogen fluoride, in the vapor phase, in the presence of a catalyst, under a pressure which does not exceed 5 bar absolute and at a temperature of between 250° C. and 500° C. said first reaction zone being maintained at a pressure above that of the second reaction zone.
  • Document EP 754170 describes a method for producing pentafluoroethane, which comprises (i) bringing perchloroethylene into contact with hydrogen fluoride, in the gas phase, in the presence of a first fluorination catalyst comprising chromic oxide, so as to form a stream of product comprising hydrochlorofluoroethane of formula C2H1Cl1+xF1+y, where x and y are each independently 0, 1, 2 or 3, it being understood that x+y is 3, and (ii) bringing the stream of product from step (i) into contact with hydrogen fluoride, in the gas phase, and in the presence of a second fluorination catalyst comprising zinc and/or nickel or a zinc and/or nickel compound deposited on chromic oxide, chromium fluoride or chromium oxyfluoride, so as to produce pentafluoroethane.
  • The present invention provides a method for producing pentafluoroethane from perchloroethylene which makes it possible to partly or completely solve the above-mentioned drawbacks.
  • The method according to the present invention is characterized in that it comprises a step during which perchloroethylene reacts with hydrofluoric acid, in the gas phase, in the presence of a catalyst in an adiabatic multistage reactor.
  • Preferably, the temperature at the inlet of the first stage of the adiabatic reactor is between 280 and 350° C., advantageously between 320 and 340° C. The temperature at the inlet of the subsequent stages of the adiabatic reactor may also range between 280 and 350° C., preferably between 320 and 340° C.
  • Within the same stage, the temperature at the inlet is in general lower than that at the outlet. Furthermore, the temperature at the inlet of the preceding stage is preferably lower than that at the inlet of the following stage.
  • The method according to the present invention is advantageously carried out in such a way that the temperature in the adiabatic multi-stage reactor does not exceed 410° C., preferably does not exceed 380° C.
  • The adiabatic reactor may comprise between 2 and 6 stages. A number of stages of between 2 and 4 is, however, preferred.
  • Although the fluorination step may be carried out in a wide pressure range, it is preferred to operate at an absolute pressure of between 1 and 10 bar, and advantageously between 1 and 4 bar.
  • The reactants are pre-vaporized before the fluorination step, and preferably vaporized and preheated to a temperature below that of the adiabatic reactor, and advantageously to a temperature of between 320 and 340° C.
  • The major part, preferably more than 90% by weight, of the vaporized and preheated reactants is introduced at the inlet of the first stage of the reactor. A small part, preferably less than 10% by weight, of the vaporized and preheated reactants, preferably preheated to a temperature of between 150 and 200° C., are introduced at the inter-stage level so as to have better control of the temperature of the adiabatic reactor. Preferably, the preheated reactants introduced at the inlet of the first stage of the reactor are at a temperature above that of the reactants introduced at the inter-stage level.
  • According to one embodiment of the invention, the stream leaving the adiabatic multi-stage reactor is subjected to a separating step in order to obtain a fraction of light products, for instance pentafluoroethane and hydrogen chloride, and a fraction of heavy products, for instance unreacted perchloroethylene, unreacted hydrofluoric acid, and the intermediate compounds, in particular 2,2-dichloro-1,1,1-trifluoroethane (123), and 2-chloro-1,1,1,2-tetrafluoroethane (124). The fraction of heavy products, after vaporization and preheating, is subsequently recycled to the reactor.
  • When the fraction of heavy products is recycled to the reactor, in addition to the perchloroethylene, the intermediate compounds such as 2,2-dichloro-1,1,1-trifluoroethane and 2-chloro-1,1,1,2-tetrafluoroethane also react with hydrofluoric acid.
  • The method may be carried out continuously or batchwise, but it is preferred to carry it out continuously.
  • The HF/organic reactants molar ratio is in general between 5 and 50, preferably between 10 and 30, and advantageously between 10 and 20.
  • The contact time, calculated as being the time taken for the gases to pass (under the reaction conditions) through the volume of catalyst, is preferably between 5 and 40 s, advantageously between 10 and 20 s.
  • When the pressure of the fluorination step is less than 4 bar absolute, it is often advantageous to compress the reaction products before subjecting them to the separating step. This compression may be carried out using a compressor, and makes it possible to perform the separation, when it is, for example, a distillation, under favorable energy conditions. In addition, it makes it possible to recover more than 99% of the unreacted hydrofluoric acid.
  • Any fluorination catalyst may be suitable for the method of the present invention. The catalyst used preferably comprises the oxides, halides, oxyhalides or mineral salts of chromium, of aluminum, of cobalt, of manganese, of nickel, of iron or of zinc, and may be supported. By way of example, mention may be made of alumina, aluminum fluoride or aluminum oxyfluoride as support.
  • A chromium oxide (Cr2O3)-based catalyst, optionally including another metal in an oxidation state above zero and selected from Ni, Co, Mn and Zn, is preferably used. Advantageously, this catalyst may be supported on alumina, fluorinated aluminum or aluminum oxyfluoride.
  • A mixed catalyst composed of nickel oxides, halides and/or oxyhalide and of chromium oxides, halides and/or oxyhalide, deposited on a support consisting of aluminum fluoride or of a mixture of aluminum fluorides and alumina, is most particularly suitable for the method of the present invention.
  • This catalyst may be prepared in a manner known per se, from activated alumina. The latter may, in a first step, be converted to aluminum fluoride or to a mixture of aluminum fluoride and alumina, by fluorination using hydrofluoric acid, optionally in the presence of air or of an inert gas such as nitrogen, at a temperature in general of between 200 and 450° C., preferably between 250 and 400° C. The support is subsequently impregnated with aqueous solutions of chromium salts and nickel salts or with aqueous solutions of chromic acid, of nickel salt and of a chromium-reducing agent such as methanol.
  • When chromic acid (CrO3) is used as chromium precursor, this chromium can be reduced by any means known to those skilled in the art, provided that the technique used is not harmful to the properties of the catalyst and therefore to the activity thereof. The preferred reducing agent is methanol.
  • As chromium and nickel salts, use is preferably made of chlorides, but it is also possible to use other salts, such as, for example, oxalates, formates, acetates, nitrates and sulfates, or nickel dichromate, provided that these salts are soluble in the amount of water likely to be absorbed by the support.
  • The mixed catalyst used in the method according to the invention may also be prepared by direct impregnation of alumina with solutions of the chromium and nickel compounds mentioned above. In this case, the conversion of at least a part of the alumina to aluminum fluoride is carried out during the catalyst-activation step.
  • The activated aluminas to be used for the preparation of the mixed catalyst are well-known products that are commercially available. They are generally prepared by calcining alumina hydrates at a temperature of between 300 and 800° C. The activated aluminas that can be used in the context of the present invention may contain large contents (up to 100 ppm) of sodium, without this harming the catalytic activity.
  • The mixed catalyst may contain, by mass, from 0.5% to 20% of chromium and from 0.5% to 20% of nickel, and preferably between 2% and 10% of each of the metals in a nickel/chromium atomic ratio of between 0.5 and 5, preferably in the region of 1.
  • Before use in the perchloroethylene fluorination reaction, the catalytic solid is subjected beforehand to an activation process.
  • This treatment, carried out “in situ” (in the fluorination reactor) or in an appropriate apparatus, generally comprises the following steps:
      • drying at low temperature in the presence of air or of nitrogen,
      • drying at high temperature (250 to 450° C., preferably 300 to 350° C.) under nitrogen or under air,
      • fluorination at low temperature (180 to 350° C.) by means of a mixture of hydrofluoric acid and nitrogen, with the HF content being controlled in such a way that the temperature does not exceed 350° C., and finishing under a stream of pure hydrofluoric acid or hydrofluoric acid diluted with nitrogen, at a temperature that may range up to 450° C.
  • Although not necessary for the fluorination reaction, it may be judicial to introduce, with the reactants, oxygen in a low amount. This amount may, according to the operating conditions, range from 0.02 mol % to 1 mol % relative to the reactants that go into the reactor. The oxygen may be introduced into the reactor either in a pure state or diluted in an inert gas such as nitrogen. The oxygen may also be introduced in the form of air. The introduction of oxygen, whatever the form adopted, may be carried out continuously or sequentially.
  • The adiabatic reactor may be made from materials resistant to corrosive media comprising hydrofluoric acid, for example Hastelloy and Inconel.
  • The method according to the present invention makes it possible to have good control of the exothermicity of the reaction and therefore to partly or completely avoid the drawbacks such as premature deactivation of the catalyst. In addition, the method makes it possible to obtain a very high pentafluoroethane productivity. Furthermore, this method makes it possible to recycle the unreacted reactants and the intermediate compounds without prior purification.
  • One embodiment of the invention is described with reference to the single FIGURE. An adiabatic reactor (110), consisting of three stages and containing a pre-activated, optionally supported, chromium oxide-based catalyst, is fed with a gas stream (105) comprising, on the one hand, perchloroethylene (101), hydrofluoric acid (102) and, optionally, air (103) and, on the other hand, HF, PER and intermediate compounds (predominantly 2,2-dichloro-1,1,1-trifluoroethane and 2-chloro-1,1,1,2-tetrafluoroethane) recycled from the stream (104). The gas stream (105) is preheated to 300° C. before being introduced into the reactor and the temperature at the inlet of the first stage is maintained between 320 and 340° C. The second stage of the reactor is fed with the gas stream from the first stage and, optionally, with the gas stream (106) comprising the reactants preheated to 180° C. and, optionally, air. The temperature at the inlet of the second stage is also maintained between 320 and 340° C. The third stage of the reactor is fed with the gas stream derived from the second stage and, optionally, with the gas stream (107) comprising the reactants preheated to 180° C. and, optionally, air. The temperature at the inlet of the third stage is also maintained between 320 and 340° C. the gas stream (108) leaving the reactor is sent to the distillation column (111), so as to give, at the top, a fraction of light products (109) comprising in particular pentafluoroethane and HCl, and at the bottom, a fraction of heavy products comprising HF, PER and intermediate compounds (predominantly 2,2-dichloro-1,1,1-trifluoroethane and 2-chloro-1,1,1,2-tetrafluoroethane). The fraction of heavy products leaves the distillation column via the bottom and is subsequently recycled to the reactor, while the fraction of light products is subjected to a distillation step (112) so as to separate the HCl from the pentafluoroethane. The pentafluoroethane is subsequently purified.
  • Throughout the duration of the reaction, the temperature of the multi-stage reactor is maintained at no higher than 380° C., and the absolute pressure is approximately 3 bar.

Claims (16)

1-7. (canceled)
8. A method of producing pentafluoroethane comprising the step of:
(i) reacting an organic reactant comprising perchloroethylene with hydrofluoric acid, in the gas phase, in the presence of a catalyst, in an adiabatic multi-stage reactor, to produce a product, and
(ii) optionally separating said product into a fraction of light products and a fraction of heavy products.
9. The method of claim 8, wherein said organic reactant further comprises 2,2-dichloro-1,1,1-trifluoroethane and/or 2-chloro-1,1,1,2-tetrafluoroethane.
10. The method of claim 8, wherein said adiabatic multi-stage reactor comprises a first stage comprising an inlet, the temperature at said inlet ranging from about 280° C. to about 350° C.
11. The method of claim 10, wherein the temperature at said inlet ranges from about 320° C. to about 340° C.
12. The method of claim 8, wherein the temperature in said adiabatic multi-stage reactor does not exceed 410° C.
13. The method of claim 12, wherein the temperature in said adiabatic multi-stage reactor does not exceed 380° C.
14. The method of claim 8, wherein step (i) occurs at a pressure ranging from 1 to 10 bar absolute.
15. The method of claim 14, wherein step (i) occurs at a pressure ranging from 1 to 4 bar absolute.
16. The method of claim 9, further comprising recycling said fraction of heavy products to an adiabatic multi-stage reactor.
17. The method of claim 8, wherein the molar ratio of said hydrofluoric acid to said organic reactant ranges from 5 to 50.
18. The method of claim 8, wherein the molar ratio of said hydrofluoric acid to said at least one organic reactant ranges from 10 to 30.
19. The method of claim 8, wherein the molar ratio of said hydrofluoric acid to said at least one organic reactant ranges from 10 to 20.
20. The method of claim 8, wherein said catalyst is a chromium oxide (Cr2O3)-based catalyst.
21. The method of claim 20, wherein said catalyst additionally comprises a metal in an oxidation state above zero.
22. The method of claim 21, wherein said metal comprises Ni, Co, Mn, Zn, or mixtures thereof.
US12/302,645 2006-05-30 2007-05-09 Method for producing pentafluoroethane Active 2029-04-02 US8269052B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0604783A FR2901788B1 (en) 2006-05-30 2006-05-30 PROCESS FOR PRODUCING PENTAFLUOROETHANE
FR0604783 2006-05-30
PCT/FR2007/051232 WO2007138209A1 (en) 2006-05-30 2007-05-09 Method for producing pentafluoroethane

Publications (2)

Publication Number Publication Date
US20090326284A1 true US20090326284A1 (en) 2009-12-31
US8269052B2 US8269052B2 (en) 2012-09-18

Family

ID=37667699

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/302,645 Active 2029-04-02 US8269052B2 (en) 2006-05-30 2007-05-09 Method for producing pentafluoroethane

Country Status (8)

Country Link
US (1) US8269052B2 (en)
EP (1) EP2024312B1 (en)
JP (2) JP5906002B2 (en)
KR (1) KR101419070B1 (en)
CN (2) CN104926598A (en)
FR (1) FR2901788B1 (en)
MX (1) MX2008015082A (en)
WO (1) WO2007138209A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103611525A (en) * 2013-11-13 2014-03-05 浙江衢化氟化学有限公司 Catalyst for producing pentafluoroethane through vapor phase method and preparation method thereof
CN107456982B (en) * 2017-07-28 2018-08-10 乳源东阳光氟有限公司 A kind of preparation method of mesoporous chromium base catalysts for gas phase fluorination

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123448A (en) * 1977-06-01 1978-10-31 Continental Oil Company Adiabatic reactor
US5395996A (en) * 1990-03-29 1995-03-07 Imperial Chemical Industries Plc Chemical process
US5962753A (en) * 1994-08-24 1999-10-05 Imperial Chemical Industries Plc Process for the manufacture of pentafluoroethane

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9007029D0 (en) * 1990-03-29 1990-05-30 Ici Plc Chemical process
WO1994020441A1 (en) * 1993-03-05 1994-09-15 Daikin Industries, Ltd. Process for producing 1,1,1,2,2-pentafluoroethane, process for producing 2,2-dichloro-1,1,1-trifluoroethane, and method of purifying 1,1,1,2,2-pentafluoroethane
GB9406813D0 (en) 1994-04-06 1994-05-25 Ici Plc Production of pentafluoroethane
US5545778A (en) * 1994-05-25 1996-08-13 Alliedsignal Inc. Single stage process for producing hydrofluorocarbons from perchloroethylene
EP0714873B1 (en) * 1994-11-29 1999-03-31 Elf Atochem North America, Inc. Adiabatic hydrofluorination of hydrochlorofluorocarbons
EP1449820B1 (en) * 2001-11-30 2013-08-14 Kashima Chemical Company, Limited Process for producing isopropyl chloride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4123448A (en) * 1977-06-01 1978-10-31 Continental Oil Company Adiabatic reactor
US5395996A (en) * 1990-03-29 1995-03-07 Imperial Chemical Industries Plc Chemical process
US5962753A (en) * 1994-08-24 1999-10-05 Imperial Chemical Industries Plc Process for the manufacture of pentafluoroethane

Also Published As

Publication number Publication date
WO2007138209A1 (en) 2007-12-06
JP2009538886A (en) 2009-11-12
JP5906002B2 (en) 2016-04-20
MX2008015082A (en) 2009-02-23
KR101419070B1 (en) 2014-07-11
FR2901788A1 (en) 2007-12-07
US8269052B2 (en) 2012-09-18
JP2014111610A (en) 2014-06-19
EP2024312B1 (en) 2014-12-31
EP2024312A1 (en) 2009-02-18
FR2901788B1 (en) 2008-07-18
CN101460435A (en) 2009-06-17
KR20090013204A (en) 2009-02-04
CN104926598A (en) 2015-09-23

Similar Documents

Publication Publication Date Title
US9388099B2 (en) Process for producing 2,3,3,3-tetrafluoropropene
EP0931043B1 (en) Vapor phase process for making 1,1,1,3,3-pentafluoropropane and 1-chloro-3,3,3-trifluoropropene
US8269052B2 (en) Method for producing pentafluoroethane
US20090270659A1 (en) Method for producing hydrofluorocarbons
US8058487B2 (en) Process for the manufacture of pentafluoroethane
JP3681503B2 (en) Process for the production of difluoromethane
KR101395585B1 (en) Process for producing pentafluorethane
US20100280292A1 (en) Method of recovering hydrofluoric acid
KR101345042B1 (en) Process for the manufacture of pentafluoroethane
EP1034156A2 (en) Method of producing hydrofluorocarbons
MXPA96005496A (en) Procedure, of a stage, to produce hydrofluorocarbons from perchlorethylene

Legal Events

Date Code Title Description
AS Assignment

Owner name: ARKEMA FRANCE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COLLIER, BERTRAND;CAVALLINI, GERALDINE;BOUSSAND, BEATRICE;REEL/FRAME:022855/0934;SIGNING DATES FROM 20081216 TO 20081218

Owner name: ARKEMA FRANCE, FRANCE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:COLLIER, BERTRAND;CAVALLINI, GERALDINE;BOUSSAND, BEATRICE;SIGNING DATES FROM 20081216 TO 20081218;REEL/FRAME:022855/0934

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8