US20090317831A1 - Sepsis Test - Google Patents

Sepsis Test Download PDF

Info

Publication number
US20090317831A1
US20090317831A1 US12/162,820 US16282007A US2009317831A1 US 20090317831 A1 US20090317831 A1 US 20090317831A1 US 16282007 A US16282007 A US 16282007A US 2009317831 A1 US2009317831 A1 US 2009317831A1
Authority
US
United States
Prior art keywords
neutrophils
abnormal expression
cd49e
tlr2
tlr4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/162,820
Inventor
Kenneth Alun Brown
Sion Marc Lewis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kings College London
Original Assignee
Kings College London
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kings College London filed Critical Kings College London
Publication of US20090317831A1 publication Critical patent/US20090317831A1/en
Assigned to KING'S COLLEGE LONDON reassignment KING'S COLLEGE LONDON ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEWIS, SION MARC, BROWN, KENNETH ALUN
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56911Bacteria
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70546Integrin superfamily, e.g. VLAs, leuCAM, GPIIb/GPIIIa, LPAM
    • G01N2333/7055Integrin beta1-subunit-containing molecules, e.g. CD29, CD49
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70546Integrin superfamily, e.g. VLAs, leuCAM, GPIIb/GPIIIa, LPAM
    • G01N2333/70553Integrin beta2-subunit-containing molecules, e.g. CD11, CD18
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70596Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/26Infectious diseases, e.g. generalised sepsis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Urology & Nephrology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

There is provided a method for determining whether a subject has a bacterial infection comprising: identifying an abnormal expression of one or more of CD49e, CD 14, CD11c, CD49f, and CD29 on leucocytes in a sample obtained from the subject; wherein an abnormal expression of CD49e, CD 14, CD11c, CD49f or CD29 is indicative of the subject having a bacterial infection.

Description

  • The invention relates to a test for determining whether a subject has a bacterial infection, especially bacterial sepsis.
  • Organ failure arising from sepsis is one of the major causes of patient mortality within the Intensive Care Unit (ICU). Despite the technological support of organ function, a mortality of approximately 30% is reported in patients with sepsis and should multiple organ failure develop then the mortality may exceed 80%. Current guidelines recommend early antibiotic treatment in response to definitive evidence that bacterial infection is the cause of organ failure. Confirmation of bacterial infection in blood and other sites is only available in a proportion of patients and takes at least 24-48 hours. Rapid indirect markers of bacterial infection include increases in peripheral blood leucocyte counts and in serum levels of acute phase proteins, C-reactive protein and pro-calcitonin. Since these markers are also elevated in ICU patients with systemic inflammation, who have no evidence of bacterial infection, they cannot be used to guide therapy. Thus, definitive information necessary for clinical diagnosis is unavailable at a critical stage of patient management. Consequently, broad spectrum antibiotics are often started early, in the hope that they will arrest patient deterioration. Alternatively, in some situations no antibiotics are prescribed in the first 48 hours in the mistaken belief that the cause of the organ failure is non-bacterial. This may result in a potentially life-threatening delay in stalling antibiotics.
  • Antibiotics are often administered inappropriately for several days to patients in the ICU who do not have bacterial infections, because it is considered unethical to withhold antibiotics if bacterial infection cannot be confidently excluded. The bacteria implicated in ICU-acquired sepsis are endogenous, commensal or environmental. The over use of antibiotics, when unnecessary, is adding to increasingly unpredictable antibiotic resistance. The consequence of this therapeutic approach has been a steady but inexorable rise in antibiotic resistance of hospital-acquired bacteria, as illustrated by methicillin resistant Staphylococcus aureus (MRSA) and multi-resistant Gram-negative bacteria such as Acinetobacter and Pseudomonas species. With new international ICU guidelines recommending that treatment of sepsis patients with broad-spectrum antibiotics be stalled within a few hours of diagnosis as a standard of care, it seems that antibiotic resistance will increase. Against this background there is a need to develop an assay for the rapid detection of bacterial infections in critically ill patients.
  • The organ failure associated with sepsis is precipitated by the systemic inflammation that is produced in response to invasive bacteria. The main function of neutrophils is to destroy pathogenic bacteria but evidence is emerging that these cells are also implicated in the initiation of organ dysfunction in patients with sepsis. In recent years the inventors have been addressing the working hypothesis that an untoward interaction of blood neutrophils with endothelium produces organ dysfunction, either by vascular occlusion that leads to hypoxia and tissue hyperperfusion, or by disruption of the endothelium and an increase in vascular permeability. Accordingly, the inventors' studies of neutrophils from patients with sepsis have focused on the expression of adhesion molecules, which are known to promote adhesion to blood vessel walls, and on cellular receptors that contribute to bacterial recognition. During the course of this work the inventors noted that neutrophils expressing seven distinct molecules were more prevalent in the blood of patients with sepsis than in patients with systemic inflammation initiated by non-infective stimuli such as surgery, trauma and pancreatitis and in healthy control subjects (see Tables 1, 2, 3 & 4). These molecules were CD49e, CD14, CD11c, CD49f, CD29, TLR2 and TLR4.
  • The inventors have developed a rapid and accurate test for assessing whether a subject has a bacterial infection. This test is particularly useful for assessing whether a patient with systemic inflammation has a bacterial infection.
  • According to the invention, there is provided a method for determining whether a subject has a bacterial infection comprising:
  • a) identifying an abnormal expression of one or more of CD49e, CD14, CD11c, CD49f, and CD29 on leucocytes in a sample obtained from the subject;
    wherein an abnormal expression of CD49e, CD14, CD11c, CD49f or CD29 is indicative of the subject having a bacterial infection.
  • The method is particularly useful because it may be carried out quickly, within several hours of sample collection, allowing a rapid decision to be taken as to whether to administer antibiotics to the subject.
  • The terms “sepsis” and “systemic inflammatory response syndrome” (SIRS) are well known in the art and mean a systemic inflammatory response to infection, usually bacterial infection. In its most severe form, sepsis results in organ dysfunction and failure.
  • The term “bacterial infection” means the presence in a subject of bacteria not normally found in the subject or an increased number or change of location of bacteria normally found in the subject such as endogenous or commensal bacteria. For example, the infection could be due to an invasion of the blood by bacteria normally found in the gut. Alternatively the infection could be due to bacteria not normally found within the body.
  • The infection may be an infection of Gram positive or Gram negative bacteria. Both terms are well known in the art.
  • As indicated above, it would be very useful to be able to determine whether organ failure or dysfunction in a patient arises from sepsis caused by a bacterial infection and hence whether to treat the patient with antibiotics.
  • The subject may be any animal, preferably a mammal. It is more preferred that the subject is a primate, especially a human.
  • The subject may be showing signs of systemic inflammation, organ dysfunction or failure or may not be exhibiting any such symptoms.
  • The leucocytes may be any type of leucocytes, but are preferably monocytes or neutrophils. In particular, the leucocytes may be neutrophils.
  • CD49e & CD49f belong to a family of β1 integrin adhesion molecules. Integrins are heterodimers that consist of different α chains and a common β chain. It is the β chain that defines the family and for the β1 integrins this molecule is known as CD29. There are six members (CD49a/CD29→CD49f/CD29) and their α chains are, in addition to their CD nomenclature, referred to as very late antigen (VLA-1 to VLA-6). Hence, CD49e/CD29 is also known as VLA-5, and CD49f/CD29 is also known as VLA-6. The ligands for the β1 integrins are components of the extracellular matrix and CD49e binds to fibronectin. In general, expression of the β1 integrins is confined to the surface of lymphocytes and monocytes but not resting blood neutrophils. CD11c is a member of the β2 integrin family whereas CD14 is a receptor for lipopolysaccharide (LPS).
  • An abnormal expression of CD49e, CD14, CD49f, CD11c or CD29 means that the expression of the molecule is significantly higher, as assessed by statistical analysis, on some leucocytes or that many leucocytes show a significantly increased expression compared with levels on normal resting blood leucocytes. That is to say, some leucocytes may express an increased number of CD49e, CD 14, CD49f, CD11c or CD29 molecules, or an increased number of leucocytes may express CD49e, CD14, CD49f, CD11c or CD29 molecules when compared with normal resting blood leucocytes.
  • In particular, an abnormal expression of CD49e preferably means that the mean distribution of CD49e positive leucocytes is at least 50% more than the mean distribution of CD49e positive leucocytes in normal resting blood leucocytes. Preferably the mean distribution is increased by at least 75%, more preferably by at least 100%, even more preferably by at least 150% and most preferably by at least 200%.
  • An abnormal expression of CD14 preferably means that the mean distribution of CD14 positive leucocytes is at least 50% more than the mean distribution of CD 14 positive leucocytes in normal resting blood leucocytes. Preferably the mean distribution is increased by at least 75%, more preferably by at least 100%, even more preferably by at least 150% and most preferably by at least 200%.
  • An abnormal expression of CD49f preferably means that the mean distribution of CD49f positive leucocytes is at least 50% more than the mean distribution of CD49f positive leucocytes in normal resting blood leucocytes. Preferably the mean distribution is increased by at least 75%, more preferably by at least 100%, even more preferably by at least 150% and most preferably by at least 200%.
  • An abnormal expression of CD11c preferably means that the mean distribution of CD11c positive leucocytes is at least 50% more than the mean distribution of CD11c positive leucocytes in normal resting blood leucocytes. Preferably the mean distribution is increased by at least 75%, more preferably by at least 100%, even more preferably by at least 150% and most preferably by at least 200%.
  • An abnormal expression of CD29 preferably, means that the mean distribution of CD29 positive leucocytes is at least 50% more than the mean distribution of CD29 positive leucocytes in normal resting blood leucocytes. Preferably the mean distribution is increased by at least 75%, more preferably by at least 100%, even more preferably by at least 150% and most preferably by at least 200%.
  • An abnormal expression of CD49e on neutrophils preferably means that the mean distribution of CD49e positive neutrophils in a sample is at least 20% of neutrophils, more preferably at least 25%, even more preferably at least 30%, most preferably at least 40%.
  • An abnormal expression of CD 14 on neutrophils preferably means that the mean distribution of CD 14 positive neutrophils in a sample is at least 10% of neutrophils, more preferably at least 12%, even more preferably at least 15%, most preferably at least 20%.
  • An abnormal expression of CD49f on neutrophils preferably means that the mean distribution of CD49f positive neutrophils in a sample is at least 20% of neutrophils, more preferably at least 25%, even more preferably at least 30%, most preferably at least 40%.
  • An abnormal expression of CD11c on neutrophils preferably means that the mean distribution of CD11c positive neutrophils in a sample is at least 40% of neutrophils, more preferably at least 50%, even more preferably at least 60%, most preferably at least 70%.
  • An abnormal expression of CD29 on neutrophils preferably means that the mean distribution of CD29 positive neutrophils in a sample is at least 40% of neutrophils, more preferably at least 50%, even more preferably at least 60%, most preferably at least 70%.
  • The sample may be any sample in which leucocytes may be found e.g. bronchioalveolar lavage, urine. Preferably the sample is a blood sample.
  • It is generally thought by those skilled in the art that in response to bacterial infection, the phenotype of neutrophils changes only when the cells enter an infective lesion. There is no evidence to suggest that neutrophils re-enter the circulation from sites of infection. Those skilled in the art were not interested in examining the surface of neutrophils for signs of bacterial induced changes because it is often very difficult to obtain a sample from the site of the infection, hi cases of suspected sepsis, there is a doubt as to whether the patient has a bacterial infection, and, hence, the site of any such infection may be unknown. This reinforced the lack of interest in neutrophils. Surprisingly the inventors have found evidence of bacterial infection on the surface of neutrophils circulating in the blood, thus negating the need to obtain neutrophils from sites of bacterial infection.
  • The method includes identifying an abnormal expression of any one or more of CD49e, CD14, CD11c, CD49f and CD29. The method preferably comprises identifying an abnormal expression of more than one of these molecules.
  • The method preferably additionally comprises identifying the abnormal expression of one or both of TLR2 and TLR4 on the leucocytes in the sample, wherein the abnormal expression of one or both of TLR2 and TLR4 is further indication of a bacterial infection.
  • TLR2 and TLR4 are toll-like receptors. Such receptors are pattern recognition molecules that control innate immune responses to various microbial ligands. These terms are well known in the art.
  • Both TLR2 and TLR4 may be expressed by leucocytes, especially macrophages at a site of bacterial infection but it is much more likely that one or the other of them is expressed abnormally. TLR2 has been found to be associated with Gram positive bacterial infection, so its abnormal expression on leucocytes is preferably indicative thereof. TLR4 has been found to be associated with Gram negative bacterial infection so its abnormal expression on leucocytes is preferably indicative of such an infection.
  • Normal blood neutrophils express little TLR2 or TLR4. Generally less than 5% of neutrophils in a sample express TLR2 or TLR4. During the course of their work, the inventors noticed that neutrophils expressing TLR2 were more prevalent in the blood of patients with sepsis who had Gram+ve infections when compared with neutrophils from control subjects (Table 2). The inventors also noted that neutrophils expressing TLR4 and CD14 were increased significantly in the blood of patients with sepsis who had Gram−ve infections when compared with control subjects (Table 2).
  • An abnormal expression of TLR2 or TLR4 preferably means that the mean distribution of TLR2 or TLR4 positive leucocytes is at least 50% more than the mean distribution of TLR2 or TLR4 positive leucocytes in normal resting blood leucocytes. Preferably the mean distribution is increased by at least 75%, more preferably by at least 100%, even more preferably by at least 150% and most preferably by at least 200%.
  • Abnormal expression of TLR2 on neutrophils preferably means that the mean distribution of TLR2 positive neutrophils in a sample is at least 7% of neutrophils, more preferably at least 10%, even more preferably at least 15%, most preferably at least 20%.
  • Abnormal expression of TLR4 on neutrophils preferably means that the mean distribution of TLR4 positive neutrophils in a sample is at least 10% of neutrophils, more preferably at least 12%, even more preferably at least 15%, most preferably at least 20%.
  • As noted by the inventors, a patient with sepsis may have neutrophils expressing simultaneously an upregulation of both TLR2 and TLR4 suggesting infection with Gram+ve and Gram−ve bacteria at the same time. (Table 3)
  • The inventors have noted that an increased expression of CD29 is often indicative of a Gram positive bacterial infection. Hence, the method preferably comprises identifying an abnormal expression of CD29 and TLR2.
  • The abnormal expression of CD49e, CD14, CD11c, CD49f, CD29, TLR2 and/or TLR4 may be identified in any appropriate manner. In particular, monoclonal, polyclonal antibodies or fragments of them for the molecule in question can be used. The antibodies or fragments are generally conjugated to a marker, such as fluorescein isothiocyanate or phycoerythrin so that the presence of the molecule in question may be observed and measured.
  • As an example, antibodies conjugated to fluorescein isothiocyanate or phycoerythrin may be used and the presence of the molecule in question identified and quantified using flow cytometry. Any appropriate flow cytometer may be used, such as a Beckman-Coulter® EPICS-MCL™. One skilled in the art would appreciate that this is merely an example method and any appropriate assay for the molecule in question could be used.
  • Also provided is a kit for testing for a bacterial infection comprising antibodies or antibody fragments to at least one of CD49e, CD14, CD49f, CD29 and CD11c. Preferably the kit additionally comprises antibodies or antibody fragments to at least one of TLR2, and TLR4.
  • Preferably the kit comprises antibodies or antibody fragments to at least two of CD49e, CD14, CD11c, CD49f, CD29, TLR2 and TLR4.
  • Preferably the kit comprises antibodies or antibody fragments to CD49e, TLR2, TLR4 and CD14.
  • Preferably the kit additionally comprises antibodies to CD11c, CD49f and CD29.
  • Preferably the monoclonal antibodies are marked so the presence of the molecule in question may be confirmed and quantified.
  • The invention will now be described in detail, by way of example only, with reference to the drawings in which:
  • FIGS. 1 to 5 show the procedures for configuring flow cytometric analysis equipment to detect the monoclonal antibodies used, and
  • FIG. 6 is a histogram plot of binding of antibodies directed to CD49e on neutrophils from a subject with sepsis (shaded area) and a normal subject (un-shaded area).
  • FIG. 7 shows the distribution of neutrophils bearing TLR4 (closed circles) and CD14 (open circles) in normal healthy subjects (A), patients that have undergone cardiac surgery and had no evidence of infection (B), patients with SIRS but with no evidence of infection (C) and SIRS patients with Gram-ve infections (D). The vertical axis describes the percentage of neutrophils stained with anti-TLR4 or anti-CD14 antibodies.
  • FIG. 8 shows the distribution of neutrophils bearing TLR2 in the three subject groups (normals (A), cardiac (B), SIRS no infection(C)) identified above and also including Gram+ve infections (D). The vertical axis describes the percentage of neutrophils stained with anti-TLR2 antibodies
  • EXAMPLES
  • The method involves identification of CD49e, CD14, CD11c, CD49f, CD29, TLR2 and TLR4 on neutrophils by commercially available monoclonal antibodies conjugated with either fluorescein isothiocyanate (FITC) or phycoerythrin (PE), using the technique of flow cytometric analysis. Suitable antibodies may be obtained from, for example, AbD Serotec (Raleigh, N.C.). The protocol is as follows:
    • (i) Take 4.5 mL of blood into a pre-cooled (4° C.) EDTA-anticoagulated blood collection tube (Vacutainer™; BD Biosciences®). Then, transfer immediately into a pre-cooled CTAD™-anticoagulated blood collection tube (Vacutainer™; BD Biosciences®).
    • (ii) Mix 100 μL of anticoagulated whole blood with 100 μL Hank's balanced salt solution (HBSS™, without magnesium, calcium or phenol red; Sigma-Aldrich®) supplemented with 2% Foetal Bovine Serum (Sigma-Aldrich®) and incubate for 20 min at 4° C. Add 2 μL of LDS-751™ (Molecular Probes®), mix by gentle agitation.
    • (iii) Next, introduce 100 μL of HBSS™ into labelled 12×75 mm LP5 tubes (Falcon®) (cooled to 4° C.) together with 10 μL of the anticoagulated blood mixture and mix gently.
    • (iv) To each LP5 tube, add 1 μL of the relevant mouse-anti-human monoclonal antibody (mouse IgG1-FITC; Beckman-Coulter®), (TLR2-FITC; Serotec®), (TLR4-PE conjugated; Serotec®), (CD49E-PE; Pharmingen®), (CD66B-FITC, a marker of neutrophils; Beckman-Coulter®). Gently mix the samples and incubate in the dark for 20 min at 4° C.
    • (v) Wash by adding 200 μL of HBSS to each tube and centrifuge at 300 g for 10 min. Remove the supernatant and resuspend the pellet in 200 μL of HBSS. Centrifuge at 300 g for 10 min. Remove supernatant once again aid resuspend the remaining pellet in 300 μL Isoton™ sheath fluid (Beckman Coulter®). Samples are now ready for flow cytometric analysis. Analysis must take place within 1 hour.
  • The inventors currently use a Beckman-Coulter® EPICS-MCL™ with System II™ software for flow cytometric analysis. Prior to sample analysis, the Beckman-Coulter® standard operating procedures (SOP) for quality control assurance must be followed.
  • FIG. 1 shows FL-4 channel (x-axis), side scatter (y-axis). Set the event ‘Discriminator’ to FL-4= 10. Gate around the most abundant population (Gate A, FIG. 1.). The nuclear stain LDS-751 will discriminate between nucleated cells and non-nucleated red blood cells allowing analysis of whole blood without chemical lysis of the red cell population.
  • FIG. 2 shows forward scatter (x-axis), side scatter (y-axis). Gate around the abundant neutrophil population (Gate B, FIG. 2), so as to remove potentially contaminating mononuclear cells.
  • FIG. 3 shows FL-1 channel (x-axis), forward scatter (y-axis). Quadrant created: cursor (intersection on x-axis) positioned to include no more than 1% of gated events in the upper right quadrant following analysis of the IgG1-FITC isotype control sample (Gate C, FIG. 3). The FL-1 channel is now configured for detection of antibodies conjugated with FITC.
  • FIG. 4 shows FL-1 channel (x-axis), forward scatter (y-axis). Neutrophil staining with anti-CD66B-FITC antibody (positive control). Confirmation of the purity of the neutrophil population is assessed by the percentage of cells within the upper right-hand quadrant when stained with the FITC-conjugated monoclonal antibody directed against CD66B (neutrophil marker).
  • FIG. 5 shows FL-2 channel (x-axis), forward scatter (y-axis). Quadrant created: cursor (intersection on x-axis) positioned to include no more than 1% of gated events in the upper right quadrant following analysis of the IgG1-PE isotype control sample (Gate D, FIG. 5). The FL-2 channel is now configured for the detection of antibodies conjugated with PE.
  • FIG. 6 shows FL-2 channel (x-axis), events (y-axis). Test antibody. A representative histogram plot showing staining of PE-conjugated antibody directed towards CD49E on neutrophils from a patient with sepsis (shaded area) and a healthy normal subject (un-shaded area).
  • The protocol is now configured for single colour analysis of FITC- and PE-conjugated antibody staining of the neutrophil population in whole blood. Samples are passed through the manual-feed or the automated carousel loader and 5000 gated (neutrophil) events are captured. Data is recorded as the percentage of cells in the positive gate (%) and as the mean fluorescence intensity (MFI) of the gated events.
  • An advantage of this potential diagnostic test for the identification of bacteria is the generation of results within 2 hours of the provision of a blood sample and that the analysis is performed on a small volume of blood. At present, confirmation of bacterial infection by microbiological examination takes 24-48 hours. This delay leads to excessive antibiotics being administered to patients with sepsis, to the unnecessary use of antibiotics for non-infected critically ill patients and to the spread of antibiotic resistance. An additional asset of the proposed diagnostic test is that flow cytometers could be installed easily within ICU's and that local staff could be trained to operate the equipment very quickly so as to provide a 24 hour service.
  • Using the techniques described herein, the inventors tested samples from subjects with and without sepsis.
  • Table 1 shows the high prevalence of CD49e bearing neutrophils in the blood of patients with definite sepsis and Table 2 the incidence of TLR2 and TLR4 positive neutrophils in the circulation of patients with Gram-positive and Gram-negative infections respectively.
  • TABLE 1
    Potential association of blood neutrophil
    surface molecules with sepsis
    % neutrophils
    Patient groups CD29 CD49d CD64 CD49e
    1. Definite sepsis 57 7 68 57
    (n = 14)
    2. Probable/possible 48 4 36 22
    sepsis (n = 16)
    3. SI - no sepsis 55 7 35 4
    (n = 12)
    4. Normals (n = 48) 48 8 4 6
    CD64: 1 v 2 (p < 0.01); 1 v 3/4 (p < 0.001); 2/3 v 4 (p < 0.001)
    CD49e: 1 v 2 (p < 0.005; 1 v 3/4 (p < 0.001); 2 v 3 (p < 0.05)
    n = number of subjects
    SI = systemic inflammation
  • Gram−ve infection Gram+ve infection
    % Neutrophils % Neutrophils
    TLR2 TLR4 CD14 TLR2 TLR4
    2 10 45 1
    1 32 8 0
    3 18 23 10 1
    1 12 74 8 2
    5 54 30 2 12
    2 20 31 5 8
    5 16 16 12 4
    2 26 12 9 32
    3 20 23 30 0
    17 20 63
    6 34 27
    2 18 24
    6 27 21
    2 27 15
    Mean 4 ± 4 24 ± 11 30 ± 19 14 ± 14 7 ± 10
    % Neutrophils
    TLR2 TLR4 CD14
    Normal healthy subjects 1 ± 1 1 ± 1 4 ± 3
    Patients with SIRS in 2 ± 1 3 ± 3 6 ± 5
    ICU but no infection
    TLR4 distribution in Gram−ve sepsis
    P < 0.001 v non-infected patients
    P < 0.001 v healthy controls
    TLR2 distribution in Gram+ve sepsis
    P < 0.05 v non-infected patients
    P < 0.01 v healthy controls
    CD 14 distribution in Gram−ve patients
    P < 0.001 v non-infected patients
    P < 0.001 v healthy controls
  • % Neutrophils
    Day in ICU Organism Identified TLR2 TLR4
    1 Blood: Gram−ve (E. Coli × 1; 2 28
    Klebsiella × 1)
    Sputum: Gram−ve (Serratia+++)
    Hickman line tip: Serratia+++
    Ascitic fluid: E. Coli++
    5 Ascitic fluid: Gram+ve (Enterococcus++) 8 2
    8 No microbiology requested 13 7
    22 Blood: Serratia ++ 2 17
    Line tip: Serratia++
  • In their analysis the inventors found that the mean distribution of CD49e positive neutrophils in healthy controls is 6±6%. A significant increase can be regarded as in excess of the mean of the normal values +2 standard deviations. For CD49e the positive cut-off point is therefore in excess of 18%. On this basis 89% of the patients with definite sepsis had an increase in the percentage of neutrophils expressing CD49e. Using the analysis of receiver operating characteristic (ROC) curves and a cut-off point of 20%, the test provides a sensitivity of 1 and a specificity of 0.9.
  • Using the ROC analysis the presence of more than 10% TLR4 and 10% CD14 positive neutrophils in the blood gave a positive test for Gram−ve infections. This cut-off point produced a sensitivity of 0.93 and specificity of 0.98. Using a 7% cut-off point for TLR2 bearing neutrophils the test produced a sensitivity of 0.72, and a specificity of 0.98 for Gram+ve infections.
  • Table 4 shows the distribution of CD11c and CD49f on blood neutrophils obtained from patients with SIRS and sepsis, compared to those with SIRS but not sepsis. It also shows the incidence of CD29 in neutrophils from subjects with a Gram positive infection, compared with those from subjects with a Gram negative infection.
  • MEDIAN VALUES
    MOLECULE SIRS + SEPSIS SIRS − SEPSIS NORMALS
    CD11C 71% 34% 37% p < 0.001 SIRS + SEPSIS
    (n = 35) (n = 20) (n = 45) versus
    SIRS − SEPSIS/
    NORMAL
    CD49F 19% 10%  8% p < 0.05 SIRS + SEPSIS
    (n = 24) (n = 17) (n = 11) versus
    SIRS − SEPSIS/
    NORMAL
    MEDIAN VALUES
    SEPSIS SEPSIS
    MOLECULE (Gram+ve) (Gram−ve) NORMAL
    CD29 73% 35% 33% p < 0.001 SEPSIS (Gram+ve)
    (n = 20) (n = 35) (n = 21) versus SEPSIS
    (Gram−ve)/NORMAL

Claims (19)

1. A method for determining whether a subject has a bacterial infection comprising identifying abnormal expression of one or more proteins selected from the group consisting of CD49e, CD 14, CD49f, CD11c and CD29 on blood leucocytes in a sample obtained from the subject; wherein an abnormal expression of CD49e, CD14, CD49f, CD11c or CD29 is indicative of the subject having a bacterial infection.
2. A method according to claim 1, wherein the leucocytes are neutrophils.
3. A method according to claim 1 or claim 2 comprising identifying the abnormal expression of CD49e.
4. A method according to claim 1 or claim 2 comprising identifying the abnormal expression of CD 14.
5. A method according to claim 1 or claim 2 comprising identifying the abnormal expression of CD49f.
6. A method according to claim 1 or claim 2 comprising identifying the abnormal expression of CD11c.
7. A method according to claim 1 or claim 2 comprising identifying the abnormal expression of CD29.
8. A method according to claim 2, wherein at least 20% of neutrophils in the sample express CD49e.
9. A method according to claim 2, wherein at least 10% of neutrophils in the sample express CD 14.
10. A method according to claim 2, wherein at least 20% of neutrophils in the sample express CD49f.
11. A method according to claim 2, wherein at least 40% of neutrophils in the sample express CD11c
12. A method according to claim 2, wherein at least 40% of neutrophils in the sample express CD29.
13. The method of claim 1 or 2, additionally comprising identifying abnormal expression of one or both of TLR2 and TLR4 on neutrophils in the sample; wherein the abnormal expression of one or both of TLR2 and TLR4 is further indication of a bacterial infection.
14. A method according to claim 13, wherein the abnormal expression of TLR2 is identified which is indicative of a Gram positive bacterial infection.
15. A method according to claim 13, wherein the abnormal expression of TLR4 is identified which is indicative of a Gram negative bacterial infection.
16. A method according to claim 13, wherein at least 10% of leucocytes in a sample express TLR2 or TLR4.
17. The method of claim 13, wherein abnormal expression of a protein selected from the group consisting of CD49e, CD 14, CD49f, CD11c, CD29, TLR2, and TLR4 is identified using antibodies or antibody fragments for the molecule in question.
18. A kit for testing for a bacterial infection comprising antibodies or antibody fragments to at least two proteins selected from the group consisting of CD49e, CD 14, CD49f, CD11c, CD29, TLR2 and TLR4.
19. A kit according to claim 18 comprising monoclonal antibodies to CD49e, CD 14, CD49f, CD11c, CD29, TLR2 and TLR4.
US12/162,820 2006-01-31 2007-01-31 Sepsis Test Abandoned US20090317831A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0601959.0 2006-01-31
GBGB0601959.0A GB0601959D0 (en) 2006-01-31 2006-01-31 Sepsis test
PCT/GB2007/000325 WO2007088355A2 (en) 2006-01-31 2007-01-31 Sepsis test

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2007/000325 A-371-Of-International WO2007088355A2 (en) 2006-01-31 2007-01-31 Sepsis test

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/342,669 Continuation US8476028B2 (en) 2006-01-31 2012-01-03 Sepsis test

Publications (1)

Publication Number Publication Date
US20090317831A1 true US20090317831A1 (en) 2009-12-24

Family

ID=36100786

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/162,820 Abandoned US20090317831A1 (en) 2006-01-31 2007-01-31 Sepsis Test
US13/342,669 Active US8476028B2 (en) 2006-01-31 2012-01-03 Sepsis test

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/342,669 Active US8476028B2 (en) 2006-01-31 2012-01-03 Sepsis test

Country Status (4)

Country Link
US (2) US20090317831A1 (en)
EP (2) EP2402749B1 (en)
GB (1) GB0601959D0 (en)
WO (1) WO2007088355A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180067128A1 (en) * 2015-02-16 2018-03-08 Universidade De Santiago De Compostela Biomarkers for diagnosis and prognosis of corneal ectatic disorders
JP2021522519A (en) * 2018-04-19 2021-08-30 スティッキーセル ピーティーワイ リミテッドStickycell Pty Ltd Leukocyte replacement in the technical field of infectious diseases

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106442984B (en) 2010-04-21 2020-03-13 米密德诊断学有限公司 Markers and determinants for distinguishing bacterial from viral infections and methods of use thereof
EP3882633A1 (en) 2012-02-09 2021-09-22 MeMed Diagnostics Ltd. Signatures and determinants for diagnosing infections and methods of use thereof
WO2015021165A1 (en) * 2013-08-07 2015-02-12 University Of Rochester Method of diagnosing sepsis or sepsis risk
US10303846B2 (en) 2014-08-14 2019-05-28 Memed Diagnostics Ltd. Computational analysis of biological data using manifold and a hyperplane
US10761093B2 (en) 2014-10-09 2020-09-01 Texas Tech University System Microdevice for cell separation utilizing activation phenotype
WO2016059636A1 (en) 2014-10-14 2016-04-21 Memed Diagnostics Ltd. Signatures and determinants for diagnosing infections in non-human subjects and methods of use thereof
US11466331B2 (en) 2016-03-03 2022-10-11 Memed Diagnostics Ltd. RNA determinants for distinguishing between bacterial and viral infections
EP3482200B1 (en) 2016-07-10 2022-05-04 Memed Diagnostics Ltd. Protein signatures for distinguishing between bacterial and viral infections
CN109804245B (en) 2016-07-10 2022-10-25 米密德诊断学有限公司 Early diagnosis of infection
US11353456B2 (en) 2016-09-29 2022-06-07 Memed Diagnostics Ltd. Methods of risk assessment and disease classification for appendicitis
EP3519833A4 (en) 2016-09-29 2020-06-03 MeMed Diagnostics Ltd. Methods of prognosis and treatment
US10209260B2 (en) 2017-07-05 2019-02-19 Memed Diagnostics Ltd. Signatures and determinants for diagnosing infections and methods of use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830679A (en) * 1996-03-01 1998-11-03 New England Medical Center Hospitals, Inc. Diagnostic blood test to identify infants at risk for sepsis
US6835815B2 (en) * 2000-10-30 2004-12-28 Regents Of The University Of Michigan Nod2 nucleic acids and proteins

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213586A4 (en) 1999-09-17 2003-02-05 Mochida Pharm Co Ltd Method of fractional measurement of soluble cd14 protein
US20030077576A1 (en) * 2001-03-20 2003-04-24 Joann Trial Use of monoclonal antibodies and functional assays for prediction of risk of opportunistic infection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830679A (en) * 1996-03-01 1998-11-03 New England Medical Center Hospitals, Inc. Diagnostic blood test to identify infants at risk for sepsis
US6835815B2 (en) * 2000-10-30 2004-12-28 Regents Of The University Of Michigan Nod2 nucleic acids and proteins

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180067128A1 (en) * 2015-02-16 2018-03-08 Universidade De Santiago De Compostela Biomarkers for diagnosis and prognosis of corneal ectatic disorders
US10914746B2 (en) * 2015-02-16 2021-02-09 Universidade De Santiago De Compostela Biomarkers for diagnosis and prognosis of corneal ectatic disorders
JP2021522519A (en) * 2018-04-19 2021-08-30 スティッキーセル ピーティーワイ リミテッドStickycell Pty Ltd Leukocyte replacement in the technical field of infectious diseases

Also Published As

Publication number Publication date
EP2402749A2 (en) 2012-01-04
GB0601959D0 (en) 2006-03-15
US8476028B2 (en) 2013-07-02
EP1984733A2 (en) 2008-10-29
WO2007088355A2 (en) 2007-08-09
EP2402749A3 (en) 2012-04-25
US20120315653A1 (en) 2012-12-13
EP1984733B1 (en) 2013-01-09
EP2402749B1 (en) 2015-04-22
WO2007088355A3 (en) 2007-11-08

Similar Documents

Publication Publication Date Title
US8476028B2 (en) Sepsis test
Ruhnke et al. Diagnosis of invasive fungal diseases in haematology and oncology: 2018 update of the recommendations of the infectious diseases working party of the German society for hematology and medical oncology (AGIHO)
Carter et al. A distinct biomolecular profile identifies monoclonal mast cell disorders in patients with idiopathic anaphylaxis
US8021836B2 (en) Method of diagnosing infectious disease by measuring the level of soluble TREM-1 in a sample
Álvarez-Twose et al. Clinical, biological, and molecular characteristics of clonal mast cell disorders presenting with systemic mast cell activation symptoms
Sonneck et al. Diagnostic and subdiagnostic accumulation of mast cells in the bone marrow of patients with anaphylaxis: monoclonal mast cell activation syndrome
Florian et al. Indolent systemic mastocytosis with elevated serum tryptase, absence of skin lesions, and recurrent severe anaphylactoid episodes
US20100311758A1 (en) Method for diagnosis of inflammatory diseases using calgranulin c
RU2635767C2 (en) Method and means for monitoring of tissue homeostasis in organism
WO1997042341A1 (en) Rapid assay for infection in neonates
Ge et al. Clinical features and prognostic factors of Asian patients with paroxysmal nocturnal hemoglobinuria: results from a single center in China
Bertolo et al. Deep phenotyping of urinary leukocytes by mass cytometry reveals a leukocyte signature for early and non-invasive prediction of response to treatment in active lupus nephritis
CN116699131B (en) HLA-DR+CD14+CD56+Use of monocytes for diagnosis in HLH
WO2013107826A2 (en) Use of cellular biomarkers expression to diagnose sepsis among intensive care patients
Barbas et al. Heparan sulfate is a plasma biomarker of acute cellular allograft rejection
JP5932797B2 (en) Method for diagnosis and / or prognosis of inflammatory condition
WO2020239622A1 (en) Methods for diagnosing and monitoring sepsis
Hamidah Assessment of P-gp and MRP1 activities using MultiDrugQuant™ Assay Kit: a preliminary study of correlation between protein expressions and its functional activities in newly diagnosed acute leukaemia patients
US20130183686A1 (en) Method of evaluating immunosuppression
Taylor et al. Detection of P-glycoprotein in cell lines and leukemic blasts: failure of select monoclonal antibodies to detect clinically significant Pgp levels in primary cells
LU503915B1 (en) The application of intermediate mononuclear cells in the preparation of drugs for diagnosis and prediction of AD
Mimaroğlu et al. The diagnostic and prognostic value of angiopoietins compared with C-reactive protein and procalcitonin in children with febrile neutropenia.
Barchilon Do platelets prematurely age in canine immune thrombocytopenia (ITP)? Development of a novel flow cytometric assay to assess the role of platelet desialylation in ITP pathogenesis
WO2017144478A1 (en) Inflammation biomarker
KR20240042044A (en) Compositions, kits and methods for detecting preclinical Alzheimer&#39;s disease

Legal Events

Date Code Title Description
AS Assignment

Owner name: KING'S COLLEGE LONDON,UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BROWN, KENNETH ALUN;LEWIS, SION MARC;SIGNING DATES FROM 20090204 TO 20090217;REEL/FRAME:024217/0966

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION