US20090298943A1 - Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders - Google Patents

Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders Download PDF

Info

Publication number
US20090298943A1
US20090298943A1 US12/317,782 US31778208A US2009298943A1 US 20090298943 A1 US20090298943 A1 US 20090298943A1 US 31778208 A US31778208 A US 31778208A US 2009298943 A1 US2009298943 A1 US 2009298943A1
Authority
US
United States
Prior art keywords
group
alkenyl
straight
branched
creatine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/317,782
Inventor
Rima Kaddurah-Daouk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avicena Group Inc
Original Assignee
Avicena Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avicena Group Inc filed Critical Avicena Group Inc
Priority to US12/317,782 priority Critical patent/US20090298943A1/en
Publication of US20090298943A1 publication Critical patent/US20090298943A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents

Definitions

  • the present invention provides for new use for creatine compounds (creatine analogues and compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system) as therapeutic agents. More particularly, the present invention provides a method of treating or preventing certain metabolic disorders of human and animal metabolism relating to aberrant body weight regulation as manifested in obesity and it's related disorders.
  • Obesity which can be defined as a body weight more than 20% in excess of the ideal body weight, is a major health problem in Western affluent societies. It is associated with an increased risk for cardiovascular disease, hypertension, diabetes, hyperlipidaemia and an increased mortality rate. Obesity is the result of a positive energy balance, as a consequence of an increased ratio of caloric intake to energy expenditure.
  • the molecular factors regulating food intake and body weight balance are incompletely understood. Five single-gene mutations resulting in obesity have been described in mice, implicating genetic factors in the etiology of obesity.
  • Cachexia on the other hand is characterized by severe weight loss and imbalanced energy expenditure, examples being patients with cancer or HIV infections.
  • the creatine kinase/creatine phosphate system is an energy generating system operative predominantly in the brain, muscle, heart, retina, adipose tissue and the kidney (Walliman et. al., Biochem. J. 281: 21-40 (1992)).
  • the components of the system include the enzyme creatine kinase (CK), the substrates creatine (Cr), creatine phosphate (CrP), ATP, ADP, and the creatine transporter.
  • the enzyme catalyses reversibly the transfer of a phosphoryl group from CrP to ADP to generate ATP which is the main source of energy in the cell. This system represents the most efficient way to generate energy upon rapid demand.
  • the creatine kinase isoenzymes are found to be localized at sites where rapid rate of ATP replenishment is needed such as around ion channels and ATPase pumps.
  • Some of the functions associated with this system include efficient regeneration of energy in the form of ATP in cells with fluctuating and high energy demand, energy transport to different parts of the cell, phosphoryl transfer activity, ion transport regulation, and involvement in signal transduction pathways.
  • the substrate Cr is a compound which is naturally occurring and is found in mammalian brain, skeletal muscle, retina, adipose tissue and the heart. It's phosphorylated form CrP is also found in the same organs and is the product of the CK reaction. Both compounds can be easily synthesized and are believed to be non toxic to man. A series of creatine analogues have also been synthesized and used as probes to study the active site of the enzyme. Kaddurah-Daouk et al. (WO 92/08456 published May 29, 1992 and WO 90/09192, published Aug. 23, 1990; U.S. Pat. No. 5,321,030; and U.S. Pat. No.
  • creatine compounds are collectively referred to as “creatine compounds.”
  • the present invention provides a method of treating or preventing a metabolic disorder which relates to an imbalance in the regulation of body weight.
  • a metabolic disorder which relates to an imbalance in the regulation of body weight. Examples would be obesity and its related disorders (such as cardiovascular disease, hypertension, diabetes, hyperlipidaemia, osteoporosis and osteoarthritis) and severe weight loss. It consists of administering to a patient susceptible to or experiencing said disorder a creatine compound (creatine analogues and compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system) as therapeutic in the form of a pharmacologically acceptable salt as the pharmaceutical agent effective to treat or prevent the disease or condition.
  • a creatine compound creatine analogues and compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system
  • Obesity is the result of a positive energy balance, as a consequence of an increased ratio of caloric intake to energy expenditure while severe weight loss is a result of a negative energy balance.
  • the creatine kinase system is known to be involved in energy metabolism and it's substrates creatine phosphate, and ATP are among the highest energy compounds in the cell. It is now possible to modify this system and come up with compounds that can change energy balance and subsequently treat, prevent or ameliorate the diseases mentioned.
  • One can increase energy state or decrease it by using substrates or inhibitors for the enzyme creatine kinase, or modulators of the enzyme system (compounds which modify any of its components) such as the creatine transporter.
  • the present invention also provides compositions containing creatine compounds in combination with a pharmaceutically acceptable carrier. Also, they could be used in combination with effective amounts of standard chemotherapeutic agents which act on regulating body weight and others to prophylactically and/or therapeutically treat a subject with a disease related to body weight control.
  • the packaged drugs include a container holding the creatine compound, in combination with a pharmaceutically acceptable carrier, along with instructions for administering the same for the purpose of preventing, ameliorating, arresting or eliminating a disease related to glucose level regulation.
  • treatment is meant the amelioration or total avoidance of the metabolic disorder as described herein.
  • prevention is meant the avoidance of a currently recognized disease state, as described herein, in a patient evidencing some or all of the metabolic disorders described above.
  • compositions may be administered in a sustained release formulation.
  • sustained release is meant a formulation in which the drug becomes biologically available to the patient at a measured rate over a prolonged period.
  • Such compositions are well known in the art.
  • the creatine kinase/creatine phosphate system is an energy generating system operative predominantly in the brain, muscle, heart, retina, adipose tissue and the kidney (Walliman et. al., Biochem. J. 281: 21-40 (1992)).
  • the components of the system include the enzyme creatine kinase (CK), the substrates creatine (Cr), creatine phosphate (CrP), ATP, ADP, and the creatine transporter.
  • the enzyme catalyses reversibly the transfer of a phosphoryl group from CrP to ADP to generate ATP which is the main source of energy in the cell. This system represents the most efficient way to generate energy upon rapid demand.
  • the creatine kinase isoenzymes are found to be localized at sites where rapid rate of ATP replenishment is needed such as around ion channels and ATPase pumps.
  • Some of the functions associated with this system include efficient regeneration of energy in the form of ATP in cells with fluctuating and high energy demand, energy transport to different parts of the cell, phosphoryl transfer activity, ion transport regulation, and involvement in signal transduction pathways.
  • Brown and white adipose tissue both contain creatine kinase and the substrates creatine and creatine phosphate, with activity of the enzyme 50 times higher in brown tissue (Bertlet et al., Biochim Biophys. Acta 437:166-174 (1976)). Brown fat tissue is responsible for energy expenditure and heat generation through the process of non-shivering thermogenesis. It was suggested that creatine may be involved in co-promoting mitochondrial respiration for thermogenesis.
  • the substrate Cr is a compound which is naturally occurring and is found in mammalian brain, skeletal muscle, retina and the heart. It's phosphorylated form CrP is also found in the same organs and is the product of the CK reaction. Both compounds can be easily synthesized and are believed to be non toxic to man. A series of creatine analogues have also been synthesized and used as probes to study the active site of the enzyme. Kaddurah-Daouk et al. (WO 92/08456 published May 29, 1992 and WO 90/09192, published Aug. 23, 1990; U.S. Pat. No. 5,321,030; and U.S. Pat. No.
  • creatine compound will be used herein to include creatine, and compounds which are structurally similar to it and analogues of creatine and creatine phosphate.
  • the term “creatine compound” also includes compounds which “mimic” the activity of creatine, creatine phosphate, or creatine analogues i.e., compounds which modulate the creatine kinase system.
  • the term “mimics” is intended to include compounds which may not be structurally similar to creatine but mimic the therapeutic activity of the creatine analogues or structurally similar compounds.
  • creatine compounds will also include inhibitors of creatine kinase, ie.
  • creatine kinase compounds which inhibit the activity of the enzyme creatine kinase, molecules that inhibit the creatine transporter or molecules that inhibit the binding of the enzyme to other structural proteins or enzymes or lipids.
  • modulators of the creatine kinase system are compounds which modulate the activity of the enzyme, or the activity of the transporter of creatine, or the ability of the enzyme to associate with other cellular components. These could be substrates for the enzyme and they would have the ability to build in their phosphorylated state intracellularly. These types of molecules are also included in our term creatine compounds.
  • creatine “analogue” is intended to include compounds which are structurally similar to creatine, compounds which are art-recognized as being analogues of creatine, and/or compounds which share the same function as creatine.
  • Creatine ( ⁇ also known as N-(aminoiminomethyl)-N-methyl glycine; methylglycosamine or N-methyl-guanidino acetic acid is a well-known substance. (see the Merck Index, Eleventh Edition No. 2570, 1989). Creatine is phosphorylated chemically or enzymatically to creatine kinase to generate creatine phosphate, which is also well known (see The Merck Index, No. 7315). Both creatine and creatine phosphate (phosphocreatine) can be extracted from animals or tissue or synthesized chemically. Both are commercially available.
  • Cyclocreatine is an essentially planer cyclic analogue of creatine. Although cyclocreatine is structurally similar to creatine, the two compounds are distinguishable both kinetically and thermodynamically. Cyclocreatine is phosphorylated efficiently by the enzyme creatine kinase in the forward reaction, both in vitro and in vivo. Rowley, G. L., J. AM. Chem. Soc. 93:5542-5551 (1971); McLaughlin, A. C. et. al. J. Biol. Chem. 247, 4382-4388 (1972). It represents a class of substrate analogues of creatine kinase and which are believed to be active.
  • Bisubstrate analogues of creatine kinase and non hydrolyizable substrate analogues of creatine phosphate can be designed readily and would be examples of creatine kinase modulators.
  • Creatine phosphate compounds can be synthesized chemically or enzymatically. The chemical synthesis is well known. Annesley, T. M., Walker, J. B., Biochem. Biophys. Res. Commun., 74: 185-190 (1977); Cramer, F., Scheiffele, E., VOLLMAR, A., Chem. Ber., 95:1670-1682 (1962).
  • Creatine compounds which are particularly useful in this invention include those encompassed by the following general formula:
  • the modes of administration for these compounds includes but is not limited to, oral, transdermal, or parenteral (eg., subcutaneous, intramuscular, intravenous, bolus or continuous infusion).
  • parenteral eg., subcutaneous, intramuscular, intravenous, bolus or continuous infusion.
  • the actual amount of drug needed will depend on factors such as the size, age and severity of disease in afflicted individual. Creatine has been given to athletes in the range of 2-8 gms/day to improve muscle function. Creatine phosphate was administered to patients with congestive heart failure also in the range of several gm/day and was very well tolerated. In experimental animal models of cancer or viral infections, were creatine compounds were shown to be active, amounts of 1 gm/kg/day were needed intraveniously or intraperitoneially.
  • the creatine compound will be administered at dosages and for periods of time effective to reduce, ameliorate or eliminate the symptoms of the disease. Dose regimens may be adjusted for purposes of improving the therapeutic or prophylactic response of the compound. For example, several divided doses may be administered daily, one dose, or cyclic administration of the compounds to achieve the required therapeutic result.
  • the creatine compounds can be formulated according to the selected route of administration.
  • the addition of gelatin, flavoring agents, or coating material can be used for oral applications.
  • carriers may include aqueous or alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
  • Parenteral vehicles can include sodium chloride, potassium chloride among others.
  • intravenous vehicles can include fluid and nutrient replenishers, electrolyte replenishers among others.
  • Preservatives and other additives can also be present.
  • antimicrobial, antioxidant, chelating agents, and inert gases can be added (see, generally, Remington's Pharmaceutical Sciences, 16th Edition, Mack, 1980).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention relates to the use of creatine compounds for treating or preventing a metabolic disorder related to body weight control such as obesity, and it's associated diseases in a patient experiencing said disorder. The creatine compounds which can be used in the present method include (1) analogues of creatine which can act as substrates or substrate analogues for the enzyme creatine kinase; (2) compounds which can act as inhibitors of creatine kinase; (3) compounds which can modulate the creatine transporter (4) N-phosphocreatine analogues bearing transferable or non-transferable moieties which mimic the N-phosphoryl group. (5) compounds which modify the association of creatine kinase with other cellular components.

Description

    RELATED APPLICATIONS
  • The present application is a continuation-in-part of and claims priority to Provisional Application U.S. Ser. No. 60/005,882, filed Oct. 26, 1995, the entire disclosure of which is incorporated herein by reference.
  • FIELD OF INVENTION
  • The present invention provides for new use for creatine compounds (creatine analogues and compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system) as therapeutic agents. More particularly, the present invention provides a method of treating or preventing certain metabolic disorders of human and animal metabolism relating to aberrant body weight regulation as manifested in obesity and it's related disorders.
  • BACKGROUND OF THE INVENTION
  • There are several metabolic diseases of human and animal metabolism, eg., obesity and severe weight loss that relate to energy imbalance—where caloric intake versus energy expenditure—is imbalanced. Obesity, which can be defined as a body weight more than 20% in excess of the ideal body weight, is a major health problem in Western affluent societies. It is associated with an increased risk for cardiovascular disease, hypertension, diabetes, hyperlipidaemia and an increased mortality rate. Obesity is the result of a positive energy balance, as a consequence of an increased ratio of caloric intake to energy expenditure. The molecular factors regulating food intake and body weight balance are incompletely understood. Five single-gene mutations resulting in obesity have been described in mice, implicating genetic factors in the etiology of obesity. (Friedman, j. m., and Leibel, r. l. Cell 69: 217-220 (1990)). In the ob mouse a single gene mutation, obese, results in profound obesity, which is accompanied by diabetes (Friedman, J. M., et. al. Genomics 11: 1054-1062 (1991)). Cross-circulation experiments have suggested that the ob mice are deficient of a blood-borne factor regulating nutrient intake and energy metabolism (Coleman, D. L. Diabetologia 14: 141-148 (1978)). Using positional cloning technologies, the mouse ob gene, and subsequently its human homologue, have been recently cloned (Zhang, Y., et. al., Nature 372: 425-432 (1994)). Daily intraperitoneal injections of either mouse or human recombinant OB protein reduced the body weight of obese mice ob/ob by 30% after 2 weeks of injection. The protein reduced food intake and increased energy expenditure in the ob/ob mice (Halaas et. al., Science 269: 543-546 (1995)).
  • Cachexia on the other hand is characterized by severe weight loss and imbalanced energy expenditure, examples being patients with cancer or HIV infections.
  • The creatine kinase/creatine phosphate system is an energy generating system operative predominantly in the brain, muscle, heart, retina, adipose tissue and the kidney (Walliman et. al., Biochem. J. 281: 21-40 (1992)). The components of the system include the enzyme creatine kinase (CK), the substrates creatine (Cr), creatine phosphate (CrP), ATP, ADP, and the creatine transporter. The enzyme catalyses reversibly the transfer of a phosphoryl group from CrP to ADP to generate ATP which is the main source of energy in the cell. This system represents the most efficient way to generate energy upon rapid demand. The creatine kinase isoenzymes are found to be localized at sites where rapid rate of ATP replenishment is needed such as around ion channels and ATPase pumps. Some of the functions associated with this system include efficient regeneration of energy in the form of ATP in cells with fluctuating and high energy demand, energy transport to different parts of the cell, phosphoryl transfer activity, ion transport regulation, and involvement in signal transduction pathways.
  • The substrate Cr is a compound which is naturally occurring and is found in mammalian brain, skeletal muscle, retina, adipose tissue and the heart. It's phosphorylated form CrP is also found in the same organs and is the product of the CK reaction. Both compounds can be easily synthesized and are believed to be non toxic to man. A series of creatine analogues have also been synthesized and used as probes to study the active site of the enzyme. Kaddurah-Daouk et al. (WO 92/08456 published May 29, 1992 and WO 90/09192, published Aug. 23, 1990; U.S. Pat. No. 5,321,030; and U.S. Pat. No. 5,324,731) described methods for inhibiting growth, transformation, or metastasis of mammalian cells using related compounds. Examples of such compounds include cyclocreatine, homocyclocreatine and beta guanidino propionic acid. These same inventors have also demonstrated the efficacy of such compounds for combating viral infections (U.S. Pat. No. 5,321,030). Eigebaly in U.S. Pat. No. 5,091,404 discloses the use of cyclocreatine for restoring functionality in muscle tissue. Cohn in PCT publication No. W094/16687 describes a method for inhibiting the growth of several tumors using creatine and related compounds.
  • It is an object of the present invention to provide methods for treatment of metabolic diseases that relate to deregulated body weight by administering to an afflicted individual an amount of a compound or compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system sufficient to prevent, reduce or ameliorate the symptoms of the disease. These compounds are collectively referred to as “creatine compounds.”
  • SUMMARY OF THE INVENTION
  • The present invention provides a method of treating or preventing a metabolic disorder which relates to an imbalance in the regulation of body weight. Examples would be obesity and its related disorders (such as cardiovascular disease, hypertension, diabetes, hyperlipidaemia, osteoporosis and osteoarthritis) and severe weight loss. It consists of administering to a patient susceptible to or experiencing said disorder a creatine compound (creatine analogues and compounds which modulate one or more of the structural or functional components of the creatine kinase/creatine phosphate system) as therapeutic in the form of a pharmacologically acceptable salt as the pharmaceutical agent effective to treat or prevent the disease or condition.
  • Obesity is the result of a positive energy balance, as a consequence of an increased ratio of caloric intake to energy expenditure while severe weight loss is a result of a negative energy balance. The creatine kinase system is known to be involved in energy metabolism and it's substrates creatine phosphate, and ATP are among the highest energy compounds in the cell. It is now possible to modify this system and come up with compounds that can change energy balance and subsequently treat, prevent or ameliorate the diseases mentioned. One can increase energy state or decrease it by using substrates or inhibitors for the enzyme creatine kinase, or modulators of the enzyme system (compounds which modify any of its components) such as the creatine transporter.
  • The present invention also provides compositions containing creatine compounds in combination with a pharmaceutically acceptable carrier. Also, they could be used in combination with effective amounts of standard chemotherapeutic agents which act on regulating body weight and others to prophylactically and/or therapeutically treat a subject with a disease related to body weight control.
  • Packaged drugs for treating subjects having energy imbalance resulting in weight loss or gain are also the subject of the present invention. The packaged drugs include a container holding the creatine compound, in combination with a pharmaceutically acceptable carrier, along with instructions for administering the same for the purpose of preventing, ameliorating, arresting or eliminating a disease related to glucose level regulation.
  • By treatment is meant the amelioration or total avoidance of the metabolic disorder as described herein. By prevention is meant the avoidance of a currently recognized disease state, as described herein, in a patient evidencing some or all of the metabolic disorders described above.
  • For all of these purposes, any convenient route of systemic administration is employed, e.g., orally, parenterally, intranasally or intrarectally. The above compositions may be administered in a sustained release formulation. By sustained release is meant a formulation in which the drug becomes biologically available to the patient at a measured rate over a prolonged period. Such compositions are well known in the art.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The method of the present invention generally comprises administering to an individual afflicted with a disease or susceptible to a disease involving body weight regulation, an amount of a compound or compounds which modulate one or more of the structural or functional components of the creatine kinase/phosphocreatine system sufficient to prevent, reduce or ameliorate symptoms of the disease. Components of the system which can be modulated include the enzyme creatine kinase, the substrates creatine, creatine phosphate, ADP, ATP, and the transporter of creatine. As used herein, the term “modulate” means to change, affect or interfere with the functioning of the components in the creatine kinase/creatine phosphate enzyme system.
  • The creatine kinase/creatine phosphate system is an energy generating system operative predominantly in the brain, muscle, heart, retina, adipose tissue and the kidney (Walliman et. al., Biochem. J. 281: 21-40 (1992)). The components of the system include the enzyme creatine kinase (CK), the substrates creatine (Cr), creatine phosphate (CrP), ATP, ADP, and the creatine transporter. The enzyme catalyses reversibly the transfer of a phosphoryl group from CrP to ADP to generate ATP which is the main source of energy in the cell. This system represents the most efficient way to generate energy upon rapid demand. The creatine kinase isoenzymes are found to be localized at sites where rapid rate of ATP replenishment is needed such as around ion channels and ATPase pumps. Some of the functions associated with this system include efficient regeneration of energy in the form of ATP in cells with fluctuating and high energy demand, energy transport to different parts of the cell, phosphoryl transfer activity, ion transport regulation, and involvement in signal transduction pathways.
  • Brown and white adipose tissue both contain creatine kinase and the substrates creatine and creatine phosphate, with activity of the enzyme 50 times higher in brown tissue (Bertlet et al., Biochim Biophys. Acta 437:166-174 (1976)). Brown fat tissue is responsible for energy expenditure and heat generation through the process of non-shivering thermogenesis. It was suggested that creatine may be involved in co-promoting mitochondrial respiration for thermogenesis.
  • The substrate Cr is a compound which is naturally occurring and is found in mammalian brain, skeletal muscle, retina and the heart. It's phosphorylated form CrP is also found in the same organs and is the product of the CK reaction. Both compounds can be easily synthesized and are believed to be non toxic to man. A series of creatine analogues have also been synthesized and used as probes to study the active site of the enzyme. Kaddurah-Daouk et al. (WO 92/08456 published May 29, 1992 and WO 90/09192, published Aug. 23, 1990; U.S. Pat. No. 5,321,030; and U.S. Pat. No. 5,324,731) described methods for inhibiting growth, transformation, or metastasis of mammalian cells using related compounds. Examples of such compounds include cyclocreatine, homocyclocreatine and beta guanidino propionic acid. These same inventors have also demonstrated the efficacy of such compounds for combating viral infections (U.S. Pat. No. 5,321,030). Elgebaly in U.S. Pat. No. 5,091,404 discloses the use of cyclocreatine for restoring functionality in muscle tissue. Cohn in PCT publication No. W094/16687 describes a method for inhibiting the growth of several tumors using creatine and related compounds.
  • The term “creatine compound” will be used herein to include creatine, and compounds which are structurally similar to it and analogues of creatine and creatine phosphate. The term “creatine compound” also includes compounds which “mimic” the activity of creatine, creatine phosphate, or creatine analogues i.e., compounds which modulate the creatine kinase system. The term “mimics” is intended to include compounds which may not be structurally similar to creatine but mimic the therapeutic activity of the creatine analogues or structurally similar compounds. The term creatine compounds will also include inhibitors of creatine kinase, ie. compounds which inhibit the activity of the enzyme creatine kinase, molecules that inhibit the creatine transporter or molecules that inhibit the binding of the enzyme to other structural proteins or enzymes or lipids. The term “modulators” of the creatine kinase system” are compounds which modulate the activity of the enzyme, or the activity of the transporter of creatine, or the ability of the enzyme to associate with other cellular components. These could be substrates for the enzyme and they would have the ability to build in their phosphorylated state intracellularly. These types of molecules are also included in our term creatine compounds. The term creatine “analogue” is intended to include compounds which are structurally similar to creatine, compounds which are art-recognized as being analogues of creatine, and/or compounds which share the same function as creatine.
  • Creatine (α also known as N-(aminoiminomethyl)-N-methyl glycine; methylglycosamine or N-methyl-guanidino acetic acid is a well-known substance. (see the Merck Index, Eleventh Edition No. 2570, 1989). Creatine is phosphorylated chemically or enzymatically to creatine kinase to generate creatine phosphate, which is also well known (see The Merck Index, No. 7315). Both creatine and creatine phosphate (phosphocreatine) can be extracted from animals or tissue or synthesized chemically. Both are commercially available.
  • Cyclocreatine is an essentially planer cyclic analogue of creatine. Although cyclocreatine is structurally similar to creatine, the two compounds are distinguishable both kinetically and thermodynamically. Cyclocreatine is phosphorylated efficiently by the enzyme creatine kinase in the forward reaction, both in vitro and in vivo. Rowley, G. L., J. AM. Chem. Soc. 93:5542-5551 (1971); McLaughlin, A. C. et. al. J. Biol. Chem. 247, 4382-4388 (1972). It represents a class of substrate analogues of creatine kinase and which are believed to be active.
  • Examples of substances (creatine analogues) known or believed to modify the creatine kinase/creatine phosphate system are listed in Tables 1 and 2.
  • TABLE 1
    CREATINE ANALOGS
    Figure US20090298943A1-20091203-C00001
    Figure US20090298943A1-20091203-C00002
    Figure US20090298943A1-20091203-C00003
    Figure US20090298943A1-20091203-C00004
    Figure US20090298943A1-20091203-C00005
    Figure US20090298943A1-20091203-C00006
    Figure US20090298943A1-20091203-C00007
    Figure US20090298943A1-20091203-P00899
    Figure US20090298943A1-20091203-C00008
    Figure US20090298943A1-20091203-C00009
    Figure US20090298943A1-20091203-C00010
    Figure US20090298943A1-20091203-C00011
    Figure US20090298943A1-20091203-C00012
    Figure US20090298943A1-20091203-C00013
    Figure US20090298943A1-20091203-P00899
    Figure US20090298943A1-20091203-P00899
    Figure US20090298943A1-20091203-P00899
    Figure US20090298943A1-20091203-P00899
    indicates data missing or illegible when filed
  • TABLE 2
    CREATINE PHOSPHATE ANALOGS
    Figure US20090298943A1-20091203-C00014
    Figure US20090298943A1-20091203-C00015
    Figure US20090298943A1-20091203-C00016
    Figure US20090298943A1-20091203-C00017
    Figure US20090298943A1-20091203-C00018
    Figure US20090298943A1-20091203-C00019
    Figure US20090298943A1-20091203-C00020
    Figure US20090298943A1-20091203-P00899
    Figure US20090298943A1-20091203-C00021
    Figure US20090298943A1-20091203-C00022
    Figure US20090298943A1-20091203-C00023
    Figure US20090298943A1-20091203-C00024
    Figure US20090298943A1-20091203-C00025
    Figure US20090298943A1-20091203-C00026
    Figure US20090298943A1-20091203-P00899
    Figure US20090298943A1-20091203-P00899
    indicates data missing or illegible when filed
  • Most of these compounds have been previously synthesized for other purposes (Rowley et. al., J. Am. Chem. Soc., 93: 5542-5551, (1971); Mclaughlin et. al., J. Biol. Chem., 247: 4382-4388 (1972) Nguyen, A. C. K., “Synthesis and enzyme studies using creatine analogues”, Thesis, Dept of Pharmaceutical Chemistry, Univ. Calif., San Francisco, 1983; Lowe et al., J. Biol. Chem., 225:3944-3951 (1980); Roberts et. al., J. Biol. Chem., 260:13502-13508 (1995) Roberts et. al., Arch. biochem. Biophy., 220:563-571, 1983, and Griffiths et. al., J. Biol. Chem., 251: 2049-2054 (1976). The contents of all of the forementioned references are expressly incorporated by reference. Further to the forementioned references, Kaddurah-Daouk et. al., (WO 92/08456; WO 90/09192; U.S. Pat. No. 5,324,731; U.S. Pat. No. 5,321,030) also provide citations for the synthesis of a plurality of creatine analogues. The contents of all the aforementioned references and patents are incorporated herein by reference.
  • It will be possible to modify the substances described below to produce analogues which have enhanced characteristics, such as greater specificity for the enzyme, enhanced solubility or stability, enhanced cellular uptake, or better biding activity. Salts of products may be exchanged to other salts using standard protocols.
  • Bisubstrate analogues of creatine kinase and non hydrolyizable substrate analogues of creatine phosphate (non transferable moieties which mimic the N phosphoryl group of creatine phosphate) can be designed readily and would be examples of creatine kinase modulators. Creatine phosphate compounds can be synthesized chemically or enzymatically. The chemical synthesis is well known. Annesley, T. M., Walker, J. B., Biochem. Biophys. Res. Commun., 74: 185-190 (1977); Cramer, F., Scheiffele, E., VOLLMAR, A., Chem. Ber., 95:1670-1682 (1962).
  • Creatine compounds which are particularly useful in this invention include those encompassed by the following general formula:
  • Figure US20090298943A1-20091203-C00027
  • and pharmaceutically acceptable salts thereof, wherein:
      • a) Y is selected from the group consisting of: —CO2H—NHOH, —NO2, —SO3H, —C(═O)NHSO2J and —P(═O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C1-C6 straight chain alkyl, C3-C6 branched alkyl, C2-C6 alkenyl, C3-C6 branched alkenyl, and aryl;
      • b) A is selected from the group consisting of: C, CH, C1-C5alkyl, C2-C5alkenyl, C2-C5alkynyl, and C1-C5alkoyl chain, each having 0-2 substituents which are selected independently from the group consisting of:
        • 1) K, where K is selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: rromo, chloro, epoxy and acetoxy;
        • 2) an aryl group selected from the group consisting of: a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: —CH2L and —COCH2L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy; and
        • 3) —NH-M, wherein M is selected from the group consisting of: hydrogen, C1-C4 alkyl, C2-C4 alkenyl, C1-C4 alkoyl, C3-C4 branched alkyl, C3-C4 branched alkenyl, and C4 branched alkoyl;
      • c) X is selected from the group consisting of NR1, CHR1, CR1, O and S, wherein R1 is selected from the group consisting of:
        • 1) hydrogen;
        • 2) K where K is selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
        • 3) an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: —CH2L and —COCH2L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
        • 4) a C5-C9 a-amino-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon;
        • 5) 2 C5-C9 a-amino-w-aza-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon; and
        • 6) a C5-C9 a-amino-w-thia-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon;
      • d) Z1 and Z2 are chosen independently from the group consisting of: ═O, —NHR2, —CH2R2, —NR2OH; wherein Z1 and Z2 may not both be ═O and wherein R2 is selected from the group consisting of:
        • 1) hydrogen;
        • 2) K, where K is selected from the group consisting of: C1-C6 straight alkyl; C2-C6 straight alkenyl, C1-C6 straight alkyl, C3-C6 branched alkyl C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
        • 3) an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: —CH2L and —COCH2L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
        • 4) 2 C4-C8 a-amino-carboxylic acid attached via the w-carbon;
        • 5) B, wherein B is selected from the group consisting of: —CO2H—NHOH, —SO3H, —NO2, OP(═O)(OH)(OJ) and —P(═O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C1-C6 straight alkyl, C3-C6 branched alkyl, C2-C6 alkenyl, C3-C6 branched alkenyl, and aryl, wherein B is optionally connected to the nitrogen via a linker selected from the group consisting of C1-C2 alkyl C2 alkenyl, and C1-C2 alkoyl;
        • 6) -D-E, wherein D is selected from the group consisting of C1-C3 straight alkyl, C3 branched alkyl, C2-C3 straight alkenyl, C3 branched alkenyl, C1-C3 straight alkoyl, aryl and aroyl; and E is selected from the group consisting of: —(PO3)nNMP, where n is 0-2 and NMP is ribonucleotide monophosphate connected via the 5′-phosphate, 3′-phosphate or the aromatic ring of the base; —[P(═O)(OCH3)(O)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; —[P(═O)(OH)(CH2)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chosen independently from the group consisting of: Cl, Br, epoxy, acetoxy, —OG, —C(═O)G, and —CO2G, where G is independently selected from the group consisting of C1-C6 straight alkyl C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl C3-C6 branched alkenyl, C4-C6 branched alkoyl, wherein E may be attached to any point to D, and if D is alkyl or alkenyl, D may be connected at either or both ends by an amide linkage; and
        • 7) -E, wherein E is selected from the group consisting of —(PO3)nNMP, where n is 0-2 and NMP is a ribonucleotide monophosphate connected via the 5′-phosphate, 3′-phosphate or the aromatic ring of the base; —[P(═O)(OCH3)(O)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; —[P(═O)(OH)(CH2)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chose independently from the group consisting of: Cl, Br, epoxy, acetoxy, —OG, —C(═O)G, and —CO2G, where G is independently selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, C4-C6 branched alkoyl; and if E is aryl, E may be connected by an amide linkage;
      • e) if R1 and at least one R2 group are present, R1 may be connected by a single or double bond to an R2 group to form a cycle of 5 to 7 members;
      • f) if two R2 groups are present, they may be connected by a single or a double bond to form a cycle of 4 to 7 members; and
      • g) if R1 is present and Z1 or Z2 is selected from the group consisting of —NH2, —CH2R2 and —NR2OH, then R1 may be connected by a single or double bond to the carbon or nitrogen of either Z1 or Z2 to form a cycle of 4 to 7 members.
        Currently preferred compounds include cyclocreatine, creatine phosphate and those included in Tables 1 and 2 hereinabove.
  • The modes of administration for these compounds includes but is not limited to, oral, transdermal, or parenteral (eg., subcutaneous, intramuscular, intravenous, bolus or continuous infusion). The actual amount of drug needed will depend on factors such as the size, age and severity of disease in afflicted individual. Creatine has been given to athletes in the range of 2-8 gms/day to improve muscle function. Creatine phosphate was administered to patients with congestive heart failure also in the range of several gm/day and was very well tolerated. In experimental animal models of cancer or viral infections, were creatine compounds were shown to be active, amounts of 1 gm/kg/day were needed intraveniously or intraperitoneially. For this invention the creatine compound will be administered at dosages and for periods of time effective to reduce, ameliorate or eliminate the symptoms of the disease. Dose regimens may be adjusted for purposes of improving the therapeutic or prophylactic response of the compound. For example, several divided doses may be administered daily, one dose, or cyclic administration of the compounds to achieve the required therapeutic result.
  • The creatine compounds can be formulated according to the selected route of administration. The addition of gelatin, flavoring agents, or coating material can be used for oral applications. For solutions or emulsions in general, carriers may include aqueous or alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles can include sodium chloride, potassium chloride among others. In addition intravenous vehicles can include fluid and nutrient replenishers, electrolyte replenishers among others.
  • Preservatives and other additives can also be present. For example, antimicrobial, antioxidant, chelating agents, and inert gases can be added (see, generally, Remington's Pharmaceutical Sciences, 16th Edition, Mack, 1980).
  • EQUIVALENTS
  • Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims (13)

1. A method of treating or preventing a body disorder related to weight gain or loss in a subject afflicted with said disorder, comprising administering to the subject an amount of a creatine compound, or a pharmaceutically acceptable salt thereof, effective to treat, reduce or prevent said disorder.
2. The method of claim 1 wherein said disorder is obesity.
3. The method of claim 1 wherein said disorder is cachexia.
4. The method of claim 1 wherein said disorder is obesity associated disorder such as cardiovascular disease, hypertension, hyperlipidaemia osteoporosis and osteoarthritis.
5. The method of claim 1 wherein the subject is a human.
6. The method of claim 1, wherein the creatine compound is of the formula:
Figure US20090298943A1-20091203-C00028
and pharmaceutically acceptable salts thereof, wherein:
a) Y is selected from the group consisting of: —CO2H—NHOH, —NO2, —SO3H, —C(═O)NHSO2J and —P(═O(O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C1-C6 straight chain alkyl, C3-C6 branched alkyl, C2-C6 alkenyl, C3-C6 branched alkenyl, and aryl;
b) A is selected from the group consisting of C, CH, C1-C5 alkyl, C2-C5 alkenyl, C2-C5 alkynyl, and C1-C5 alkoyl chain, each having 0-2 substituents which are selected independently from the group consisting of:
1) K, where K is selected from the group consisting of C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of bromo, chloro, epoxy and acetoxy;
2) an aryl group selected from the group consisting of: a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: —CH2L and —COCH2L where L is independently selected from the group consisting of bromo, chloro, epoxy and acetoxy; and
3) —NH-M, wherein M is selected from the group consisting of: hydrogen, C1-C4 alkyl, C2-C4 alkenyl, C1-C4 alkoyl, C3-C4 branched alkyl, C3-C4 branched alkenyl, and C4 branched alkoyl;
c) X is selected from the group consisting of NR1, CHR1, CR1, O and S, wherein R1 is selected from the group consisting of:
1) hydrogen;
2) K where K is selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of bromo, chloro, epoxy and acetoxy;
3) an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: —CH2L and —COCH2L where L is independently selected from the group consisting of bromo, chloro, epoxy and acetoxy;
4) a C5-C9 a-amino-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon;
5) C5-C9 a-amino-w-aza-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon; and
6) a C5-C9 a-amino-w-thia-w-methyl-w-adenosylcarboxylic acid attached via the w-methyl carbon;
d) Z1 and Z2 are chosen independently from the group consisting of: ═O, —NHR2, —CH2R2, —NR2OH; wherein Z1 and Z2 may not both be ═O and wherein R2 is selected from the group consisting of:
1) hydrogen;
2) K, where K is selected from the group consisting of: C1-C6 straight alkyl; C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, and C4-C6 branched alkoyl, K having 0-2 substituents independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
3) an aryl group selected from the group consisting of a 1-2 ring carbocycle and a 1-2 ring heterocycle, wherein the aryl group contains 0-2 substituents independently selected from the group consisting of: —CH2L and —COCH2L where L is independently selected from the group consisting of: bromo, chloro, epoxy and acetoxy;
4) C4-C8 a-amino-carboxylic acid attached via the w-carbon;
5) B, wherein B is selected from the group consisting of: —CO2H—NHOH, —SO3H, —NO2, OP(═O)(OH)(OJ) and —P(═O)(OH)(OJ), wherein J is selected from the group consisting of: hydrogen, C1-C6 straight alkyl, C3-C6 branched alkyl, C2-C6 alkenyl, C3-C6 branched alkenyl, and aryl, wherein B is optionally connected to the nitrogen via a linker selected from the group consisting of: C1-C2 alkyl, C2 alkenyl, and C1-C2 alkoyl;
6) -D-E, wherein D is selected from the group consisting of: C1-C3 straight alkyl, C3 branched alkyl, C2-C3 straight alkenyl, C3 branched alkenyl, C1-C3 straight alkoyl, aryl and aroyl; and E is selected from the group consisting of: —(PO3)nNMP, where n is 0-2 and NMP is ribonucleotide monophosphate connected via the 5′-phosphate, 3′-phosphate or the aromatic ring of the base; —[P(═O)(OCH3)(O)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; —[P(═O)(OH)(CH2)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chosen independently from the group consisting of: Cl, Br, epoxy, acetoxy, —OG, —C(═O)G, and —CO2G, where G is independently selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, C4-C6 branched alkoyl, wherein E may be attached to any point to D, and if D is alkyl or alkenyl, D may be connected at either or both ends by an amide linkage; and
7) -E, wherein E is selected from the group consisting of —(PO3)nNMP, where n is 0-2 and NMP is a ribonucleotide monophosphate connected via the 5′-phosphate, 3′-phosphate or the aromatic ring of the base; —[P(═O)(OCH3)(O)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; —[P(═O)(OH)(CH2)]m-Q, where m is 0-3 and Q is a ribonucleoside connected via the ribose or the aromatic ring of the base; and an aryl group containing 0-3 substituents chose independently from the group consisting of: Cl, Br, epoxy, acetoxy, —OG, —C(═O)G, and —CO2G, where G is independently selected from the group consisting of: C1-C6 straight alkyl, C2-C6 straight alkenyl, C1-C6 straight alkoyl, C3-C6 branched alkyl, C3-C6 branched alkenyl, C4-C6 branched alkoyl; and if E is aryl, E may be connected by an amide linkage;
e) if R1 and at least one R2 group are present, R1 may be connected by a single or double bond to an 12 group to form a cycle of 5 to 7 members;
f) if two R2 groups are present, they may be connected by a single or a double bond to form a cycle of 4 to 7 members; and
g) if R1 is present and Z1 or Z2 is selected from the group consisting of —NHR2, —CH2R2 and —NR2OH, then R1 may be connected by a single or double bond to the carbon or nitrogen of either Z1 or Z2 to form a cycle of 4 to 7 members.
7. The method of claim 6 wherein the creatine compound is used in combination with standard therapies used to treat body weight disorders.
8. (canceled)
9. (canceled)
10. (canceled)
11. A method for treating a body weight disorder in a patient experiencing said disorder comprising the use of creatine and creatine phosphate analogues.
12. (canceled)
13. (canceled)
US12/317,782 1995-10-26 2008-12-29 Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders Abandoned US20090298943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/317,782 US20090298943A1 (en) 1995-10-26 2008-12-29 Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US588295P 1995-10-26 1995-10-26
US08/736,967 US5998457A (en) 1995-10-26 1996-10-25 Creatine analogues for treatment of obesity
US08/958,374 US20020035155A1 (en) 1995-10-26 1997-10-27 Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders
US10/601,279 US20040116390A1 (en) 1995-10-26 2003-06-20 Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders
US12/317,782 US20090298943A1 (en) 1995-10-26 2008-12-29 Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/601,279 Continuation US20040116390A1 (en) 1995-10-26 2003-06-20 Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders

Publications (1)

Publication Number Publication Date
US20090298943A1 true US20090298943A1 (en) 2009-12-03

Family

ID=26674880

Family Applications (4)

Application Number Title Priority Date Filing Date
US08/736,967 Expired - Fee Related US5998457A (en) 1995-10-26 1996-10-25 Creatine analogues for treatment of obesity
US08/958,374 Abandoned US20020035155A1 (en) 1995-10-26 1997-10-27 Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders
US10/601,279 Abandoned US20040116390A1 (en) 1995-10-26 2003-06-20 Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders
US12/317,782 Abandoned US20090298943A1 (en) 1995-10-26 2008-12-29 Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/736,967 Expired - Fee Related US5998457A (en) 1995-10-26 1996-10-25 Creatine analogues for treatment of obesity
US08/958,374 Abandoned US20020035155A1 (en) 1995-10-26 1997-10-27 Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders
US10/601,279 Abandoned US20040116390A1 (en) 1995-10-26 2003-06-20 Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders

Country Status (1)

Country Link
US (4) US5998457A (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE332127T1 (en) * 1994-11-08 2006-07-15 Avicena Group Inc USE OF CREATINE OR CREATINENOLOGIST TO TREAT HUNTINGTON CHOREA, PARKINSON'S DISEASE AND AMYOTROPHIC LATERAL SCLERosis
US5998457A (en) * 1995-10-26 1999-12-07 Avicena Group, Inc. Creatine analogues for treatment of obesity
WO1999000122A1 (en) * 1997-06-25 1999-01-07 Ipr-Institute For Pharmaceutical Research Ag Method for reducing body weight
US20060128671A1 (en) * 1998-04-02 2006-06-15 The General Hospital Corporation Compositions containing a combination of a creatine compound and a second agent
JP2002510604A (en) * 1998-04-02 2002-04-09 アビセナ グループ, インク. Composition containing a combination of a creatine compound and a second substance
ES2198067T3 (en) * 1998-07-28 2004-01-16 Synthes Ag Chur USE OF CREATINE-BASED COMPOUNDS TO TREAT CELLS AND DARK AND CARTILAGIN FABRICS.
US6444695B1 (en) 2000-09-21 2002-09-03 The Regents Of The University Of California Inhibition of thrombin-induced platelet aggregation by creatine kinase inhibitors
ITRM20010044A1 (en) * 2001-01-29 2002-07-29 Sigma Tau Healthscience Spa SLIMMING FOOD SUPPLEMENT.
US7138134B2 (en) * 2001-12-18 2006-11-21 Arizona Health Consulting Group, Llc Preparation and administration of jojoba product for reducing weight, fat and blood lipid levels
US20040018959A1 (en) * 2002-05-02 2004-01-29 Randall S. Hickle System and methods of lipid removal from the body
AU2003238872A1 (en) * 2002-06-04 2003-12-19 Avicena Group, Inc. Methods of treating cognitive dysfunction by modulating brain energy metabolism
JP4709739B2 (en) * 2003-02-28 2011-06-22 イーエルシー マネージメント エルエルシー How to improve hair growth
KR20050075507A (en) * 2004-01-15 2005-07-21 재단법인서울대학교산학협력재단 Composition comprising a cyclocreatine for preventing and treating osseous metabolic diseases
US20070265221A1 (en) * 2006-05-09 2007-11-15 Weiss Robert G Methods to improve creatine kinase metabolism and contractile function in cardiac muscle for the treatment of heart failure
US20070292403A1 (en) * 2006-05-11 2007-12-20 Avicena Group, Inc. Methods of treating a neurological disorder with creatine monohydrate
US20070281910A1 (en) * 2006-06-06 2007-12-06 Xenoport, Inc. Salicyl alcohol creatine phosphate prodrugs, compositions and uses thereof
US20070281983A1 (en) * 2006-06-06 2007-12-06 Xenoport, Inc. Creatine analog prodrugs, compositions and uses thereof
US20070281996A1 (en) * 2006-06-06 2007-12-06 Xenoport, Inc. Creatine prodrugs, compositions and uses thereof
US7683043B2 (en) * 2006-06-06 2010-03-23 Xenoport, Inc. Creatine phosphate analog prodrugs, compositions and uses thereof
US20070281909A1 (en) * 2006-06-06 2007-12-06 Xenoport, Inc. Creatine phosphate prodrugs, compositions and uses thereof
DE102007004781A1 (en) 2007-01-31 2008-08-07 Alzchem Trostberg Gmbh Use of guanidinoacetic acid (salts) for the preparation of a health-promoting agent
US20090005450A1 (en) * 2007-04-09 2009-01-01 Belinda Tsao Nivaggioli Use of creatine compounds for the treatment of eye disorders
US7874536B2 (en) * 2008-09-26 2011-01-25 Groover David O Angle ceiling hanger or bracket
GB0919837D0 (en) * 2009-11-13 2009-12-30 Isis Innovation Method of treatment and screening method
US9233099B2 (en) 2012-01-11 2016-01-12 University Of Cincinnati Methods of treating cognitive dysfunction by modulating brain energy metabolism
CN103665043B (en) 2012-08-30 2017-11-10 江苏豪森药业集团有限公司 A kind of tenofovir prodrug and its application in medicine
EP3950673A1 (en) 2014-04-30 2022-02-09 Inspirna, Inc. Inhibitors of creatine transport and uses thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647453A (en) * 1984-10-18 1987-03-03 Peritain, Ltd. Treatment for tissue degenerative inflammatory disease
DK0458901T3 (en) * 1989-02-14 1998-08-31 Massachusetts Inst Technology Inhibition of transformation of cells with elevated purine metabolic enzyme activity
US5321030A (en) * 1989-02-14 1994-06-14 Amira, Inc. Creatine analogs having antiviral activity
US5324731A (en) * 1989-02-14 1994-06-28 Amira, Inc. Method of inhibiting transformation of cells in which purine metabolic enzyme activity is elevated
US5091404A (en) * 1990-10-05 1992-02-25 Elgebaly Salwa A Method for restoring functionality in muscle tissue
WO1994016687A1 (en) * 1993-01-28 1994-08-04 The Trustees Of The University Of Pennsylvania Use of creatine or analogs for the manufacture of a medicament for inhibiting tumor growth
US5627172A (en) * 1994-03-04 1997-05-06 Natural Supplement Association, Incorporated Method for reduction of serum blood lipids or lipoprotein fraction
US5726146A (en) * 1994-12-06 1998-03-10 Natural Supplement Association, Incorporated Non-steroidal, anabolic dietary supplement and method to increase lean mass without linked increase fat mass
US5998457A (en) * 1995-10-26 1999-12-07 Avicena Group, Inc. Creatine analogues for treatment of obesity

Also Published As

Publication number Publication date
US20040116390A1 (en) 2004-06-17
US20020035155A1 (en) 2002-03-21
US5998457A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
US20090298943A1 (en) Use of creatine analogues and creatine kinase modulators for the prevention and treatment of obesity and its related disorders
US6075031A (en) Use of creatine analogues and creatine kinase modulators for the prevention and treatment of glucose metabolic disorders
US7285573B2 (en) Use of creatine or creatine analogs for the treatment of diseases of the nervous system
US5719119A (en) Parenteral nutrition therapy with amino acids
AU3380399A (en) Compositions containing a combination of a creatine compound and a second agent
CA2089257A1 (en) Product containing growth factor and glutamine and use of growth factor for the treatment of intestinal mucosa
EP0250559A1 (en) Parenteral nutrition therapy with amino acids
US20040054006A1 (en) Use of creatine or creatine analogs for the prevention and treatment of Transmissible Spongiform Encephalopathies
US20060128671A1 (en) Compositions containing a combination of a creatine compound and a second agent
JPS63307822A (en) Amino acid transfusion solution for renal failure
JPH06509362A (en) Alpha-ketol glutarate usage
JP2007538080A (en) Reduction of glutamate level in brain neurons using α-keto branched chain amino acids
EP0076841A1 (en) Improved solution for parenteral nutrition
EP0363337A1 (en) Energy substrate containing hydroxycarboxylic acid
JPH04352720A (en) Amino acid preparation for cancer patient
AU6246600A (en) Use of creatine analogues for the treatment of disorders of glucose metabolism
JPS62135421A (en) Amino acid transfusion solution for cancer
JPH0119363B2 (en)
Pisters et al. Glutamine and cancer cachexia
AU2006202505A1 (en) Compositions containing a combination of a creatine compound and a second agent
Toback Enhancement of Renal Regeneration by Amino Acid Administration
CS203436B1 (en) Complex of amino acids for general use in the form of solution of the parentheral nutrition

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION