US20090259025A1 - Lactoferrin - Google Patents
Lactoferrin Download PDFInfo
- Publication number
- US20090259025A1 US20090259025A1 US12/493,919 US49391909A US2009259025A1 US 20090259025 A1 US20090259025 A1 US 20090259025A1 US 49391909 A US49391909 A US 49391909A US 2009259025 A1 US2009259025 A1 US 2009259025A1
- Authority
- US
- United States
- Prior art keywords
- lactoferrin
- polypeptide
- milk
- bone
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940078795 lactoferrin Drugs 0.000 title claims abstract description 91
- 108010063045 Lactoferrin Proteins 0.000 title claims abstract description 90
- 102000010445 Lactoferrin Human genes 0.000 title claims abstract description 90
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 title claims abstract description 90
- 235000021242 lactoferrin Nutrition 0.000 title claims abstract description 90
- 229920001184 polypeptide Polymers 0.000 claims abstract description 80
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 80
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 80
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 12
- 208000006386 Bone Resorption Diseases 0.000 claims abstract description 6
- 230000024279 bone resorption Effects 0.000 claims abstract description 6
- 230000009645 skeletal growth Effects 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 50
- 239000012634 fragment Substances 0.000 abstract description 23
- 238000000034 method Methods 0.000 abstract description 13
- 210000000988 bone and bone Anatomy 0.000 abstract description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 31
- 235000013336 milk Nutrition 0.000 description 20
- 210000004080 milk Anatomy 0.000 description 20
- 239000008267 milk Substances 0.000 description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 17
- 239000000843 powder Substances 0.000 description 17
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 15
- 210000000963 osteoblast Anatomy 0.000 description 15
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 11
- 239000011575 calcium Substances 0.000 description 11
- 229910052791 calcium Inorganic materials 0.000 description 11
- 235000001465 calcium Nutrition 0.000 description 11
- 239000004615 ingredient Substances 0.000 description 11
- 230000029087 digestion Effects 0.000 description 10
- 229910052742 iron Inorganic materials 0.000 description 10
- 230000035755 proliferation Effects 0.000 description 10
- 235000018102 proteins Nutrition 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 108090000623 proteins and genes Proteins 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000002417 nutraceutical Substances 0.000 description 8
- 235000021436 nutraceutical agent Nutrition 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 210000001612 chondrocyte Anatomy 0.000 description 7
- -1 iron ion Chemical class 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 6
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 6
- 230000027455 binding Effects 0.000 description 6
- 239000012894 fetal calf serum Substances 0.000 description 6
- 238000010348 incorporation Methods 0.000 description 6
- 239000008194 pharmaceutical composition Substances 0.000 description 6
- 229940104230 thymidine Drugs 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 102000043136 MAP kinase family Human genes 0.000 description 5
- 108091054455 MAP kinase family Proteins 0.000 description 5
- 239000012901 Milli-Q water Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 4
- 102000029816 Collagenase Human genes 0.000 description 4
- 108060005980 Collagenase Proteins 0.000 description 4
- 102000035195 Peptidases Human genes 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 229960002424 collagenase Drugs 0.000 description 4
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 4
- 208000035475 disorder Diseases 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 235000013376 functional food Nutrition 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 239000002953 phosphate buffered saline Substances 0.000 description 4
- 235000020183 skimmed milk Nutrition 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 241000894007 species Species 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 235000013618 yogurt Nutrition 0.000 description 4
- 208000020084 Bone disease Diseases 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 3
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 230000037180 bone health Effects 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 235000013365 dairy product Nutrition 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 235000015872 dietary supplement Nutrition 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 239000005417 food ingredient Substances 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 210000002997 osteoclast Anatomy 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 235000019833 protease Nutrition 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 description 2
- 102000014171 Milk Proteins Human genes 0.000 description 2
- 108010011756 Milk Proteins Proteins 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 208000001132 Osteoporosis Diseases 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000000845 anti-microbial effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 230000008468 bone growth Effects 0.000 description 2
- 229940098773 bovine serum albumin Drugs 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 229910001430 chromium ion Inorganic materials 0.000 description 2
- 229910001429 cobalt ion Inorganic materials 0.000 description 2
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 2
- 235000013402 health food Nutrition 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- FXDLIMJMHVKXAR-UHFFFAOYSA-K iron(III) nitrilotriacetate Chemical compound [Fe+3].[O-]C(=O)CN(CC([O-])=O)CC([O-])=O FXDLIMJMHVKXAR-UHFFFAOYSA-K 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 229910001437 manganese ion Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 235000021239 milk protein Nutrition 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 210000003097 mucus Anatomy 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 201000008482 osteoarthritis Diseases 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 235000019624 protein content Nutrition 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 206010039073 rheumatoid arthritis Diseases 0.000 description 2
- 235000014214 soft drink Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000004936 stimulating effect Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 235000008939 whole milk Nutrition 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 208000013725 Chronic Kidney Disease-Mineral and Bone disease Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 206010062624 High turnover osteopathy Diseases 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- 201000002980 Hyperparathyroidism Diseases 0.000 description 1
- 208000000038 Hypoparathyroidism Diseases 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 102000008133 Iron-Binding Proteins Human genes 0.000 description 1
- 108010035210 Iron-Binding Proteins Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 240000002129 Malva sylvestris Species 0.000 description 1
- 235000006770 Malva sylvestris Nutrition 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 239000007757 Media 199 Substances 0.000 description 1
- 208000029725 Metabolic bone disease Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 208000010191 Osteitis Deformans Diseases 0.000 description 1
- 208000002624 Osteitis Fibrosa Cystica Diseases 0.000 description 1
- 102000004067 Osteocalcin Human genes 0.000 description 1
- 108090000573 Osteocalcin Proteins 0.000 description 1
- 206010031240 Osteodystrophy Diseases 0.000 description 1
- 206010031243 Osteogenesis imperfecta Diseases 0.000 description 1
- 206010049088 Osteopenia Diseases 0.000 description 1
- 201000000023 Osteosclerosis Diseases 0.000 description 1
- 208000027868 Paget disease Diseases 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 102000003982 Parathyroid hormone Human genes 0.000 description 1
- 108090000445 Parathyroid hormone Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 208000006735 Periostitis Diseases 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 108010059712 Pronase Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 229930003316 Vitamin D Natural products 0.000 description 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- PFRQBZFETXBLTP-UHFFFAOYSA-N Vitamin K2 Natural products C1=CC=C2C(=O)C(CC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)CCC=C(C)C)=C(C)C(=O)C2=C1 PFRQBZFETXBLTP-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 235000020167 acidified milk Nutrition 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 102000030621 adenylate cyclase Human genes 0.000 description 1
- 108060000200 adenylate cyclase Proteins 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 108010038047 apolactoferrin Proteins 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000004097 bone metabolism Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229940021722 caseins Drugs 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000003022 colostrum Anatomy 0.000 description 1
- 235000021277 colostrum Nutrition 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 235000014048 cultured milk product Nutrition 0.000 description 1
- 229940097362 cyclodextrins Drugs 0.000 description 1
- 235000011850 desserts Nutrition 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 201000010073 fibrogenesis imperfecta ossium Diseases 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 235000021022 fresh fruits Nutrition 0.000 description 1
- 210000002454 frontal bone Anatomy 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 201000003617 glucocorticoid-induced osteoporosis Diseases 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000007902 hard capsule Substances 0.000 description 1
- 235000001497 healthy food Nutrition 0.000 description 1
- 230000002440 hepatic effect Effects 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 208000030915 hypercalcemia disease Diseases 0.000 description 1
- 230000036737 immune function Effects 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 230000010438 iron metabolism Effects 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- GZQKNULLWNGMCW-PWQABINMSA-N lipid A (E. coli) Chemical compound O1[C@H](CO)[C@@H](OP(O)(O)=O)[C@H](OC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCCCC)[C@@H](NC(=O)C[C@@H](CCCCCCCCCCC)OC(=O)CCCCCCCCCCC)[C@@H]1OC[C@@H]1[C@@H](O)[C@H](OC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](NC(=O)C[C@H](O)CCCCCCCCCCC)[C@@H](OP(O)(O)=O)O1 GZQKNULLWNGMCW-PWQABINMSA-N 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 235000020191 long-life milk Nutrition 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 235000001055 magnesium Nutrition 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 235000020162 malted milk drink Nutrition 0.000 description 1
- 208000027202 mammary Paget disease Diseases 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 210000003622 mature neutrocyte Anatomy 0.000 description 1
- DKHGMERMDICWDU-GHDNBGIDSA-N menaquinone-4 Chemical compound C1=CC=C2C(=O)C(C/C=C(C)/CC/C=C(C)/CC/C=C(C)/CCC=C(C)C)=C(C)C(=O)C2=C1 DKHGMERMDICWDU-GHDNBGIDSA-N 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 235000021243 milk fat Nutrition 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 230000008747 mitogenic response Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009149 molecular binding Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000012053 oil suspension Substances 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 201000008972 osteitis fibrosa Diseases 0.000 description 1
- 230000002188 osteogenic effect Effects 0.000 description 1
- 208000005368 osteomalacia Diseases 0.000 description 1
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 1
- 239000000199 parathyroid hormone Substances 0.000 description 1
- 229960001319 parathyroid hormone Drugs 0.000 description 1
- 239000006201 parenteral dosage form Substances 0.000 description 1
- 210000003455 parietal bone Anatomy 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 210000003460 periosteum Anatomy 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- LWIHDJKSTIGBAC-UHFFFAOYSA-K potassium phosphate Substances [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 235000019419 proteases Nutrition 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 235000020122 reconstituted milk Nutrition 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 201000006409 renal osteodystrophy Diseases 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012465 retentate Substances 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 208000007442 rickets Diseases 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 210000000582 semen Anatomy 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 235000011888 snacks Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 239000007901 soft capsule Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 235000019166 vitamin D Nutrition 0.000 description 1
- 239000011710 vitamin D Substances 0.000 description 1
- 150000003710 vitamin D derivatives Chemical class 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 235000019143 vitamin K2 Nutrition 0.000 description 1
- 239000011728 vitamin K2 Substances 0.000 description 1
- 229940046008 vitamin d Drugs 0.000 description 1
- 239000012130 whole-cell lysate Substances 0.000 description 1
- 235000008924 yoghurt drink Nutrition 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 235000016804 zinc Nutrition 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/79—Transferrins, e.g. lactoferrins, ovotransferrins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23J—PROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
- A23J1/00—Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
- A23J1/20—Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from milk, e.g. casein; from whey
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/16—Inorganic salts, minerals or trace elements
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/18—Peptides; Protein hydrolysates
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/19—Dairy proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/40—Transferrins, e.g. lactoferrins, ovotransferrins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
- A61P19/10—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/02—Nutrients, e.g. vitamins, minerals
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- Lactoferrin is an 80kD iron-binding glycoprotein present in most exocrine fluids, including tears, bile, bronchial mucus, gastrointestinal fluids, cervico-vaginal mucus, seminal fluid, and milk. It is a major constituent of the secondary specific granules of circulating poly-morphonuclear neutrophils. The richest source of lactoferrin is mammalian milk and colostrum.
- Lactoferrin circulates at a concentration of 2-7 ⁇ g/ml. It has multiple postulated biological roles, including regulation of iron metabolism, immune function, and embryonic development. Lactoferrin has anti-microbial activity against a range of pathogens including Gram positive and Gram negative bacteria, yeasts, and fungi. The anti-microbial effect of lactoferrin is based on its capability of binding iron, which is essential for the growth of the pathogens. Lactoferrin also inhibits the replication of several viruses and increases the susceptibility of some bacteria to antibiotics and lysozyme by binding to lipid A component of lipopolysaccharides on bacterial membranes.
- This invention relates to a lactoferrin polypeptide that is capable of stimulating skeletal growth and inhibiting bone resorption.
- this invention features a pure lactoferrin polypeptide containing no more than two (i.e., 0, 1, or, preferably, 2) metal ions per molecule.
- a “pure” polypeptide is a polypeptide free from other biological macromolecules and at least 65% (e.g., at least 70, 75, 80, 85, 90, 95, or 99%) pure by dry weight.
- the purity of a polypeptide can be measured by any appropriate standard method, for example, by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis.
- the lactoferrin polypeptide can be a naturally occurring polypeptide, a recombinant polypeptide, or a synthetic polypeptide.
- variants of a wild-type lactoferrin polypeptide e.g., a fragment of the wild-type lactoferrin polypeptide containing at least 2 (e.g., 4, 6, 8, 10, 20, 50, 100, 200, 300, 400, 500, 600, 700) amino acids, or a recombinant protein containing a lactoferrin polypeptide sequence
- a lactoferrin polypeptide of the invention can be of a mammalian origin, e.g., from human or bovine milk.
- the metal ion bound to the polypeptide can be an iron ion (as in a naturally occurring lactoferrin polypeptide), a copper ion, a chromium ion, a cobalt ion, a manganese ion, a zinc ion, or a magnesium ion.
- a lactoferrin polypeptide of the invention can be used to stimulate skeletal growth (e.g., by promoting proliferation of osteoblasts and chondrocytes) and inhibit bone resorption (e.g., by inhibiting osteoclast development).
- a preparation of a lactoferrin polypeptide of the invention e.g., lactoferrin isolated from bovine milk
- polypeptides of different species e.g., some molecules binding no ion and others each binding one or two ions; some molecules each binding an iron ion and others each binding a copper ion; some molecules each being a biological active lactoferrin polypeptide (full-length or shorter than full-length) that contains 0, 1, or 2 metal ions and others each being a fragment (same or different) of the polypeptide; or all molecules each being a fragment (same or different) of a full-length lactoferrin polypeptide that contains 0, 1, or 2 metal ions.
- polypeptides of different species e.g., some molecules binding no ion and others each binding one or two ions; some molecules each binding an iron ion and others each binding a copper ion; some molecules each being a biological active lactoferrin polypeptide (full-length or shorter than full-length) that contains 0, 1, or 2 metal ions and others each being a fragment (same or different) of the polypeptide
- a mixture of full-length lactoferrin polypeptides and various fragments of full-length lactoferrin polypeptides can be prepared from a hydrolysate, e.g., a partial digest such as a proteinase digest, of full-length lactoferrin polypeptides. Otherwise, it can be obtained by mixing full-length lactoferrin polypeptides with various fragments of full-length lactoferrin polypeptides (e.g., synthetic fragments).
- a mixture of various fragments of full-length lactoferrin polypeptides can be prepared, for example, by complete digestion (i.e., no full-length polypeptides remain after digestion) of full-length lactoferrin polypeptides, or by mixing different fragments of full-length lactoferrin polypeptides.
- the invention further features a nutraceutical composition, which can be milk, juice, a soft drink, a snack bar, or a dietary supplement.
- the nutraceutical composition contains a lactoferrin polypeptide of the invention or a mixture of the polypeptide and fragments of the polypeptide in an amount higher than the naturally occurring amount. Lactoferrin has been found to stimulate osteoblast and chondrocyte proliferation and inhibit osteoclast development.
- a nutraceutical composition of this invention is useful for preventing and treating bone disorders such as osteoporosis and rheumatoid or osteo-arthritis.
- the nutraceutical composition can further include an adequate amount of another bone-enhancing agent, such as calcium, zinc, magnesium, vitamin C, vitamin D, vitamin E, vitamin K2, or a mixture thereof.
- this invention features a pharmaceutical composition that contains a lactoferrin polypeptide of the invention or a mixture of the polypeptide and fragments of the polypeptide and a pharmaceutically acceptable carrier.
- the pharmaceutical composition also includes another bone-enhancing agent.
- the invention also encompasses the use of a lactoferrin polypeptide or a mixture of the polypeptide and fragments of the polypeptide described above for the manufacture of a medicament for preventing and treating bone diseases.
- This invention provides a method of preventing and treating bone-related disorders (e.g., by stimulating skeletal growth and inhibiting bone resorption).
- the method includes administering to a subject in need thereof an effective amount of a lactoferrin polypeptide of the invention or a mixture of the polypeptide and fragments of the polypeptide.
- the method can further include concurrently administering to the subject an effective amount of another bone-enhancing agent.
- This invention is based on the unexpected discovery that lactoferrin stimulates osteoblast and chondrocyte proliferation and inhibits osteoclast development. Thus, it is useful for preventing and treating bone disorders.
- a lactoferrin polypeptide of the invention is a pure polypeptide containing no more than two metal ions per molecule. Practically, the measurement of the ion/lactoferrin ratio for a preparation of lactoferrin can be in the range of 0-2.5. It can be isolated from a natural source (e.g., mammalian milk), or produced using genetic engineering or chemical synthesis techniques well-known in the art. The following is an exemplary procedure for isolating lactoferrin from bovine milk:
- Fresh skim milk (7 L, pH 6.5) is passed through a 300 ml column of S Sepharose Fast Flow equilibrated in milli Q water, at a flow rate of 5 ml/min and at 4° C. Unbound protein is washed through with 2.5 bed volumes of water and bound protein eluted stepwise with approximately 2.5 bed volumes each of 0.1 M, 0.35 M, and 1.0 M sodium chloride. Lactoferrin eluting as a discreet pink band in 1 M sodium chloride is collected as a single fraction and dialysed against milli Q water followed by freeze-drying.
- the freeze-dried powder is dissolved in 25 mM sodium phosphate buffer, pH 6.5 and subjected to rechromatography on S Sepharose Fast Flow with a sodium chloride gradient to 1 M in the above buffer and at a flow rate of 3 ml/min.
- Fractions containing lactoferrin of sufficient purity as determined by gel electrophoresis and reversed phase HPLC are combined, dialyzed and freeze-dried.
- Final purification of lactoferrin is accomplished by gel filtration on Sephacryl 300 in 80 mM dipotassium phosphate, pH 8.6, containing 0.15 M potassium chloride. Selected fractions are combined, dialyzed against milli Q water, and freeze-dried.
- the purity of this preparation is greater than 95% as indicated by HPLC analysis and by the spectral ratio values (280 nm/465 nm) of ⁇ 19 or less for the iron-saturated form of lactoferrin.
- Iron saturation is achieved by addition of a 2:1 molar excess of 5 mM ferric nitrilotriacetate (Foley and Bates (1987) Analytical Biochemistry 162, 296-300) to a 1% solution of the purified lactoferrin in 50 mM Tris, pH 7.8 containing 10 mM sodium bicarbonate. Excess ferric nitrilotriacetate is removed by dialysis against 100 volumes of milli Q water (twice renewed) for a total of 20 hours at 4° C. The iron-loaded (holo-) lactoferrin is then freeze-dried.
- Iron-depleted (apo-) lactoferrin is prepared by dialysis of a 1% solution of the highly purified lactoferrin sample in water against 30 volumes of 0.1 M citric acid, pH 2.3, containing 500 mg/L disodium EDTA, for 30 h at 4° C. (Massons and Heremans (1966) Protides of the Biological fluids 14, 115-124). Citrate and EDTA are then removed by dialysis against 30 volumes of milli Q water (once renewed) and the resulting colourless solution freeze-dried.
- a lactoferrin polypeptide of the invention can contain an iron ion (as in a naturally occurring lasctoferrin polypeptide) or a non-iron metal ion (e.g., a copper ion, a chromium ion, a cobalt ion, a manganese ion, a zinc ion, or a magnesium ion).
- an iron ion as in a naturally occurring lasctoferrin polypeptide
- a non-iron metal ion e.g., a copper ion, a chromium ion, a cobalt ion, a manganese ion, a zinc ion, or a magnesium ion.
- lactoferrin isolated from bovine milk can be depleted of iron and then loaded with another type of metal ion.
- copper loading can be achieved according to the same method for iron loading described above.
- the polypeptides can be of a single species, or of different species.
- the polypeptides can each contain a different number of metal ions or a different species of metal ions; or the lengths of the polypeptides can vary, e.g., some are full-length polypeptides and some are fragments, and the fragments can each represent a particular portion of a full-length polypeptide.
- Such a preparation can be obtained from a natural source or by mixing different lactoferrin polypeptide species.
- a mixture of lactoferrin polypeptides of different lengths can be prepared by proteinase digestion (complete or partial) of full-length lactoferrin polypeptides.
- the degree of digestion can be controlled according to methods well known in the art, e.g., by manipulating the amount of proteinase or the time of incubation.
- a complete digestion produces a mixture of various fragments of full-length lactoferrin polypeptides; a partial digestion produces a mixture of full-length lactoferrin polypeptides and various fragments.
- a lactoferrin polypeptide or a mixture of the polypeptide and fragments of the polypeptide described above is used to prepare a nutraceutical composition of this invention for preventing and treating bone-related disorders.
- disorders include, but are not limited to, osteoporosis, rheumatoid or osteo-arthritis, hepatic osteodystrophy, osteomalacia, rickets, osteitis fibrosa cystica, renal osteodystrophy, osteosclerosis, osteopenia, fibrogenesis-imperfecta ossium, secondary hyperparathyrodism, hypoparathyroidism, hyperparathyroidism, chronic renal disease, sarcoidosis, glucocorticoid-induced osteoporosis, idiopathic hypercalcemia, Paget's disease, and osteogenesis imperfecta.
- the nutraceutical composition can be a dietary supplement (e.g., a capsule, a mini-bag, or a tablet) or a food product (e.g., milk, juice, a soft drink, a herbal tea-bag, or confectionary).
- the composition can also include other nutrients, such as a protein, a carbohydrate, vitamins, minerals, or amino acids.
- the composition can be in a form suitable for oral use, such as a tablet, a hard or soft capsule, an aqueous or oil suspension, or a syrup; or in a form suitable for parenteral use, such as an aqueous propylene glycol solution, or a buffered aqueous solution.
- the amount of the active ingredient in the nutraceutical composition depends to a large extent on a subject's specific need. The amount also varies, as recognized by those skilled in the art, dependent on administration route, and possible co-usage of other bone-enhancing agents.
- a pharmaceutical composition that contains an effective amount of a lactoferrin polypeptide or a mixture of the polypeptide and fragments of the polypeptide described above, and a pharmaceutically acceptable carrier.
- the pharmaceutical composition can be used to prevent and treat bone-related disorders described above.
- the pharmaceutical composition can further include an effective amount of another bone-enhancing agent.
- the pharmaceutically acceptable carrier includes a solvent, a dispersion medium, a coating, an antibacterial and antifungal agent, and an isotonic and absorption delaying agent.
- An “effective amount” is the amount required to confer therapeutic effect. The interrelationship of dosages for animals and humans (based on milligrams per meter squared of body surface) is described by Freireich, et al. (1966) Cancer Chemother.
- Body surface area can be approximately determined from height and weight of the subject. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardley, N.Y., 1970, 537. Effective doses also vary, as recognized by those skilled in the art, dependent on route of administration, excipient usage, and the like.
- a lactoferrin polypeptide of the invention or a mixture of the polypeptide and fragments of the polypeptide can be formulated into dosage forms for different administration routes utilizing conventional methods. For example, it can be formulated in a capsule, a gel seal, or a tablet for oral administration. Capsules can contain any standard pharmaceutically acceptable materials such as gelatin or cellulose. Tablets can be formulated in accordance with conventional procedures by compressing mixtures of the lactoferrin polypeptide or a mixture of the polypeptide and fragments of the polypeptide with a solid carrier and a lubricant. Examples of solid carriers include starch and sugar bentonite.
- the lactoferrin polypeptide or a mixture of the polypeptide and fragments of the polypeptide can also be administered in a form of a hard shell tablet or a capsule containing a binder, e.g., lactose or mannitol, a conventional filler, and a tableting agent.
- the pharmaceutical composition can be administered via the parenteral route.
- parenteral dosage forms include aqueous solutions, isotonic saline or 5% glucose of the active agent, or other well-known pharmaceutically acceptable excipient.
- Cyclodextrins, or other solubilizing agents well-known to those familiar with the art can be utilized as pharmaceutical excipients for delivery of the therapeutic agent.
- compositions of this invention can be evaluated both in vitro and in vivo. See, e.g., the examples below. Briefly, the composition can be tested for its ability to promote osteoblast and chondrocyte proliferation in vitro. For in vivo studies, the composition can be injected into an animal (e.g., a mouse) and its effects on bone tissues are then accessed. Based on the results, an appropriate dosage range and administration route can be determined.
- an animal e.g., a mouse
- Lactoferrin Promotes Proliferation of Primary Rat Osteoblasts
- Osteoblasts were isolated by collagenase digestion from 20-day fetal rat calvariae, as previously described by Lowe and co-workers (Lowe, et al. (1991) Journal of Bone and Mineral Research 6, 1277-1283). Calvariae were dissected aseptically, and the frontal and parietal bones were stripped of their periosteum. Only the central portions of the bones, free from suture tissue, were collected. The calvariae were treated twice with phosphate buffered saline (PBS) containing 3 mM EDTA (pH 7.4) for 15 minutes at 37° C. in a shaking water bath.
- PBS phosphate buffered saline
- the calvariae were treated twice with 3 ml of 1 mg/ml collagenase for 7 minutes at 37° C. After discarding the supernatants from digestions I and II, the calvariae were treated further two times with 3 ml of 2 mg/ml collagenase (30 mins, 37° C.). The supernatants of digestions III and IV were pooled, centrifuged, and the cells washed in Dulbecco's modified Eagle's medium (DME) with 10% fetal calf serum (FCS), suspended in DME/10% FCS, and placed in 75 cm3 flasks. The cells were incubated under 5% CO2 and 95% air at 37° C.
- DME Dulbecco's modified Eagle's medium
- FCS fetal calf serum
- Proliferation studies were performed both in actively growing and non-actively growing cell populations.
- To produce actively growing cells sub-confluent populations (24 h after subculturing) were placed in fresh MEM containing 1% FCS and a lactoferrin sample.
- To produce non-actively growing cells sub-confluent populations were placed in serum-free medium with 0.1% bovine serum albumin plus a lactoferrin sample. Cell numbers were analyzed at 6, 24, and 48 hours after the addition of lactoferrin samples (i.e., purified lactoferrin, holo-lactoferrin, and apo-lactoferrin) prepared as described above.
- lactoferrin samples i.e., purified lactoferrin, holo-lactoferrin, and apo-lactoferrin
- the cell numbers were determined after detaching cells from the wells by exposure to trypsin/EDTA (0.05%/0.53 mM) for approximately 5 minutes at 37° C. Counting was performed in a haemocytometer chamber. [ 3 H]-thymidine incorporation into actively growing and non-actively growing cells was assessed by pulsing the cells with [ 3 H]-thymidine (1 ⁇ Ci/well) two hours before the end of the incubation. The experiment was terminated at 6, 24, or 48 hours by washing the cells in MEM containing cold thymidine followed by the addition of 10% trichloroacetic acid. The precipitate was washed twice with ethanol:ether (3:1), and the wells desiccated at room temperature.
- the mitogenic response of the purified lactoferrin sample was found to be very potent, as shown by a markedly increased rate of osteoblast cell proliferation (i.e., increase in thymidine incorporation into DNA of growing cells).
- the potent osteogenic response seen above was compared with that of insulin-like growth factor 1 (IGF-1), a well-recognized osteoblast mitogen.
- IGF-1 insulin-like growth factor 1
- lactoferrin's effect was 2.26 times that of the control for the highest dose tested (10 ⁇ g/ml).
- Chondrocytes were isolated by removing cartilage (full-depth slices) from the tibial and femoral surfaces of sheep under aseptic conditions. Slices were placed in Dulbecco's Modified Eagles (DME) media containing 5% FBS (v/v) and antibiotics (penicillin 50 g/L, streptomycin 50 g/L and neomycin 100 g/L) and chopped finely with a scalpel blade. Tissue was removed and incubated at 37° C. with firstly pronase (0.8% w/v for 90 minutes) followed by collagenase (0.1% w/v for 18 hours) to complete the digestion.
- DME Dulbecco's Modified Eagles
- Cells were isolated from the digest by centrifugation (10 minutes at 1300 rpm), resuspended in DME/5% FBS, passed through a nylon mesh screen of 90 Fm pore size to remove any undigested fragments, and recentrifuged. The cells were then washed and resuspended twice in the same media, seeded into a 75 cm2 flask containing DME/10% FBS, and incubated under 5% CO 2 /95% air at 37° C. Confluence was reached by 7 days, at which time the cells were subcultured.
- the cells were rinsed in DME/5% FBS and resuspended in a fresh medium, then seeded into 24-well plates (5 ⁇ 10 4 cells/mL, 0.5 mL/well). Measurement of thymidine incorporation was performed in growth-arrested cell populations as for the osteoblast-like cell cultures described above. Lactoferrin was found to stimulate chondrocyte proliferation at concentrations above 0.1 ⁇ g/ml.
- Lactoferrin Promotes Proliferation of Osteoblasts in Organ Culture
- Neonatal mouse organ culture has been previously described (Cornish, et al. (1998) Am J Physiol 274, E827-E833). Briefly, two-day old neonatal mice were subcutaneously injected with radioactively labeled 45Ca. Three days later, the calvariae were excised and placed on mesh grids in Petri dishes containing 0.1% bovine serum albumin/Media 199. Lactoferrin was added, and the calvariae were incubated for 48 hours. Four hours before the end of the incubation period, [ 3 H]-thymidine was added. The experiment was terminated, and 45Ca release and thymidine incorporation were measured. Lactoferrin was found to stimulate DNA synthesis, which reflects the proliferation of cells of the osteoblast lineage.
- the treatment medium was aspirated, the cells were washed in ice-cold PBS and then scraped in ice-cold HNTG lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 1% Triton, 10% glycerol, 1.5 mM MgCl 2 , 1 mM EDTA) containing a cocktail of protease and phosphatase inhibitors (1 mM PMSF, 1 ⁇ g/ml peptatin, 10 ⁇ g/ml leupeptin, 10 ⁇ g/ml aprotinin, 1 mM sodium vanadate, 500 mM NaF).
- HNTG lysis buffer 50 mM HEPES, pH 7.5, 150 mM NaCl, 1% Triton, 10% glycerol, 1.5 mM MgCl 2 , 1 mM EDTA
- a cocktail of protease and phosphatase inhibitors (1 mM PMSF
- the lysates were briefly vortexed, centrifuged at 13,000 rpm at 4° C., then stored at ⁇ 70° C. until analyzed. Protein content of the cell lysates was measured using the DC protein assay (BioRad, Hercules, Calif.). Equal amounts of the whole cell lysate (30-50 ⁇ g) were subjected to 8% SDS-PAGE, transferred to nitrocellulose membranes, and immunoblotted overnight at 4° C. with an anti-phospho-p42/44 MAP kinase antibody (1:1000). As a control for protein loading, the same filters were stripped and re-probed with an antibody against total p42/44 MAP kinase (1:400).
- Set yoghurts of between 14 and 17% solids, with or without fruit added, can be prepared as follows:
- Medium heat skim milk powder between 109-152 g
- ALACO stabilizer 100 g
- Anhydrous Milk Fat (20 g) is then added and mixed for 30 min.
- the mixture is then heated to 60° C., homogenized at 200 bar, and then pasteurized at 90° C.
- a starter mixture and the freeze-dried protein preparation described above up to 50 mg of lactoferrin at 95% purity or an equivalent quantity from a not so highly purified source
- fresh fruit may also be added at this point.
- the mixture is then filled into containers, incubated at 40° C. until pH 4.2-4.4 is reached, and then chilled in a blast cooler.
- An alternative method for preparing the same set yoghurts is by dry blending the indicated quantity of lactoferrin or the indicated quantity as a dose rate, into the dry milk solids, prior to its use in the yoghurt formulation.
- Dry blends of either skim or whole milk powder with calcium and the freeze dried lactoferrin preparations can give dairy based formulations or compositions which can be used either as functional foods or as functional food ingredients.
- Such compositions can be used as reconstituted milks, milk powder ingredients, dairy desserts, functional foods, cheeses or butter or beverages, and nutraceuticals or dietary supplements.
- Blending the dry ingredients in ratios of milk powder:calcium:active lactoferrin agent between 90:9.5:0.5 and 94:5.95:0.0001 provide compositions suitable for such uses.
- Blended compositions of milk powder, calcium, and the lactoferrin rich ingredient can be used as bone health functional foods, bone health food ingredients, or as a food ingredient for delivery of bone health nutrients in a range of health foods.
- ingredient milk powders typically contains between 300 and 900 mg calcium per 100 g powder, depending upon their sources. A source of calcium may be added to the powder to extend the calcium content up to 3% by weight of the ingredient milk powder as a blend.
- the protein level of commercially available ingredient milk or dairy-based protein powders varies depending upon the type of the ingredient, the method of its manufacture, and its intended use.
- Ingredient milk powder typically contains between 12% and 92% protein. Examples are commercially available skim and whole milk powders, food grade caseins, caseinates, milk protein concentrate powders, spray dried ultrafiltered or microfiltered retentate powders, and the milk protein isolate products.
- the lactoferrin rich preparation may be incorporated into a protein and calcium blend to give nutritional milk powders that can be used as ingredients in healthy foods and drinks.
- Such blends provide ingredients suitable for use in preparing yoghurts and yoghurt drinks, acid beverages, ingredient milk powder blends, pasteurized liquid milk products, UHT milk products, cultured milk products, acidified milk drinks, milk-and-cereal combination products, malted milks, milk-and-soy combination products.
- the blend can have a composition where the calcium content is between 0.001% and 3.5% (w/w), the protein composition is between 2% and 92%, and lactoferrin as the osteoblast proliferating agent is added at levels between 0.000001% and 5.5%.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Mycology (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biochemistry (AREA)
- Physical Education & Sports Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Toxicology (AREA)
- General Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Inorganic Chemistry (AREA)
- Rheumatology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Diabetes (AREA)
- Obesity (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Peptides Or Proteins (AREA)
Abstract
A pure lactoferrin polypeptide containing no more than two metal ions per molecule, or a mixture of the polypeptide and a fragment thereof. The polypeptide or the mixture stimulates skeletal growth and inhibits bone resorption. Also disclosed is a method of treating a bone-related disorder with the polypeptide or the mixture.
Description
- This application claims priority to New Zealand Application Ser. No. 518121, filed Apr. 3, 2002, the content of which is incorporated herein by reference.
- Lactoferrin is an 80kD iron-binding glycoprotein present in most exocrine fluids, including tears, bile, bronchial mucus, gastrointestinal fluids, cervico-vaginal mucus, seminal fluid, and milk. It is a major constituent of the secondary specific granules of circulating poly-morphonuclear neutrophils. The richest source of lactoferrin is mammalian milk and colostrum.
- Lactoferrin circulates at a concentration of 2-7 μg/ml. It has multiple postulated biological roles, including regulation of iron metabolism, immune function, and embryonic development. Lactoferrin has anti-microbial activity against a range of pathogens including Gram positive and Gram negative bacteria, yeasts, and fungi. The anti-microbial effect of lactoferrin is based on its capability of binding iron, which is essential for the growth of the pathogens. Lactoferrin also inhibits the replication of several viruses and increases the susceptibility of some bacteria to antibiotics and lysozyme by binding to lipid A component of lipopolysaccharides on bacterial membranes.
- This invention relates to a lactoferrin polypeptide that is capable of stimulating skeletal growth and inhibiting bone resorption.
- Specifically, this invention features a pure lactoferrin polypeptide containing no more than two (i.e., 0, 1, or, preferably, 2) metal ions per molecule. A “pure” polypeptide is a polypeptide free from other biological macromolecules and at least 65% (e.g., at least 70, 75, 80, 85, 90, 95, or 99%) pure by dry weight. The purity of a polypeptide can be measured by any appropriate standard method, for example, by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis. The lactoferrin polypeptide can be a naturally occurring polypeptide, a recombinant polypeptide, or a synthetic polypeptide. Variants of a wild-type lactoferrin polypeptide (e.g., a fragment of the wild-type lactoferrin polypeptide containing at least 2 (e.g., 4, 6, 8, 10, 20, 50, 100, 200, 300, 400, 500, 600, 700) amino acids, or a recombinant protein containing a lactoferrin polypeptide sequence) that maintain the biological activity of a wild-type lactoferrin polypeptide are within the scope of the invention. A lactoferrin polypeptide of the invention can be of a mammalian origin, e.g., from human or bovine milk. The metal ion bound to the polypeptide can be an iron ion (as in a naturally occurring lactoferrin polypeptide), a copper ion, a chromium ion, a cobalt ion, a manganese ion, a zinc ion, or a magnesium ion.
- A lactoferrin polypeptide of the invention can be used to stimulate skeletal growth (e.g., by promoting proliferation of osteoblasts and chondrocytes) and inhibit bone resorption (e.g., by inhibiting osteoclast development). A preparation of a lactoferrin polypeptide of the invention (e.g., lactoferrin isolated from bovine milk) can contain polypeptides of a single species, e.g., every molecule binding two iron ions. It can also contain polypeptides of different species, e.g., some molecules binding no ion and others each binding one or two ions; some molecules each binding an iron ion and others each binding a copper ion; some molecules each being a biological active lactoferrin polypeptide (full-length or shorter than full-length) that contains 0, 1, or 2 metal ions and others each being a fragment (same or different) of the polypeptide; or all molecules each being a fragment (same or different) of a full-length lactoferrin polypeptide that contains 0, 1, or 2 metal ions. For example, a mixture of full-length lactoferrin polypeptides and various fragments of full-length lactoferrin polypeptides can be prepared from a hydrolysate, e.g., a partial digest such as a proteinase digest, of full-length lactoferrin polypeptides. Otherwise, it can be obtained by mixing full-length lactoferrin polypeptides with various fragments of full-length lactoferrin polypeptides (e.g., synthetic fragments). A mixture of various fragments of full-length lactoferrin polypeptides, on the other hand, can be prepared, for example, by complete digestion (i.e., no full-length polypeptides remain after digestion) of full-length lactoferrin polypeptides, or by mixing different fragments of full-length lactoferrin polypeptides.
- The invention further features a nutraceutical composition, which can be milk, juice, a soft drink, a snack bar, or a dietary supplement. The nutraceutical composition contains a lactoferrin polypeptide of the invention or a mixture of the polypeptide and fragments of the polypeptide in an amount higher than the naturally occurring amount. Lactoferrin has been found to stimulate osteoblast and chondrocyte proliferation and inhibit osteoclast development. Thus, a nutraceutical composition of this invention is useful for preventing and treating bone disorders such as osteoporosis and rheumatoid or osteo-arthritis. The nutraceutical composition can further include an adequate amount of another bone-enhancing agent, such as calcium, zinc, magnesium, vitamin C, vitamin D, vitamin E, vitamin K2, or a mixture thereof.
- In addition, this invention features a pharmaceutical composition that contains a lactoferrin polypeptide of the invention or a mixture of the polypeptide and fragments of the polypeptide and a pharmaceutically acceptable carrier. Optionally, the pharmaceutical composition also includes another bone-enhancing agent. The invention also encompasses the use of a lactoferrin polypeptide or a mixture of the polypeptide and fragments of the polypeptide described above for the manufacture of a medicament for preventing and treating bone diseases.
- This invention provides a method of preventing and treating bone-related disorders (e.g., by stimulating skeletal growth and inhibiting bone resorption). The method includes administering to a subject in need thereof an effective amount of a lactoferrin polypeptide of the invention or a mixture of the polypeptide and fragments of the polypeptide. The method can further include concurrently administering to the subject an effective amount of another bone-enhancing agent.
- The details of one or more embodiments of the invention are set forth in the accompanying description below. Other features, objects, and advantages of the invention will be apparent from the detailed description, and from the claims.
- This invention is based on the unexpected discovery that lactoferrin stimulates osteoblast and chondrocyte proliferation and inhibits osteoclast development. Thus, it is useful for preventing and treating bone disorders.
- A lactoferrin polypeptide of the invention is a pure polypeptide containing no more than two metal ions per molecule. Practically, the measurement of the ion/lactoferrin ratio for a preparation of lactoferrin can be in the range of 0-2.5. It can be isolated from a natural source (e.g., mammalian milk), or produced using genetic engineering or chemical synthesis techniques well-known in the art. The following is an exemplary procedure for isolating lactoferrin from bovine milk:
- Fresh skim milk (7 L, pH 6.5) is passed through a 300 ml column of S Sepharose Fast Flow equilibrated in milli Q water, at a flow rate of 5 ml/min and at 4° C. Unbound protein is washed through with 2.5 bed volumes of water and bound protein eluted stepwise with approximately 2.5 bed volumes each of 0.1 M, 0.35 M, and 1.0 M sodium chloride. Lactoferrin eluting as a discreet pink band in 1 M sodium chloride is collected as a single fraction and dialysed against milli Q water followed by freeze-drying. The freeze-dried powder is dissolved in 25 mM sodium phosphate buffer, pH 6.5 and subjected to rechromatography on S Sepharose Fast Flow with a sodium chloride gradient to 1 M in the above buffer and at a flow rate of 3 ml/min. Fractions containing lactoferrin of sufficient purity as determined by gel electrophoresis and reversed phase HPLC are combined, dialyzed and freeze-dried. Final purification of lactoferrin is accomplished by gel filtration on Sephacryl 300 in 80 mM dipotassium phosphate, pH 8.6, containing 0.15 M potassium chloride. Selected fractions are combined, dialyzed against milli Q water, and freeze-dried. The purity of this preparation is greater than 95% as indicated by HPLC analysis and by the spectral ratio values (280 nm/465 nm) of ˜19 or less for the iron-saturated form of lactoferrin.
- Iron saturation is achieved by addition of a 2:1 molar excess of 5 mM ferric nitrilotriacetate (Foley and Bates (1987) Analytical Biochemistry 162, 296-300) to a 1% solution of the purified lactoferrin in 50 mM Tris, pH 7.8 containing 10 mM sodium bicarbonate. Excess ferric nitrilotriacetate is removed by dialysis against 100 volumes of milli Q water (twice renewed) for a total of 20 hours at 4° C. The iron-loaded (holo-) lactoferrin is then freeze-dried.
- Iron-depleted (apo-) lactoferrin is prepared by dialysis of a 1% solution of the highly purified lactoferrin sample in water against 30 volumes of 0.1 M citric acid, pH 2.3, containing 500 mg/L disodium EDTA, for 30 h at 4° C. (Massons and Heremans (1966) Protides of the Biological fluids 14, 115-124). Citrate and EDTA are then removed by dialysis against 30 volumes of milli Q water (once renewed) and the resulting colourless solution freeze-dried.
- A lactoferrin polypeptide of the invention can contain an iron ion (as in a naturally occurring lasctoferrin polypeptide) or a non-iron metal ion (e.g., a copper ion, a chromium ion, a cobalt ion, a manganese ion, a zinc ion, or a magnesium ion). For instance, lactoferrin isolated from bovine milk can be depleted of iron and then loaded with another type of metal ion. For example, copper loading can be achieved according to the same method for iron loading described above. For loading lactoferrin with other metal ions, the method of Ainscough, et al. ((1979) Inorganica Chimica Acta 33, 149-153) can be used.
- In a preparation of a lactoferrin polypeptide of the invention, the polypeptides can be of a single species, or of different species. For instance, the polypeptides can each contain a different number of metal ions or a different species of metal ions; or the lengths of the polypeptides can vary, e.g., some are full-length polypeptides and some are fragments, and the fragments can each represent a particular portion of a full-length polypeptide. Such a preparation can be obtained from a natural source or by mixing different lactoferrin polypeptide species. For example, a mixture of lactoferrin polypeptides of different lengths can be prepared by proteinase digestion (complete or partial) of full-length lactoferrin polypeptides. The degree of digestion can be controlled according to methods well known in the art, e.g., by manipulating the amount of proteinase or the time of incubation. A complete digestion produces a mixture of various fragments of full-length lactoferrin polypeptides; a partial digestion produces a mixture of full-length lactoferrin polypeptides and various fragments.
- A lactoferrin polypeptide or a mixture of the polypeptide and fragments of the polypeptide described above is used to prepare a nutraceutical composition of this invention for preventing and treating bone-related disorders. Examples of such disorders include, but are not limited to, osteoporosis, rheumatoid or osteo-arthritis, hepatic osteodystrophy, osteomalacia, rickets, osteitis fibrosa cystica, renal osteodystrophy, osteosclerosis, osteopenia, fibrogenesis-imperfecta ossium, secondary hyperparathyrodism, hypoparathyroidism, hyperparathyroidism, chronic renal disease, sarcoidosis, glucocorticoid-induced osteoporosis, idiopathic hypercalcemia, Paget's disease, and osteogenesis imperfecta. The nutraceutical composition can be a dietary supplement (e.g., a capsule, a mini-bag, or a tablet) or a food product (e.g., milk, juice, a soft drink, a herbal tea-bag, or confectionary). The composition can also include other nutrients, such as a protein, a carbohydrate, vitamins, minerals, or amino acids. The composition can be in a form suitable for oral use, such as a tablet, a hard or soft capsule, an aqueous or oil suspension, or a syrup; or in a form suitable for parenteral use, such as an aqueous propylene glycol solution, or a buffered aqueous solution. The amount of the active ingredient in the nutraceutical composition depends to a large extent on a subject's specific need. The amount also varies, as recognized by those skilled in the art, dependent on administration route, and possible co-usage of other bone-enhancing agents.
- Also within the scope of this invention is a pharmaceutical composition that contains an effective amount of a lactoferrin polypeptide or a mixture of the polypeptide and fragments of the polypeptide described above, and a pharmaceutically acceptable carrier. The pharmaceutical composition can be used to prevent and treat bone-related disorders described above. The pharmaceutical composition can further include an effective amount of another bone-enhancing agent. The pharmaceutically acceptable carrier includes a solvent, a dispersion medium, a coating, an antibacterial and antifungal agent, and an isotonic and absorption delaying agent. An “effective amount” is the amount required to confer therapeutic effect. The interrelationship of dosages for animals and humans (based on milligrams per meter squared of body surface) is described by Freireich, et al. (1966) Cancer Chemother. Rep. 50: 219. Body surface area can be approximately determined from height and weight of the subject. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardley, N.Y., 1970, 537. Effective doses also vary, as recognized by those skilled in the art, dependent on route of administration, excipient usage, and the like.
- A lactoferrin polypeptide of the invention or a mixture of the polypeptide and fragments of the polypeptide can be formulated into dosage forms for different administration routes utilizing conventional methods. For example, it can be formulated in a capsule, a gel seal, or a tablet for oral administration. Capsules can contain any standard pharmaceutically acceptable materials such as gelatin or cellulose. Tablets can be formulated in accordance with conventional procedures by compressing mixtures of the lactoferrin polypeptide or a mixture of the polypeptide and fragments of the polypeptide with a solid carrier and a lubricant. Examples of solid carriers include starch and sugar bentonite. The lactoferrin polypeptide or a mixture of the polypeptide and fragments of the polypeptide can also be administered in a form of a hard shell tablet or a capsule containing a binder, e.g., lactose or mannitol, a conventional filler, and a tableting agent. The pharmaceutical composition can be administered via the parenteral route. Examples of parenteral dosage forms include aqueous solutions, isotonic saline or 5% glucose of the active agent, or other well-known pharmaceutically acceptable excipient. Cyclodextrins, or other solubilizing agents well-known to those familiar with the art, can be utilized as pharmaceutical excipients for delivery of the therapeutic agent.
- The efficacy of a composition of this invention can be evaluated both in vitro and in vivo. See, e.g., the examples below. Briefly, the composition can be tested for its ability to promote osteoblast and chondrocyte proliferation in vitro. For in vivo studies, the composition can be injected into an animal (e.g., a mouse) and its effects on bone tissues are then accessed. Based on the results, an appropriate dosage range and administration route can be determined.
- The specific examples below are to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. Without further elaboration, it is believed that one skilled in the art can, based on the description herein, utilize the present invention to its fullest extent. All publications recited herein are hereby incorporated by reference in their entirety.
- Osteoblasts were isolated by collagenase digestion from 20-day fetal rat calvariae, as previously described by Lowe and co-workers (Lowe, et al. (1991) Journal of Bone and Mineral Research 6, 1277-1283). Calvariae were dissected aseptically, and the frontal and parietal bones were stripped of their periosteum. Only the central portions of the bones, free from suture tissue, were collected. The calvariae were treated twice with phosphate buffered saline (PBS) containing 3 mM EDTA (pH 7.4) for 15 minutes at 37° C. in a shaking water bath. After washing once in PBS, the calvariae were treated twice with 3 ml of 1 mg/ml collagenase for 7 minutes at 37° C. After discarding the supernatants from digestions I and II, the calvariae were treated further two times with 3 ml of 2 mg/ml collagenase (30 mins, 37° C.). The supernatants of digestions III and IV were pooled, centrifuged, and the cells washed in Dulbecco's modified Eagle's medium (DME) with 10% fetal calf serum (FCS), suspended in DME/10% FCS, and placed in 75 cm3 flasks. The cells were incubated under 5% CO2 and 95% air at 37° C. Confluence was reached by 5-6 days, at which time the cells were subcultured. After trypsinization using trypsin-EDTA (0.05%/0.53 mM), the cells were rinsed in minimum essential medium (MEM) with 5% FCS and resuspended in a fresh medium, then seeded at 5×104 cells/ml in 24-well plates (0.5 ml cell suspension per well, i.e., 1.4×104 cells/cm2). The osteoblast-like character of these cells has been established by demonstration of high levels of alkaline phosphatase activity and osteocalcin production [as described by Groot, et al. (1985) Cell Biol Int Res 9, 528] and a sensitive adenylate cyclase response to parathyroid hormone and prostaglandins [as described by Hermann-Erlee, et al. (1986) Ninth International Conference on calcium regulating hormones and bone metabolism, p 409].
- Proliferation studies (cell counts and thymidine incorporation) were performed both in actively growing and non-actively growing cell populations. To produce actively growing cells, sub-confluent populations (24 h after subculturing) were placed in fresh MEM containing 1% FCS and a lactoferrin sample. To produce non-actively growing cells, sub-confluent populations were placed in serum-free medium with 0.1% bovine serum albumin plus a lactoferrin sample. Cell numbers were analyzed at 6, 24, and 48 hours after the addition of lactoferrin samples (i.e., purified lactoferrin, holo-lactoferrin, and apo-lactoferrin) prepared as described above. The cell numbers were determined after detaching cells from the wells by exposure to trypsin/EDTA (0.05%/0.53 mM) for approximately 5 minutes at 37° C. Counting was performed in a haemocytometer chamber. [3H]-thymidine incorporation into actively growing and non-actively growing cells was assessed by pulsing the cells with [3H]-thymidine (1μCi/well) two hours before the end of the incubation. The experiment was terminated at 6, 24, or 48 hours by washing the cells in MEM containing cold thymidine followed by the addition of 10% trichloroacetic acid. The precipitate was washed twice with ethanol:ether (3:1), and the wells desiccated at room temperature. The residue was redissolved in 2 M KOH at 55° C. for 30 min, neutralized with 1 M HCl, and an aliquot counted for radioactivity. For both cell counts and thymidine incorporation, each experiment at each time point was performed at least 4 different times using experimental groups consisting of at least 6 wells.
- The mitogenic response of the purified lactoferrin sample was found to be very potent, as shown by a markedly increased rate of osteoblast cell proliferation (i.e., increase in thymidine incorporation into DNA of growing cells). The potent osteogenic response seen above was compared with that of insulin-like growth factor 1 (IGF-1), a well-recognized osteoblast mitogen. IGF-1 showed a maximal effect of 1.25 times the control in the same osteoblast cell culture system, whereas lactoferrin's effect was 2.26 times that of the control for the highest dose tested (10 μg/ml).
- Chondrocytes were isolated by removing cartilage (full-depth slices) from the tibial and femoral surfaces of sheep under aseptic conditions. Slices were placed in Dulbecco's Modified Eagles (DME) media containing 5% FBS (v/v) and antibiotics (penicillin 50 g/L, streptomycin 50 g/L and neomycin 100 g/L) and chopped finely with a scalpel blade. Tissue was removed and incubated at 37° C. with firstly pronase (0.8% w/v for 90 minutes) followed by collagenase (0.1% w/v for 18 hours) to complete the digestion. Cells were isolated from the digest by centrifugation (10 minutes at 1300 rpm), resuspended in DME/5% FBS, passed through a nylon mesh screen of 90 Fm pore size to remove any undigested fragments, and recentrifuged. The cells were then washed and resuspended twice in the same media, seeded into a 75 cm2 flask containing DME/10% FBS, and incubated under 5% CO2/95% air at 37° C. Confluence was reached by 7 days, at which time the cells were subcultured. After trypsinization using trypsin-EDTA (0.05%/0.53mM), the cells were rinsed in DME/5% FBS and resuspended in a fresh medium, then seeded into 24-well plates (5×104 cells/mL, 0.5 mL/well). Measurement of thymidine incorporation was performed in growth-arrested cell populations as for the osteoblast-like cell cultures described above. Lactoferrin was found to stimulate chondrocyte proliferation at concentrations above 0.1 μg/ml.
- Neonatal mouse organ culture has been previously described (Cornish, et al. (1998) Am J Physiol 274, E827-E833). Briefly, two-day old neonatal mice were subcutaneously injected with radioactively labeled 45Ca. Three days later, the calvariae were excised and placed on mesh grids in Petri dishes containing 0.1% bovine serum albumin/Media 199. Lactoferrin was added, and the calvariae were incubated for 48 hours. Four hours before the end of the incubation period, [3H]-thymidine was added. The experiment was terminated, and 45Ca release and thymidine incorporation were measured. Lactoferrin was found to stimulate DNA synthesis, which reflects the proliferation of cells of the osteoblast lineage.
- This methodology has been previously described (Grey, et al. (2001) Endocrinology 142,1098-1106). Specifically, primary rat osteoblasts prepared as described above were seeded in 6-well tissue culture plates at an initial density of 5×104 cells/ml in MEM 5% FCS, and grown to 80-90% confluence. After serum starvation overnight, cells were treated at room temperature with lactoferrin in MEM/0.1% BSA. In experiments designed to determine the effect of inhibitors of signal transduction on lactoferrin-induced p42/44 MAP kinase phosphorylation, the cells were pre-treated with the inhibitor for 30 min prior to addition of lactoferrin. After treatment for the indicated period of time, the treatment medium was aspirated, the cells were washed in ice-cold PBS and then scraped in ice-cold HNTG lysis buffer (50 mM HEPES, pH 7.5, 150 mM NaCl, 1% Triton, 10% glycerol, 1.5 mM MgCl2, 1 mM EDTA) containing a cocktail of protease and phosphatase inhibitors (1 mM PMSF, 1 μg/ml peptatin, 10 μg/ml leupeptin, 10 μg/ml aprotinin, 1 mM sodium vanadate, 500 mM NaF). The lysates were briefly vortexed, centrifuged at 13,000 rpm at 4° C., then stored at −70° C. until analyzed. Protein content of the cell lysates was measured using the DC protein assay (BioRad, Hercules, Calif.). Equal amounts of the whole cell lysate (30-50 μg) were subjected to 8% SDS-PAGE, transferred to nitrocellulose membranes, and immunoblotted overnight at 4° C. with an anti-phospho-p42/44 MAP kinase antibody (1:1000). As a control for protein loading, the same filters were stripped and re-probed with an antibody against total p42/44 MAP kinase (1:400). Incubation with the HRP-conjugated secondary antibody was for 1 h at room temperature, and the membranes were analyzed by ECL. Immunoblots were repeated at least 3 times. Lactoferrin was found to induce phosphorylation of p42/p44 MAP kinases in osteoblasts in a dose- and time-dependent manner at concentrations of 1-100 μg/ml.
- The mouse model used in these studies have been previously described (Cornish, et al. (1993) Endocrinology 132, 1359-1366). Injections (0 mg, 0.04 mg, 0.4 mg and 4 mg) of lactoferrin were given daily for 5 days, and the animals were sacrificed one week later. Bone formation was determined by fluorescent labeling of newly formed bone. Indices of bone resorption and of bone mass were determined by conventional light microscopy, assisted by image analysis software. Local injection of lactoferrin in adult mice resulted in increased calvarial bone growth, with significant increases in bone area after only 5 injections.
- Set yoghurts of between 14 and 17% solids, with or without fruit added, can be prepared as follows:
- Medium heat skim milk powder (between 109-152 g) and ALACO stabilizer (100 g) are reconstituted with approximately 880 ml of 50° C. water. Anhydrous Milk Fat (20 g) is then added and mixed for 30 min. The mixture is then heated to 60° C., homogenized at 200 bar, and then pasteurized at 90° C. After cooling to a temperature between 40-42° C., a starter mixture and the freeze-dried protein preparation described above (up to 50 mg of lactoferrin at 95% purity or an equivalent quantity from a not so highly purified source) is added. If desired, fresh fruit may also be added at this point. The mixture is then filled into containers, incubated at 40° C. until pH 4.2-4.4 is reached, and then chilled in a blast cooler.
- An alternative method for preparing the same set yoghurts is by dry blending the indicated quantity of lactoferrin or the indicated quantity as a dose rate, into the dry milk solids, prior to its use in the yoghurt formulation.
- Dry blends of either skim or whole milk powder with calcium and the freeze dried lactoferrin preparations can give dairy based formulations or compositions which can be used either as functional foods or as functional food ingredients. Such compositions can be used as reconstituted milks, milk powder ingredients, dairy desserts, functional foods, cheeses or butter or beverages, and nutraceuticals or dietary supplements. Blending the dry ingredients in ratios of milk powder:calcium:active lactoferrin agent between 90:9.5:0.5 and 94:5.95:0.0001 provide compositions suitable for such uses.
- Blended compositions of milk powder, calcium, and the lactoferrin rich ingredient can be used as bone health functional foods, bone health food ingredients, or as a food ingredient for delivery of bone health nutrients in a range of health foods.
- For such compositions, the calcium and protein contents of the compositions need to be adjusted to required, allowable nutritional limits. Commercially available ingredient milk powders typically contains between 300 and 900 mg calcium per 100 g powder, depending upon their sources. A source of calcium may be added to the powder to extend the calcium content up to 3% by weight of the ingredient milk powder as a blend. The protein level of commercially available ingredient milk or dairy-based protein powders varies depending upon the type of the ingredient, the method of its manufacture, and its intended use. Ingredient milk powder typically contains between 12% and 92% protein. Examples are commercially available skim and whole milk powders, food grade caseins, caseinates, milk protein concentrate powders, spray dried ultrafiltered or microfiltered retentate powders, and the milk protein isolate products. The lactoferrin rich preparation may be incorporated into a protein and calcium blend to give nutritional milk powders that can be used as ingredients in healthy foods and drinks. Such blends provide ingredients suitable for use in preparing yoghurts and yoghurt drinks, acid beverages, ingredient milk powder blends, pasteurized liquid milk products, UHT milk products, cultured milk products, acidified milk drinks, milk-and-cereal combination products, malted milks, milk-and-soy combination products. For such uses, the blend can have a composition where the calcium content is between 0.001% and 3.5% (w/w), the protein composition is between 2% and 92%, and lactoferrin as the osteoblast proliferating agent is added at levels between 0.000001% and 5.5%.
- All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, each feature disclosed is only an example of a generic series of equivalent or similar features.
- From the above description, one skilled in the art can easily ascertain the essential characteristics of the present invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, other embodiments are also within the scope of the following claims.
Claims (2)
1. A pure lactoferrin polypeptide containing no more than two metal ions per molecule, wherein the polypeptide stimulates skeletal growth and inhibits bone resorption.
2-37. (canceled)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/493,919 US20090259025A1 (en) | 2002-04-03 | 2009-06-29 | Lactoferrin |
US12/853,149 US20100305308A1 (en) | 2002-04-03 | 2010-08-09 | Lactoferrin |
US13/082,334 US8703699B2 (en) | 2002-04-03 | 2011-04-07 | Lactoferrin |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NZ51812102 | 2002-04-03 | ||
NZ518121 | 2002-04-03 | ||
US10/205,960 US20030191193A1 (en) | 2002-04-03 | 2002-07-26 | Lactoferrin |
US12/098,253 US20080188644A1 (en) | 2002-04-03 | 2008-04-04 | Lactoferrin |
US12/493,919 US20090259025A1 (en) | 2002-04-03 | 2009-06-29 | Lactoferrin |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/098,253 Continuation US20080188644A1 (en) | 2002-04-03 | 2008-04-04 | Lactoferrin |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/853,149 Continuation US20100305308A1 (en) | 2002-04-03 | 2010-08-09 | Lactoferrin |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090259025A1 true US20090259025A1 (en) | 2009-10-15 |
Family
ID=28673156
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/205,960 Abandoned US20030191193A1 (en) | 2002-04-03 | 2002-07-26 | Lactoferrin |
US12/098,253 Abandoned US20080188644A1 (en) | 2002-04-03 | 2008-04-04 | Lactoferrin |
US12/493,919 Abandoned US20090259025A1 (en) | 2002-04-03 | 2009-06-29 | Lactoferrin |
US12/853,149 Abandoned US20100305308A1 (en) | 2002-04-03 | 2010-08-09 | Lactoferrin |
US13/082,334 Expired - Fee Related US8703699B2 (en) | 2002-04-03 | 2011-04-07 | Lactoferrin |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/205,960 Abandoned US20030191193A1 (en) | 2002-04-03 | 2002-07-26 | Lactoferrin |
US12/098,253 Abandoned US20080188644A1 (en) | 2002-04-03 | 2008-04-04 | Lactoferrin |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/853,149 Abandoned US20100305308A1 (en) | 2002-04-03 | 2010-08-09 | Lactoferrin |
US13/082,334 Expired - Fee Related US8703699B2 (en) | 2002-04-03 | 2011-04-07 | Lactoferrin |
Country Status (14)
Country | Link |
---|---|
US (5) | US20030191193A1 (en) |
EP (1) | EP1490404B1 (en) |
JP (1) | JP4327607B2 (en) |
KR (1) | KR20050006140A (en) |
CN (1) | CN1625566B (en) |
AR (1) | AR040695A1 (en) |
AU (1) | AU2002324387A1 (en) |
BR (1) | BR0215682A (en) |
CA (1) | CA2481315A1 (en) |
DK (1) | DK1490404T3 (en) |
ES (1) | ES2435071T3 (en) |
HK (1) | HK1074635A1 (en) |
PT (1) | PT1490404E (en) |
WO (1) | WO2003082921A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100075904A1 (en) * | 2008-09-24 | 2010-03-25 | University Of Connecticut | Carbon nanotube composite scaffolds for bone tissue engineering |
US8545927B2 (en) | 2010-05-10 | 2013-10-01 | University Of Connecticut | Lactoferrin-based biomaterials for tissue regeneration and drug delivery |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030191193A1 (en) * | 2002-04-03 | 2003-10-09 | Jillian Cornish | Lactoferrin |
WO2004050116A1 (en) * | 2002-11-29 | 2004-06-17 | Morinaga Milk Industry Co., Ltd. | Protease inhibitor |
US7956031B2 (en) | 2005-05-31 | 2011-06-07 | Naidu Lp | Metallo-lactoferrin-coenzyme compositions for trigger and release of bioenergy |
TWI276442B (en) * | 2005-07-05 | 2007-03-21 | Maxluck Biotechnology Corp | Composition of controlling and preventing heart disease |
EP1937298A4 (en) * | 2005-10-14 | 2009-11-11 | Auckland Uniservices Ltd | Use of lactoferrin fragments and hydrolysates |
WO2007049757A1 (en) * | 2005-10-27 | 2007-05-03 | Sunstar Inc. | Inhibitor of osteoclast formation, composition for oral administration and prophylactic or therapeutic agent for bone disease comprising lactoferrin-containing liposome |
US8021659B2 (en) | 2006-04-28 | 2011-09-20 | Naidu Lp | Coenzyme Q10, lactoferrin and angiogenin compositions and uses thereof |
FR2903906B1 (en) * | 2006-07-19 | 2010-11-05 | Bio Serae Laboratoires | COMPOSITION FOR PREVENTING AND / OR TREATING DEGENERATIVE JOINT DISEASES. |
WO2008094493A2 (en) * | 2007-01-26 | 2008-08-07 | Ventria Bioscience | Compositions containing lactoferrin and calcium, and methods of using same |
JP2008303168A (en) * | 2007-06-07 | 2008-12-18 | Japan Health Science Foundation | Osteoclast-controlling agent and method for screening the same |
WO2009009706A1 (en) | 2007-07-10 | 2009-01-15 | Glanbia Nutritionals | Method for removing endotoxin from proteins |
MY177636A (en) | 2008-11-28 | 2020-09-23 | Univ Of Otago | Use of lactic acid bacteria to treat or prevent eczema |
FR2950510B1 (en) * | 2009-09-28 | 2013-04-12 | Groupe Lactalis | DAIRY DERIVATIVE FOR ITS USE IN DEVELOPING AND / OR MAINTAINING THE PHYSICAL CONDITION OF MAMMALS, ESPECIALLY COMPETITION ANIMALS. |
CN105377059A (en) * | 2013-07-05 | 2016-03-02 | 雀巢产品技术援助有限公司 | Lactoferrin-osteopontin-iron complex |
US10018418B2 (en) | 2014-01-07 | 2018-07-10 | Can-Eng Partners Limited | Mobile removable hearth for furnace and transporter |
CA3047920C (en) | 2016-12-22 | 2022-07-19 | University Of Otago | Use of lactic acid bacteria to treat or prevent gestational diabetes mellitus |
EP4136985A1 (en) | 2016-12-22 | 2023-02-22 | University of Otago | Use of lactic acid bacteria to treat or prevent gestational diabetes mellitus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5240909A (en) * | 1990-03-14 | 1993-08-31 | Dietrich Nitsche | Use of lactoferrin for treatment of toxic effects of endotoxins |
US5932259A (en) * | 1994-09-30 | 1999-08-03 | Kato; Ken | Bone reinforcing agent and foods and drinks product containing the same |
US20030154032A1 (en) * | 2000-12-15 | 2003-08-14 | Pittman Debra D. | Methods and compositions for diagnosing and treating rheumatoid arthritis |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US154032A (en) * | 1874-08-11 | Improvement in processes of preparing glass | ||
US4073A (en) * | 1845-06-07 | Machine fob | ||
FR884786A (en) * | 1942-04-03 | 1943-08-26 | Comp Generale Electricite | Insulating outlet for electric cable subjected to high pressures |
JPH0621077B2 (en) * | 1986-07-15 | 1994-03-23 | 雪印乳業株式会社 | Hematopoietic agent |
JP2564185B2 (en) * | 1988-10-11 | 1996-12-18 | 森永乳業株式会社 | Bioactive composition |
EP0389795B1 (en) * | 1989-02-25 | 1993-06-23 | Morinaga Milk Industry Co., Ltd. | Bioactive lactoferrin derivates |
EP0426924A1 (en) | 1989-11-09 | 1991-05-15 | Cellena (Cell Engineering) A.G. | Production of metal transporter compositions for facilitating the engraftment of histo-incompatible bone marrow and controlling the immune reactions in the recipient host |
NZ249235A (en) * | 1992-01-15 | 1995-12-21 | Campina Melkunie Bv | Isolating lactoperoxidase or lactoferrin from milk and/or milk derivatives |
JP3100005B2 (en) * | 1992-07-28 | 2000-10-16 | 雪印乳業株式会社 | Human immunodeficiency virus infection / growth inhibitor |
JP2974604B2 (en) | 1996-01-23 | 1999-11-10 | 雪印乳業株式会社 | Basic protein composition, basic peptide composition and use thereof |
WO1998006425A1 (en) * | 1996-08-12 | 1998-02-19 | A+ Science Invest Ab | Treatment and prevention of infections, inflammations and/or tumours with lactoferrin and/or lactoferricin |
JPH1059864A (en) * | 1996-08-15 | 1998-03-03 | Morinaga Milk Ind Co Ltd | Cancer metastasis suppressing agent for oral administration |
US6440446B1 (en) * | 1998-04-22 | 2002-08-27 | Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo | Agent for anti-osteoporosis |
US6251860B1 (en) * | 1998-07-07 | 2001-06-26 | Suomen Punainen Risti Veripalvelu | Pharmaceutical preparations |
WO2000006192A1 (en) * | 1998-07-30 | 2000-02-10 | Morinaga Milk Industry Co., Ltd. | Liver function ameliorating agents |
US6258383B1 (en) * | 1998-08-14 | 2001-07-10 | Lactoferrin Products Company | Dietary supplement combining colostrum and lactoferrin in a mucosal delivery format |
JP3739589B2 (en) | 1999-03-31 | 2006-01-25 | 雪印乳業株式会社 | Bone strengthening agent |
US6251560B1 (en) * | 2000-05-05 | 2001-06-26 | International Business Machines Corporation | Photoresist compositions with cyclic olefin polymers having lactone moiety |
US20030191193A1 (en) * | 2002-04-03 | 2003-10-09 | Jillian Cornish | Lactoferrin |
-
2002
- 2002-07-26 US US10/205,960 patent/US20030191193A1/en not_active Abandoned
- 2002-07-29 ES ES02758971T patent/ES2435071T3/en not_active Expired - Lifetime
- 2002-07-29 JP JP2003580384A patent/JP4327607B2/en not_active Expired - Fee Related
- 2002-07-29 PT PT27589712T patent/PT1490404E/en unknown
- 2002-07-29 WO PCT/NZ2002/000137 patent/WO2003082921A1/en active Application Filing
- 2002-07-29 DK DK02758971.2T patent/DK1490404T3/en active
- 2002-07-29 KR KR10-2004-7015712A patent/KR20050006140A/en not_active Application Discontinuation
- 2002-07-29 CN CN028288009A patent/CN1625566B/en not_active Expired - Fee Related
- 2002-07-29 CA CA002481315A patent/CA2481315A1/en not_active Abandoned
- 2002-07-29 AU AU2002324387A patent/AU2002324387A1/en not_active Abandoned
- 2002-07-29 BR BR0215682-2A patent/BR0215682A/en not_active IP Right Cessation
- 2002-07-29 EP EP02758971.2A patent/EP1490404B1/en not_active Expired - Lifetime
-
2003
- 2003-07-25 AR AR20030102683A patent/AR040695A1/en not_active Application Discontinuation
-
2005
- 2005-09-30 HK HK05108745.6A patent/HK1074635A1/en not_active IP Right Cessation
-
2008
- 2008-04-04 US US12/098,253 patent/US20080188644A1/en not_active Abandoned
-
2009
- 2009-06-29 US US12/493,919 patent/US20090259025A1/en not_active Abandoned
-
2010
- 2010-08-09 US US12/853,149 patent/US20100305308A1/en not_active Abandoned
-
2011
- 2011-04-07 US US13/082,334 patent/US8703699B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5240909A (en) * | 1990-03-14 | 1993-08-31 | Dietrich Nitsche | Use of lactoferrin for treatment of toxic effects of endotoxins |
US5240909B1 (en) * | 1990-03-14 | 1998-01-20 | Dietrich Nitsche | Use of lactoferrin for treatment of toxic effects of endotoxins |
US5932259A (en) * | 1994-09-30 | 1999-08-03 | Kato; Ken | Bone reinforcing agent and foods and drinks product containing the same |
US20030154032A1 (en) * | 2000-12-15 | 2003-08-14 | Pittman Debra D. | Methods and compositions for diagnosing and treating rheumatoid arthritis |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100075904A1 (en) * | 2008-09-24 | 2010-03-25 | University Of Connecticut | Carbon nanotube composite scaffolds for bone tissue engineering |
US8614189B2 (en) | 2008-09-24 | 2013-12-24 | University Of Connecticut | Carbon nanotube composite scaffolds for bone tissue engineering |
US8545927B2 (en) | 2010-05-10 | 2013-10-01 | University Of Connecticut | Lactoferrin-based biomaterials for tissue regeneration and drug delivery |
Also Published As
Publication number | Publication date |
---|---|
JP2006501143A (en) | 2006-01-12 |
WO2003082921A1 (en) | 2003-10-09 |
US8703699B2 (en) | 2014-04-22 |
CN1625566B (en) | 2012-10-10 |
KR20050006140A (en) | 2005-01-15 |
US20110183008A1 (en) | 2011-07-28 |
EP1490404B1 (en) | 2013-08-21 |
US20100305308A1 (en) | 2010-12-02 |
AU2002324387A1 (en) | 2003-10-13 |
CN1625566A (en) | 2005-06-08 |
EP1490404A4 (en) | 2010-02-24 |
CA2481315A1 (en) | 2003-10-09 |
BR0215682A (en) | 2005-01-04 |
EP1490404A1 (en) | 2004-12-29 |
US20080188644A1 (en) | 2008-08-07 |
HK1074635A1 (en) | 2005-11-18 |
AR040695A1 (en) | 2005-04-13 |
ES2435071T3 (en) | 2013-12-18 |
DK1490404T3 (en) | 2013-09-16 |
JP4327607B2 (en) | 2009-09-09 |
US20030191193A1 (en) | 2003-10-09 |
PT1490404E (en) | 2013-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8703699B2 (en) | Lactoferrin | |
PT1516628E (en) | Stable isotonic lyophilized protein formulation | |
TWI271154B (en) | Compositions derived from milk for maintaining or improving bone health | |
US20090270309A1 (en) | Use of lactoferrin fragments and hydrolysates | |
AU2001290388A1 (en) | Bone health compositions derived from milk | |
US20230372450A1 (en) | Method for preparing a composition comprising an unfolded protein | |
KR20190095540A (en) | Novel fermented milk product and method for producing the same | |
TW201336506A (en) | Bone-fortifying agent | |
JP2004115509A (en) | Osteoprotegerin inhibitory factor production promoter | |
JP3238009B2 (en) | Infant formula | |
DE69318166T2 (en) | FOOD COMPOSITION ENRICHED WITH MORPHOGEN | |
WO1995026984A1 (en) | Process for producing composition containing bovine insulin-like growth factor 1 | |
TW200418503A (en) | Lactoferrin polypeptide for enhancing bone health | |
WO2007094166A1 (en) | Therapeutic agent for spinal cord injury | |
KR20150036677A (en) | Novel powdered milk product and method for producing the same | |
KR20050112631A (en) | Isolated whey protein fraction isolated from colostrum of mammalia, preparation and use thereof | |
WO2008094493A2 (en) | Compositions containing lactoferrin and calcium, and methods of using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: INVITRIA, INC., KANSAS Free format text: CHANGE OF NAME;ASSIGNOR:VENTRIA BIOSCIENCE INC.;REEL/FRAME:065394/0517 Effective date: 20230809 |