US20090203469A1 - Golf balls containing highly-neutralized acid polymers and ionic plasticizers - Google Patents
Golf balls containing highly-neutralized acid polymers and ionic plasticizers Download PDFInfo
- Publication number
- US20090203469A1 US20090203469A1 US12/426,311 US42631109A US2009203469A1 US 20090203469 A1 US20090203469 A1 US 20090203469A1 US 42631109 A US42631109 A US 42631109A US 2009203469 A1 US2009203469 A1 US 2009203469A1
- Authority
- US
- United States
- Prior art keywords
- golf ball
- acid
- cover layer
- neutralized
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 79
- 239000002253 acid Substances 0.000 title claims abstract description 62
- 239000004014 plasticizer Substances 0.000 title claims abstract description 39
- 239000000203 mixture Substances 0.000 claims abstract description 89
- UTOPWMOLSKOLTQ-UHFFFAOYSA-N octacosanoic acid Chemical class CCCCCCCCCCCCCCCCCCCCCCCCCCCC(O)=O UTOPWMOLSKOLTQ-UHFFFAOYSA-N 0.000 claims abstract description 47
- 150000003839 salts Chemical class 0.000 claims abstract description 27
- 235000013872 montan acid ester Nutrition 0.000 claims abstract description 18
- 150000001875 compounds Chemical class 0.000 claims abstract description 14
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 9
- 239000004206 montan acid ester Substances 0.000 claims abstract description 9
- 239000010410 layer Substances 0.000 claims description 83
- -1 alkylene glycols Chemical class 0.000 claims description 31
- 150000005846 sugar alcohols Polymers 0.000 claims description 26
- 229920001577 copolymer Polymers 0.000 claims description 24
- 239000000194 fatty acid Substances 0.000 claims description 23
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 22
- 229930195729 fatty acid Natural products 0.000 claims description 22
- 239000000178 monomer Substances 0.000 claims description 19
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 15
- 239000012792 core layer Substances 0.000 claims description 15
- 239000004814 polyurethane Substances 0.000 claims description 15
- 150000004665 fatty acids Chemical class 0.000 claims description 14
- 150000002148 esters Chemical class 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- 229920002396 Polyurea Polymers 0.000 claims description 9
- 150000001298 alcohols Chemical class 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical group CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 claims description 8
- 239000007795 chemical reaction product Substances 0.000 claims description 7
- 230000006835 compression Effects 0.000 claims description 7
- 238000007906 compression Methods 0.000 claims description 7
- 229920003226 polyurethane urea Polymers 0.000 claims description 7
- RKISUIUJZGSLEV-UHFFFAOYSA-N n-[2-(octadecanoylamino)ethyl]octadecanamide Chemical group CCCCCCCCCCCCCCCCCC(=O)NCCNC(=O)CCCCCCCCCCCCCCCCC RKISUIUJZGSLEV-UHFFFAOYSA-N 0.000 claims description 6
- 235000011187 glycerol Nutrition 0.000 claims description 5
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 claims description 4
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 claims description 4
- 239000004711 α-olefin Substances 0.000 claims description 4
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 claims description 3
- DIROHOMJLWMERM-UHFFFAOYSA-N 3-[dimethyl(octadecyl)azaniumyl]propane-1-sulfonate Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCS([O-])(=O)=O DIROHOMJLWMERM-UHFFFAOYSA-N 0.000 claims description 3
- UAUDZVJPLUQNMU-UHFFFAOYSA-N Erucasaeureamid Natural products CCCCCCCCC=CCCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-UHFFFAOYSA-N 0.000 claims description 3
- AZLIXMDAMOHKAG-CVBJKYQLSA-N OCC(O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O Chemical compound OCC(O)CO.CCCCCCCC\C=C/CCCCCCCC(O)=O.CCCCCCCC\C=C/CCCCCCCC(O)=O AZLIXMDAMOHKAG-CVBJKYQLSA-N 0.000 claims description 3
- FSEJJKIPRNUIFL-UHFFFAOYSA-N [2,2-bis(hydroxymethyl)-3-octadecanoyloxypropyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(CO)(CO)COC(=O)CCCCCCCCCCCCCCCCC FSEJJKIPRNUIFL-UHFFFAOYSA-N 0.000 claims description 3
- AMZKGJLFYCZDMJ-WRBBJXAJSA-N [2,2-dimethyl-3-[(z)-octadec-9-enoyl]oxypropyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(C)(C)COC(=O)CCCCCCC\C=C/CCCCCCCC AMZKGJLFYCZDMJ-WRBBJXAJSA-N 0.000 claims description 3
- LPGFSDGXTDNTCB-UHFFFAOYSA-N [3-(16-methylheptadecanoyloxy)-2,2-bis(16-methylheptadecanoyloxymethyl)propyl] 16-methylheptadecanoate Chemical compound CC(C)CCCCCCCCCCCCCCC(=O)OCC(COC(=O)CCCCCCCCCCCCCCC(C)C)(COC(=O)CCCCCCCCCCCCCCC(C)C)COC(=O)CCCCCCCCCCCCCCC(C)C LPGFSDGXTDNTCB-UHFFFAOYSA-N 0.000 claims description 3
- QTIMEBJTEBWHOB-PMDAXIHYSA-N [3-[(z)-octadec-9-enoyl]oxy-2,2-bis[[(z)-octadec-9-enoyl]oxymethyl]propyl] (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(COC(=O)CCCCCCC\C=C/CCCCCCCC)(COC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC QTIMEBJTEBWHOB-PMDAXIHYSA-N 0.000 claims description 3
- OCKWAZCWKSMKNC-UHFFFAOYSA-N [3-octadecanoyloxy-2,2-bis(octadecanoyloxymethyl)propyl] octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(COC(=O)CCCCCCCCCCCCCCCCC)(COC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC OCKWAZCWKSMKNC-UHFFFAOYSA-N 0.000 claims description 3
- UAUDZVJPLUQNMU-KTKRTIGZSA-N erucamide Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(N)=O UAUDZVJPLUQNMU-KTKRTIGZSA-N 0.000 claims description 3
- UPWGQKDVAURUGE-UHFFFAOYSA-N glycerine monooleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC(CO)CO UPWGQKDVAURUGE-UHFFFAOYSA-N 0.000 claims description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 2
- FATBGEAMYMYZAF-KTKRTIGZSA-N oleamide Chemical compound CCCCCCCC\C=C/CCCCCCCC(N)=O FATBGEAMYMYZAF-KTKRTIGZSA-N 0.000 claims description 2
- FATBGEAMYMYZAF-UHFFFAOYSA-N oleicacidamide-heptaglycolether Natural products CCCCCCCCC=CCCCCCCCC(N)=O FATBGEAMYMYZAF-UHFFFAOYSA-N 0.000 claims description 2
- 125000003158 alcohol group Chemical group 0.000 abstract 1
- 239000003795 chemical substances by application Substances 0.000 description 23
- 229920005862 polyol Polymers 0.000 description 21
- 150000003077 polyols Chemical class 0.000 description 21
- 239000000463 material Substances 0.000 description 19
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 229920000554 ionomer Polymers 0.000 description 15
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 14
- 150000001768 cations Chemical class 0.000 description 12
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 12
- 239000005056 polyisocyanate Substances 0.000 description 12
- 229920001228 polyisocyanate Polymers 0.000 description 12
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 10
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 9
- 239000000654 additive Substances 0.000 description 9
- 229920002635 polyurethane Polymers 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 8
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 8
- 239000005977 Ethylene Substances 0.000 description 8
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 8
- 229920001610 polycaprolactone Polymers 0.000 description 8
- 239000004632 polycaprolactone Substances 0.000 description 8
- 229920001223 polyethylene glycol Polymers 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 238000006386 neutralization reaction Methods 0.000 description 7
- 150000007524 organic acids Chemical class 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 6
- 229920000768 polyamine Polymers 0.000 description 6
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 125000004122 cyclic group Chemical group 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 5
- 235000005985 organic acids Nutrition 0.000 description 5
- 229920000909 polytetrahydrofuran Polymers 0.000 description 5
- 239000005060 rubber Substances 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 description 4
- VIOMIGLBMQVNLY-UHFFFAOYSA-N 4-[(4-amino-2-chloro-3,5-diethylphenyl)methyl]-3-chloro-2,6-diethylaniline Chemical compound CCC1=C(N)C(CC)=CC(CC=2C(=C(CC)C(N)=C(CC)C=2)Cl)=C1Cl VIOMIGLBMQVNLY-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000003431 cross linking reagent Substances 0.000 description 4
- 125000005442 diisocyanate group Chemical group 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- 239000012948 isocyanate Substances 0.000 description 4
- 229920001451 polypropylene glycol Polymers 0.000 description 4
- IAXFZZHBFXRZMT-UHFFFAOYSA-N 2-[3-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=CC(OCCO)=C1 IAXFZZHBFXRZMT-UHFFFAOYSA-N 0.000 description 3
- AOFIWCXMXPVSAZ-UHFFFAOYSA-N 4-methyl-2,6-bis(methylsulfanyl)benzene-1,3-diamine Chemical compound CSC1=CC(C)=C(N)C(SC)=C1N AOFIWCXMXPVSAZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 150000002513 isocyanates Chemical class 0.000 description 3
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920005906 polyester polyol Polymers 0.000 description 3
- 229920000570 polyether Polymers 0.000 description 3
- ZXHZWRZAWJVPIC-UHFFFAOYSA-N 1,2-diisocyanatonaphthalene Chemical compound C1=CC=CC2=C(N=C=O)C(N=C=O)=CC=C21 ZXHZWRZAWJVPIC-UHFFFAOYSA-N 0.000 description 2
- KMZHZAAOEWVPSE-UHFFFAOYSA-N 2,3-dihydroxypropyl acetate Chemical compound CC(=O)OCC(O)CO KMZHZAAOEWVPSE-UHFFFAOYSA-N 0.000 description 2
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 description 2
- XQFZOYSPPFLGEZ-UHFFFAOYSA-N 2-[2-[2-[3-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]phenoxy]ethoxy]ethoxy]ethanol Chemical compound OCCOCCOCCOC1=CC=CC(OCCOCCOCCO)=C1 XQFZOYSPPFLGEZ-UHFFFAOYSA-N 0.000 description 2
- VQTAPEISMWLANM-UHFFFAOYSA-N 2-[2-[3-[2-(2-hydroxyethoxy)ethoxy]phenoxy]ethoxy]ethanol Chemical compound OCCOCCOC1=CC=CC(OCCOCCO)=C1 VQTAPEISMWLANM-UHFFFAOYSA-N 0.000 description 2
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 2
- NWIVYGKSHSJHEF-UHFFFAOYSA-N 4-[(4-amino-3,5-diethylphenyl)methyl]-2,6-diethylaniline Chemical compound CCC1=C(N)C(CC)=CC(CC=2C=C(CC)C(N)=C(CC)C=2)=C1 NWIVYGKSHSJHEF-UHFFFAOYSA-N 0.000 description 2
- QJENIOQDYXRGLF-UHFFFAOYSA-N 4-[(4-amino-3-ethyl-5-methylphenyl)methyl]-2-ethyl-6-methylaniline Chemical compound CC1=C(N)C(CC)=CC(CC=2C=C(CC)C(N)=C(C)C=2)=C1 QJENIOQDYXRGLF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 2
- 229920002121 Hydroxyl-terminated polybutadiene Polymers 0.000 description 2
- 239000005058 Isophorone diisocyanate Substances 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ZKHOYAKAFALNQD-UHFFFAOYSA-N Octacosanoic acid methyl ester Chemical group CCCCCCCCCCCCCCCCCCCCCCCCCCCC(=O)OC ZKHOYAKAFALNQD-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- ZFOZVQLOBQUTQQ-UHFFFAOYSA-N Tributyl citrate Chemical compound CCCCOC(=O)CC(O)(C(=O)OCCCC)CC(=O)OCCCC ZFOZVQLOBQUTQQ-UHFFFAOYSA-N 0.000 description 2
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000003973 alkyl amines Chemical class 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- PAFZNILMFXTMIY-UHFFFAOYSA-N cyclohexylamine Chemical compound NC1CCCCC1 PAFZNILMFXTMIY-UHFFFAOYSA-N 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- CZZYITDELCSZES-UHFFFAOYSA-N diphenylmethane Chemical compound C=1C=CC=CC=1CC1=CC=CC=C1 CZZYITDELCSZES-UHFFFAOYSA-N 0.000 description 2
- ZZTCPWRAHWXWCH-UHFFFAOYSA-N diphenylmethanediamine Chemical compound C=1C=CC=CC=1C(N)(N)C1=CC=CC=C1 ZZTCPWRAHWXWCH-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- LIWAQLJGPBVORC-UHFFFAOYSA-N ethylmethylamine Chemical compound CCNC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid group Chemical group C(CCCC(=O)O)(=O)O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003607 modifier Substances 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- FSWDLYNGJBGFJH-UHFFFAOYSA-N n,n'-di-2-butyl-1,4-phenylenediamine Chemical compound CCC(C)NC1=CC=C(NC(C)CC)C=C1 FSWDLYNGJBGFJH-UHFFFAOYSA-N 0.000 description 2
- YZZTZUHVGICSCS-UHFFFAOYSA-N n-butan-2-yl-4-[[4-(butan-2-ylamino)phenyl]methyl]aniline Chemical compound C1=CC(NC(C)CC)=CC=C1CC1=CC=C(NC(C)CC)C=C1 YZZTZUHVGICSCS-UHFFFAOYSA-N 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical class OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N propane-1,3-diol Chemical compound OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- NALFRYPTRXKZPN-UHFFFAOYSA-N 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(OOC(C)(C)C)(OOC(C)(C)C)C1 NALFRYPTRXKZPN-UHFFFAOYSA-N 0.000 description 1
- FPAZNLSVMWRGQB-UHFFFAOYSA-N 1,2-bis(tert-butylperoxy)-3,4-di(propan-2-yl)benzene Chemical compound CC(C)C1=CC=C(OOC(C)(C)C)C(OOC(C)(C)C)=C1C(C)C FPAZNLSVMWRGQB-UHFFFAOYSA-N 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- AZYRZNIYJDKRHO-UHFFFAOYSA-N 1,3-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=CC(C(C)(C)N=C=O)=C1 AZYRZNIYJDKRHO-UHFFFAOYSA-N 0.000 description 1
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- BMVXCPBXGZKUPN-UHFFFAOYSA-N 1-hexanamine Chemical compound CCCCCCN BMVXCPBXGZKUPN-UHFFFAOYSA-N 0.000 description 1
- ICLCCFKUSALICQ-UHFFFAOYSA-N 1-isocyanato-4-(4-isocyanato-3-methylphenyl)-2-methylbenzene Chemical compound C1=C(N=C=O)C(C)=CC(C=2C=C(C)C(N=C=O)=CC=2)=C1 ICLCCFKUSALICQ-UHFFFAOYSA-N 0.000 description 1
- DMWVYCCGCQPJEA-UHFFFAOYSA-N 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane Chemical compound CC(C)(C)OOC(C)(C)CCC(C)(C)OOC(C)(C)C DMWVYCCGCQPJEA-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- IWSZDQRGNFLMJS-UHFFFAOYSA-N 2-(dibutylamino)ethanol Chemical compound CCCCN(CCO)CCCC IWSZDQRGNFLMJS-UHFFFAOYSA-N 0.000 description 1
- SWKPGMVENNYLFK-UHFFFAOYSA-N 2-(dipropylamino)ethanol Chemical compound CCCN(CCC)CCO SWKPGMVENNYLFK-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WTPYFJNYAMXZJG-UHFFFAOYSA-N 2-[4-(2-hydroxyethoxy)phenoxy]ethanol Chemical compound OCCOC1=CC=C(OCCO)C=C1 WTPYFJNYAMXZJG-UHFFFAOYSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- WROUWQQRXUBECT-UHFFFAOYSA-N 2-ethylacrylic acid Chemical compound CCC(=C)C(O)=O WROUWQQRXUBECT-UHFFFAOYSA-N 0.000 description 1
- BTVWZWFKMIUSGS-UHFFFAOYSA-N 2-methylpropane-1,2-diol Chemical compound CC(C)(O)CO BTVWZWFKMIUSGS-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- RQEOBXYYEPMCPJ-UHFFFAOYSA-N 4,6-diethyl-2-methylbenzene-1,3-diamine Chemical compound CCC1=CC(CC)=C(N)C(C)=C1N RQEOBXYYEPMCPJ-UHFFFAOYSA-N 0.000 description 1
- NWAGXLBTAPTCPR-UHFFFAOYSA-N 5-(2,5-dioxopyrrolidin-1-yl)oxy-5-oxopentanoic acid Chemical compound OC(=O)CCCC(=O)ON1C(=O)CCC1=O NWAGXLBTAPTCPR-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QZCLKYGREBVARF-UHFFFAOYSA-N Acetyl tributyl citrate Chemical compound CCCCOC(=O)CC(C(=O)OCCCC)(OC(C)=O)CC(=O)OCCCC QZCLKYGREBVARF-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000005632 Capric acid (CAS 334-48-5) Substances 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004609 Impact Modifier Substances 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- UEEJHVSXFDXPFK-UHFFFAOYSA-N N-dimethylaminoethanol Chemical compound CN(C)CCO UEEJHVSXFDXPFK-UHFFFAOYSA-N 0.000 description 1
- QCOGKXLOEWLIDC-UHFFFAOYSA-N N-methylbutylamine Chemical compound CCCCNC QCOGKXLOEWLIDC-UHFFFAOYSA-N 0.000 description 1
- JGCDVDWPSYQKMI-UHFFFAOYSA-N N=C=O.N=C=O.C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 Chemical compound N=C=O.N=C=O.C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 JGCDVDWPSYQKMI-UHFFFAOYSA-N 0.000 description 1
- BSAQHHONORWWRC-UHFFFAOYSA-N N=C=O.N=C=O.C1=CC=CC2=CC3=CC=CC=C3C=C21 Chemical compound N=C=O.N=C=O.C1=CC=CC2=CC3=CC=CC=C3C=C21 BSAQHHONORWWRC-UHFFFAOYSA-N 0.000 description 1
- DWVHTDGHZKJZAD-UHFFFAOYSA-N N=C=O.N=C=O.CC1=CC=C(C)C(C)=C1 Chemical compound N=C=O.N=C=O.CC1=CC=C(C)C(C)=C1 DWVHTDGHZKJZAD-UHFFFAOYSA-N 0.000 description 1
- UWJRJUDLJQOQSP-UHFFFAOYSA-N N=C=O.N=C=O.CC1=CC=CC(C)=C1C Chemical compound N=C=O.N=C=O.CC1=CC=CC(C)=C1C UWJRJUDLJQOQSP-UHFFFAOYSA-N 0.000 description 1
- IJCPFHBJZVUWCZ-UHFFFAOYSA-N N=C=O.N=C=O.CC1C=CC=CC1(C)C Chemical compound N=C=O.N=C=O.CC1C=CC=CC1(C)C IJCPFHBJZVUWCZ-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241001415846 Procellariidae Species 0.000 description 1
- 239000004902 Softening Agent Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 229920003182 Surlyn® Polymers 0.000 description 1
- 239000005035 Surlyn® Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000004416 alkarylalkyl group Chemical group 0.000 description 1
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001734 carboxylic acid salts Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002666 chemical blowing agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 229960002887 deanol Drugs 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- LSXWFXONGKSEMY-UHFFFAOYSA-N di-tert-butyl peroxide Chemical compound CC(C)(C)OOC(C)(C)C LSXWFXONGKSEMY-UHFFFAOYSA-N 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- NAPSCFZYZVSQHF-UHFFFAOYSA-N dimantine Chemical compound CCCCCCCCCCCCCCCCCCN(C)C NAPSCFZYZVSQHF-UHFFFAOYSA-N 0.000 description 1
- 229950010007 dimantine Drugs 0.000 description 1
- 239000012972 dimethylethanolamine Substances 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 229940012017 ethylenediamine Drugs 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229940018564 m-phenylenediamine Drugs 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000001617 migratory effect Effects 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- FGTVYMTUTYLLQR-UHFFFAOYSA-N n-ethyl-1-phenylmethanesulfonamide Chemical compound CCNS(=O)(=O)CC1=CC=CC=C1 FGTVYMTUTYLLQR-UHFFFAOYSA-N 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229940117969 neopentyl glycol Drugs 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000921 polyethylene adipate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 238000010107 reaction injection moulding Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0038—Intermediate layers, e.g. inner cover, outer core, mantle
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0038—Intermediate layers, e.g. inner cover, outer core, mantle
- A63B37/004—Physical properties
- A63B37/0049—Flexural modulus; Bending stiffness
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0038—Intermediate layers, e.g. inner cover, outer core, mantle
- A63B37/004—Physical properties
- A63B37/0043—Hardness
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/0038—Intermediate layers, e.g. inner cover, outer core, mantle
- A63B37/004—Physical properties
- A63B37/0045—Thickness
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/005—Cores
- A63B37/006—Physical properties
- A63B37/0061—Coefficient of restitution
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B37/00—Solid balls; Rigid hollow balls; Marbles
- A63B37/0003—Golf balls
- A63B37/005—Cores
- A63B37/006—Physical properties
- A63B37/0065—Deflection or compression
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0016—Plasticisers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
Definitions
- This invention relates to golf balls containing highly-neutralized acid polymers. More specifically, the present invention relates to golf balls containing specific combinations of highly-neutralized acid polymers and ionic plasticizers.
- Solid golf balls typically include one-piece, two-piece (i.e., solid core and a cover), and multi-layer (i.e., solid core of one or more layers and/or a cover of one or more layers) golf balls.
- Golf ball core and cover layers are typically constructed with polymer compositions including, for example, polybutadiene rubber, polyurethanes, polyamides, ionomers, and blends thereof. Ionomers, particularly ethylene-based ionomers, have become a common choice of polymers for golf ball layers because of their toughness, durability, and wide range of hardness values.
- Ionomers can be stiffened by increasing the amount of neutralization. Neutralization to 70% and higher, including 100%, has been disclosed. However, in the absence of flow additives, at neutralization levels above about 60%, the melt flow of the ionomer is decreased to an extent such that processability decreases or disappears altogether. For trivalent cations, the percent neutralization at which the polymer becomes unprocessable, in the absence of flow additives, can be significantly lower.
- Blending ionomers with fatty acids is a known method for improving the processability of highly-neutralized polymers.
- the use of polyhydric alcohols in golf ball compositions is also known in certain golf ball resins.
- improvements in processability and golf ball properties have been achieved, the use of fatty acids or their salts at high levels can lead to discoloration (yellowing) and to surface blooming with subsequent coating adhesion problems.
- the present invention provides a golf ball comprising a core and a cover layer, wherein at least one of the core and the cover layer includes a polymer composition of a highly-neutralized acid polymer and an ionic plasticizer.
- the highly-neutralized acid polymer having acid groups can comprise at least 50 wt % of the polymer composition and have 70% to 100% of the acid groups neutralized.
- the ionic plasticizer can be selected from the group consisting of alcohol esters, montanic acids, montanic acid esters, alkylene bis-amines, zwitterionic compounds, salts thereof, and combinations thereof.
- the present invention is also directed to a golf ball including a core and a cover layer.
- At least one of the core or the cover layer is formed from a polymer composition including 1) a highly-neutralized acid polymer having acid groups comprising at least 50 wt % of the polymer composition. Preferably, 70% to 100% of the acid groups are neutralized; and 2) an ionic plasticizer, such as alcohol esters, montanic acids, montanic acid esters, alkylene bis-amines, zwitterionic compounds, salts thereof, or a blend thereof.
- the core may be a single solitary layer or be a ‘dual core’, such as one including a center and an outer core layer.
- the cover layer is a ‘double cover’ having an inner cover layer and an outer cover layer.
- the polymer composition is present in the outer core layer or the inner cover layer. In another embodiment, the polymer composition is present in the core. In an alternative embodiment, the polymer composition is present in the cover layer.
- the highly-neutralized acid polymer is typically a copolymer of a C 3 to C 8 ⁇ , ⁇ -ethylenically unsaturated carboxylic acid and a C 2 to C 6 ⁇ -olefin.
- the highly-neutralized acid polymer may further include a softening monomer admixed or copolymerized therewith.
- the acid groups are at least 95% neutralized.
- the ionic plasticizer is typically a polyalcohol ester, preferably one such as glycerol monostearate, pentaerythritol distearate, glycerine monooleate, glycerine dioleate, pentaerythritol tetrastearate, pentaerythritol tetraisostearate, pentaerythritol tetraoleate, neo-pentyl glycol dioleate, or a blend thereof.
- the ionic plasticizer may also be montanic acid, montanic acid ester, or salt thereof.
- the montanic acid ester or salt thereof is a reaction product of montanic acid and an alcohol, such as C 1 -C 4 alkanols, C 1 -C 4 alkylene glycols, glycerol, and blends thereof.
- the ionic plasticizer is an alkylene bis-amine.
- the alkylene bis-amine is a fatty acid amine, such as bis-stearoylethylenediamine, ethylene bisstearamide, oleamide, or erucamide.
- the ionic plasticizer may also be a zwitterionic compound, such as N,N-dimethyl-N-stearyl-N-(3-sulfopropyl)-ammonium betaine.
- the golf ball ideally has a coefficient of restitution (“COR”) of at least 0.810 and an Atti compression from 90 to 105, preferably 92 to 100.
- the polymer composition is substantially devoid of fatty acids and polyhydric alcohols.
- the present invention is further directed to a golf ball including a solid core, a cover layer formed from a polyurethane or polyurea, and an intermediate layer disposed between the solid core and the cover layer.
- the intermediate layer is preferably formed from a polymer composition including 1) a highly-neutralized acid polymer having acid groups comprising at least 50 wt % of the polymer composition where at least 98% of the acid groups are neutralized; and 2) an ionic plasticizer, such as montanic acid, montanic acid ester, or salt thereof.
- substantially refers to a degree of deviation that is sufficiently small so as to not measurably detract from the identified property or circumstance. The exact degree of deviation allowable may in some cases depend on the specific context.
- substantially free means that the composition does not contain the cited material in any significant amount, e.g., substantially free of fatty acids or their salts thereof may include either absolutely no fatty acids or salts, or an amount of less than 0.5 wt % based on the total polymeric weight of the composition.
- adjacent refers to the proximity of two structures or elements. Particularly, elements that are identified as being “adjacent” may be either abutting or connected. Such elements may also be near or close to each other without necessarily contacting one another.
- highly-neutralized acid polymer refers to an acid polymer or copolymer after at least 70%, at least 90%, at least 95%, at least 98%, or 100% of the acid groups thereof are neutralized by a cation source.
- Neutralization can be effected prior to, during, or after combining the acid polymer(s) with the polyhydric alcohol(s).
- the polyhydric alcohol is combined with an unneutralized or partially neutralized (i.e., less than 70% neutralized) acid polymer, and a cation source is subsequently added to further neutralize the acid polymer to 70% neutralization or higher.
- copolymer includes polymers having two types of monomers, those having three types of monomers, and those having more than three types of monomers polymerized together.
- (meth) acrylic acid means methacrylic acid and/or acrylic acid.
- (meth)acrylate means methacrylate and/or acrylate.
- any steps recited in any method or process claims may be executed in any order and are not limited to the order presented.
- golf balls of the present invention can include one-piece, two-piece, multi-layer, and wound golf balls having a variety of core structures, intermediate layers, covers, and coatings.
- Golf ball cores may comprise a single, unitary layer, comprising the entire core from the center of the core to its outer periphery.
- the cores may consist of a center surrounded by at least one outer core layer.
- the center, innermost portion of such multi-layer cores is most often solid, but may be hollow or liquid-, gel-, or gas-filled.
- the outer core layer may be solid, or it may be a wound layer formed of a tensioned elastomeric material.
- Golf ball covers may also include one or more layers, such as a double cover having an inner and outer cover layer.
- additional intermediate layers may be disposed between the core and cover.
- the HNP-containing composition is most often included in an intermediate layer, such as an outer core layer or inner cover layer, of a multi-layer golf ball.
- the HNP-containing composition can be included in any one of the layers or combinations of layers.
- At least one layer comprises an HNP-containing composition, including an ionic plasticizer as described herein.
- the acid polymers of the present invention are generally homopolymers or copolymers of ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acids, including combinations thereof.
- Non-limiting examples of ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acids are (meth) acrylic acid, ethacrylic acid, maleic acid, crotonic acid, fumaric acid, itaconic acid. (Meth) acrylic acid is currently most common.
- acid polymers can be copolymers of a C 3 to C 8 ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acid and ethylene or a C 3 to C 6 ⁇ -olefin, optionally including a softening monomer.
- Particularly suitable acid polymers are copolymers of ethylene and (meth) acrylic acid, such as those including a softening monomer.
- E/X/Y-type copolymer When a softening monomer is included, such copolymers are referred to herein as an E/X/Y-type copolymer, wherein E is ethylene, X is a C 3 to C 8 ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acid, and Y is a softening monomer.
- the softening monomer is typically an alkyl(meth)acrylate, wherein the alkyl groups have from 1 to 8 carbon atoms.
- E/X/Y-type copolymers are those where X is (meth) acrylic acid and/or Y is selected from (meth)acrylate, n-butyl(meth)acrylate, isobutyl(meth)acrylate, methyl(meth)acrylate, and ethyl(meth)acrylate.
- Particularly suitable E/X/Y-type copolymers are ethylene/(meth) acrylic acid/n-butyl acrylate, ethylene/(meth) acrylic acid/methyl acrylate, and ethylene/(meth) acrylic acid/ethyl acrylate.
- the acid polymer can be ethylene-acrylic or (meth) acrylic copolymers or terpolymers (e.g. an alkyl ester such as butyl acrylate).
- the amount of ethylene or C 3 to C 6 ⁇ -olefin in the acid copolymer is typically at least 15 wt %, in some cases at least 25 wt %, in other cases at least 40 wt %, and in others at least 60 wt %, based on the total weight of the copolymer.
- the amount of C 3 to C 8 ⁇ , ⁇ -ethylenically unsaturated mono- or dicarboxylic acid in the acid copolymer is typically from 1 wt % to 35 wt %, such as from 5 wt % to 30 wt %, from 5 wt % to 25 wt %, or from 10 wt % to 20 wt %, based on the total weight of the copolymer.
- suitable acid polymers include Surlyn® ionomers, commercially-available from DuPont; AClyn® ionomers, commercially-available from Honeywell International Inc.; Iotek® ionomers, commercially-available from ExxonMobil Chemical Company; and the acid copolymers described in U.S. Patent Application Publication No. 2003/0130434, the entire disclosure of which is hereby incorporated herein by reference.
- the acid polymers of the present invention can be direct copolymers where the polymer is polymerized by adding all monomers simultaneously, as described in, for example, U.S. Pat. No. 4,351,931, the entire disclosure of which is hereby incorporated herein by reference. Ionomers can also be made from direct copolymers, as described in, for example, U.S. Pat. No. 3,264,272 to Rees, the entire disclosure of which is hereby incorporated herein by reference. Alternatively, the acid polymers of the present invention can be graft copolymers, wherein a monomer is grafted onto an existing polymer, as described in, for example, U.S. Patent Application Publication No. 2002/0013413, the entire disclosure of which is hereby incorporated herein by reference. Other polymer types can also be prepared, as are known in the art, e.g., block copolymers, random copolymers, etc.
- Suitable cation sources include metal cations and salts thereof, organic amine compounds, ammonium, and combinations thereof. Most often, cation sources are metal cations and salts thereof, wherein the metal is lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc, aluminum, manganese, nickel, chromium, copper, or a combination thereof. Other cation sources can also be suitable. The amount of cation used in the HNP-containing composition is readily determined based on the desired level of neutralization.
- the highly-neutralized acid polymer can comprise at least 50 wt % of the polymer composition such as about 60 wt % to about 95 wt %. Most often, the highly-neutralized acid polymer can comprise about 65 wt % to about 90 wt % of the polymer composition.
- the HNP-containing compositions of the present invention include one or more highly-neutralized acid polymer(s) and one or more polyhydric alcohol(s). It has been found that by adding a sufficient amount of a polyhydric alcohol to compositions containing an acid polymer, the acid groups of the acid polymer can be neutralized at high levels, including up to 100%, without requiring a fatty acid to maintain processability.
- the HNP-containing compositions may contain fatty acids and salts thereof, but are processible without them.
- organic acids can be blended or melt-blended with other ionomers or polymers as an unmodified or modified organic acid or salt thereof.
- the organic acids or salts thereof can be aliphatic, monofunctional organic acids having from 6 to 36 carbon atoms per molecule. These organic acids can be partially neutralized or fully neutralized. For example, greater than 80% or greater than 90%, and in some cases 100% of all the acid components in the blend can be neutralized.
- the organic acids can typically also be non-volatile and non-migratory.
- Non-limiting examples of suitable fatty acid as the organic acid can include caproic acid, caprylic acid, capric acid, lauric acid, palmitic acid, stearic acid, behenic acid, erucic acid, oleic acid, linoleic acid, and salts thereof.
- the HNP-containing composition is substantially free of fatty acids and their salts.
- fatty acids and salts thereof may be used in the HNP-containing composition without departing from the spirit of the invention.
- Particularly suitable multi-armed polyethylene glycols are those modified with glutaric acid and hydroxysuccinimide ester groups, resulting in a 4-arm polyethylene glycol succinimidyl glutarate having an M, of about 10,000.
- Such 4-arm polyethylene glycols are commercially-available from Shearwater Polymers of Huntsville, Ala.
- polyhydric alcohols function as ionic plasticizers, which plasticize the ionic regions or domains of the polymer without plasticizing the non-ionic polymer backbone. They may also function as amphiphilic plasticizers, plasticizing both the ionic and non-ionic (i.e., olefinic) regions of the ionomer.
- plasticizers include, but are not limited to, alkylamines (e.g., methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, dimethylamine, trimethylamine, triethylamine, methylethylamine, methyl-n-butylamine, tetramethylethylene diamine, cyclohexylamine, and longer chain alkylamines, such as dimethylstearylamine); alkanol amines (e.g., dimethylethanol amine, diethylethanol amine, dipropylethanol amine, and dibutylethanol amine); fatty acid amines (e.g., bisstearamides and alkylene bis-fatty acid amides, such as ethylene bisstearamide); glycerol and glycerol esters (e.g., glycerol acetate and glycerol monostearate); butanedio
- phthalate esters and modified phthalate esters e.g., dioctyl phthalate and dibutyl phthalate
- phthalates of linear alcohols citrates (e.g., tributyl citrate and acetyl tributyl citrate); monoesters and diesters of polyoxyethylene alkyl ethers; polyoxyethylene alkylaryl ethers; polyoxyethylene alkylene ester sulfates; polyoxyethylene alkyl phenol ether sulfates; and polyoxyethylene sorbitan fatty acid esters (e.g., polyoxyethylene sorbitan monolaurate).
- citrates e.g., tributyl citrate and acetyl tributyl citrate
- monoesters and diesters of polyoxyethylene alkyl ethers polyoxyethylene alkylaryl ethers
- polyoxyethylene alkylene ester sulfates polyoxyethylene alkyl phenol ether sulfates
- ionic plasticizers can be alcohol esters, montanic acids, montanic acid esters, alkylene bis-amines, zwitterionic compounds, salts thereof, and combinations thereof. These ionic plasticizers can be used alone, or admixed with other plasticizers such as the aforementioned polyhydric alcohols and/of fatty acids.
- the ionic plasticizer can be a polyalcohol ester.
- suitable polyalcohol esters can include polyalcohol stearate or oleate esters such as glycerol monostearate, pentaerythritol distearate, glycerine monooleate, glycerine dioleate, pentaerythritol tetrastearate, pentaerythritol tetraisostearate, pentaerythritol tetraoleate, neo-pentyl glycol dioleate, and combinations thereof.
- the ionic plasticizer can be a montanic acid, montanic acid ester, or salt thereof.
- the montanic acid ester or salt thereof can be a reaction product of montanic acid and an alcohol.
- the alcohol can most often include C 1 -C 4 alkanols, C 1 -C 4 alkylene glycols, glycerol, and combinations thereof.
- the montanic acid ester is octacosanoic acid-methyl ester.
- montanic acids and their esters include Licowax® E powders and flakes, Licowax® OP partially saponified esters, Licowax® S, Licowax® E, Licowax® ET montanic esters, Licomont®V CaV calcium salts of montanic acid, Licomont® NaV sodium salts, and Licolub® WE 4, WE 40 esters (all available from Clariant).
- Montanic acid is a C 28 -C 32 straight-chain mono-carboxylic acid. Montanic acid esters have high thermal stability and low volatility.
- An ester of montanic acid is the reaction product of this long chain mono-carboxylic acid with mono- or multi-functional organic alcohols.
- Such alcohols can include, but are not limited to, methanol, ethanol, propanol, ethylene glycol, propylene glycol, butylene glycol, and glycerol.
- the carboxylic endgroup may optionally be completely or partially saponified by reaction with bases such as sodium hydroxide or calcium hydroxide.
- bases such as sodium hydroxide or calcium hydroxide.
- the stoichiometry of the reaction between montanic acid and the alcohol can be adjusted so that the reaction product can be a completely esterified montanic acid, partially esterified montanic acid, completely reacted mono- or multi-functional alcohol, or partially reacted mono- or multi-functional alcohol, completely or partially saponified carboxylic acid salt, or mixtures of these.
- montanic acid or its esters can affect, among other things, the viscosity of the composition and how miscible or immiscible it will be in the HNP materials. Although ranges can vary somewhat, montanic acid esters can generally be present in the polymer composition from about 0.001 wt % to about 20 wt %, such as 0.01 wt % to 10 wt %, and in some cases 0.01 wt % to about 5 wt %.
- the ionic plasticizer can be an alkylene bis-amine such as a fatty acid amine.
- suitable fatty acid amines include bis-stearoyl ethyl enedi amine, ethylene bisstearamide, oleamides (oleylamides), and erucamide.
- Commercial examples of such fatty acid amines include Licolub® FA 1 and Licowax® C (available from Clariant).
- the ionic plasticizer can be a zwitterionic compound.
- Suitable zwitterionic compounds can include at least one positive and one negative charge covalently bonded on a common charge center (e.g., an atom or group of atoms).
- a common charge center e.g., an atom or group of atoms.
- One particular class of zwitterionic compounds has the formula:
- R 1 , R 2 , and R 3 independently denote an alkyl-, aryl-, alkaryl-, or aralkyl group having 1 to 30 carbon atoms. These groups can be un-substituted, or wholly or partially chlorinated or fluorinated, and can be optionally branched. Specific examples include phenol and un-branched, un-substituted alkyl group having 1 to 20 carbon atoms, such as phenyl, methyl or alkyl having 12 to 20 carbon atoms.
- R 4 denotes a bivalent alkylene group having 1 to 30 carbon atoms and which can be un-substituted or wholly or partially chlorinated or fluorinated and optionally branched.
- ⁇ , ⁇ -alkylene group C 1 -C 5 examples include un-branched, un-substituted ⁇ , ⁇ -alkylene group C 1 -C 5 .
- Y denotes nitrogen or phosphorus
- X denotes —SO 3 ⁇ , —COO ⁇ , PO 3 ⁇ , with —SO 3 ⁇ , being particularly suitable.
- a suitable zwitterionic compound is N,N-dimethyl-N-stearyl-N-(3-sulfopropyl)-ammonium betaine.
- the amount of polyhydric alcohol present in the HNP-containing compositions of the present invention is typically at least 0.5 wt %, such as from 1 wt % to 15 wt %, and in some cases from 1.5 wt % to 10 wt %, based on the total polymeric weight of the composition.
- the amount of acid polymer present in the HNP-containing compositions of the present invention is typically at least 50 wt %, often from 50 wt % to 99.5 wt %, and in some cases from 60 wt % to 98 wt %, based on the total polymeric weight of the composition.
- the HNP-containing compositions of the present invention may also contain a melt flow modifier selected from polyesters, polyacrylates, thermoplastic polyureas, polyethers, polyamides, and combinations thereof.
- a melt flow modifier selected from polyesters, polyacrylates, thermoplastic polyureas, polyethers, polyamides, and combinations thereof.
- Such non-fatty acid melt flow modifiers typically have an M w of from 1,000 to 100,000 and a melt flow index of from 10 g/10 min to 1,000 g/10 min.
- the HNP-containing compositions of the present invention can also include one or more other additives.
- Suitable additives include, but are not limited to, chemical blowing and foaming agents, optical brighteners, coloring agents, fluorescent agents, whitening agents, UV absorbers, light stabilizers, defoaming agents, processing aids, mica, talc, nano-fillers, antioxidants, stabilizers, softening agents, fragrance components, plasticizers, impact modifiers, TiO 2 , acid copolymer wax, surfactants, and fillers, such as zinc oxide, tin oxide, barium sulfate, zinc sulfate, calcium oxide, calcium carbonate, zinc carbonate, barium carbonate, clay, tungsten, tungsten carbide, silica, lead silicate, regrind (recycled material), and mixtures thereof.
- Suitable additives are more fully described in, for example, U.S. Patent Application Publication No. 2003/0225197, the entire disclosure of which is hereby incorporated herein by reference.
- Other optional additives can include fibers, flakes, particulates, microspheres, pre-expanded beads of glass, ceramic, metal or polymer, and the like which may be optionally foamed.
- such additives can be present in an amount of from 0 wt % to 60 wt %, based on the total weight of the composition.
- golf balls of the present invention are multi-layer balls having a compression molded rubber core, at least one injection or compression molded intermediate layer which comprises an HNP-containing composition, and a cast or reaction injection molded polyurethane or polyurea outer cover layer.
- the rubber core composition comprises a base rubber, a crosslinking agent, a filler, and a co-crosslinking or initiator agent.
- Typical base rubber materials include natural and synthetic rubbers, including, but not limited to, polybutadiene and styrene-butadiene.
- the crosslinking agent typically includes a metal salt, such as a zinc salt or magnesium salt, of an acid having from 3 to 8 carbon atoms, such as (meth) acrylic acid.
- the initiator agent can be any known polymerization initiator which decomposes during the cure cycle, including, but not limited to, dicumyl peroxide, 1,1-di-(t-butylperoxy) 3,3,5-trimethyl cyclohexane, a-a bis-(t-butylperoxy) diisopropylbenzene, 2,5-dimethyl-2,5 di-(t-butylperoxy) hexane or di-t-butyl peroxide, and mixtures thereof.
- Suitable types and amounts of base rubber, crosslinking agent, filler, co-crosslinking agent, and initiator agent are more fully described in, for example, U.S. Patent Application Publication No.
- Cover compositions of the present invention include polyurethanes formed from the reaction product of at least one polyisocyanate and at least one curing agent.
- the curing agent can include, for example, one or more diamines, one or more polyols, or a combination thereof.
- the at least one polyisocyanate can be combined with one or more polyols to form a prepolymer, which is then combined with the at least one curing agent.
- polyols when polyols are described herein they may be suitable for use in one or both components of the polyurethane material, i.e., as part of a prepolymer and in the curing agent.
- the curing agent includes a polyol curing agent preferably selected from the group consisting of ethylene glycol; diethylene glycol; polyethylene glycol; propylene glycol; polypropylene glycol; lower molecular weight polytetramethylene ether glycol; 1,3-bis(2-hydroxyethoxy)benzene; 1,3-bis-[2-(2-hydroxyethoxy)ethoxy]benzene; 1,3-bis- ⁇ 2-[2-(2-hydroxyethoxy)ethoxy]ethoxy ⁇ benzene; 1,4-butanediol; 1,5-pentanediol; 1,6-hexanediol; resorcinol-di-( ⁇ -hydroxyethyl)ether; hydroquinone-di-( ⁇ -hydroxyethyl)ether; trimethylol propane; and combinations thereof.
- a polyol curing agent preferably selected from the group consisting of ethylene glycol; diethylene glycol; polyethylene glycol; propylene glycol
- Suitable polyurethane cover compositions of the present invention also include those formed from the reaction product of at least one isocyanate and at least one curing agent or the reaction produce of at least one isocyanate, at least one polyol, and at least one curing agent.
- Preferred isocyanates include those selected from the group consisting of 4,4′-diphenylmethane diisocyanate, polymeric 4,4′-diphenylmethane diisocyanate, carbodiimide-modified liquid 4,4′-diphenylmethane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, p-phenylene diisocyanate, toluene diisocyanate, isophoronediisocyanate, p-methylxylene diisocyanate, m-methylxylene diisocyanate, o-methylxylene diisocyanate, and combinations thereof.
- Preferred polyols include those selected from the group consisting of polyether polyol, hydroxy-terminated polybutadiene, polyester polyol, polycaprolactone polyol, polycarbonate polyol, and combinations thereof.
- Preferred curing agents include polyamine curing agents, polyol curing agents, and combinations thereof. Polyamine curing agents are particularly preferred.
- Preferred polyamine curing agents include, for example, 3,5-dimethylthio-2,4-toluenediamine, or an isomer thereof; 3,5-diethyltoluene-2,4-diamine, or an isomer thereof; 4,4′-bis-(sec-butylamino)-diphenylmethane; 1,4-bis-(sec-butylamino)-benzene, 4,4′-methylene-bis-(2-chloroaniline); 4,4′-methylene-bis-(3-chloro-2,6-diethylaniline); trimethylene glycol-di-p-aminobenzoate; polytetramethyleneoxide-di-p-aminobenzoate; N,N′-dialkyldiamino diphenyl methane; p,p′-methylene dianiline; phenylenediamine; 4,4′-methylene-bis-(2-chloroaniline); 4,4′-methylene-bis
- Suitable polyisocyanates include, but are not limited to, 4,4′-diphenylmethane diisocyanate (“MDI”); polymeric MDI, carbodiimide-modified liquid MDI; 4,4′-dicyclohexylmethane diisocyanate; p-phenylene diisocyanate (“PPDI”); toluene diisocyanate (“TDI”); 3,3′-dimethyl-4,4′-biphenylene diisocyanate; isophoronediisocyanate; hexamethylene diisocyanate; naphthalene diisocyanate; xylene diisocyanate; p-tetramethylxylene diisocyanate; m-tetramethylxylene diisocyanate; ethylene diisocyanate; propylene-1,2-diisocyanate; tetramethylene-1
- MDI 4,4′-diphenylmethane diisocyanate
- Polyisocyanates are known to those of ordinary skill in the art as having more than one isocyanate group, e.g., di-, tri-, and tetra-isocyanate.
- the polyisocyanate is selected from MDI, PPDI, TDI, and combinations thereof. More preferably, the polyisocyanate includes MDI.
- MDI includes 4,4′-diphenylmethane diisocyanate, polymeric MDI, carbodiimide-modified liquid MDI, combinations thereof and, additionally, that the diisocyanate employed may be “low free monomer,” understood by one of ordinary skill in the art to have lower levels of “free” monomer isocyanate groups than conventional diisocyanates, i.e., the compositions of the invention typically have less than about 0.1% free monomer groups.
- low free monomer diisocyanates include, but are not limited to Low Free Monomer MDI, Low Free Monomer TDI, and Low Free Monomer PPDI.
- the present invention is not limited by the use of a particular polyol in the cover composition.
- the molecular weight of the polyol is from about 200 to about 6000.
- Exemplary polyols include, but are not limited to, polyether polyols, hydroxy-terminated polybutadiene (including partially/fully hydrogenated derivatives), polyester polyols, polycaprolactone polyols, and polycarbonate polyols. Particularly preferred are polytetramethylene ether glycol (“PTMEG”), polyethylene propylene glycol, polyoxypropylene glycol, and combinations thereof.
- PTMEG polytetramethylene ether glycol
- the hydrocarbon chain can have saturated or unsaturated bonds and substituted or unsubstituted aromatic and cyclic groups.
- the polyol of the present invention includes PTMEG.
- Suitable polyester polyols include, but are not limited to, polyethylene adipate glycol, polybutylene adipate glycol, polyethylene propylene adipate glycol, ortho-phthalate-1,6-hexanediol, and combinations thereof.
- the hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
- Suitable polycaprolactone polyols include, but are not limited to, 1,6-hexanediol-initiated polycaprolactone, diethylene glycol initiated polycaprolactone, trimethylol propane initiated polycaprolactone, neopentyl glycol initiated polycaprolactone, 1,4-butanediol-initiated polycaprolactone, and combinations thereof.
- the hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
- Suitable polycarbonates include, but are not limited to, polyphthalate carbonate.
- the hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
- Polyamine curatives are also suitable for use in the curing agent of polyurethane compositions and have been found to improve cut, shear, and impact resistance of the resultant balls.
- Preferred polyamine curatives include, but are not limited to, 3,5-dimethylthio-2,4-toluenediamine and isomers thereof; 3,5-diethyltoluene-2,4-diamine and isomers thereof, such as 3,5-diethyltoluene-2,6-diamine; 4,4′-bis-(sec-butylamino)-diphenylmethane; 1,4-bis-(sec-butylamino)-benzene, 4,4′-methylene-bis-(2-chloro aniline); 4,4′-methylene-bis-(3-chloro-2,6-diethylaniline); polytetramethyleneoxide-di-p-aminobenzoate; N,N′-dialkyldiamino diphenyl methane;
- the curing agent of the present invention includes 3,5-dimethylthio-2,4-toluenediamine and isomers thereof, such as Ethacure® 300 or, alternatively, Ethacure® 100 and 100 LC.
- Suitable polyamine curatives which include both primary and secondary amines, preferably have weight average molecular weights ranging from about 64 to about 2000.
- At least one of a diol, triol, tetraol, or hydroxy-terminated curative may be added to the polyurethane composition.
- Suitable diol, triol, and tetraol groups include ethylene glycol; diethylene glycol; polyethylene glycol; propylene glycol; polypropylene glycol; lower molecular weight polytetramethylene ether glycol; 1,3-bis(2-hydroxyethoxy)benzene; 1,3-bis-[2-(2-hydroxyethoxy)ethoxy]benzene; 1,3-bis- ⁇ 2-[2-(2-hydroxyethoxy)ethoxy]ethoxy ⁇ benzene; 1,4-butanediol; 1,5-pentanediol; 1,6-hexanediol; resorcinol-di-(4-hydroxyethyl)ether; hydroquinone-di-(4-hydroxyethyl)ether; and combinations thereof.
- Preferred hydroxy-terminated curatives include ethylene glycol; diethylene glycol; 1,4-butanediol; 1,5-pentanediol; 1,6-hexanediol, trimethylol propane, and combinations thereof.
- the hydroxy-terminated curative has a molecular weights ranging from about 48 to 2000. It should be understood that molecular weight, as used herein, is the absolute weight average molecular weight and would be understood as such by one of ordinary skill in the art.
- Both the hydroxy-terminated and amine curatives can include one or more saturated, unsaturated, aromatic, and cyclic groups. Additionally, the hydroxy-terminated and amine curatives can include one or more halogen groups.
- the polyurethane composition can be formed with a blend or mixture of curing agents. If desired, however, the polyurethane composition may be formed with a single curing agent.
- Suitable polyureas are further disclosed, for example, in U.S. Pat. Nos. 5,484,870 and 6,835,794, the entire disclosures of which are hereby incorporated herein by reference.
- Suitable polyurethane-urea cover materials include polyurethane/polyurea blends and copolymers comprising urethane and urea segments, as disclosed in U.S. Patent Application Publication No. 2007/0117923, the entire disclosure of which is hereby incorporated herein by reference.
- the golf ball includes a dual core (inner core and outer core layer) and a single cover layer.
- the inner core and/or outer core comprise a polymer composition that is a blend of a highly-neutralized acid polymer having acid groups comprising at least 50 wt % of the polymer composition, where 70% to 100% of the acid groups are neutralized; and an ionic plasticizer being selected from the group consisting of alcohol esters, montanic acids, montanic acid esters, alkylene bis-amines, zwitterionic compounds, salts thereof, and combinations thereof.
- the cover layer is preferably formed from a castable polyurethane or polyurea.
- the inner core has a diameter of about 0.50 inches to about 1.50 inches, more preferably about 0.75 inches to about 1.30 inches, most preferably about 1.00 inches to about 1.20 inches.
- the outer core diameter is preferably about 1.55 inches to about 1.64 inches, more preferably about 1.58 inches to about 1.62 inches.
- the inner core has an Atti compression of about 60 or less, more preferably about 40 or less, and most preferably about 30 or less.
- the inner core surface hardness is preferably about 10 to about 50 Shore D, more preferably about 15 to about 40 Shore D, and most preferably about 20 to about 35 Shore D.
- the outer core layer surface hardness is preferably about 20 to about 60 Shore D, more preferably about 25 to about 55 Shore D, and most preferably about 30 to about 50 Shore D.
- the outer cover layer preferably has a thickness of about 0.015 inches to about 0.05 inches, more preferably about 0.02 inches to about 0.04 inches, and most preferably about 0.025 inches to about 0.035 inches.
- the material hardness of the outer cover layer is preferably about 30 to about 60 Shore D, more preferably about 35 to about 58 Shore D, and most preferably about 40 to about 55 Shore D.
- the above golf ball further includes an inner cover layer comprising a thermoplastic or thermosetting material, more preferably a thermoplastic material, and most preferably an ionomeric material.
- the inner cover layer which is disposed between the outer cover layer and the outer core layer, preferably has a thickness of about 0.015 inches to about 0.05 inches, more preferably about 0.02 inches to about 0.04 inches, and most preferably about 0.025 inches to about 0.035 inches.
- the inner cover layer preferably has a material hardness of about 55 to about 80 Shore D, more preferably about 57 to about 75 Shore D, and most preferably about 62 to about 72 Shore D.
- the outer core layer preferably has a diameter of about 1.51 inches to about 1.62 inches, more preferably about 1.53 inches to about 1.60 inches, and most preferably about 1.55 inches to about 1.58 inches.
- Golf balls of the present invention generally also have a coefficient of restitution of at least 0.790, such as at least 0.800, in some cases at least 0.805, and even other cases at least 0.810. Furthermore, an Atti compression of from 75 to 110, such as from 90 to 100, can be particularly suitable.
- COR is defined as the ratio of the rebound velocity to the inbound velocity when balls are fired into a rigid plate. In determining COR, the inbound velocity is understood to be 125 ft/s.
- HNP-containing compositions of the present invention typically have a flexural modulus of from 3,000 psi to 200,000 psi, such as from 5,000 psi to 150,000 psi, in some cases from 10,000 psi to 125,000 psi, and in other cases from 10,000 psi to 100,000 psi.
- the material hardness of the HNP-containing compositions is generally from 30 Shore D to 80 Shore D, more often from 40 Shore D to 75 Shore D, and in some cases from 45 Shore D to 70 Shore D.
- the notched izod impact strength of the HNP-containing compositions of the present invention is generally at least 2 ft-lb/in, as measured at 23° C. according to ASTM D256.
- the HNP-containing composition can have a melt flow index of at least 0.5 g/10 min. More particularly, the melt flow index of the HNP-containing composition can be from 0.5 g/10 min to 10.0 g/10 min, such as from 1.0 g/10 min to 5.0 g/10 min, and in some cases from 1.0 g/10 min to 4.0 g/10 min.
- the present invention is not limited by any particular method for making the HNP-containing composition.
- the composition is prepared by an extrusion process utilizing a melt extruder, such as a single or twin screw extruder.
- a melt extruder such as a single or twin screw extruder.
- the acid polymer(s), polyhydric alcohol(s), and optional additives are fed, either simultaneously or separately, into the extruder and melt blended at a temperature typically within the range of from 200° C. to 550° C.
- the cation source is concurrently or subsequently added to neutralize the acid polymer(s) to a desired level.
- the acid polymer(s) may be partially neutralized prior to contact with the cation source.
- the composition is prepared by heating and reacting the acid polymer(s) and polyhydric alcohol in solution at a temperature above the melting point of the polymeric components.
- an unneutralized ionomer can be blended with the ionic plasticizer and then neutralized.
- a partially neutralized ionomer can be mixed with the plasticizer and subsequently additional cation added to further neutralize the ionomer.
- the present invention is not limited by any particular process for forming the golf ball layer(s). It should be understood that the layer(s) can be formed by any suitable technique including, but not limited to, injection molding, compression molding, casting, and reaction injection molding.
- compositions of the present invention can provide alternative routes to processable highly-neutralized polymers which can be effective and inexpensive. Furthermore, the present invention allows for a greater range of physical properties, e.g. flexibility, softer/faster combinations, improved toughness, increased scuff and shear resistance, and the like.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
- This application is a continuation-in-part of U.S. application Ser. No. 12/110,418, filed on Apr. 28, 2008, which is a continuation of U.S. Pat. No. 7,365,128, each of which are incorporated herein by reference.
- This invention relates to golf balls containing highly-neutralized acid polymers. More specifically, the present invention relates to golf balls containing specific combinations of highly-neutralized acid polymers and ionic plasticizers.
- Solid golf balls typically include one-piece, two-piece (i.e., solid core and a cover), and multi-layer (i.e., solid core of one or more layers and/or a cover of one or more layers) golf balls. Golf ball core and cover layers are typically constructed with polymer compositions including, for example, polybutadiene rubber, polyurethanes, polyamides, ionomers, and blends thereof. Ionomers, particularly ethylene-based ionomers, have become a common choice of polymers for golf ball layers because of their toughness, durability, and wide range of hardness values.
- Ionomers can be stiffened by increasing the amount of neutralization. Neutralization to 70% and higher, including 100%, has been disclosed. However, in the absence of flow additives, at neutralization levels above about 60%, the melt flow of the ionomer is decreased to an extent such that processability decreases or disappears altogether. For trivalent cations, the percent neutralization at which the polymer becomes unprocessable, in the absence of flow additives, can be significantly lower.
- Blending ionomers with fatty acids is a known method for improving the processability of highly-neutralized polymers. The use of polyhydric alcohols in golf ball compositions is also known in certain golf ball resins. Although improvements in processability and golf ball properties have been achieved, the use of fatty acids or their salts at high levels can lead to discoloration (yellowing) and to surface blooming with subsequent coating adhesion problems.
- The present invention provides a golf ball comprising a core and a cover layer, wherein at least one of the core and the cover layer includes a polymer composition of a highly-neutralized acid polymer and an ionic plasticizer. The highly-neutralized acid polymer having acid groups can comprise at least 50 wt % of the polymer composition and have 70% to 100% of the acid groups neutralized. In addition, the ionic plasticizer can be selected from the group consisting of alcohol esters, montanic acids, montanic acid esters, alkylene bis-amines, zwitterionic compounds, salts thereof, and combinations thereof.
- The present invention is also directed to a golf ball including a core and a cover layer. At least one of the core or the cover layer is formed from a polymer composition including 1) a highly-neutralized acid polymer having acid groups comprising at least 50 wt % of the polymer composition. Preferably, 70% to 100% of the acid groups are neutralized; and 2) an ionic plasticizer, such as alcohol esters, montanic acids, montanic acid esters, alkylene bis-amines, zwitterionic compounds, salts thereof, or a blend thereof.
- The core may be a single solitary layer or be a ‘dual core’, such as one including a center and an outer core layer. In a preferred embodiment, the cover layer is a ‘double cover’ having an inner cover layer and an outer cover layer.
- In one embodiment, the polymer composition is present in the outer core layer or the inner cover layer. In another embodiment, the polymer composition is present in the core. In an alternative embodiment, the polymer composition is present in the cover layer.
- The highly-neutralized acid polymer is typically a copolymer of a C3 to C8 α,β-ethylenically unsaturated carboxylic acid and a C2 to C6 α-olefin. The highly-neutralized acid polymer may further include a softening monomer admixed or copolymerized therewith. Preferably, the acid groups are at least 95% neutralized.
- The ionic plasticizer is typically a polyalcohol ester, preferably one such as glycerol monostearate, pentaerythritol distearate, glycerine monooleate, glycerine dioleate, pentaerythritol tetrastearate, pentaerythritol tetraisostearate, pentaerythritol tetraoleate, neo-pentyl glycol dioleate, or a blend thereof. The ionic plasticizer may also be montanic acid, montanic acid ester, or salt thereof. The montanic acid ester or salt thereof is a reaction product of montanic acid and an alcohol, such as C1-C4 alkanols, C1-C4 alkylene glycols, glycerol, and blends thereof. Preferably, the ionic plasticizer is an alkylene bis-amine. Preferably, the alkylene bis-amine is a fatty acid amine, such as bis-stearoylethylenediamine, ethylene bisstearamide, oleamide, or erucamide. The ionic plasticizer may also be a zwitterionic compound, such as N,N-dimethyl-N-stearyl-N-(3-sulfopropyl)-ammonium betaine.
- The golf ball ideally has a coefficient of restitution (“COR”) of at least 0.810 and an Atti compression from 90 to 105, preferably 92 to 100. In one alternative embodiment, the polymer composition is substantially devoid of fatty acids and polyhydric alcohols.
- The present invention is further directed to a golf ball including a solid core, a cover layer formed from a polyurethane or polyurea, and an intermediate layer disposed between the solid core and the cover layer. The intermediate layer is preferably formed from a polymer composition including 1) a highly-neutralized acid polymer having acid groups comprising at least 50 wt % of the polymer composition where at least 98% of the acid groups are neutralized; and 2) an ionic plasticizer, such as montanic acid, montanic acid ester, or salt thereof.
- There has thus been outlined, rather broadly, certain features of the invention so that the detailed description thereof that follows may be better understood, and so that the present contribution to the art may be better appreciated. Other features of the present invention will become clearer from the following detailed description of the invention, taken with the accompanying claims, or may be learned by the practice of the invention.
- The following detailed description of the embodiments of the present invention is not intended to limit the scope of the invention, as claimed, but is presented for purposes of illustration only, and not to necessarily limit features and characteristics of the present invention. Rather, the description is intended to set forth the best mode of operation of the invention, and to sufficiently enable one skilled in the art to practice the invention. Accordingly, the scope of the present invention is to be defined by the appended claims.
- In describing and claiming the present invention, the following terminology will be used.
- The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a layer” includes reference to one or more of such layers.
- As used herein with respect to an identified property or circumstance, “substantially” refers to a degree of deviation that is sufficiently small so as to not measurably detract from the identified property or circumstance. The exact degree of deviation allowable may in some cases depend on the specific context. For example, “substantially free,” as used herein, means that the composition does not contain the cited material in any significant amount, e.g., substantially free of fatty acids or their salts thereof may include either absolutely no fatty acids or salts, or an amount of less than 0.5 wt % based on the total polymeric weight of the composition.
- As used herein, “adjacent” refers to the proximity of two structures or elements. Particularly, elements that are identified as being “adjacent” may be either abutting or connected. Such elements may also be near or close to each other without necessarily contacting one another.
- As used herein, “highly-neutralized acid polymer” refers to an acid polymer or copolymer after at least 70%, at least 90%, at least 95%, at least 98%, or 100% of the acid groups thereof are neutralized by a cation source. Neutralization can be effected prior to, during, or after combining the acid polymer(s) with the polyhydric alcohol(s). Preferably, the polyhydric alcohol is combined with an unneutralized or partially neutralized (i.e., less than 70% neutralized) acid polymer, and a cation source is subsequently added to further neutralize the acid polymer to 70% neutralization or higher.
- The term “copolymer,” as used herein, includes polymers having two types of monomers, those having three types of monomers, and those having more than three types of monomers polymerized together.
- As used herein, “(meth) acrylic acid” means methacrylic acid and/or acrylic acid. Likewise, “(meth)acrylate” means methacrylate and/or acrylate.
- As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
- Concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a numerical range of about 1 to about 4.5 should be interpreted to include not only the explicitly recited limits of 1 to about 4.5, but also to include individual numerals such as 2, 3, 4, and sub-ranges such as 1 to 3, 2 to 4, etc. The same principle applies to ranges reciting only one numerical value, such as “less than about 4.5,” which should be interpreted to include all of the above-recited values and ranges. Further, such an interpretation should apply regardless of the breadth of the range or the characteristic being described.
- Other than in the operating examples, or unless otherwise expressly specified, all of the numerical ranges, amounts, values and percentages such as those for amounts of materials, and others in the specification may be read as if prefaced by the word “about” even though the term “about” may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
- All patents, publications, test procedures, and other references cited herein, including priority documents, are fully incorporated by reference to the extent such disclosure is not inconsistent with this invention and for all jurisdictions in which such incorporation is permitted.
- In the present disclosure, any steps recited in any method or process claims may be executed in any order and are not limited to the order presented.
- With this in mind, golf balls of the present invention can include one-piece, two-piece, multi-layer, and wound golf balls having a variety of core structures, intermediate layers, covers, and coatings. Golf ball cores may comprise a single, unitary layer, comprising the entire core from the center of the core to its outer periphery. Alternatively, the cores may consist of a center surrounded by at least one outer core layer. The center, innermost portion of such multi-layer cores is most often solid, but may be hollow or liquid-, gel-, or gas-filled. The outer core layer may be solid, or it may be a wound layer formed of a tensioned elastomeric material. Golf ball covers may also include one or more layers, such as a double cover having an inner and outer cover layer. Optionally, additional intermediate layers may be disposed between the core and cover. The HNP-containing composition is most often included in an intermediate layer, such as an outer core layer or inner cover layer, of a multi-layer golf ball. However, the HNP-containing composition can be included in any one of the layers or combinations of layers.
- In the golf balls of the present invention, at least one layer comprises an HNP-containing composition, including an ionic plasticizer as described herein. The acid polymers of the present invention are generally homopolymers or copolymers of α,β-ethylenically unsaturated mono- or dicarboxylic acids, including combinations thereof. Non-limiting examples of α,β-ethylenically unsaturated mono- or dicarboxylic acids are (meth) acrylic acid, ethacrylic acid, maleic acid, crotonic acid, fumaric acid, itaconic acid. (Meth) acrylic acid is currently most common.
- In one aspect of the present invention, acid polymers can be copolymers of a C3 to C8 α,β-ethylenically unsaturated mono- or dicarboxylic acid and ethylene or a C3 to C6 α-olefin, optionally including a softening monomer. Particularly suitable acid polymers are copolymers of ethylene and (meth) acrylic acid, such as those including a softening monomer. When a softening monomer is included, such copolymers are referred to herein as an E/X/Y-type copolymer, wherein E is ethylene, X is a C3 to C8 α,β-ethylenically unsaturated mono- or dicarboxylic acid, and Y is a softening monomer. The softening monomer is typically an alkyl(meth)acrylate, wherein the alkyl groups have from 1 to 8 carbon atoms. Specific non-limiting examples of E/X/Y-type copolymers are those where X is (meth) acrylic acid and/or Y is selected from (meth)acrylate, n-butyl(meth)acrylate, isobutyl(meth)acrylate, methyl(meth)acrylate, and ethyl(meth)acrylate. Particularly suitable E/X/Y-type copolymers are ethylene/(meth) acrylic acid/n-butyl acrylate, ethylene/(meth) acrylic acid/methyl acrylate, and ethylene/(meth) acrylic acid/ethyl acrylate. In another aspect, the acid polymer can be ethylene-acrylic or (meth) acrylic copolymers or terpolymers (e.g. an alkyl ester such as butyl acrylate).
- The amount of ethylene or C3 to C6 α-olefin in the acid copolymer is typically at least 15 wt %, in some cases at least 25 wt %, in other cases at least 40 wt %, and in others at least 60 wt %, based on the total weight of the copolymer. The amount of C3 to C8 α,β-ethylenically unsaturated mono- or dicarboxylic acid in the acid copolymer is typically from 1 wt % to 35 wt %, such as from 5 wt % to 30 wt %, from 5 wt % to 25 wt %, or from 10 wt % to 20 wt %, based on the total weight of the copolymer. If present, the amount of optional softening comonomer in the acid copolymer can be from 0.01 wt % to 50 wt %, from 5 wt % to 40 wt %, from 10 wt % to 35 wt %, or from 20 wt % to 30 wt %, based on the total weight of the copolymer.
- Further examples of suitable acid polymers include Surlyn® ionomers, commercially-available from DuPont; AClyn® ionomers, commercially-available from Honeywell International Inc.; Iotek® ionomers, commercially-available from ExxonMobil Chemical Company; and the acid copolymers described in U.S. Patent Application Publication No. 2003/0130434, the entire disclosure of which is hereby incorporated herein by reference.
- The acid polymers of the present invention can be direct copolymers where the polymer is polymerized by adding all monomers simultaneously, as described in, for example, U.S. Pat. No. 4,351,931, the entire disclosure of which is hereby incorporated herein by reference. Ionomers can also be made from direct copolymers, as described in, for example, U.S. Pat. No. 3,264,272 to Rees, the entire disclosure of which is hereby incorporated herein by reference. Alternatively, the acid polymers of the present invention can be graft copolymers, wherein a monomer is grafted onto an existing polymer, as described in, for example, U.S. Patent Application Publication No. 2002/0013413, the entire disclosure of which is hereby incorporated herein by reference. Other polymer types can also be prepared, as are known in the art, e.g., block copolymers, random copolymers, etc.
- Suitable cation sources include metal cations and salts thereof, organic amine compounds, ammonium, and combinations thereof. Most often, cation sources are metal cations and salts thereof, wherein the metal is lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc, aluminum, manganese, nickel, chromium, copper, or a combination thereof. Other cation sources can also be suitable. The amount of cation used in the HNP-containing composition is readily determined based on the desired level of neutralization.
- The highly-neutralized acid polymer can comprise at least 50 wt % of the polymer composition such as about 60 wt % to about 95 wt %. Most often, the highly-neutralized acid polymer can comprise about 65 wt % to about 90 wt % of the polymer composition.
- As previously described, the HNP-containing compositions of the present invention include one or more highly-neutralized acid polymer(s) and one or more polyhydric alcohol(s). It has been found that by adding a sufficient amount of a polyhydric alcohol to compositions containing an acid polymer, the acid groups of the acid polymer can be neutralized at high levels, including up to 100%, without requiring a fatty acid to maintain processability.
- However, the HNP-containing compositions may contain fatty acids and salts thereof, but are processible without them. If used, organic acids can be blended or melt-blended with other ionomers or polymers as an unmodified or modified organic acid or salt thereof. Typically, the organic acids or salts thereof can be aliphatic, monofunctional organic acids having from 6 to 36 carbon atoms per molecule. These organic acids can be partially neutralized or fully neutralized. For example, greater than 80% or greater than 90%, and in some cases 100% of all the acid components in the blend can be neutralized. The organic acids can typically also be non-volatile and non-migratory. Non-limiting examples of suitable fatty acid as the organic acid can include caproic acid, caprylic acid, capric acid, lauric acid, palmitic acid, stearic acid, behenic acid, erucic acid, oleic acid, linoleic acid, and salts thereof. In one embodiment of the present invention, the HNP-containing composition is substantially free of fatty acids and their salts. However, fatty acids and salts thereof may be used in the HNP-containing composition without departing from the spirit of the invention.
- Examples of suitable polyhydric alcohols include, but are not limited to, polyalkylene glycols, particularly polyethylene glycol and polypropylene glycol; polylactic acid; copolymers thereof; and blends thereof. Polyhydric alcohols of the present invention generally have a weight average molecular weight (Mw) of greater than 500, such as from 500 to 20,000, and in some cases from 1,000 to 20,000. In one embodiment, the polyhydric alcohol is polyethylene glycol or a copolymer thereof, including multi-armed polyethylene glycol polymers, such as those disclosed in U.S. Pat. No. 6,371,975, the entire disclosure of which is hereby incorporated herein by reference. Particularly suitable multi-armed polyethylene glycols are those modified with glutaric acid and hydroxysuccinimide ester groups, resulting in a 4-arm polyethylene glycol succinimidyl glutarate having an M, of about 10,000. Such 4-arm polyethylene glycols are commercially-available from Shearwater Polymers of Huntsville, Ala.
- While not wishing to be bound by theory, it is believed that polyhydric alcohols function as ionic plasticizers, which plasticize the ionic regions or domains of the polymer without plasticizing the non-ionic polymer backbone. They may also function as amphiphilic plasticizers, plasticizing both the ionic and non-ionic (i.e., olefinic) regions of the ionomer. Other suitable plasticizers include, but are not limited to, alkylamines (e.g., methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, dimethylamine, trimethylamine, triethylamine, methylethylamine, methyl-n-butylamine, tetramethylethylene diamine, cyclohexylamine, and longer chain alkylamines, such as dimethylstearylamine); alkanol amines (e.g., dimethylethanol amine, diethylethanol amine, dipropylethanol amine, and dibutylethanol amine); fatty acid amines (e.g., bisstearamides and alkylene bis-fatty acid amides, such as ethylene bisstearamide); glycerol and glycerol esters (e.g., glycerol acetate and glycerol monostearate); butanediol; hexamethyl phosphoramide; N-ethyl toluene sulfonamide; N,N-dimethylacetamide; 2,2-dimethyl-1,2-ethanediol; and dimethyl sulfoxide. One or more of the following materials may also be used instead of, or in addition to, polyhydric alcohol(s) in compositions of the present invention: phthalate esters and modified phthalate esters (e.g., dioctyl phthalate and dibutyl phthalate); phthalates of linear alcohols; citrates (e.g., tributyl citrate and acetyl tributyl citrate); monoesters and diesters of polyoxyethylene alkyl ethers; polyoxyethylene alkylaryl ethers; polyoxyethylene alkylene ester sulfates; polyoxyethylene alkyl phenol ether sulfates; and polyoxyethylene sorbitan fatty acid esters (e.g., polyoxyethylene sorbitan monolaurate).
- Although polyhydric alcohols can be included in the polymer resins of the present invention as described above, certain polyhydric alcohols can be particularly suitable as ionic plasticizers in accordance with one aspect of the present invention. As such, in one embodiment, ionic plasticizers can be alcohol esters, montanic acids, montanic acid esters, alkylene bis-amines, zwitterionic compounds, salts thereof, and combinations thereof. These ionic plasticizers can be used alone, or admixed with other plasticizers such as the aforementioned polyhydric alcohols and/of fatty acids.
- In one specific embodiment, the ionic plasticizer can be a polyalcohol ester. Non-limiting examples of suitable polyalcohol esters can include polyalcohol stearate or oleate esters such as glycerol monostearate, pentaerythritol distearate, glycerine monooleate, glycerine dioleate, pentaerythritol tetrastearate, pentaerythritol tetraisostearate, pentaerythritol tetraoleate, neo-pentyl glycol dioleate, and combinations thereof. Many of these polyalcohol esters are commercially-available as the Kemfluid series (e.g., Kemfluid® 203, 203-4, 419, 219, 219-D, 223, 227, and 402 from Undesa).
- In another embodiment, the ionic plasticizer can be a montanic acid, montanic acid ester, or salt thereof. Generally, the montanic acid ester or salt thereof can be a reaction product of montanic acid and an alcohol. The alcohol can most often include C1-C4 alkanols, C1-C4 alkylene glycols, glycerol, and combinations thereof. In one specific embodiment, the montanic acid ester is octacosanoic acid-methyl ester. Commercially-available montanic acids and their esters include Licowax® E powders and flakes, Licowax® OP partially saponified esters, Licowax® S, Licowax® E, Licowax® ET montanic esters, Licomont®V CaV calcium salts of montanic acid, Licomont® NaV sodium salts, and Licolub® WE 4, WE 40 esters (all available from Clariant). Montanic acid is a C28-C32 straight-chain mono-carboxylic acid. Montanic acid esters have high thermal stability and low volatility. An ester of montanic acid is the reaction product of this long chain mono-carboxylic acid with mono- or multi-functional organic alcohols. Such alcohols can include, but are not limited to, methanol, ethanol, propanol, ethylene glycol, propylene glycol, butylene glycol, and glycerol. The carboxylic endgroup may optionally be completely or partially saponified by reaction with bases such as sodium hydroxide or calcium hydroxide. The stoichiometry of the reaction between montanic acid and the alcohol can be adjusted so that the reaction product can be a completely esterified montanic acid, partially esterified montanic acid, completely reacted mono- or multi-functional alcohol, or partially reacted mono- or multi-functional alcohol, completely or partially saponified carboxylic acid salt, or mixtures of these. The specific choice of montanic acid or its esters can affect, among other things, the viscosity of the composition and how miscible or immiscible it will be in the HNP materials. Although ranges can vary somewhat, montanic acid esters can generally be present in the polymer composition from about 0.001 wt % to about 20 wt %, such as 0.01 wt % to 10 wt %, and in some cases 0.01 wt % to about 5 wt %.
- In another embodiment, the ionic plasticizer can be an alkylene bis-amine such as a fatty acid amine. Non-limiting examples of suitable fatty acid amines include bis-stearoyl ethyl enedi amine, ethylene bisstearamide, oleamides (oleylamides), and erucamide. Commercial examples of such fatty acid amines include Licolub® FA 1 and Licowax® C (available from Clariant).
- In another aspect of the present disclosure, the ionic plasticizer can be a zwitterionic compound. Suitable zwitterionic compounds can include at least one positive and one negative charge covalently bonded on a common charge center (e.g., an atom or group of atoms). One particular class of zwitterionic compounds has the formula:
-
R1R2R3—Y+—R4—X− (formula 1) - where R1, R2, and R3 independently denote an alkyl-, aryl-, alkaryl-, or aralkyl group having 1 to 30 carbon atoms. These groups can be un-substituted, or wholly or partially chlorinated or fluorinated, and can be optionally branched. Specific examples include phenol and un-branched, un-substituted alkyl group having 1 to 20 carbon atoms, such as phenyl, methyl or alkyl having 12 to 20 carbon atoms. R4 denotes a bivalent alkylene group having 1 to 30 carbon atoms and which can be un-substituted or wholly or partially chlorinated or fluorinated and optionally branched. Specific examples include un-branched, un-substituted α,α-alkylene group C1-C5. Further, Y denotes nitrogen or phosphorus, and X denotes —SO3 −, —COO−, PO3 −, with —SO3 −, being particularly suitable. One specific example of a suitable zwitterionic compound is N,N-dimethyl-N-stearyl-N-(3-sulfopropyl)-ammonium betaine.
- The amount of polyhydric alcohol present in the HNP-containing compositions of the present invention is typically at least 0.5 wt %, such as from 1 wt % to 15 wt %, and in some cases from 1.5 wt % to 10 wt %, based on the total polymeric weight of the composition. The amount of acid polymer present in the HNP-containing compositions of the present invention is typically at least 50 wt %, often from 50 wt % to 99.5 wt %, and in some cases from 60 wt % to 98 wt %, based on the total polymeric weight of the composition. Similarly, the amount of ionic plasticizer present in the HNP-containing compositions can generally range from 0.1 wt % to 50 wt %, such as 1 wt % to 40 wt %, and in some cases 10 wt % to 35 wt %. As mentioned, the plasticizers used in accordance with embodiments of the present disclosure can be alcohol esters, montanic acids, montanic acid esters, alkylene bis-amines, zwitterionic compounds, salts thereof, and combinations thereof. That being said, other more conventional plasticizer may or may not be present as well, e.g., fatty acids and/or polyhydric alcohols. Some embodiments are devoid of these other plasticizers, and other embodiments are co-formulated with these or other types of plasticizers.
- The HNP-containing compositions of the present invention may also contain a melt flow modifier selected from polyesters, polyacrylates, thermoplastic polyureas, polyethers, polyamides, and combinations thereof. Such non-fatty acid melt flow modifiers typically have an Mw of from 1,000 to 100,000 and a melt flow index of from 10 g/10 min to 1,000 g/10 min.
- The HNP-containing compositions of the present invention can also include one or more other additives. Suitable additives include, but are not limited to, chemical blowing and foaming agents, optical brighteners, coloring agents, fluorescent agents, whitening agents, UV absorbers, light stabilizers, defoaming agents, processing aids, mica, talc, nano-fillers, antioxidants, stabilizers, softening agents, fragrance components, plasticizers, impact modifiers, TiO2, acid copolymer wax, surfactants, and fillers, such as zinc oxide, tin oxide, barium sulfate, zinc sulfate, calcium oxide, calcium carbonate, zinc carbonate, barium carbonate, clay, tungsten, tungsten carbide, silica, lead silicate, regrind (recycled material), and mixtures thereof. Suitable additives are more fully described in, for example, U.S. Patent Application Publication No. 2003/0225197, the entire disclosure of which is hereby incorporated herein by reference. Other optional additives can include fibers, flakes, particulates, microspheres, pre-expanded beads of glass, ceramic, metal or polymer, and the like which may be optionally foamed. Depending on the additive, such additives can be present in an amount of from 0 wt % to 60 wt %, based on the total weight of the composition.
- The cover layer, or any layer of a multiple layer cover, can be formed of suitable polymers such as the HNP materials described herein, polyurethanes, or polyureas. Most often, the outer cover layer comprises a light stable polyurethane or polyurea, and an inner cover layer or core layer will include the HNP materials described herein.
- As briefly summarized above, golf balls of the present invention can be formed having a variety of internal configurations. For example, golf balls of the present invention can be wound, one-piece, two-piece, or multi-layer balls, wherein at least one layer comprises an HNP-containing composition described herein. In golf balls having two or more layers which comprise an HNP-containing composition, the HNP-containing composition of one layer may be the same or a different HNP-containing composition as another layer. The layer(s) comprising the HNP-containing composition can be any one or more of a core layer, an intermediate layer, or a cover layer. Although note required, the core can often include a center and an outer core layer. Similarly, the cover layer can be a double layer cover having an inner cover layer and an outer cover layer. The outer core layer or the inner cover layer would both be considered intermediate layers. Intermediate layers can also include thin moisture barrier layers, coating layers, adhesive layers, etc.
- Typically, golf balls of the present invention are multi-layer balls having a compression molded rubber core, at least one injection or compression molded intermediate layer which comprises an HNP-containing composition, and a cast or reaction injection molded polyurethane or polyurea outer cover layer. The rubber core composition comprises a base rubber, a crosslinking agent, a filler, and a co-crosslinking or initiator agent. Typical base rubber materials include natural and synthetic rubbers, including, but not limited to, polybutadiene and styrene-butadiene. The crosslinking agent typically includes a metal salt, such as a zinc salt or magnesium salt, of an acid having from 3 to 8 carbon atoms, such as (meth) acrylic acid. The initiator agent can be any known polymerization initiator which decomposes during the cure cycle, including, but not limited to, dicumyl peroxide, 1,1-di-(t-butylperoxy) 3,3,5-trimethyl cyclohexane, a-a bis-(t-butylperoxy) diisopropylbenzene, 2,5-dimethyl-2,5 di-(t-butylperoxy) hexane or di-t-butyl peroxide, and mixtures thereof. Suitable types and amounts of base rubber, crosslinking agent, filler, co-crosslinking agent, and initiator agent are more fully described in, for example, U.S. Patent Application Publication No. 2003/0144087, the entire disclosure of which is hereby incorporated herein by reference. Reference is also made to U.S. Patent Application Publication No. 2003/0144087, which is incorporated herein by reference, for various ball constructions and materials that can be used in golf ball core, intermediate, and cover layers of the present invention.
- Cover compositions of the present invention include polyurethanes formed from the reaction product of at least one polyisocyanate and at least one curing agent. The curing agent can include, for example, one or more diamines, one or more polyols, or a combination thereof. The at least one polyisocyanate can be combined with one or more polyols to form a prepolymer, which is then combined with the at least one curing agent. Thus, when polyols are described herein they may be suitable for use in one or both components of the polyurethane material, i.e., as part of a prepolymer and in the curing agent. The curing agent includes a polyol curing agent preferably selected from the group consisting of ethylene glycol; diethylene glycol; polyethylene glycol; propylene glycol; polypropylene glycol; lower molecular weight polytetramethylene ether glycol; 1,3-bis(2-hydroxyethoxy)benzene; 1,3-bis-[2-(2-hydroxyethoxy)ethoxy]benzene; 1,3-bis-{2-[2-(2-hydroxyethoxy)ethoxy]ethoxy}benzene; 1,4-butanediol; 1,5-pentanediol; 1,6-hexanediol; resorcinol-di-(β-hydroxyethyl)ether; hydroquinone-di-(β-hydroxyethyl)ether; trimethylol propane; and combinations thereof.
- Suitable polyurethane cover compositions of the present invention also include those formed from the reaction product of at least one isocyanate and at least one curing agent or the reaction produce of at least one isocyanate, at least one polyol, and at least one curing agent. Preferred isocyanates include those selected from the group consisting of 4,4′-diphenylmethane diisocyanate, polymeric 4,4′-diphenylmethane diisocyanate, carbodiimide-modified liquid 4,4′-diphenylmethane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, p-phenylene diisocyanate, toluene diisocyanate, isophoronediisocyanate, p-methylxylene diisocyanate, m-methylxylene diisocyanate, o-methylxylene diisocyanate, and combinations thereof. Preferred polyols include those selected from the group consisting of polyether polyol, hydroxy-terminated polybutadiene, polyester polyol, polycaprolactone polyol, polycarbonate polyol, and combinations thereof. Preferred curing agents include polyamine curing agents, polyol curing agents, and combinations thereof. Polyamine curing agents are particularly preferred. Preferred polyamine curing agents include, for example, 3,5-dimethylthio-2,4-toluenediamine, or an isomer thereof; 3,5-diethyltoluene-2,4-diamine, or an isomer thereof; 4,4′-bis-(sec-butylamino)-diphenylmethane; 1,4-bis-(sec-butylamino)-benzene, 4,4′-methylene-bis-(2-chloroaniline); 4,4′-methylene-bis-(3-chloro-2,6-diethylaniline); trimethylene glycol-di-p-aminobenzoate; polytetramethyleneoxide-di-p-aminobenzoate; N,N′-dialkyldiamino diphenyl methane; p,p′-methylene dianiline; phenylenediamine; 4,4′-methylene-bis-(2-chloroaniline); 4,4′-methylene-bis-(2,6-diethylaniline); 4,4′-diamino-3,3′-diethyl-5,5′-dimethyl diphenylmethane; 2,2′,3,3′-tetrachloro diamino diphenylmethane; 4,4′-methylene-bis-(3-chloro-2,6-diethylaniline); and combinations thereof.
- The present invention is not limited by the use of a particular polyisocyanate in the cover composition. Suitable polyisocyanates include, but are not limited to, 4,4′-diphenylmethane diisocyanate (“MDI”); polymeric MDI, carbodiimide-modified liquid MDI; 4,4′-dicyclohexylmethane diisocyanate; p-phenylene diisocyanate (“PPDI”); toluene diisocyanate (“TDI”); 3,3′-dimethyl-4,4′-biphenylene diisocyanate; isophoronediisocyanate; hexamethylene diisocyanate; naphthalene diisocyanate; xylene diisocyanate; p-tetramethylxylene diisocyanate; m-tetramethylxylene diisocyanate; ethylene diisocyanate; propylene-1,2-diisocyanate; tetramethylene-1,4-diisocyanate; cyclohexyl diisocyanate; 1,6-hexamethylene-diisocyanate; dodecane-1,12-diisocyanate; cyclobutane-1,3-diisocyanate; cyclohexane-1,3-diisocyanate; cyclohexane-1,4-diisocyanate; 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane; methyl cyclohexylene diisocyanate; triisocyanate of HDI; triisocyanate of 2,4,4-trimethyl-1,6-hexane diisocyanate; tetracene diisocyanate; naphthalene diisocyanate; anthracene diisocyanate; and combinations thereof. Polyisocyanates are known to those of ordinary skill in the art as having more than one isocyanate group, e.g., di-, tri-, and tetra-isocyanate. Preferably, the polyisocyanate is selected from MDI, PPDI, TDI, and combinations thereof. More preferably, the polyisocyanate includes MDI. It should be understood that, as used herein, the term “MDI” includes 4,4′-diphenylmethane diisocyanate, polymeric MDI, carbodiimide-modified liquid MDI, combinations thereof and, additionally, that the diisocyanate employed may be “low free monomer,” understood by one of ordinary skill in the art to have lower levels of “free” monomer isocyanate groups than conventional diisocyanates, i.e., the compositions of the invention typically have less than about 0.1% free monomer groups. Examples of “low free monomer” diisocyanates include, but are not limited to Low Free Monomer MDI, Low Free Monomer TDI, and Low Free Monomer PPDI.
- The at least one polyisocyanate should have less than 14% unreacted NCO groups. Preferably, the at least one polyisocyanate has no greater than 8.5% NCO, more preferably from 2.5% to 8.0%, even more preferably from 4.0% to 7.2%, and most preferably from 5.0% to 6.5%.
- The present invention is not limited by the use of a particular polyol in the cover composition. In one embodiment, the molecular weight of the polyol is from about 200 to about 6000. Exemplary polyols include, but are not limited to, polyether polyols, hydroxy-terminated polybutadiene (including partially/fully hydrogenated derivatives), polyester polyols, polycaprolactone polyols, and polycarbonate polyols. Particularly preferred are polytetramethylene ether glycol (“PTMEG”), polyethylene propylene glycol, polyoxypropylene glycol, and combinations thereof. The hydrocarbon chain can have saturated or unsaturated bonds and substituted or unsubstituted aromatic and cyclic groups. Preferably, the polyol of the present invention includes PTMEG. Suitable polyester polyols include, but are not limited to, polyethylene adipate glycol, polybutylene adipate glycol, polyethylene propylene adipate glycol, ortho-phthalate-1,6-hexanediol, and combinations thereof. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups. Suitable polycaprolactone polyols include, but are not limited to, 1,6-hexanediol-initiated polycaprolactone, diethylene glycol initiated polycaprolactone, trimethylol propane initiated polycaprolactone, neopentyl glycol initiated polycaprolactone, 1,4-butanediol-initiated polycaprolactone, and combinations thereof. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups. Suitable polycarbonates include, but are not limited to, polyphthalate carbonate. The hydrocarbon chain can have saturated or unsaturated bonds, or substituted or unsubstituted aromatic and cyclic groups.
- Polyamine curatives are also suitable for use in the curing agent of polyurethane compositions and have been found to improve cut, shear, and impact resistance of the resultant balls. Preferred polyamine curatives include, but are not limited to, 3,5-dimethylthio-2,4-toluenediamine and isomers thereof; 3,5-diethyltoluene-2,4-diamine and isomers thereof, such as 3,5-diethyltoluene-2,6-diamine; 4,4′-bis-(sec-butylamino)-diphenylmethane; 1,4-bis-(sec-butylamino)-benzene, 4,4′-methylene-bis-(2-chloro aniline); 4,4′-methylene-bis-(3-chloro-2,6-diethylaniline); polytetramethyleneoxide-di-p-aminobenzoate; N,N′-dialkyldiamino diphenyl methane; p,p′-methylene dianiline; m-phenylenediamine; 4,4′-methylene-bis-(2-chloroaniline); 4,4′-methylene-bis-(2,6-diethylaniline); 4,4′-diamino-3,3′-diethyl-5,5′-dimethyl diphenylmethane; 2,2′, 3,3′-tetrachloro diamino diphenylmethane; 4,4′-methylene-bis-(3-chloro-2,6-diethylaniline); trimethylene glycol di-p-aminobenzoate; and combinations thereof. Preferably, the curing agent of the present invention includes 3,5-dimethylthio-2,4-toluenediamine and isomers thereof, such as Ethacure® 300 or, alternatively, Ethacure® 100 and 100 LC. Suitable polyamine curatives, which include both primary and secondary amines, preferably have weight average molecular weights ranging from about 64 to about 2000.
- At least one of a diol, triol, tetraol, or hydroxy-terminated curative may be added to the polyurethane composition. Suitable diol, triol, and tetraol groups include ethylene glycol; diethylene glycol; polyethylene glycol; propylene glycol; polypropylene glycol; lower molecular weight polytetramethylene ether glycol; 1,3-bis(2-hydroxyethoxy)benzene; 1,3-bis-[2-(2-hydroxyethoxy)ethoxy]benzene; 1,3-bis-{2-[2-(2-hydroxyethoxy)ethoxy]ethoxy}benzene; 1,4-butanediol; 1,5-pentanediol; 1,6-hexanediol; resorcinol-di-(4-hydroxyethyl)ether; hydroquinone-di-(4-hydroxyethyl)ether; and combinations thereof. Preferred hydroxy-terminated curatives include ethylene glycol; diethylene glycol; 1,4-butanediol; 1,5-pentanediol; 1,6-hexanediol, trimethylol propane, and combinations thereof. Preferably, the hydroxy-terminated curative has a molecular weights ranging from about 48 to 2000. It should be understood that molecular weight, as used herein, is the absolute weight average molecular weight and would be understood as such by one of ordinary skill in the art.
- Both the hydroxy-terminated and amine curatives can include one or more saturated, unsaturated, aromatic, and cyclic groups. Additionally, the hydroxy-terminated and amine curatives can include one or more halogen groups. The polyurethane composition can be formed with a blend or mixture of curing agents. If desired, however, the polyurethane composition may be formed with a single curing agent.
- Any method known to one of ordinary skill in the art may be used to combine the polyisocyanate, polyol, and curing agent of the present invention. One commonly employed method, known in the art as a one-shot method, involves concurrent mixing of the polyisocyanate, polyol, and curing agent. This method results in a mixture that is inhomogeneous (more random) and affords the manufacturer less control over the molecular structure of the resultant composition. A preferred method of mixing is known as a prepolymer method. In this method, the polyisocyanate and the polyol are mixed separately prior to addition of the curing agent. This method affords a more homogeneous mixture resulting in a more consistent polymer composition.
- Suitable polyureas are further disclosed, for example, in U.S. Pat. Nos. 5,484,870 and 6,835,794, the entire disclosures of which are hereby incorporated herein by reference. Suitable polyurethane-urea cover materials include polyurethane/polyurea blends and copolymers comprising urethane and urea segments, as disclosed in U.S. Patent Application Publication No. 2007/0117923, the entire disclosure of which is hereby incorporated herein by reference.
- Various properties of the golf ball can dramatically affect performance. These properties can be a result of the particular materials and golf ball design chosen.
- In one preferred embodiment the golf ball includes a dual core (inner core and outer core layer) and a single cover layer. The inner core and/or outer core comprise a polymer composition that is a blend of a highly-neutralized acid polymer having acid groups comprising at least 50 wt % of the polymer composition, where 70% to 100% of the acid groups are neutralized; and an ionic plasticizer being selected from the group consisting of alcohol esters, montanic acids, montanic acid esters, alkylene bis-amines, zwitterionic compounds, salts thereof, and combinations thereof. The cover layer is preferably formed from a castable polyurethane or polyurea. The inner core has a diameter of about 0.50 inches to about 1.50 inches, more preferably about 0.75 inches to about 1.30 inches, most preferably about 1.00 inches to about 1.20 inches. The outer core diameter is preferably about 1.55 inches to about 1.64 inches, more preferably about 1.58 inches to about 1.62 inches. In this embodiment, the inner core has an Atti compression of about 60 or less, more preferably about 40 or less, and most preferably about 30 or less. The inner core surface hardness is preferably about 10 to about 50 Shore D, more preferably about 15 to about 40 Shore D, and most preferably about 20 to about 35 Shore D.
- In this embodiment, the outer core layer surface hardness is preferably about 20 to about 60 Shore D, more preferably about 25 to about 55 Shore D, and most preferably about 30 to about 50 Shore D. The outer cover layer preferably has a thickness of about 0.015 inches to about 0.05 inches, more preferably about 0.02 inches to about 0.04 inches, and most preferably about 0.025 inches to about 0.035 inches. The material hardness of the outer cover layer is preferably about 30 to about 60 Shore D, more preferably about 35 to about 58 Shore D, and most preferably about 40 to about 55 Shore D.
- In a second preferred embodiment, the above golf ball further includes an inner cover layer comprising a thermoplastic or thermosetting material, more preferably a thermoplastic material, and most preferably an ionomeric material. The inner cover layer, which is disposed between the outer cover layer and the outer core layer, preferably has a thickness of about 0.015 inches to about 0.05 inches, more preferably about 0.02 inches to about 0.04 inches, and most preferably about 0.025 inches to about 0.035 inches. The inner cover layer preferably has a material hardness of about 55 to about 80 Shore D, more preferably about 57 to about 75 Shore D, and most preferably about 62 to about 72 Shore D. In this embodiment, the outer core layer preferably has a diameter of about 1.51 inches to about 1.62 inches, more preferably about 1.53 inches to about 1.60 inches, and most preferably about 1.55 inches to about 1.58 inches.
- Accordingly, the golf balls of the present invention can have a center having a diameter of from 1.00 inches to 1.63 inches and an Atti compression of from 40 to 160. Most often, the center has a surface hardness of from 20 Shore D to 70 Shore D. When present, the intermediate layer can generally have a material hardness of from 30 Shore D to 80 Shore D. Although other dimensions can be used, the intermediate layer typically has a thickness of from 0.020 inches to 0.090 inches, more often from 0.010 inches to 0.060 inches.
- Golf balls of the present invention generally also have a coefficient of restitution of at least 0.790, such as at least 0.800, in some cases at least 0.805, and even other cases at least 0.810. Furthermore, an Atti compression of from 75 to 110, such as from 90 to 100, can be particularly suitable. COR is defined as the ratio of the rebound velocity to the inbound velocity when balls are fired into a rigid plate. In determining COR, the inbound velocity is understood to be 125 ft/s.
- HNP-containing compositions of the present invention typically have a flexural modulus of from 3,000 psi to 200,000 psi, such as from 5,000 psi to 150,000 psi, in some cases from 10,000 psi to 125,000 psi, and in other cases from 10,000 psi to 100,000 psi. The material hardness of the HNP-containing compositions is generally from 30 Shore D to 80 Shore D, more often from 40 Shore D to 75 Shore D, and in some cases from 45 Shore D to 70 Shore D. The notched izod impact strength of the HNP-containing compositions of the present invention is generally at least 2 ft-lb/in, as measured at 23° C. according to ASTM D256.
- As a guideline, in order to be processable, the HNP-containing composition can have a melt flow index of at least 0.5 g/10 min. More particularly, the melt flow index of the HNP-containing composition can be from 0.5 g/10 min to 10.0 g/10 min, such as from 1.0 g/10 min to 5.0 g/10 min, and in some cases from 1.0 g/10 min to 4.0 g/10 min.
- The present invention is not limited by any particular method for making the HNP-containing composition. In one embodiment, the composition is prepared by an extrusion process utilizing a melt extruder, such as a single or twin screw extruder. In a typical extruder process, the acid polymer(s), polyhydric alcohol(s), and optional additives are fed, either simultaneously or separately, into the extruder and melt blended at a temperature typically within the range of from 200° C. to 550° C. The cation source is concurrently or subsequently added to neutralize the acid polymer(s) to a desired level. The acid polymer(s) may be partially neutralized prior to contact with the cation source. In another embodiment, the composition is prepared by heating and reacting the acid polymer(s) and polyhydric alcohol in solution at a temperature above the melting point of the polymeric components. In still another embodiment, an unneutralized ionomer can be blended with the ionic plasticizer and then neutralized. Optionally, a partially neutralized ionomer can be mixed with the plasticizer and subsequently additional cation added to further neutralize the ionomer.
- Similarly, the present invention is not limited by any particular process for forming the golf ball layer(s). It should be understood that the layer(s) can be formed by any suitable technique including, but not limited to, injection molding, compression molding, casting, and reaction injection molding.
- The compositions of the present invention can provide alternative routes to processable highly-neutralized polymers which can be effective and inexpensive. Furthermore, the present invention allows for a greater range of physical properties, e.g. flexibility, softer/faster combinations, improved toughness, increased scuff and shear resistance, and the like.
- The foregoing detailed description describes the invention with reference to specific exemplary embodiments. However, it will be appreciated that various modifications and changes can be made without departing from the scope of the present invention as set forth in the appended claims. The detailed description is to be regarded as merely illustrative, rather than as restrictive, and all such modifications or changes, if any, are intended to fall within the scope of the present invention as described and set forth herein.
Claims (20)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/426,311 US20090203469A1 (en) | 2005-08-31 | 2009-04-20 | Golf balls containing highly-neutralized acid polymers and ionic plasticizers |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/216,726 US7365128B2 (en) | 2005-08-31 | 2005-08-31 | Highly-neutralized acid polymers and their use in golf balls |
| US12/110,418 US7642319B2 (en) | 2005-08-31 | 2008-04-28 | Highly-neutralized acid polymers and their use in golf balls |
| US12/426,311 US20090203469A1 (en) | 2005-08-31 | 2009-04-20 | Golf balls containing highly-neutralized acid polymers and ionic plasticizers |
Related Parent Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/110,418 Continuation-In-Part US7642319B2 (en) | 2005-08-31 | 2008-04-28 | Highly-neutralized acid polymers and their use in golf balls |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090203469A1 true US20090203469A1 (en) | 2009-08-13 |
Family
ID=40939383
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/426,311 Abandoned US20090203469A1 (en) | 2005-08-31 | 2009-04-20 | Golf balls containing highly-neutralized acid polymers and ionic plasticizers |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US20090203469A1 (en) |
Cited By (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100048327A1 (en) * | 2008-08-19 | 2010-02-25 | Bulpett David A | Highly-Neutralized Golf Ball Compositions |
| US20100099514A1 (en) * | 2005-08-31 | 2010-04-22 | Sullivan Michael J | Highly-neutralized acid polymers and their use in golf balls |
| US20130079178A1 (en) * | 2011-09-22 | 2013-03-28 | Kazuki Shiga | Golf ball resin composition and golf ball |
| US20130172112A1 (en) * | 2011-12-29 | 2013-07-04 | Dunlop Sports Co. Ltd. | Golf ball resin composition and golf ball |
| US8507599B2 (en) | 2010-12-20 | 2013-08-13 | Acushnet Company | Golf ball layers based on ionomers made with polyalkenamer carriers |
| JP2013248297A (en) * | 2012-06-01 | 2013-12-12 | Dunlop Sports Co Ltd | Golf ball |
| US20140031145A1 (en) * | 2012-07-30 | 2014-01-30 | Dunlop Sports Co. Ltd. | Golf ball resin composition and golf ball |
| JP2014136066A (en) * | 2013-01-17 | 2014-07-28 | Dunlop Sports Co Ltd | Resin composition for golf ball and golf ball |
| JP2014136067A (en) * | 2013-01-17 | 2014-07-28 | Dunlop Sports Co Ltd | Resin composition for golf ball and golf ball |
| US20140357422A1 (en) * | 2013-05-31 | 2014-12-04 | Nike, Inc. | Thermoplastic multi-layer golf ball |
| US20140352733A1 (en) * | 2013-05-31 | 2014-12-04 | Nike, Inc. | Method for creating positive hardness gradient in ionomer core and golf ball |
| US20140357423A1 (en) * | 2013-05-31 | 2014-12-04 | Nike, Inc. | Thermoplastic multi-layer golf ball |
| US20150051015A1 (en) * | 2008-01-10 | 2015-02-19 | Acushnet Company | Golf ball covers made from plasticized thermoplastic materials |
| US20150141167A1 (en) * | 2007-11-14 | 2015-05-21 | Acushnet Company | Dual Core Golf Ball Having Negative-Hardness-Gradient Thermoplastic Inner Core And Steep Positive-Hardness-Gradient Thermoset Outer Core Layer |
| US20150174454A1 (en) * | 2008-01-10 | 2015-06-25 | Acushnet Company | Low Compression Golf Balls Containing Cores Made Of Plasticized Thermoplastic Compositions |
| US20170095702A1 (en) * | 2015-10-02 | 2017-04-06 | Acushnet Company | Golf Balls Having Multi-Layered Covers Made From Plasticized Compositions Containing Non-Acid Polymers |
| US20180043216A1 (en) * | 2015-05-27 | 2018-02-15 | Acushnet Company | Non-conforming golf balls |
| US10105575B2 (en) | 2013-12-31 | 2018-10-23 | Acushnet Company | Golf ball incorporating at least one layer of neutralized acid polymer composition containing low molecular weight acid wax(es) as sole acid polymer component and method of making |
| US10105576B2 (en) | 2013-12-31 | 2018-10-23 | Acushnet Company | Golf ball incorporating at least one layer of plasticized neutralized acid polymer composition containing low molecular weight acid wax(es) as sole acid polymer component and method of making |
| US10427006B2 (en) | 2013-12-31 | 2019-10-01 | Acushnet Company | Golf ball incorporating at least one layer of plasticized neutralized acid polymer composition containing low molecular weight acid wax(es) as sole acid polymer component and low molecular weight non-acid wax(es) in the non-acid polymer component |
| US10441849B2 (en) | 2013-12-31 | 2019-10-15 | Acushnet Company | Golf ball incorporating at least one layer of neutralized acid polymer composition containing low molecular weight acid wax(es) as sole acid polymer component and low molecular weight non-acid wax(es) in the non-acid polymer component |
| US10549157B2 (en) | 2007-03-30 | 2020-02-04 | Acushnet Company | Buoyant, high coefficient of restitution (CoR) golf ball having a reduced flight distance yet the perceived flight trajectory of regular distance high CoR golf balls |
| US10668328B2 (en) | 2013-01-09 | 2020-06-02 | Acushnet Company | Golf ball having a hollow center |
| US11344771B2 (en) | 2008-01-10 | 2022-05-31 | Acushnet Company | Non-conforming golf balls made from plasticized thermoplastic materials |
| US11679304B2 (en) | 2013-12-31 | 2023-06-20 | Acushnet Company | Non-conforming golf balls made from plasticized thermoplastic materials |
| US11684824B2 (en) | 2007-03-30 | 2023-06-27 | Acushnet Company | Buoyant high coefficient of restitution (CoR) golf ball incorporating aerodynamics targeting flight trajectory |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010019971A1 (en) * | 2000-02-10 | 2001-09-06 | Junji Hayashi | Multi-piece golf ball |
| US20020013421A1 (en) * | 2000-06-09 | 2002-01-31 | Bridgestone Sports Co., Ltd | Resin composition for golf ball and golf ball |
| US20030130434A1 (en) * | 1999-10-21 | 2003-07-10 | Statz Robert Joseph | Highly-neutralized ethylene copolymers and their use in golf balls |
| US20040186210A1 (en) * | 2003-03-21 | 2004-09-23 | Sullivan Michael J | Non-conforming golf balls comprising highly-neutralized acid polymers |
| US20040236030A1 (en) * | 2003-05-13 | 2004-11-25 | Taylor Made Golf Company, Inc. | Amine-modified ionomer resin |
| US20070100085A1 (en) * | 2005-11-03 | 2007-05-03 | Taylor Made Golf Company, Inc. | Amide-modified polymer compositions and sports equipment made using the compositions |
| US20100160081A1 (en) * | 2008-12-23 | 2010-06-24 | Kim Hyun J | Golf ball composition |
-
2009
- 2009-04-20 US US12/426,311 patent/US20090203469A1/en not_active Abandoned
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030130434A1 (en) * | 1999-10-21 | 2003-07-10 | Statz Robert Joseph | Highly-neutralized ethylene copolymers and their use in golf balls |
| US20010019971A1 (en) * | 2000-02-10 | 2001-09-06 | Junji Hayashi | Multi-piece golf ball |
| US20020013421A1 (en) * | 2000-06-09 | 2002-01-31 | Bridgestone Sports Co., Ltd | Resin composition for golf ball and golf ball |
| US20040186210A1 (en) * | 2003-03-21 | 2004-09-23 | Sullivan Michael J | Non-conforming golf balls comprising highly-neutralized acid polymers |
| US20040236030A1 (en) * | 2003-05-13 | 2004-11-25 | Taylor Made Golf Company, Inc. | Amine-modified ionomer resin |
| US20070100085A1 (en) * | 2005-11-03 | 2007-05-03 | Taylor Made Golf Company, Inc. | Amide-modified polymer compositions and sports equipment made using the compositions |
| US20100160081A1 (en) * | 2008-12-23 | 2010-06-24 | Kim Hyun J | Golf ball composition |
Non-Patent Citations (1)
| Title |
|---|
| CAS presents Common Chemistry- Substance Details for CAS# 110-30-5; no date. * |
Cited By (53)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20100099514A1 (en) * | 2005-08-31 | 2010-04-22 | Sullivan Michael J | Highly-neutralized acid polymers and their use in golf balls |
| US8163823B2 (en) * | 2005-08-31 | 2012-04-24 | Acushnet Company | Highly neutralized acid polymers and their use in golf balls |
| US11684824B2 (en) | 2007-03-30 | 2023-06-27 | Acushnet Company | Buoyant high coefficient of restitution (CoR) golf ball incorporating aerodynamics targeting flight trajectory |
| US11040253B2 (en) | 2007-03-30 | 2021-06-22 | Acushnet Company | Buoyant, high coefficient of restitution (CoR) golf ball having a reduced flight distance yet the perceived flight trajectory of regular distance high CoR golf balls |
| US10549157B2 (en) | 2007-03-30 | 2020-02-04 | Acushnet Company | Buoyant, high coefficient of restitution (CoR) golf ball having a reduced flight distance yet the perceived flight trajectory of regular distance high CoR golf balls |
| US20150141167A1 (en) * | 2007-11-14 | 2015-05-21 | Acushnet Company | Dual Core Golf Ball Having Negative-Hardness-Gradient Thermoplastic Inner Core And Steep Positive-Hardness-Gradient Thermoset Outer Core Layer |
| US10052525B2 (en) * | 2007-11-14 | 2018-08-21 | Acushnet Company | Dual core golf ball having positive-hardness-gradient thermoplastic inner core and positive-hardness-gradient thermoset outer core layer |
| US9675846B2 (en) * | 2007-11-14 | 2017-06-13 | Acushnet Company | Dual core golf ball having positive-hardness-gradient thermoplastic inner core and positive-hardness-gradient thermoset outer core layer |
| US10300341B2 (en) * | 2008-01-10 | 2019-05-28 | Acushnet Company | Golf ball covers made from plasticized thermoplastic materials |
| US9999808B2 (en) * | 2008-01-10 | 2018-06-19 | Acushnet Company | Golf ball covers made from plasticized thermoplastic materials |
| US20190374819A1 (en) * | 2008-01-10 | 2019-12-12 | Acushnet Company | Golf ball covers made from plasticized thermoplastic materials |
| US10220262B2 (en) * | 2008-01-10 | 2019-03-05 | Acushnet Company | Low compression golf balls containing cores made of plasticized thermoplastic compositions |
| US20180290024A1 (en) * | 2008-01-10 | 2018-10-11 | Acushnet Company | Golf ball covers made from plasticized thermoplastic materials |
| US9901782B2 (en) * | 2008-01-10 | 2018-02-27 | Acushnet Company | Golf ball covers made from plasticized thermoplastic materials |
| US11344771B2 (en) | 2008-01-10 | 2022-05-31 | Acushnet Company | Non-conforming golf balls made from plasticized thermoplastic materials |
| US20180021632A1 (en) * | 2008-01-10 | 2018-01-25 | Acushnet Company | Low compression golf balls containing cores made of plasticized thermoplastic compositions |
| US9764195B2 (en) * | 2008-01-10 | 2017-09-19 | Acushnet Company | Low compression golf balls containing cores made of plasticized thermoplastic compositions |
| US20150051015A1 (en) * | 2008-01-10 | 2015-02-19 | Acushnet Company | Golf ball covers made from plasticized thermoplastic materials |
| US20170189763A1 (en) * | 2008-01-10 | 2017-07-06 | Acushnet Company | Golf ball covers made from plasticized thermoplastic materials |
| US20150174454A1 (en) * | 2008-01-10 | 2015-06-25 | Acushnet Company | Low Compression Golf Balls Containing Cores Made Of Plasticized Thermoplastic Compositions |
| US20170136310A1 (en) * | 2008-01-10 | 2017-05-18 | Acushnet Company | Golf ball covers made from plasticized thermoplastic materials |
| US9555290B2 (en) * | 2008-01-10 | 2017-01-31 | Acushnet Company | Golf ball covers made from plasticized thermoplastic materials |
| US20100048327A1 (en) * | 2008-08-19 | 2010-02-25 | Bulpett David A | Highly-Neutralized Golf Ball Compositions |
| US8507599B2 (en) | 2010-12-20 | 2013-08-13 | Acushnet Company | Golf ball layers based on ionomers made with polyalkenamer carriers |
| US20130079178A1 (en) * | 2011-09-22 | 2013-03-28 | Kazuki Shiga | Golf ball resin composition and golf ball |
| US9155939B2 (en) * | 2011-09-22 | 2015-10-13 | Dunlop Sports Co. Ltd. | Golf ball resin composition and golf ball |
| JP2013078563A (en) * | 2011-09-22 | 2013-05-02 | Dunlop Sports Co Ltd | Golf ball resin composition and golf ball |
| CN103012900A (en) * | 2011-09-22 | 2013-04-03 | 邓禄普体育用品株式会社 | Golf ball resin composition and golf ball |
| US20130172112A1 (en) * | 2011-12-29 | 2013-07-04 | Dunlop Sports Co. Ltd. | Golf ball resin composition and golf ball |
| US9119991B2 (en) * | 2011-12-29 | 2015-09-01 | Dunlop Sports Co. Ltd. | Golf ball resin composition and golf ball |
| JP2013138743A (en) * | 2011-12-29 | 2013-07-18 | Dunlop Sports Co Ltd | Golf ball resin composition and golf ball |
| JP2013248297A (en) * | 2012-06-01 | 2013-12-12 | Dunlop Sports Co Ltd | Golf ball |
| US20140031145A1 (en) * | 2012-07-30 | 2014-01-30 | Dunlop Sports Co. Ltd. | Golf ball resin composition and golf ball |
| US9289651B2 (en) * | 2012-07-30 | 2016-03-22 | Dunlop Sports Co. Ltd. | Golf ball resin composition and golf ball |
| JP2014042798A (en) * | 2012-07-30 | 2014-03-13 | Dunlop Sports Co Ltd | Resin composition for golf ball and golf ball |
| US10668328B2 (en) | 2013-01-09 | 2020-06-02 | Acushnet Company | Golf ball having a hollow center |
| JP2014136066A (en) * | 2013-01-17 | 2014-07-28 | Dunlop Sports Co Ltd | Resin composition for golf ball and golf ball |
| JP2014136067A (en) * | 2013-01-17 | 2014-07-28 | Dunlop Sports Co Ltd | Resin composition for golf ball and golf ball |
| US9174094B2 (en) * | 2013-05-31 | 2015-11-03 | Nike, Inc. | Method for creating positive hardness gradient in ionomer core and golf ball |
| US20140357422A1 (en) * | 2013-05-31 | 2014-12-04 | Nike, Inc. | Thermoplastic multi-layer golf ball |
| US20140352733A1 (en) * | 2013-05-31 | 2014-12-04 | Nike, Inc. | Method for creating positive hardness gradient in ionomer core and golf ball |
| US20140357423A1 (en) * | 2013-05-31 | 2014-12-04 | Nike, Inc. | Thermoplastic multi-layer golf ball |
| US10427006B2 (en) | 2013-12-31 | 2019-10-01 | Acushnet Company | Golf ball incorporating at least one layer of plasticized neutralized acid polymer composition containing low molecular weight acid wax(es) as sole acid polymer component and low molecular weight non-acid wax(es) in the non-acid polymer component |
| US10441849B2 (en) | 2013-12-31 | 2019-10-15 | Acushnet Company | Golf ball incorporating at least one layer of neutralized acid polymer composition containing low molecular weight acid wax(es) as sole acid polymer component and low molecular weight non-acid wax(es) in the non-acid polymer component |
| US10105576B2 (en) | 2013-12-31 | 2018-10-23 | Acushnet Company | Golf ball incorporating at least one layer of plasticized neutralized acid polymer composition containing low molecular weight acid wax(es) as sole acid polymer component and method of making |
| US10105575B2 (en) | 2013-12-31 | 2018-10-23 | Acushnet Company | Golf ball incorporating at least one layer of neutralized acid polymer composition containing low molecular weight acid wax(es) as sole acid polymer component and method of making |
| US10773129B2 (en) | 2013-12-31 | 2020-09-15 | Acushnet Company | Golf ball incorporating at least one layer of neutralized acid polymer composition containing low molecular weight acid wax(es) as sole acid polymer component and low molecular weight non-acid wax(es) in the non-acid polymer component |
| US11679304B2 (en) | 2013-12-31 | 2023-06-20 | Acushnet Company | Non-conforming golf balls made from plasticized thermoplastic materials |
| US12083389B2 (en) | 2013-12-31 | 2024-09-10 | Acushnet Company | Non-conforming golf balls made from plasticized thermoplastic materials |
| US20180043216A1 (en) * | 2015-05-27 | 2018-02-15 | Acushnet Company | Non-conforming golf balls |
| US10413783B2 (en) * | 2015-10-02 | 2019-09-17 | Acushnet Company | Golf balls having multi-layered covers made from plasticized compositions containing non-acid polymers |
| US10029152B2 (en) * | 2015-10-02 | 2018-07-24 | Acushnet Company | Golf balls having multi-layered covers made from plasticized compositions containing non-acid polymers |
| US20170095702A1 (en) * | 2015-10-02 | 2017-04-06 | Acushnet Company | Golf Balls Having Multi-Layered Covers Made From Plasticized Compositions Containing Non-Acid Polymers |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20090203469A1 (en) | Golf balls containing highly-neutralized acid polymers and ionic plasticizers | |
| US8163823B2 (en) | Highly neutralized acid polymers and their use in golf balls | |
| US7531586B2 (en) | Plasticized polyurethanes for use in golf balls | |
| US6210294B1 (en) | Polyurethane golf ball with improved resiliency | |
| US6824476B2 (en) | Multi-layer golf ball | |
| US6673859B2 (en) | Multi-layered golf ball and composition | |
| US8784238B2 (en) | Highly neutralized polymeric compositions for golf ball layers | |
| JP4960350B2 (en) | Method for treating thermoplastic polyurethane golf ball covers | |
| US6849675B2 (en) | Golf ball comprising a plasticized polyurethane | |
| JP4782942B2 (en) | Golf ball manufacturing method | |
| US6392002B1 (en) | Urethane golf ball | |
| JP5484261B2 (en) | Golf ball cover material and golf ball using the same | |
| JP4637762B2 (en) | Golf ball | |
| JP2014158683A (en) | Golf ball having hollow center | |
| US7985800B2 (en) | Golf ball | |
| JP2007190287A (en) | Golf ball | |
| JP7074740B2 (en) | Golf ball with thermoplastic blend | |
| US6825305B2 (en) | Golf balls comprising non-ionomer glycidyl polymer layers | |
| US12427381B2 (en) | Golf balls with increased shear durability | |
| US20220193965A1 (en) | Methods for forming heat-resistant polyurethane covers for golf balls | |
| US20240325827A1 (en) | Golf ball | |
| JP4937027B2 (en) | Golf ball | |
| JP2007215862A (en) | Golf ball and its manufacturing process | |
| US20210154533A1 (en) | Golf ball | |
| JP2002263220A (en) | Thermoplastic polyurethane golf ball with improved resilience |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: ACUSHNET COMPANY, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SULLIVAN, MICHAEL J.;REEL/FRAME:022564/0843 Effective date: 20090417 |
|
| AS | Assignment |
Owner name: KOREA DEVELOPMENT BANK, NEW YORK BRANCH, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNOR:ACUSHNET COMPANY;REEL/FRAME:027346/0222 Effective date: 20111031 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
| AS | Assignment |
Owner name: ACUSHNET COMPANY, MASSACHUSETTS Free format text: RELEASE OF SECURITY INTEREST IN PATENTS PREVIOUSLY RECORDED AT REEL/FRAME (027346/0222);ASSIGNOR:KOREA DEVELOPMENT BANK, NEW YORK BRANCH;REEL/FRAME:039939/0181 Effective date: 20160728 |