US20090202385A1 - Preparation of alloys by the armstrong method - Google Patents
Preparation of alloys by the armstrong method Download PDFInfo
- Publication number
- US20090202385A1 US20090202385A1 US12/386,073 US38607309A US2009202385A1 US 20090202385 A1 US20090202385 A1 US 20090202385A1 US 38607309 A US38607309 A US 38607309A US 2009202385 A1 US2009202385 A1 US 2009202385A1
- Authority
- US
- United States
- Prior art keywords
- powder
- halide
- liquid
- metal
- liquid reductant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/28—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from gaseous metal compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/06—Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
- C22B34/1263—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
- C22B34/1268—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
- C22B34/1272—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
Definitions
- alloys or ceramics can be prepared by establishing a mixture of gases which are fed, as disclosed in the above referenced patents, subsurface to a reducing metal thereby to initiate the reduction of the gas mixture to the corresponding alloy or ceramic.
- the most obvious way to provide the mixed vapor is to introduce the constituent vapors in the required atomic ratio to a manifold and feed the mixed material to the reducing metal.
- the present invention relates to another means for mixing the alloy or ceramic constituents prior to the introduction of the mixed vapor to the reducing metal.
- the various constituents of the alloy or ceramic are initially mixed as a liquid which is thereafter boiled. After the liquid is boiled and reaches equilibrium, the vapor coming off the liquid has the same atomic ratio as the feed liquid to the boiler, which may or may not be different than the liquid in the boiler.
- the vapor from the boiler can be fed to the Armstrong process in the same manner as illustrated in the three referenced patents to produce an alloy or ceramic having a constant atomic ratio.
- This invention simplifies the handling of materials, particularly those materials such as aluminum chloride which sublimate rather than boil.
- the solid is heated in a vessel under pressure so that a liquid is formed and that liquid is thereafter transmitted to a boiler, as will be shown.
- a boiler having feed streams of aluminum chloride and vanadium chloride and titanium chloride in atomic ratios of 6% Al and 4% V and the remainder Ti will produce at equilibrium a vapor of 6% Al, 4% V and 90% Ti, even if the atomic ratios of the constituents of the liquid in the boiler differ.
- Using the equilibrium vapor as a feed in the process disclosed in the referenced patents produces a 6% Al, 4% V, titanium alloy.
- the invention applies to a wide variety of alloys or ceramics and simplifies the materials handling of the constituent parts of each alloy produced in the Armstrong Process.
- an object of the present invention is to provide a method and apparatus of producing an alloy or ceramic in which the liquid constituents thereof are fed into a boiler.
- the equilibrium vapor therefrom is thereafter used in the subsurface reduction with a liquid alkali or alkaline earth metal to form the alloy or ceramic.
- Yet another object of the present invention is to provide a method of producing an alloy or ceramic by the exothermic subsurface reduction of a mixed halide vapor of the alloy or ceramic constituents with liquid alkali or alkaline earth metal or mixtures thereof, comprising providing a liquid mixture of halides of the alloy or ceramic constituents in a preselected atomic ratio, boiling the liquid until an equilibrium with the vapor is attained, and thereafter introducing the equilibrium vapor into the liquid reductant metal to form an alloy or ceramic powder of the equilibrium vapor constituents in the preselected atomic ratio.
- Still a further object of the present invention is to provide a method of producing an alloy by the exothermic subsurface reduction of a mixed halide vapor of the alloy constituents with liquid alkali or alkaline earth metal or mixtures thereof, comprising providing a liquid mixture of halides of the alloy constituents in a preselected atomic ratio, boiling the liquid until an equilibrium with the vapor is attained, and thereafter injecting the equilibrium vapor into the liquid reductant metal at greater than sonic velocity to form an alloy powder of the equilibrium vapor constituents in the preselected atomic ratio.
- Another object of the present invention is to provide an apparatus for practicing the method hereinbefore discussed.
- FIG. 1 is a schematic representation of the apparatus and system for practicing the method of the present invention.
- FIG. 1 illustrates a system 10 having a reactor 15 in communication with a source 20 of liquid reductant metal connected to the reactor by a pipe 21 .
- a boiler 25 has therein a liquid 26 which when boiled produces at equilibrium a vapor 27 which is introduced via pipe 30 into the pipe 21 preferably but not necessarily carrying a flowing stream the liquid metal from the source thereof 20 , thereby producing a slurry 40 of the same type, consisting of excess liquid metal, ceramic or metal powder and a salt produced during the reaction as discussed in the above referenced Armstrong et al. patents.
- the boiler 25 is provided with a heat source such as coils 28 and is connected or in communication with a plurality of sources of the constituents of the ultimately produced alloy or ceramic, three such sources 35 , 36 , and 37 being illustrated.
- representative constituent sources 35 , 36 and 37 can each be a vessel (pressurized or not) in which the individual constituent halide is maintained as a liquid and thereafter transferred in a suitable, predetermined, atomic ratio into the boiler 25 .
- the atomic ratio of the constituents from each of the sources 35 , 36 and 37 determines the atomic ratio of the constituents in the vapor 27 at equilibrium with the liquid 26 . Thereafter, the equilibrium vapor 27 in the preselected and predetermined atomic ratios is injected subsurface into a stream of liquid metal at greater than sonic velocity, as is taught in the above-referenced Armstrong patents.
- the reductant metal may be any suitable alkali or alkaline earth metal or mixtures thereof, the preferred reductant metal is sodium or magnesium, the most preferred reductant metal being sodium.
- the preferred halide is a chloride due to availability and cost.
- alloys may be produced by the method and apparatus of the subject invention, particularly those alloys or ceramics that include one or more of Ti, Al, Sb, Be, B, Ta, Zr, V, Nb, Mo, Ga, U, Re, or Si. More preferably, alloys or ceramics are produced which include one or more of Ti, Al, Ta, Zr, V, Nb, Mo, Ga, Re, or Si.
- the powder ceramics or alloys produced by the method and apparatus of the present invention are useful in a wide variety of processes to make many different products. For instance, various powder metallurgy techniques may be used to produce product from the powder made by the method and apparatus of the present invention. Moreover, a wide variety of alloy and ceramic powders may be either melted or compressed to form a solid from the powder of the present invention.
- a particularly important alloy at the present time is the 6:4 alloy of titanium. This alloy is widely used in aerospace and defense and is substantially 6% aluminum and 4% vanadium with the remainder being substantially titanium.
- the reductant metal is generally present in excess of the stoichiometric amount needed to reduce the mixed halide vapor injected subsurface of the reductant metal. More particularly, when the reductant metal is present in the range of from about 20 to about 50 times the stoichiometric amount, which enables the entire steady state reaction to be maintained at or around 400° C., an advantageous and mostly preferred temperature occurs.
- the exact temperature at which the steady state reaction is maintained depends, in part, upon the ratio of halide to reductant metal, as well as the individual vapors being reduced and the reductant metals used to reduce same. It is within the skill of the art to calculate the exact ratios required to provide a predetermined steady state operating temperature for the process producing any of the wide variety of ceramics or alloys made by the method and apparatus of the present invention.
- alloys and ceramics may be made by the present invention. It is intended to cover in the claims appended hereto, all such alloy and ceramics particularly, but not exclusively, the nitride, boride or carbide ceramics.
- Representative alloys of the present invention are those which include one or more of Ti, Al, Sb, Be, B, Ta, Zr, V, Nb, Mo, Ga, U, Re, or Si and, most preferably, one or more of Ti, Al, Ta, Zr, V, Nb, Mo, Ga, Re, or Si.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
A method and apparatus for making alloys or ceramics by the subsurface injection of an equilibrium vapor of a boiling liquid of the ceramic or alloys constituents is disclosed. Various powders and products are disclosed.
Description
- This application is a continuation of U.S. Ser. No. 11/372,660, filed Mar. 10, 2006; which is a divisional of U.S. Ser. No. 10/654,493, filed Sep. 3, 2003, now U.S. Pat. No. 7,041,150; which application pursuant to 37 C.F.R. 1.78(c), claims priority based on provisional application U.S. Ser. No. 60/408,934, filed Sep. 7, 2002; the entire disclosures of each of these applications are hereby expressly incorporated herein by reference.
- This invention relates to the Armstrong process as described in U.S. Pat. Nos. 5,779,761, 5,958,106 and 6,409,797, the disclosures of each of which is incorporated herein by reference. As disclosed in the above-three patents, alloys or ceramics can be prepared by establishing a mixture of gases which are fed, as disclosed in the above referenced patents, subsurface to a reducing metal thereby to initiate the reduction of the gas mixture to the corresponding alloy or ceramic. In general, the most obvious way to provide the mixed vapor is to introduce the constituent vapors in the required atomic ratio to a manifold and feed the mixed material to the reducing metal.
- The present invention relates to another means for mixing the alloy or ceramic constituents prior to the introduction of the mixed vapor to the reducing metal. In the present invention, the various constituents of the alloy or ceramic are initially mixed as a liquid which is thereafter boiled. After the liquid is boiled and reaches equilibrium, the vapor coming off the liquid has the same atomic ratio as the feed liquid to the boiler, which may or may not be different than the liquid in the boiler. At steady state, the vapor from the boiler can be fed to the Armstrong process in the same manner as illustrated in the three referenced patents to produce an alloy or ceramic having a constant atomic ratio.
- This invention simplifies the handling of materials, particularly those materials such as aluminum chloride which sublimate rather than boil. For those materials, the solid is heated in a vessel under pressure so that a liquid is formed and that liquid is thereafter transmitted to a boiler, as will be shown. By way of example, a boiler having feed streams of aluminum chloride and vanadium chloride and titanium chloride in atomic ratios of 6% Al and 4% V and the remainder Ti will produce at equilibrium a vapor of 6% Al, 4% V and 90% Ti, even if the atomic ratios of the constituents of the liquid in the boiler differ. Using the equilibrium vapor as a feed in the process disclosed in the referenced patents produces a 6% Al, 4% V, titanium alloy.
- The invention applies to a wide variety of alloys or ceramics and simplifies the materials handling of the constituent parts of each alloy produced in the Armstrong Process.
- Accordingly, an object of the present invention is to provide a method and apparatus of producing an alloy or ceramic in which the liquid constituents thereof are fed into a boiler. The equilibrium vapor therefrom is thereafter used in the subsurface reduction with a liquid alkali or alkaline earth metal to form the alloy or ceramic.
- Yet another object of the present invention is to provide a method of producing an alloy or ceramic by the exothermic subsurface reduction of a mixed halide vapor of the alloy or ceramic constituents with liquid alkali or alkaline earth metal or mixtures thereof, comprising providing a liquid mixture of halides of the alloy or ceramic constituents in a preselected atomic ratio, boiling the liquid until an equilibrium with the vapor is attained, and thereafter introducing the equilibrium vapor into the liquid reductant metal to form an alloy or ceramic powder of the equilibrium vapor constituents in the preselected atomic ratio.
- Still a further object of the present invention is to provide a method of producing an alloy by the exothermic subsurface reduction of a mixed halide vapor of the alloy constituents with liquid alkali or alkaline earth metal or mixtures thereof, comprising providing a liquid mixture of halides of the alloy constituents in a preselected atomic ratio, boiling the liquid until an equilibrium with the vapor is attained, and thereafter injecting the equilibrium vapor into the liquid reductant metal at greater than sonic velocity to form an alloy powder of the equilibrium vapor constituents in the preselected atomic ratio.
- Another object of the present invention is to provide an apparatus for practicing the method hereinbefore discussed.
- The invention consists of certain novel features and a combination of parts hereinafter fully described, illustrated in the accompanying drawings, and particularly pointed out in the appended claims, it being understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present invention.
- For the purpose of facilitating an understanding of the invention, illustrated in the accompanying drawings is a preferred embodiment thereof, from an inspection of which, when considered in connection with the following description, the invention, its construction and operation, and many of its advantages should be readily understood and appreciated.
-
FIG. 1 is a schematic representation of the apparatus and system for practicing the method of the present invention. -
FIG. 1 illustrates asystem 10 having areactor 15 in communication with asource 20 of liquid reductant metal connected to the reactor by apipe 21. - A
boiler 25 has therein aliquid 26 which when boiled produces at equilibrium avapor 27 which is introduced viapipe 30 into thepipe 21 preferably but not necessarily carrying a flowing stream the liquid metal from the source thereof 20, thereby producing aslurry 40 of the same type, consisting of excess liquid metal, ceramic or metal powder and a salt produced during the reaction as discussed in the above referenced Armstrong et al. patents. - The
boiler 25 is provided with a heat source such ascoils 28 and is connected or in communication with a plurality of sources of the constituents of the ultimately produced alloy or ceramic, threesuch sources - The advantage of the present invention is that during the production of a ceramic or an alloy by the Armstrong method, liquid handling is frequently easier and more efficacious than handling vapors. To this end,
representative constituent sources boiler 25. The atomic ratio of the constituents from each of thesources vapor 27 at equilibrium with theliquid 26. Thereafter, theequilibrium vapor 27 in the preselected and predetermined atomic ratios is injected subsurface into a stream of liquid metal at greater than sonic velocity, as is taught in the above-referenced Armstrong patents. - Although the reductant metal may be any suitable alkali or alkaline earth metal or mixtures thereof, the preferred reductant metal is sodium or magnesium, the most preferred reductant metal being sodium. Although a variety of halides may be used, the preferred halide is a chloride due to availability and cost. Although frequently described with respect to titanium, the invention is in fact applicable to a wide variety of alloys and ceramics, particularly ceramics including a nitride, a carbide, or a boride or mixtures thereof. In addition, many alloys may be produced by the method and apparatus of the subject invention, particularly those alloys or ceramics that include one or more of Ti, Al, Sb, Be, B, Ta, Zr, V, Nb, Mo, Ga, U, Re, or Si. More preferably, alloys or ceramics are produced which include one or more of Ti, Al, Ta, Zr, V, Nb, Mo, Ga, Re, or Si.
- Moreover, the powder ceramics or alloys produced by the method and apparatus of the present invention are useful in a wide variety of processes to make many different products. For instance, various powder metallurgy techniques may be used to produce product from the powder made by the method and apparatus of the present invention. Moreover, a wide variety of alloy and ceramic powders may be either melted or compressed to form a solid from the powder of the present invention. A particularly important alloy at the present time is the 6:4 alloy of titanium. This alloy is widely used in aerospace and defense and is substantially 6% aluminum and 4% vanadium with the remainder being substantially titanium.
- As taught in the cited Armstrong et al. patents, the reductant metal is generally present in excess of the stoichiometric amount needed to reduce the mixed halide vapor injected subsurface of the reductant metal. More particularly, when the reductant metal is present in the range of from about 20 to about 50 times the stoichiometric amount, which enables the entire steady state reaction to be maintained at or around 400° C., an advantageous and mostly preferred temperature occurs. The exact temperature at which the steady state reaction is maintained depends, in part, upon the ratio of halide to reductant metal, as well as the individual vapors being reduced and the reductant metals used to reduce same. It is within the skill of the art to calculate the exact ratios required to provide a predetermined steady state operating temperature for the process producing any of the wide variety of ceramics or alloys made by the method and apparatus of the present invention.
- As previously stated, although the examples herein are discussed with respect to titanium or titanium alloys, a wide variety of alloys and ceramics may be made by the present invention. It is intended to cover in the claims appended hereto, all such alloy and ceramics particularly, but not exclusively, the nitride, boride or carbide ceramics. Representative alloys of the present invention are those which include one or more of Ti, Al, Sb, Be, B, Ta, Zr, V, Nb, Mo, Ga, U, Re, or Si and, most preferably, one or more of Ti, Al, Ta, Zr, V, Nb, Mo, Ga, Re, or Si.
- While there has been disclosed what is considered to be the preferred embodiment of the present invention, it is understood that various changes in the details may be made without departing from the spirit, or sacrificing any of the advantages of the present invention.
Claims (21)
1. A powder made by the exothermic subsurface reduction of a mixed halide vapor comprising principally a titanium halide and an amount of a halide of at least one other element in a preselected atomic ratio with a liquid reductant metal comprising liquid alkali or alkaline earth metal or mixtures thereof, wherein the mixed halide vapor is generated by boiling a liquid mixture of halides until an equilibrium vapor is attained, and thereafter introducing the equilibrium vapor into the liquid reductant metal to form the powder comprising principally titanium and an amount of the at least one other element in the preselected atomic ratio.
2. The powder of claim 1 , wherein the at least one other element is B.
3. The powder of claim 2 , wherein the powder is a titanium alloy powder and the at least one other element further includes one or more elements selected from the group consisting of Al, Sb, Be, Ta, Zr, V, Nb, Mo, Ga, U, Re and Si.
4. The powder of claim 3 , wherein the titanium alloy powder includes Al and V.
5. The powder of claim 4 , wherein the alloy powder is substantially 6% Al and 4% V with the remainder substantially Ti.
6. The powder of claim 1 , wherein the liquid reductant metal is Na or Mg.
7. The powder of claim 1 , wherein the halide is a chloride.
8. The powder of claim 1 , wherein the liquid reductant metal is present in excess of the stoichiometric amount.
9. The powder of claim 8 , wherein the liquid reductant metal is present as a flowing stream.
10. The powder of claim 1 ; wherein the equilibrium vapor is introduced into the liquid reductant metal by subsurface injection at greater than sonic velocity.
11. A solid produced from the powder of claim 1 .
12. An apparatus for producing a powder by the exothermic subsurface reduction of a mixed halide vapor comprising principally a titanium halide and an amount of a halide of at least one other element in a preselected atomic ratio with a liquid reductant metal comprising liquid alkali metal or alkaline earth metal or mixtures thereof, the apparatus comprising:
a storage container for storing the liquid reductant metal,
halide containers for storing each of the titanium halide and the halide of the at least one other element in liquid form,
a boiler in communication with each of the halide containers, wherein the titanium halide and the halide of the at least one other element are transferred in a preselected atomic ratio to the boiler to form a liquid mixture of halides,
heating mechanism in heat exchange relationship with the boiler to generate an equilibrium vapor from the liquid mixture of halides,
a reactor in communication with the boiler and the storage container for the liquid reductant metal, wherein the liquid reductant metal is transferred from the storage container to the reactor, and
injection mechanism for subsurface injecting the equilibrium vapor from the boiler into the liquid reductant metal in the reactor to produce the powder in the preselected atomic ratios.
13. The apparatus of claim 12 , wherein the at least one other element is B.
14. The apparatus of claim 13 , wherein the powder is a titanium alloy powder and the at least one other element further includes one or more elements selected from the group consisting of Al, Sb, Be, Ta, Zr, V, Nb, Mo, Ga, U, Re and Si.
15. The apparatus of claim 14 , wherein the titanium alloy powder includes Al and V.
16. The apparatus of claim 15 , wherein the alloy powder is substantially 6% Al and 4% V with the remainder substantially Ti.
17. The apparatus of claim 12 , wherein the liquid reductant metal is Na or Mg.
18. The apparatus of claim 12 , wherein the halide is a chloride.
19. The apparatus of claim 12 , wherein the liquid reductant metal in the reactor is present in excess of the stoichiometric amount.
20. The apparatus of claim 19 , wherein the liquid reductant metal in the reactor is present as a flowing stream.
21. The apparatus of claim 12 , wherein the equilibrium vapor is injected into the liquid reductant metal at greater than sonic velocity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/386,073 US20090202385A1 (en) | 2002-09-07 | 2009-04-14 | Preparation of alloys by the armstrong method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40893402P | 2002-09-07 | 2002-09-07 | |
US10/654,493 US7041150B2 (en) | 2002-09-07 | 2003-09-03 | Preparation of alloys by the Armstrong method |
US11/372,660 US20060150769A1 (en) | 2002-09-07 | 2006-03-10 | Preparation of alloys by the armstrong method |
US12/386,073 US20090202385A1 (en) | 2002-09-07 | 2009-04-14 | Preparation of alloys by the armstrong method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/372,660 Continuation US20060150769A1 (en) | 2002-09-07 | 2006-03-10 | Preparation of alloys by the armstrong method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090202385A1 true US20090202385A1 (en) | 2009-08-13 |
Family
ID=31978706
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/654,493 Expired - Lifetime US7041150B2 (en) | 2002-09-07 | 2003-09-03 | Preparation of alloys by the Armstrong method |
US11/372,660 Abandoned US20060150769A1 (en) | 2002-09-07 | 2006-03-10 | Preparation of alloys by the armstrong method |
US12/386,073 Abandoned US20090202385A1 (en) | 2002-09-07 | 2009-04-14 | Preparation of alloys by the armstrong method |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/654,493 Expired - Lifetime US7041150B2 (en) | 2002-09-07 | 2003-09-03 | Preparation of alloys by the Armstrong method |
US11/372,660 Abandoned US20060150769A1 (en) | 2002-09-07 | 2006-03-10 | Preparation of alloys by the armstrong method |
Country Status (9)
Country | Link |
---|---|
US (3) | US7041150B2 (en) |
JP (1) | JP2005538251A (en) |
CN (1) | CN100422360C (en) |
AU (1) | AU2003263047B2 (en) |
CA (1) | CA2500909A1 (en) |
EA (1) | EA007313B1 (en) |
UA (1) | UA79310C2 (en) |
WO (1) | WO2004022797A1 (en) |
ZA (1) | ZA200501933B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9957836B2 (en) | 2012-07-19 | 2018-05-01 | Rti International Metals, Inc. | Titanium alloy having good oxidation resistance and high strength at elevated temperatures |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU686444B2 (en) * | 1994-08-01 | 1998-02-05 | Kroftt-Brakston International, Inc. | Method of making metals and other elements |
US6861038B2 (en) * | 1994-08-01 | 2005-03-01 | International Titanium Powder, Llc. | Ceramics and method of producing ceramics |
US7442227B2 (en) * | 2001-10-09 | 2008-10-28 | Washington Unniversity | Tightly agglomerated non-oxide particles and method for producing the same |
AU2003273279B2 (en) * | 2002-09-07 | 2007-05-03 | Cristal Us, Inc. | Process for separating ti from a ti slurry |
UA79310C2 (en) * | 2002-09-07 | 2007-06-11 | Int Titanium Powder Llc | Methods for production of alloys or ceramics with the use of armstrong method and device for their realization |
WO2004028655A2 (en) * | 2002-09-07 | 2004-04-08 | International Titanium Powder, Llc. | Filter cake treatment method |
AU2003263082A1 (en) * | 2002-10-07 | 2004-05-04 | International Titanium Powder, Llc. | System and method of producing metals and alloys |
WO2004033737A1 (en) * | 2002-10-07 | 2004-04-22 | International Titanium Powder, Llc. | System and method of producing metals and alloys |
US20070180951A1 (en) * | 2003-09-03 | 2007-08-09 | Armstrong Donn R | Separation system, method and apparatus |
US20070017319A1 (en) * | 2005-07-21 | 2007-01-25 | International Titanium Powder, Llc. | Titanium alloy |
WO2007044635A2 (en) | 2005-10-06 | 2007-04-19 | International Titanium Powder, Llc | Titanium or titanium alloy with titanium boride dispersion |
AU2007210276A1 (en) * | 2006-02-02 | 2007-08-09 | Cristal Us, Inc. | Metal matrix with ceramic particles dispersed therein |
US20080031766A1 (en) * | 2006-06-16 | 2008-02-07 | International Titanium Powder, Llc | Attrited titanium powder |
US8051586B2 (en) * | 2006-07-07 | 2011-11-08 | Nike, Inc. | Customization system for an article of footwear |
US7455713B1 (en) * | 2006-08-17 | 2008-11-25 | Gm Global Technology Operations, Inc. | Cavitation process for titanium products from precursor halides |
US7465333B1 (en) * | 2006-08-17 | 2008-12-16 | Gm Global Technology Operations, Inc. | Cavitation process for products from precursor halides |
US7753989B2 (en) | 2006-12-22 | 2010-07-13 | Cristal Us, Inc. | Direct passivation of metal powder |
US9127333B2 (en) | 2007-04-25 | 2015-09-08 | Lance Jacobsen | Liquid injection of VCL4 into superheated TiCL4 for the production of Ti-V alloy powder |
US20090076128A1 (en) * | 2007-09-15 | 2009-03-19 | Protia Llc | Deuterium-enriched topiramate |
US20100092328A1 (en) * | 2008-10-09 | 2010-04-15 | Glenn Thomas | High velocity adiabatic impact powder compaction |
EA037140B9 (en) | 2015-08-14 | 2021-03-15 | Куги Титаниум Пти Лтд | Methods using high surface area per volume reactive particulates |
CN108350524B (en) * | 2015-08-14 | 2021-10-29 | 库吉钛私人有限公司 | Method for producing composite materials with excess oxidizing agent |
EP3334848A4 (en) | 2015-08-14 | 2018-06-27 | Coogee Titanium Pty Ltd | Method for recovery of metal-containing material from a composite material |
CN107350485B (en) * | 2017-06-19 | 2019-08-02 | 西安建筑科技大学 | A kind of gas phase reaction preparation method of V-Ti-Fe hydrogen storing alloy powder |
Citations (95)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1771928A (en) * | 1927-05-02 | 1930-07-29 | Jung Hans | Filter press |
US2205854A (en) * | 1937-07-10 | 1940-06-25 | Kroll Wilhelm | Method for manufacturing titanium and alloys thereof |
US2607675A (en) * | 1948-09-06 | 1952-08-19 | Int Alloys Ltd | Distillation of metals |
US2647826A (en) * | 1950-02-08 | 1953-08-04 | Jordan James Fernando | Titanium smelting process |
US2823991A (en) * | 1954-06-23 | 1958-02-18 | Nat Distillers Chem Corp | Process for the manufacture of titanium metal |
US2827371A (en) * | 1951-11-01 | 1958-03-18 | Ici Ltd | Method of producing titanium in an agitated solids bed |
US2835567A (en) * | 1954-11-22 | 1958-05-20 | Du Pont | Method of producing granular refractory metal |
US2882143A (en) * | 1953-04-16 | 1959-04-14 | Nat Lead Co | Continuous process for the production of titanium metal |
US2882144A (en) * | 1955-08-22 | 1959-04-14 | Allied Chem | Method of producing titanium |
US2890112A (en) * | 1954-10-15 | 1959-06-09 | Du Pont | Method of producing titanium metal |
US2895823A (en) * | 1956-03-20 | 1959-07-21 | Peter Spence & Sons Ltd | Method of further reducing the reaction products of a titanium tetrachloride reduction reaction |
US2941867A (en) * | 1957-10-14 | 1960-06-21 | Du Pont | Reduction of metal halides |
US2944888A (en) * | 1956-01-17 | 1960-07-12 | Ici Ltd | Manufacture of titanium |
US3085872A (en) * | 1958-07-01 | 1963-04-16 | Griffiths Kenneth Frank | Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium |
US3085871A (en) * | 1958-02-24 | 1963-04-16 | Griffiths Kenneth Frank | Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium |
US3331666A (en) * | 1966-10-28 | 1967-07-18 | William C Robinson | One-step method of converting uranium hexafluoride to uranium compounds |
US3519258A (en) * | 1966-07-23 | 1970-07-07 | Hiroshi Ishizuka | Device for reducing chlorides |
US3650681A (en) * | 1968-08-08 | 1972-03-21 | Mizusawa Industrial Chem | Method of treating a titanium or zirconium salt of a phosphorus oxyacid |
US3825415A (en) * | 1971-07-28 | 1974-07-23 | Electricity Council | Method and apparatus for the production of liquid titanium from the reaction of vaporized titanium tetrachloride and a reducing metal |
US3867515A (en) * | 1971-04-01 | 1975-02-18 | Ppg Industries Inc | Treatment of titanium tetrachloride dryer residue |
US3943751A (en) * | 1974-05-08 | 1976-03-16 | Doryokuro Kakunenryo Kaihatsu Jigyodan | Method and apparatus for continuously measuring hydrogen concentration in argon gas |
US3966460A (en) * | 1974-09-06 | 1976-06-29 | Amax Specialty Metal Corporation | Reduction of metal halides |
US4007055A (en) * | 1975-05-09 | 1977-02-08 | Exxon Research And Engineering Company | Preparation of stoichiometric titanium disulfide |
US4009007A (en) * | 1975-07-14 | 1977-02-22 | Fansteel Inc. | Tantalum powder and method of making the same |
US4017302A (en) * | 1976-02-04 | 1977-04-12 | Fansteel Inc. | Tantalum metal powder |
US4070252A (en) * | 1977-04-18 | 1978-01-24 | Scm Corporation | Purification of crude titanium tetrachloride |
US4141719A (en) * | 1977-05-31 | 1979-02-27 | Fansteel Inc. | Tantalum metal powder |
US4149876A (en) * | 1978-06-06 | 1979-04-17 | Fansteel Inc. | Process for producing tantalum and columbium powder |
US4190442A (en) * | 1978-06-15 | 1980-02-26 | Eutectic Corporation | Flame spray powder mix |
US4331477A (en) * | 1978-10-04 | 1982-05-25 | Nippon Electric Co., Ltd. | Porous titanium-aluminum alloy and method for producing the same |
US4379718A (en) * | 1981-05-18 | 1983-04-12 | Rockwell International Corporation | Process for separating solid particulates from a melt |
US4425217A (en) * | 1980-08-18 | 1984-01-10 | Diamond Shamrock Corporation | Anode with lead base and method of making same |
US4432813A (en) * | 1982-01-11 | 1984-02-21 | Williams Griffith E | Process for producing extremely low gas and residual contents in metal powders |
US4445931A (en) * | 1980-10-24 | 1984-05-01 | The United States Of America As Represented By The Secretary Of The Interior | Production of metal powder |
US4454169A (en) * | 1982-04-05 | 1984-06-12 | Diamond Shamrock Corporation | Catalytic particles and process for their manufacture |
US4518426A (en) * | 1983-04-11 | 1985-05-21 | Metals Production Research, Inc. | Process for electrolytic recovery of titanium metal sponge from its ore |
US4519837A (en) * | 1981-10-08 | 1985-05-28 | Westinghouse Electric Corp. | Metal powders and processes for production from oxides |
US4521281A (en) * | 1983-10-03 | 1985-06-04 | Olin Corporation | Process and apparatus for continuously producing multivalent metals |
US4725312A (en) * | 1986-02-28 | 1988-02-16 | Rhone-Poulenc Chimie | Production of metals by metallothermia |
US4828008A (en) * | 1987-05-13 | 1989-05-09 | Lanxide Technology Company, Lp | Metal matrix composites |
US4830665A (en) * | 1979-07-05 | 1989-05-16 | Cockerill S.A. | Process and unit for preparing alloyed and non-alloyed reactive metals by reduction |
US4839120A (en) * | 1987-02-24 | 1989-06-13 | Ngk Insulators, Ltd. | Ceramic material extruding method and apparatus therefor |
US4897116A (en) * | 1988-05-25 | 1990-01-30 | Teledyne Industries, Inc. | High purity Zr and Hf metals and their manufacture |
US4902341A (en) * | 1987-08-24 | 1990-02-20 | Toho Titanium Company, Limited | Method for producing titanium alloy |
US4915729A (en) * | 1985-04-16 | 1990-04-10 | Battelle Memorial Institute | Method of manufacturing metal powders |
US4923577A (en) * | 1988-09-12 | 1990-05-08 | Westinghouse Electric Corp. | Electrochemical-metallothermic reduction of zirconium in molten salt solutions |
US4940490A (en) * | 1987-11-30 | 1990-07-10 | Cabot Corporation | Tantalum powder |
US4941646A (en) * | 1988-11-23 | 1990-07-17 | Bethlehem Steel Corporation | Air cooled gas injection lance |
US4985069A (en) * | 1986-09-15 | 1991-01-15 | The United States Of America As Represented By The Secretary Of The Interior | Induction slag reduction process for making titanium |
US5028491A (en) * | 1989-07-03 | 1991-07-02 | General Electric Company | Gamma titanium aluminum alloys modified by chromium and tantalum and method of preparation |
US5032176A (en) * | 1989-05-24 | 1991-07-16 | N.K.R. Company, Ltd. | Method for manufacturing titanium powder or titanium composite powder |
US5082491A (en) * | 1989-09-28 | 1992-01-21 | V Tech Corporation | Tantalum powder with improved capacitor anode processing characteristics |
US5176741A (en) * | 1990-10-11 | 1993-01-05 | Idaho Research Foundation, Inc. | Producing titanium particulates from in situ titanium-zinc intermetallic |
US5176810A (en) * | 1990-06-05 | 1993-01-05 | Outokumpu Oy | Method for producing metal powders |
US5211741A (en) * | 1987-11-30 | 1993-05-18 | Cabot Corporation | Flaked tantalum powder |
US5409518A (en) * | 1990-11-09 | 1995-04-25 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Sintered powdered titanium alloy and method of producing the same |
US5427602A (en) * | 1994-08-08 | 1995-06-27 | Aluminum Company Of America | Removal of suspended particles from molten metal |
US5498446A (en) * | 1994-05-25 | 1996-03-12 | Washington University | Method and apparatus for producing high purity and unagglomerated submicron particles |
USH1642H (en) * | 1995-03-20 | 1997-04-01 | The United States Of America As Represented By The Secretary Of The Navy | Wear and impact tolerant plow blade |
US5637816A (en) * | 1995-08-22 | 1997-06-10 | Lockheed Martin Energy Systems, Inc. | Metal matrix composite of an iron aluminide and ceramic particles and method thereof |
US5779761A (en) * | 1994-08-01 | 1998-07-14 | Kroftt-Brakston International, Inc. | Method of making metals and other elements |
US5897830A (en) * | 1996-12-06 | 1999-04-27 | Dynamet Technology | P/M titanium composite casting |
US5914440A (en) * | 1997-03-18 | 1999-06-22 | Noranda Inc. | Method and apparatus removal of solid particles from magnesium chloride electrolyte and molten magnesium by filtration |
US6010661A (en) * | 1999-03-11 | 2000-01-04 | Japan As Represented By Director General Of Agency Of Industrial Science And Technology | Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production |
US6027585A (en) * | 1995-03-14 | 2000-02-22 | The Regents Of The University Of California Office Of Technology Transfer | Titanium-tantalum alloys |
US6040975A (en) * | 1997-06-30 | 2000-03-21 | Nec Corporation | Tantalum powder and solid electrolytic capacitor using the same |
US6180258B1 (en) * | 1997-06-04 | 2001-01-30 | Chesapeake Composites Corporation | Metal-matrix composites and method for making such composites |
US6193779B1 (en) * | 1997-02-19 | 2001-02-27 | H. C. Starck Gmbh & Co. Kg | Tantalum powder, method for producing same powder and sintered anodes obtained from it |
US6210461B1 (en) * | 1998-08-10 | 2001-04-03 | Guy R. B. Elliott | Continuous production of titanium, uranium, and other metals and growth of metallic needles |
US6238456B1 (en) * | 1997-02-19 | 2001-05-29 | H. C. Starck Gmbh & Co. Kg | Tantalum powder, method for producing same powder and sintered anodes obtained from it |
US20020050185A1 (en) * | 1999-02-03 | 2002-05-02 | Show A Cabot Supermetals K.K. | Tantalum powder for capacitors |
US6409797B2 (en) * | 1994-08-01 | 2002-06-25 | International Titanium Powder Llc | Method of making metals and other elements from the halide vapor of the metal |
US6502623B1 (en) * | 1999-09-22 | 2003-01-07 | Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. | Process of making a metal matrix composite (MMC) component |
US20030010409A1 (en) * | 1999-11-16 | 2003-01-16 | Triton Systems, Inc. | Laser fabrication of discontinuously reinforced metal matrix composites |
US20030061907A1 (en) * | 1994-08-01 | 2003-04-03 | Kroftt-Brakston International, Inc. | Gel of elemental material or alloy and liquid metal and salt |
US6599467B1 (en) * | 1998-10-29 | 2003-07-29 | Toyota Jidosha Kabushiki Kaisha | Process for forging titanium-based material, process for producing engine valve, and engine valve |
US6727005B2 (en) * | 1999-12-20 | 2004-04-27 | Centro Sviluppo Materiali S.P.A. | Process for the manufacture of low-density components, having a polymer or metal matrix substrate and ceramics and/or metal-ceramics coating and low density components of high surface strength thus obtained |
US6745930B2 (en) * | 1999-11-17 | 2004-06-08 | Electrovac, Fabrikation Elektrotechnischer Spezialartikel Ges.M.B.H. | Method of attaching a body made of metal matrix composite (MMC) material or copper to a ceramic member |
US20040123700A1 (en) * | 2002-12-26 | 2004-07-01 | Ling Zhou | Process for the production of elemental material and alloys |
US6861038B2 (en) * | 1994-08-01 | 2005-03-01 | International Titanium Powder, Llc. | Ceramics and method of producing ceramics |
US20050081682A1 (en) * | 2002-09-07 | 2005-04-21 | International Titanium Powder, Llc | Method and apparatus for controlling the size of powder produced by the Armstrong Process |
US6884522B2 (en) * | 2002-04-17 | 2005-04-26 | Ceramics Process Systems Corp. | Metal matrix composite structure and method |
US6902601B2 (en) * | 2002-09-12 | 2005-06-07 | Millennium Inorganic Chemicals, Inc. | Method of making elemental materials and alloys |
US20050150576A1 (en) * | 2004-01-08 | 2005-07-14 | Sridhar Venigalla | Passivation of tantalum and other metal powders using oxygen |
US6921510B2 (en) * | 2003-01-22 | 2005-07-26 | General Electric Company | Method for preparing an article having a dispersoid distributed in a metallic matrix |
US20060086435A1 (en) * | 2002-11-20 | 2006-04-27 | International Titanium Powder, Llc | Separation system of metal powder from slurry and process |
US7041150B2 (en) * | 2002-09-07 | 2006-05-09 | The University Of Chicago | Preparation of alloys by the Armstrong method |
US20060102255A1 (en) * | 2004-11-12 | 2006-05-18 | General Electric Company | Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix |
US20060107790A1 (en) * | 2002-10-07 | 2006-05-25 | International Titanium Powder, Llc | System and method of producing metals and alloys |
US20060123950A1 (en) * | 2002-09-07 | 2006-06-15 | Anderson Richard P | Process for separating ti from a ti slurry |
US20070017319A1 (en) * | 2005-07-21 | 2007-01-25 | International Titanium Powder, Llc. | Titanium alloy |
US20070079908A1 (en) * | 2005-10-06 | 2007-04-12 | International Titanium Powder, Llc | Titanium boride |
US20080031766A1 (en) * | 2006-06-16 | 2008-02-07 | International Titanium Powder, Llc | Attrited titanium powder |
US7351272B2 (en) * | 2002-09-07 | 2008-04-01 | International Titanium Powder, Llc | Method and apparatus for controlling the size of powder produced by the Armstrong process |
US20080152533A1 (en) * | 2006-12-22 | 2008-06-26 | International Titanium Powder, Llc | Direct passivation of metal powder |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2846304A (en) * | 1953-08-11 | 1958-08-05 | Nat Res Corp | Method of producing titanium |
US2846303A (en) * | 1953-08-11 | 1958-08-05 | Nat Res Corp | Method of producing titanium |
US5209656A (en) * | 1991-08-29 | 1993-05-11 | Praxair Technology, Inc. | Combustion system for high velocity gas injection |
US5958106A (en) * | 1994-08-01 | 1999-09-28 | International Titanium Powder, L.L.C. | Method of making metals and other elements from the halide vapor of the metal |
JPH11302767A (en) * | 1998-04-21 | 1999-11-02 | Toshiba Tungaloy Co Ltd | Cemented carbide excellent in mechanical characteristic and its production |
-
2003
- 2003-03-09 UA UAA200503216A patent/UA79310C2/en unknown
- 2003-09-03 CA CA002500909A patent/CA2500909A1/en not_active Abandoned
- 2003-09-03 AU AU2003263047A patent/AU2003263047B2/en not_active Ceased
- 2003-09-03 US US10/654,493 patent/US7041150B2/en not_active Expired - Lifetime
- 2003-09-03 CN CNB038212463A patent/CN100422360C/en not_active Expired - Fee Related
- 2003-09-03 JP JP2004534416A patent/JP2005538251A/en active Pending
- 2003-09-03 WO PCT/US2003/027390 patent/WO2004022797A1/en active Application Filing
- 2003-09-03 EA EA200500462A patent/EA007313B1/en not_active IP Right Cessation
-
2005
- 2005-03-07 ZA ZA200501933A patent/ZA200501933B/en unknown
-
2006
- 2006-03-10 US US11/372,660 patent/US20060150769A1/en not_active Abandoned
-
2009
- 2009-04-14 US US12/386,073 patent/US20090202385A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1771928A (en) * | 1927-05-02 | 1930-07-29 | Jung Hans | Filter press |
US2205854A (en) * | 1937-07-10 | 1940-06-25 | Kroll Wilhelm | Method for manufacturing titanium and alloys thereof |
US2607675A (en) * | 1948-09-06 | 1952-08-19 | Int Alloys Ltd | Distillation of metals |
US2647826A (en) * | 1950-02-08 | 1953-08-04 | Jordan James Fernando | Titanium smelting process |
US2827371A (en) * | 1951-11-01 | 1958-03-18 | Ici Ltd | Method of producing titanium in an agitated solids bed |
US2882143A (en) * | 1953-04-16 | 1959-04-14 | Nat Lead Co | Continuous process for the production of titanium metal |
US2823991A (en) * | 1954-06-23 | 1958-02-18 | Nat Distillers Chem Corp | Process for the manufacture of titanium metal |
US2890112A (en) * | 1954-10-15 | 1959-06-09 | Du Pont | Method of producing titanium metal |
US2835567A (en) * | 1954-11-22 | 1958-05-20 | Du Pont | Method of producing granular refractory metal |
US2882144A (en) * | 1955-08-22 | 1959-04-14 | Allied Chem | Method of producing titanium |
US2944888A (en) * | 1956-01-17 | 1960-07-12 | Ici Ltd | Manufacture of titanium |
US2895823A (en) * | 1956-03-20 | 1959-07-21 | Peter Spence & Sons Ltd | Method of further reducing the reaction products of a titanium tetrachloride reduction reaction |
US2941867A (en) * | 1957-10-14 | 1960-06-21 | Du Pont | Reduction of metal halides |
US3085871A (en) * | 1958-02-24 | 1963-04-16 | Griffiths Kenneth Frank | Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium |
US3085872A (en) * | 1958-07-01 | 1963-04-16 | Griffiths Kenneth Frank | Method for producing the refractory metals hafnium, titanium, vanadium, silicon, zirconium, thorium, columbium, and chromium |
US3519258A (en) * | 1966-07-23 | 1970-07-07 | Hiroshi Ishizuka | Device for reducing chlorides |
US3331666A (en) * | 1966-10-28 | 1967-07-18 | William C Robinson | One-step method of converting uranium hexafluoride to uranium compounds |
US3650681A (en) * | 1968-08-08 | 1972-03-21 | Mizusawa Industrial Chem | Method of treating a titanium or zirconium salt of a phosphorus oxyacid |
US3867515A (en) * | 1971-04-01 | 1975-02-18 | Ppg Industries Inc | Treatment of titanium tetrachloride dryer residue |
US3825415A (en) * | 1971-07-28 | 1974-07-23 | Electricity Council | Method and apparatus for the production of liquid titanium from the reaction of vaporized titanium tetrachloride and a reducing metal |
US3943751A (en) * | 1974-05-08 | 1976-03-16 | Doryokuro Kakunenryo Kaihatsu Jigyodan | Method and apparatus for continuously measuring hydrogen concentration in argon gas |
US3966460A (en) * | 1974-09-06 | 1976-06-29 | Amax Specialty Metal Corporation | Reduction of metal halides |
US4007055A (en) * | 1975-05-09 | 1977-02-08 | Exxon Research And Engineering Company | Preparation of stoichiometric titanium disulfide |
US4009007A (en) * | 1975-07-14 | 1977-02-22 | Fansteel Inc. | Tantalum powder and method of making the same |
US4017302A (en) * | 1976-02-04 | 1977-04-12 | Fansteel Inc. | Tantalum metal powder |
US4070252A (en) * | 1977-04-18 | 1978-01-24 | Scm Corporation | Purification of crude titanium tetrachloride |
US4141719A (en) * | 1977-05-31 | 1979-02-27 | Fansteel Inc. | Tantalum metal powder |
US4149876A (en) * | 1978-06-06 | 1979-04-17 | Fansteel Inc. | Process for producing tantalum and columbium powder |
US4190442A (en) * | 1978-06-15 | 1980-02-26 | Eutectic Corporation | Flame spray powder mix |
US4331477A (en) * | 1978-10-04 | 1982-05-25 | Nippon Electric Co., Ltd. | Porous titanium-aluminum alloy and method for producing the same |
US4830665A (en) * | 1979-07-05 | 1989-05-16 | Cockerill S.A. | Process and unit for preparing alloyed and non-alloyed reactive metals by reduction |
US4425217A (en) * | 1980-08-18 | 1984-01-10 | Diamond Shamrock Corporation | Anode with lead base and method of making same |
US4445931A (en) * | 1980-10-24 | 1984-05-01 | The United States Of America As Represented By The Secretary Of The Interior | Production of metal powder |
US4379718A (en) * | 1981-05-18 | 1983-04-12 | Rockwell International Corporation | Process for separating solid particulates from a melt |
US4519837A (en) * | 1981-10-08 | 1985-05-28 | Westinghouse Electric Corp. | Metal powders and processes for production from oxides |
US4432813A (en) * | 1982-01-11 | 1984-02-21 | Williams Griffith E | Process for producing extremely low gas and residual contents in metal powders |
US4454169A (en) * | 1982-04-05 | 1984-06-12 | Diamond Shamrock Corporation | Catalytic particles and process for their manufacture |
US4518426A (en) * | 1983-04-11 | 1985-05-21 | Metals Production Research, Inc. | Process for electrolytic recovery of titanium metal sponge from its ore |
US4521281A (en) * | 1983-10-03 | 1985-06-04 | Olin Corporation | Process and apparatus for continuously producing multivalent metals |
US4915729A (en) * | 1985-04-16 | 1990-04-10 | Battelle Memorial Institute | Method of manufacturing metal powders |
US4725312A (en) * | 1986-02-28 | 1988-02-16 | Rhone-Poulenc Chimie | Production of metals by metallothermia |
US4985069A (en) * | 1986-09-15 | 1991-01-15 | The United States Of America As Represented By The Secretary Of The Interior | Induction slag reduction process for making titanium |
US4839120A (en) * | 1987-02-24 | 1989-06-13 | Ngk Insulators, Ltd. | Ceramic material extruding method and apparatus therefor |
US4828008A (en) * | 1987-05-13 | 1989-05-09 | Lanxide Technology Company, Lp | Metal matrix composites |
US4902341A (en) * | 1987-08-24 | 1990-02-20 | Toho Titanium Company, Limited | Method for producing titanium alloy |
US4940490A (en) * | 1987-11-30 | 1990-07-10 | Cabot Corporation | Tantalum powder |
US5211741A (en) * | 1987-11-30 | 1993-05-18 | Cabot Corporation | Flaked tantalum powder |
US4897116A (en) * | 1988-05-25 | 1990-01-30 | Teledyne Industries, Inc. | High purity Zr and Hf metals and their manufacture |
US4923577A (en) * | 1988-09-12 | 1990-05-08 | Westinghouse Electric Corp. | Electrochemical-metallothermic reduction of zirconium in molten salt solutions |
US4941646A (en) * | 1988-11-23 | 1990-07-17 | Bethlehem Steel Corporation | Air cooled gas injection lance |
US5032176A (en) * | 1989-05-24 | 1991-07-16 | N.K.R. Company, Ltd. | Method for manufacturing titanium powder or titanium composite powder |
US5028491A (en) * | 1989-07-03 | 1991-07-02 | General Electric Company | Gamma titanium aluminum alloys modified by chromium and tantalum and method of preparation |
US5082491A (en) * | 1989-09-28 | 1992-01-21 | V Tech Corporation | Tantalum powder with improved capacitor anode processing characteristics |
US5176810A (en) * | 1990-06-05 | 1993-01-05 | Outokumpu Oy | Method for producing metal powders |
US5176741A (en) * | 1990-10-11 | 1993-01-05 | Idaho Research Foundation, Inc. | Producing titanium particulates from in situ titanium-zinc intermetallic |
US5409518A (en) * | 1990-11-09 | 1995-04-25 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Sintered powdered titanium alloy and method of producing the same |
US5498446A (en) * | 1994-05-25 | 1996-03-12 | Washington University | Method and apparatus for producing high purity and unagglomerated submicron particles |
US6409797B2 (en) * | 1994-08-01 | 2002-06-25 | International Titanium Powder Llc | Method of making metals and other elements from the halide vapor of the metal |
US20030061907A1 (en) * | 1994-08-01 | 2003-04-03 | Kroftt-Brakston International, Inc. | Gel of elemental material or alloy and liquid metal and salt |
US5779761A (en) * | 1994-08-01 | 1998-07-14 | Kroftt-Brakston International, Inc. | Method of making metals and other elements |
US6861038B2 (en) * | 1994-08-01 | 2005-03-01 | International Titanium Powder, Llc. | Ceramics and method of producing ceramics |
US5427602A (en) * | 1994-08-08 | 1995-06-27 | Aluminum Company Of America | Removal of suspended particles from molten metal |
US6027585A (en) * | 1995-03-14 | 2000-02-22 | The Regents Of The University Of California Office Of Technology Transfer | Titanium-tantalum alloys |
USH1642H (en) * | 1995-03-20 | 1997-04-01 | The United States Of America As Represented By The Secretary Of The Navy | Wear and impact tolerant plow blade |
US5637816A (en) * | 1995-08-22 | 1997-06-10 | Lockheed Martin Energy Systems, Inc. | Metal matrix composite of an iron aluminide and ceramic particles and method thereof |
US5897830A (en) * | 1996-12-06 | 1999-04-27 | Dynamet Technology | P/M titanium composite casting |
US6238456B1 (en) * | 1997-02-19 | 2001-05-29 | H. C. Starck Gmbh & Co. Kg | Tantalum powder, method for producing same powder and sintered anodes obtained from it |
US6193779B1 (en) * | 1997-02-19 | 2001-02-27 | H. C. Starck Gmbh & Co. Kg | Tantalum powder, method for producing same powder and sintered anodes obtained from it |
US5914440A (en) * | 1997-03-18 | 1999-06-22 | Noranda Inc. | Method and apparatus removal of solid particles from magnesium chloride electrolyte and molten magnesium by filtration |
US6180258B1 (en) * | 1997-06-04 | 2001-01-30 | Chesapeake Composites Corporation | Metal-matrix composites and method for making such composites |
US6040975A (en) * | 1997-06-30 | 2000-03-21 | Nec Corporation | Tantalum powder and solid electrolytic capacitor using the same |
US6210461B1 (en) * | 1998-08-10 | 2001-04-03 | Guy R. B. Elliott | Continuous production of titanium, uranium, and other metals and growth of metallic needles |
US6599467B1 (en) * | 1998-10-29 | 2003-07-29 | Toyota Jidosha Kabushiki Kaisha | Process for forging titanium-based material, process for producing engine valve, and engine valve |
US20020050185A1 (en) * | 1999-02-03 | 2002-05-02 | Show A Cabot Supermetals K.K. | Tantalum powder for capacitors |
US6689187B2 (en) * | 1999-02-03 | 2004-02-10 | Cabot Supermetals K.K. | Tantalum powder for capacitors |
US6010661A (en) * | 1999-03-11 | 2000-01-04 | Japan As Represented By Director General Of Agency Of Industrial Science And Technology | Method for producing hydrogen-containing sponge titanium, a hydrogen containing titanium-aluminum-based alloy powder and its method of production, and a titanium-aluminum-based alloy sinter and its method of production |
US6502623B1 (en) * | 1999-09-22 | 2003-01-07 | Electrovac, Fabrikation Elektrotechnischer Spezialartikel Gesellschaft M.B.H. | Process of making a metal matrix composite (MMC) component |
US20030010409A1 (en) * | 1999-11-16 | 2003-01-16 | Triton Systems, Inc. | Laser fabrication of discontinuously reinforced metal matrix composites |
US6745930B2 (en) * | 1999-11-17 | 2004-06-08 | Electrovac, Fabrikation Elektrotechnischer Spezialartikel Ges.M.B.H. | Method of attaching a body made of metal matrix composite (MMC) material or copper to a ceramic member |
US6727005B2 (en) * | 1999-12-20 | 2004-04-27 | Centro Sviluppo Materiali S.P.A. | Process for the manufacture of low-density components, having a polymer or metal matrix substrate and ceramics and/or metal-ceramics coating and low density components of high surface strength thus obtained |
US6884522B2 (en) * | 2002-04-17 | 2005-04-26 | Ceramics Process Systems Corp. | Metal matrix composite structure and method |
US20060123950A1 (en) * | 2002-09-07 | 2006-06-15 | Anderson Richard P | Process for separating ti from a ti slurry |
US20060150769A1 (en) * | 2002-09-07 | 2006-07-13 | International Titanium Powder, Llc | Preparation of alloys by the armstrong method |
US7501089B2 (en) * | 2002-09-07 | 2009-03-10 | Cristal Us, Inc. | Method and apparatus for controlling the size of powder produced by the Armstrong Process |
US7041150B2 (en) * | 2002-09-07 | 2006-05-09 | The University Of Chicago | Preparation of alloys by the Armstrong method |
US7351272B2 (en) * | 2002-09-07 | 2008-04-01 | International Titanium Powder, Llc | Method and apparatus for controlling the size of powder produced by the Armstrong process |
US20050081682A1 (en) * | 2002-09-07 | 2005-04-21 | International Titanium Powder, Llc | Method and apparatus for controlling the size of powder produced by the Armstrong Process |
US6902601B2 (en) * | 2002-09-12 | 2005-06-07 | Millennium Inorganic Chemicals, Inc. | Method of making elemental materials and alloys |
US20060107790A1 (en) * | 2002-10-07 | 2006-05-25 | International Titanium Powder, Llc | System and method of producing metals and alloys |
US7501007B2 (en) * | 2002-11-20 | 2009-03-10 | Cristal Us, Inc. | Separation system of metal powder from slurry and process |
US20060086435A1 (en) * | 2002-11-20 | 2006-04-27 | International Titanium Powder, Llc | Separation system of metal powder from slurry and process |
US20040123700A1 (en) * | 2002-12-26 | 2004-07-01 | Ling Zhou | Process for the production of elemental material and alloys |
US6921510B2 (en) * | 2003-01-22 | 2005-07-26 | General Electric Company | Method for preparing an article having a dispersoid distributed in a metallic matrix |
US20050150576A1 (en) * | 2004-01-08 | 2005-07-14 | Sridhar Venigalla | Passivation of tantalum and other metal powders using oxygen |
US20060102255A1 (en) * | 2004-11-12 | 2006-05-18 | General Electric Company | Article having a dispersion of ultrafine titanium boride particles in a titanium-base matrix |
US20070017319A1 (en) * | 2005-07-21 | 2007-01-25 | International Titanium Powder, Llc. | Titanium alloy |
US20070079908A1 (en) * | 2005-10-06 | 2007-04-12 | International Titanium Powder, Llc | Titanium boride |
US20080031766A1 (en) * | 2006-06-16 | 2008-02-07 | International Titanium Powder, Llc | Attrited titanium powder |
US20080152533A1 (en) * | 2006-12-22 | 2008-06-26 | International Titanium Powder, Llc | Direct passivation of metal powder |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9957836B2 (en) | 2012-07-19 | 2018-05-01 | Rti International Metals, Inc. | Titanium alloy having good oxidation resistance and high strength at elevated temperatures |
Also Published As
Publication number | Publication date |
---|---|
EA200500462A1 (en) | 2005-10-27 |
US20040079197A1 (en) | 2004-04-29 |
CN100422360C (en) | 2008-10-01 |
AU2003263047A1 (en) | 2004-03-29 |
UA79310C2 (en) | 2007-06-11 |
ZA200501933B (en) | 2006-05-31 |
EA007313B1 (en) | 2006-08-25 |
WO2004022797A1 (en) | 2004-03-18 |
CA2500909A1 (en) | 2004-03-18 |
CN1688731A (en) | 2005-10-26 |
WO2004022797A9 (en) | 2004-05-21 |
AU2003263047B2 (en) | 2007-01-04 |
US20060150769A1 (en) | 2006-07-13 |
JP2005538251A (en) | 2005-12-15 |
US7041150B2 (en) | 2006-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090202385A1 (en) | Preparation of alloys by the armstrong method | |
SU1331435A3 (en) | Method and installation for production of rare high-melting metal | |
US4687632A (en) | Metal or alloy forming reduction process and apparatus | |
US4632849A (en) | Method for making a fine powder of a metal compound having ceramic coatings thereon | |
SE520561C2 (en) | Process for preparing a dispersion curing alloy | |
US5217747A (en) | Reactive spray forming process | |
JPS63214342A (en) | Preparation of compound | |
JPS60127208A (en) | Production of aluminum nitride powder | |
JPS6280258A (en) | Method and apparatus for surface treatment | |
US5015440A (en) | Refractory aluminides | |
US4933241A (en) | Processes for forming exoergic structures with the use of a plasma and for producing dense refractory bodies of arbitrary shape therefrom | |
US3775100A (en) | Process for making sintered articles | |
US7001443B2 (en) | Method for producing a metallic alloy by the oxidation and chemical reduction of gaseous non-oxide precursor compounds | |
US4300947A (en) | Mechanically alloyed powder process | |
RU1827394C (en) | Method of nitrogen-containing refractory alloys making | |
Kasimtsev et al. | Production of a sintered alloy based on the TiAl intermetallic compound. Part 1: Calcium-hydride fabrication technology of the Ti–47Al–2Nb–2Cr powder alloy and its properties | |
JPS5891018A (en) | Manufacture of fine nitride powder | |
Romanov et al. | Production of Aluminum Matrix Composite Material by Internal Oxidation | |
JPS58172206A (en) | Manufacture of metallic nitride | |
Bogdanov | Intensification of solid-phase reactions by the iodine-transport method | |
JPH0711039B2 (en) | Intermetallic compound Al (3) Ti manufacturing method | |
Zhukov et al. | Combustion synthesis of chromium nitrides | |
Martynova et al. | Dilatometric and thermographic investigation of the reactive sintering of porous titanium nickelide: II. Effect of iron additions on the production of titanium nickelide by reactive sintering | |
JPH0492804A (en) | Production of beta type silicon nitride powder | |
Vesna et al. | Reaction of cubic boron nitride with titanium iodides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |