US20090194335A1 - Rotary roller reamer - Google Patents

Rotary roller reamer Download PDF

Info

Publication number
US20090194335A1
US20090194335A1 US12/423,754 US42375409A US2009194335A1 US 20090194335 A1 US20090194335 A1 US 20090194335A1 US 42375409 A US42375409 A US 42375409A US 2009194335 A1 US2009194335 A1 US 2009194335A1
Authority
US
United States
Prior art keywords
roller
filter
bore
pin
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/423,754
Other versions
US7793715B2 (en
Inventor
John Francis Kennedy
Michael Desmond Slattery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Extreme Machining Australia Pty Ltd
Original Assignee
Extreme Machining Australia Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2002952522A external-priority patent/AU2002952522A0/en
Priority claimed from AU2003900650A external-priority patent/AU2003900650A0/en
Priority claimed from AU2003902189A external-priority patent/AU2003902189A0/en
Application filed by Extreme Machining Australia Pty Ltd filed Critical Extreme Machining Australia Pty Ltd
Priority to US12/423,754 priority Critical patent/US7793715B2/en
Assigned to EXTREME MACHINING AUSTRALIA PTY LTD. reassignment EXTREME MACHINING AUSTRALIA PTY LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KENNEDY, JOHN FRANCIS, KENNEDY, MATHEW JOHN, SLATTERY, MICHAEL DESMOND
Publication of US20090194335A1 publication Critical patent/US20090194335A1/en
Application granted granted Critical
Publication of US7793715B2 publication Critical patent/US7793715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/08Roller bits
    • E21B10/22Roller bits characterised by bearing, lubrication or sealing details
    • E21B10/24Roller bits characterised by bearing, lubrication or sealing details characterised by lubricating details
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/26Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers
    • E21B10/28Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with non-expansible roller cutters
    • E21B10/30Longitudinal axis roller reamers, e.g. reamer stabilisers

Definitions

  • the present invention relates to an improved rotary roller reamer and to improvements to the various components thereof.
  • rotary roller reamers are located in the drill string and are used to ream out the drill hole to the required dimension.
  • the inclusion of rotary roller reamers in the drill string enables the drill bit to be used for a longer period without changeover and this prevents considerable costly downtime.
  • roller reamers The working environment of rotary roller reamers is very harsh. Consequently, the components of the roller reamer frequently need servicing, repair or replacement. As downtime for repairs is very costly, it is advantageous to extend the working life of such roller reamers and to thereby reduce down time due to repairs. It is also advantageous for the roller assemblies used in rotary roller reamers to be quickly and easily removed and replaced from their respective pockets in the reamer body.
  • the present invention seeks to provide an improved rotary roller reamer and various components thereof.
  • the present invention also seeks to provide a pressure equalizer for a device.
  • a rotary roller reamer including a reamer body having at least one pocket for receiving a roller assembly and wherein said roller assembly includes a plurality of components which are connected together to form a single cartridge which can be inserted into said pocket.
  • said cartridge is secured in said pocket by a single fastener device.
  • a roller assembly for a rotary roller reamer said roller assembly including a roller pin and a crushing roller arranged to be mounted on said roller pin and to rotate thereabout, and wherein the roller assembly is connected together so as to form a single cartridge which can be inserted into a pocket of the rotary roller reamer.
  • the cartridge is arranged to be secured to the pocket by a single fastener device.
  • said roller assembly further includes a first retainer for retaining said roller pin within said pocket, said first retainer including a first plug which is arranged to be connected to the roller pin so that the roller pin, crushing roller and first plug form said single cartridge which can be inserted into the pocket of the rotary roller reamer.
  • the first plug has a first surface against which a first end of the roller pin mates and a second surface arranged to engage with a sidewall of said pocket, said sidewall of said pocket and said second surface of said first plug being configured so that the first plug is drawn into the pocket when said fastener device is used to secure the roller assembly to said pocket.
  • the roller assembly further includes a second retainer.
  • a first thrust ring is provided between the roller pin and a first end of the crushing roller and a second thrust ring is provided between a second end of the crushing roller and said second retainer.
  • the first and second thrust rings are preferably sacrificial thrust rings arranged to accommodate thrust loads applied to the crushing roller during use of the rotary roller reamer.
  • the first surface of the first plug is complimentary to the first end of the roller pin.
  • the first end of the roller pin is preferably formed with an enlarged head.
  • the roller pin preferably includes a shank having central longitudinal blind bore formed therein that opens through a second end of the roller pin.
  • the bore forms a lubricant reservoir.
  • the bore opens into a side port that extends substantially perpendicular thereto and opens into a primary lubricant distribution groove.
  • the primary lubricant distribution groove preferably extends substantially longitudinally of the roller pin and may adopt various configurations, for example, a “FIG. 8 ” configuration.
  • Lubricant can be supplied from the reservoir, through the side port and into the primary lubricant distribution groove during rotation of the crushing roller about the roller pin.
  • the lubricant is distributed over the shank of the roller pin as the crushing roller rotates thereabout.
  • Seal are preferably provided between the crushing roller and the shank of the roller pin to prevent escape of lubricant.
  • pressure equalizer is provided in the bore of the roller pin.
  • the pressure equalizer is arranged to equalize the pressure between the drilling mud surrounding the body of the rotary roller reamer and the lubricant contained in the bore of the roller pin.
  • the pressure equalizer may include a filter, such as a sintered metal filter.
  • the first plug is formed as a frustum having a base and a top.
  • the frustum preferably has an angle of less than or equal to 7° to its central longitudinal axis. Preferably, this angle is approximately 3°.
  • the base of the first plug is arranged to be positioned uppermost in the pocket.
  • the base has an outer diameter which is smaller than the outer diameter of the top.
  • the base of the first plug has an underside that is preferably shaped to engage with a mating portion of the pocket.
  • the mating portion of the pocket preferably includes a post that includes a central threaded bore that is arranged to enable the fastener to be screwed there into.
  • the first plug preferably includes a fastener-receiving cavity that opens through a sidewall of the first plug and also into the base of the first plug.
  • the cavity is configured so that the fastener can be passed through the opening in the sidewall and located there within. In this position, the leading end of the fastener extends through the opening in the base. In this manner, the leading end of the fastener can be screwed into the threaded bore formed in the post of the pocket.
  • the first plug preferably also includes an elongate screw connector slot formed in the sidewall thereof.
  • the screw connector slot being configured to receive the head of a screw connected to the enlarged head of the roller pin.
  • An aperture is preferably formed in the top of the first plug and is arranged so that a tool can be passed there through to enable the fastener to be screwed into the bore of the post.
  • the fastener is a socket head fastener and the socket head is arranged to be located within an upper portion of the fastener-receiving cavity.
  • the upper portion of the cavity is configured so that when the fastener is screwed into the post of the pocket, the first plug is drawn into the pocket, and when the fastener is unscrewed, the first plug is lifted out of the pocket.
  • the second retainer preferably includes a second plug which is formed as a frustum.
  • the frustum preferably has an angle of less than or equal to 7° to its central longitudinal axis. Preferably, the angle is approximately 3°.
  • the second plug has a base, a top and a side wall. The base has a larger outer diameter than the top and is arranged to be positioned lowermost within the pocket.
  • a bore is formed in the second plug substantially perpendicular to the central longitudinal axis of the second plug.
  • the bore is arranged to receive the second end of the roller pin.
  • the bore is sized for a sliding fit with the second end of the roller pin.
  • a minor bore is also preferably provided in the sidewall of the second plug.
  • the minor bore is arranged to aid pressure equalization between the lubricant contained in the lubricant reservoir and the mud surrounding the roller assembly during use thereof.
  • a lug Extending from the side wall of the second plug is a lug.
  • the lug is arranged to engage with a complimentary shaped recess formed in a portion of the pocket.
  • each pocket of the rotary roller reamer includes a lower tapered socket, a primary cavity, a secondary cavity and an upper tapered socket.
  • the upper tapered socket is preferably located at the up hole end of the rotary roller reamer and the lower tapered socket is preferably located at the down hole end of the rotary roller reamer.
  • the upper tapered socket is arranged to receive the first retainer.
  • the upper tapered socket includes a semi-circular truncated conical seat of less than or equal to 7° angle to a normal axis of the socket (i.e. the axis normal to the longitudinal axis of the rotary roller reamer). Preferably, the angle is approximately 3°.
  • the socket is tapered so that the smaller diameter of the socket forms part of the floor of the pocket.
  • Tangential to the conical seat is an entrance guide-way having sides matching the taper of the conical seat.
  • the seat extends for approximately 270° arc length, with the remainder of the arc length opening into the secondary cavity. Preferably, the seat extends for greater than 180° arc length.
  • the post Located substantially centrally of the upper tapered socket is the post in which the fastener of the first plug is preferably arranged to be secured.
  • the primary cavity (or roller cavity) is preferably configured to provide operating clearance for the crushing roller mounted on the roller pin.
  • the primary cavity is necked down as compared to the external diameter of the reamer body. This results in the primary cavity having a depth in the direction normal to the longitudinal axis of the reamer body which is less than the depth of the upper and lower tapered sockets.
  • the secondary cavity is preferably formed as a flanked trapezium shape which narrows at the floor of the cavity.
  • the secondary cavity forms a seat for the head of the roller pin.
  • the lower tapered socket is preferably arranged to receive the second retainer.
  • the lower tapered socket includes a semi-circular truncated conical seat of less than or equal to 7° angle to a normal axis of the socket (i.e. the axis normal to the longitudinal axis of the rotary roller reamer). Preferably, the angle is approximately 3°.
  • the socket is tapered so that the larger diameter of the socket forms part of the floor of the pocket.
  • a groove or ledge Located in the sidewall portion of the lower tapered socket is a groove or ledge arranged to receive the security lug of the second plug.
  • the groove or ledge is preferably substantially crescent shaped.
  • a crushing roller for a rotary roller reamer said crushing roller including a central portion and first and second end portions, the central portion having an external diameter greater than the external diameter of the first and second portions, and wherein the central, first and second portions are studded with projections.
  • the projections are preferably arranged on the central portion so that a contact area of the projections with a portion of a wall of a drill hole being reamed overlaps.
  • the projections may be arranged on at least one helix about the central portion of the crushing roller.
  • the helix may advantageously be a left hand helix. Such an arrangement serves to reduce the thrust loading in the vertical plane during use of the crushing roller.
  • each projections includes a button mounted in a hole formed in the crushing roller.
  • the button is preferably a domed shaped tungsten carbide button.
  • buttons on the central portion are arranged in four rows of eight and are set on a left-hand 3.31699′′ pitch helix. Each row is separated by 90° of angular rotation and the starting point for each row commences in a progressive step equal to 0.125 ⁇ 1/9 th of the helical datum curve length. Each projections is spaced at 1/9 th of the helical curve length.
  • each of the helically spaced rows are flutes which are generated on the same helical datum path as the projections.
  • the flutes are arranged to provide an increased mud flow past the roller and increase the clearance through which the residue from the reamer can pass.
  • a rotary roller reamer including a reamer body having at least one pocket for receiving a roller assembly, said roller assembly including a pin and a crushing roller arranged to be mounted on said pin, seal between the pin and the crushing roller and a retainer for retaining said pin within said pocket, and wherein the pin includes a bore having pressure equalizer located there within, the pressure equalizer serving to substantially equalize the pressure on the seal.
  • the pressure equalizer serves to equalize the pressure between the drilling mud surrounding the body of the rotary roller reamer during use and a lubricant contained in the bore of the roller pin.
  • the crushing roller is preferably arranged to rotate about the roller pin.
  • the pressure equalizer may include a filter, such as a sintered metal filter.
  • a rotary roller reamer including a reamer body having at least one pocket for receiving a roller assembly, said roller assembly including a roller pin and a crushing roller arranged to be mounted on said roller pin, wherein the reamer body has a primary outer diameter in an area distal to the crushing roller and a secondary outer diameter in an area adjacent to the crushing roller, and wherein the secondary outer diameter is reduced as compared to the primary outer diameter so as to provide stress relief.
  • a pressure equalizer for a device having at least one seal for sealing a supply of lubricant located between a first and a second member of said device, said pressure equalizer being arranged to be mounted in said device and arranged so that it acts to equalize the pressure applied by the lubricant to a first side of said at least one seal with the pressure of a fluid being applied on a second side of the at least one seal.
  • FIG. 1 is a cut-away view of a rotary roller reamer according to an embodiment of the invention
  • FIG. 1A is an enlarged view of the central portion (i.e. the pocket and the roller assembly) of the rotary roller reamer shown in FIG. 1 ;
  • FIG. 2 is a partial assembly view of a roller assembly in accordance with an embodiment of the invention adjacent to a reamer body having multiple pockets;
  • FIG. 3 is a central longitudinal cross sectional view of the roller assembly shown in FIG. 2 mounted in a pocket of a rotary roller;
  • FIG. 3A is a part cross sectional view of one end of the roller assembly along a line offset from the centre line of the rotary roller reamer;
  • FIG. 4 is a longitudinal cross sectional view of the pocket of the rotary roller reamer shown in FIG. 3 ;
  • FIGS. 5 to 8 are perspective views of a first retainer in accordance with an embodiment of the invention.
  • FIGS. 9 to 11 are perspective views of a second retainer in accordance with an embodiment of the invention.
  • FIG. 12 is a side view of a crushing roller in accordance with an embodiment of the invention.
  • FIG. 13 is a longitudinal cross sectional view of the crushing roller shown in FIG. 12 ;
  • FIG. 14 is an end view of the crushing roller shown in FIG. 12 ;
  • FIGS. 15 to 17 are views of a roller pin in accordance with an embodiment of the invention.
  • FIG. 18 is a cross sectional view showing connection of the first retainer to the connector screw which extends from the enlarged head of the roller pin;
  • FIG. 19 is cross sectional view showing insertion of the retaining plug in the connector screw slot of the first retainer
  • FIG. 20 is a partial cross sectional view showing insertion of a roller cartridge (i.e. the assembled roller assembly) into a pocket of the rotary reamer;
  • FIG. 21 is a perspective view of the stabilization band shown in FIG. 1A ;
  • FIG. 22 is a front view of the stabilization band shown in FIG. 21 ;
  • FIG. 23 is a side view of the stabilization band shown in FIG. 21 .
  • FIGS. 1 and 1A illustrate a rotary roller reamer 10 in accordance with an exemplary embodiment of the invention.
  • the rotary roller reamer 10 has a male end 12 and a female end 14 .
  • the rotary roller reamer 10 is arranged to be attached to a drill string (not shown).
  • the male end 12 is located at the down hole end of the rotary roller reamer 10 and the female end 14 is located at the up hole end of the rotary roller reamer 10 .
  • the configuration or nature of the respective ends of the rotary roller reamer 10 may vary.
  • the rotary roller reamer 10 includes a tubular reamer body 16 which includes three circumferentially spaced pockets 18 . Located within each pocket 18 is a roller assembly or roller cartridge 20 .
  • the pockets 18 as illustrated are equally spaced about the periphery of the reamer body 16 and are located in a section 16 a of the body 16 that has a larger outer diameter than the remainder of the body 16 . Although three pockets 18 are illustrated, it will be appreciated that arrangements with different numbers of pockets 18 and spacings are envisaged.
  • FIG. 2 better illustrates the pockets 18 formed in the reamer body 16 . This figure also illustrates the cut away sections or mud ways 17 formed between adjacent pockets 18 .
  • FIG. 2 illustrates the roller assembly 20 in a disassembled condition.
  • the roller assembly 20 includes a roller pin 22 , a crushing roller 24 , a first retainer 26 , a second retainer 28 , a retaining screw 29 , a first thrust ring 30 , a second thrust ring 32 , a pair of seals 34 a , 34 b , a pressure equalizer 36 , a fastener 38 , a pair of self locking pins 38 a , a connector screw 70 and a retaining plug 72 .
  • the crushing roller 24 is arranged to rotate about the roller pin 22 so that it can be used to ream the sidewalls of the drill hole through which the rotary roller reamer 10 is passed.
  • FIGS. 3 , 3 A and 4 best illustrate the configuration of each of the pockets 18 and the engagement of the roller assembly 20 within its respective pocket 18 .
  • Each pocket 18 includes a lower tapered socket 40 , a primary cavity 42 , a secondary cavity 44 and an upper tapered socket 46 .
  • the lower tapered socket 40 is located at the down hole end of the rotary roller reamer 10
  • the upper tapered socket 46 is located at the up hole end of the rotary roller reamer 10
  • the lower tapered socket 40 is arranged to receive the second retainer 28
  • the upper tapered socket 46 is arranged to receive the first retainer 26 .
  • the primary cavity 42 is arranged to receive the roller pin 22 and the crushing roller 24 which is mounted thereon.
  • the primary cavity 42 is sized and configured to provide operating clearance for the crushing roller 24 during use of the rotary roller reamer 10 .
  • the secondary cavity 44 forms a seat for the head 22 a of the roller pin 22 .
  • the lower tapered socket 40 includes a semi-circular truncated conical seat of less than or equal to 7° angle to a normal axis of the socket 18 (i.e. the axis normal to the longitudinal axis of the rotary roller reamer 10 ). As illustrated, this angle is approximately 3°.
  • the lower tapered socket 40 is tapered so that the larger diameter of the socket 40 forms part of the floor 18 a of the pocket 18 . Tangential to the conical seat is an entrance guide way 40 a having sides matching the taper of the conical seat.
  • a semi-circular recess 40 b Formed in the lower part of the lower tapered socket 40 and coincident with the floor 18 a of the pocket 18 , is a semi-circular recess 40 b .
  • This recess 40 b is a security recess which is arranged to receive a complimentary shaped lug 28 k formed on the second retainer 28 .
  • the function of the security recess 40 b and the lug 28 k will be discussed in more detail subsequently.
  • the carbide inserts 18 b are provided to prevent wear of the floor 18 a of the pocket 18 due to movement of the head 22 a during use of the rotary roller reamer 10 .
  • the primary cavity 42 is necked down as compared to the external diameter of the reamer body 16 . Additionally, the floor 18 a of the primary cavity 42 steps downwardly in a direction towards the centre line of the reamer body 16 . Thus, the primary cavity 42 has a depth in a direction normal to the longitudinal axis that is sufficient to provide working clearance for the crushing roller 24 . Additionally, the external diameter of the reamer body 16 in this area is reduced or “necked down” as compared to the external diameter of the reamer body 16 in the areas adjacent to the lower and upper tapered sockets 40 , 46 . This necked down configuration of the reamer body 16 provides stress relief in the area of the pockets 18 .
  • the secondary cavity 44 is formed with a flanked trapezium shape which narrows at the down hole end of the cavity 44 .
  • the upper tapered socket 46 includes a semi-circular truncated conical seat of less than or equal to 7° angle to the normal axis of socket 46 . As illustrated, this angle is approximately 3°.
  • the upper socket 46 is tapered so that the smaller diameter of the socket 46 forms part of the floor 18 a of the pocket 18 .
  • the seat extends for approximately 270° arc length, with the remainder of the arc length opening into the secondary cavity 44 .
  • Located substantially centrally of the upper tapered socket 46 is a post 52 .
  • the post 52 includes a bore 54 which is threaded so that it can receive the fastener 38 .
  • a threaded insert 54 a may be located in the bore 54 .
  • FIGS. 5 to 8 illustrate the first retainer 26 .
  • the first retainer 26 is formed as a first plug 26 and is arranged to be received within the upper tapered socket 46 .
  • the first plug 26 is formed as a frustum.
  • the frustum has an angle of less than or equal to 7° to its central longitudinal axis and includes a base 26 a and a top 26 b . As illustrated, the frustum has an angle of approximately 3°.
  • the base 26 a is arranged to be positioned lowermost in the lower tapered socket 46 .
  • the base 26 a has an outer diameter which is smaller than the outer diameter of the top 26 b .
  • the underside of the base 26 a is shaped to engage with the floor 18 a of the pocket 18 in the area of the upper tapered socket 46 . In particular, the base 26 a is shaped so that it will mate with the post 52 .
  • the first plug 26 includes a fastener-receiving cavity 26 c that opens through a sidewall 26 d and also into the base 26 a of the first plug.
  • the cavity 26 c is configured so that the fastener 38 can be positioned within and so that the leading end 38 b of the fastener 38 can be secured within the bore 54 formed in the post 52 .
  • An aperture 26 e is located in the top 26 b of the first plug 26 and is configured so that the working end of a tool can be passed there through. This enables the fastener 38 to be screwed into and out of the bore 54 of the post 52 .
  • the self locking pins 38 a are configured to properly locate and lock the fastener 38 within the fastener-receiving cavity 26 c.
  • the sidewall 26 d of the first plug 26 also includes an elongate connector screw slot 26 f which enables the first plug 26 to be connected to a connector screw 70 which extends from the enlarged head 22 a of the roller pin 22 .
  • the connector screw slot 26 f includes a threaded upper portion 26 f ′ which is arranged to receive a threaded retaining plug 72 ( FIG. 19 ). Prior to receiving the retaining plug 72 , the threaded upper portion 26 f ′ is sized to enable the head 70 a of the connector screw 70 to pass there through. In this manner, the head 70 a of the connector screw 70 can be inserted into the connector screw slot 26 f and then the shank of the screw 70 can be moved along the length of the slot 26 f .
  • the connection between the screw 70 and the first plug 26 will be described in more detail subsequently.
  • the fastener 38 is a socket head fastener.
  • the head of the fastener 38 is arranged to be located within an upper portion of the cavity 26 c so that when the fastener 38 is screwed into the post 52 , the first retainer 26 is drawn into the lower tapered socket 46 and when the fastener 38 is unscrewed, the first retainer 26 is lifted out of the upper tapered socket 46 .
  • the configuration of the sidewalls of the lower tapered socket 46 and the shape of the head 22 a of the roller pin 22 facilitate this action of the first retainer 26 .
  • movement of the first plug 26 in and out of the upper tapered pocket 46 will result in movement of the entire roller cartridge 20 in and out of the pocket 18 .
  • FIGS. 9 to 11 illustrate the second retainer 28 .
  • the second retainer 28 or second plug, is formed as a frustum.
  • the frustum has an angle of less than or equal to 7° to its central longitudinal axis. As illustrated, this angle is approximately 3°.
  • the second plug 28 has a base 28 b , a top 28 c and a sidewall 28 d .
  • the base 28 b has a larger external diameter than the top 28 c and is arranged for positioning lowermost within the upper tapered socket 40 .
  • a bore 28 e is formed in a flat portion of the sidewall 28 d of the second plug 28 .
  • the bore 28 e extends substantially perpendicular to the central longitudinal axis thereof.
  • the bore 28 e is arranged to receive a second end 22 b of the roller pin 22 .
  • the bore 28 e is sized for a sliding fit with the second end 22 b of the roller pin 22 .
  • a threaded aperture 28 f is formed in the base 28 b of the second plug 28 .
  • the threaded aperture 28 f is arranged to receive a retaining screw 29 which locates the second end 22 b of the roller pin 22 within the second plug 28 .
  • the engagement of the retaining screw 29 with the roller pin 22 will be described in more detail subsequently.
  • a minor bore 28 j Formed in the sidewall 28 d of the second plug 28 is a minor bore 28 j .
  • the function of the minor bore 28 j will be explained subsequently.
  • the second plug 28 has a lug 28 k formed on the lower part thereof.
  • the lug 28 k is arranged to engage within the security recess 40 b formed in the lower tapered socket 40 . This engagement serves to better retain the roller assembly 20 within the pocket 18 .
  • FIGS. 12 to 14 illustrate the crushing roller 24 .
  • the crushing roller 24 is formed as a hollow cylindrical member having a central bore which is sized to receive the shank of the roller pin 22 .
  • the crushing roller 24 has reduced diameter portions at each end for primary engagement of the crushing roller 24 with the walls of the well bore.
  • a secondary engagement diameter is formed therebetween and is studded with a plurality of buttons 60 (not shown in FIGS. 12 to 14 ).
  • the buttons 60 are preferably domed shaped tungsten carbide buttons that are each mounted within an aperture 62 .
  • the carbide buttons 60 in accordance with a preferred embodiment, are arranged in four rows of eight and are set on a left-hand 3.31699′′ pitch helix.
  • Each row is separated by 90° of angular rotation and the starting point for each row commences in a progressive step equal to 0.125 ⁇ 1/9 th of the helical datum curve length.
  • Each button 60 is spaced at 1/9 th of the helical curve length.
  • buttons 60 on the crushing roller 24 provides a very efficient use of the carbide buttons and thus significantly less carbide is used. This reduction in carbide use is also expected to reduce the torque loading in the drill string. It will further be appreciated that other arrangements of the carbide buttons on the crushing roller are envisaged.
  • the carbide buttons are arranged so that during use they provide substantially complete coverage of the portion of the wall of the well or drill hole being reamed. In other words, the contact area of the various carbide buttons with the portion of the drill hole being reamed overlaps.
  • buttons 60 Located between each of helically spaced rows of buttons 60 are flutes 64 . There are four flutes 64 and they are generated on the same helical datum path as the apertures 62 . The flutes 64 are arranged to enable increased mud flow past the crushing roller 24 and to increase the clearance through which the crushing residue from the rotary roller reamer 10 can pass.
  • the inclusion of primary engagement diameters at the respective ends 24 a , 24 b of the crushing roller 24 enables the rotary roller reamer 10 to be bi-directional (i.e. either up hole or down hole in its application).
  • Seven holes 62 a are located in each primary diameter for the insertion of further domed tungsten carbide buttons 60 a .
  • the holes 62 a are equally spaced and circumferentially drilled on the surfaces normal to the roller central axis.
  • a further hole 62 b drilled through to the central bore is formed in each of the primary engagement diameters.
  • Each hole 62 b is tapped with a female thread and is arranged to receive a pressure plug 63 .
  • Each hole 62 b has the dual function of a grease injection port and a purge port. The use of the pressure plugs 63 will be described in more detail subsequently.
  • a pair of seal retention grooves 66 is formed within the wall of the central bore of the crushing roller 24 and are arranged to receive respective seals 34 a , 34 b .
  • the seals 34 a , 34 b are simple o-rings. However, the use of other types of seals is envisaged.
  • each stabilization band 75 is a band which is broken at point A to provide a gap between the respective ends 75 a , 75 b of the band.
  • the ends 75 a , 75 b terminate at an angle of about 45° (See FIG. 23 ). Termination at other angles is envisaged.
  • Each stabilization band 75 is sized to provide a minimal running fit about the shank of the roller pin 22 and to float within its respective groove 24 c .
  • the stabilization band 75 may either be rotatable with the roller pin 22 or with the crushing roller 24 .
  • Such a stabilizing band 75 is preferably made of a material that is reasonably hard and has a relatively low coefficient of friction.
  • This material may be a fluoropolymer selected from the range of polytetrafluorethylenes (PTFE) marketed by DuPont under the TEFLON® trade mark.
  • PTFE polytetrafluorethylenes
  • a filler such as with a glass, bronze or nickel filler.
  • the material will be a bronze filled PTFE.
  • the stabilizing band 75 tends to assist in maintaining the rotation of the roller pin 22 substantially stable about its longitudinal axis and along its entire length.
  • a seals 34 a , 34 b may be somewhat sensitive to end-to-end bounce of the roller pin 22 , such as would normally be expected due to the reasonably severe impact compression encountered by the roller assembly 20 during operation.
  • the additional use of a stabilizing band 75 of this general type will thus assist with the smooth operation of the roller assembly 20 .
  • FIGS. 15 to 18 illustrate the roller pin 22 .
  • the roller pin 22 includes a central longitudinal bore 22 c (best shown in FIGS. 3 and 15 ) that opens through the lower end 22 b .
  • the bore 22 c in the shank of the roller pin 22 forms a lubricant reservoir.
  • a side port 22 d extends between the lubricant reservoir 22 c and a primary lubricant distribution groove 22 e .
  • the primary lubricant distribution groove 22 e extends longitudinally of the roller pin 22 . As best shown in FIGS. 16 and 17 , the primary lubricant distribution groove 22 e is formed in a “FIG. 8 ” configuration.
  • the lubricant reservoir 22 c enables a lubricant to be stored in the roller pin 22 and subsequently supplied, via the side port 22 d , to the distribution groove 22 e during rotation of the crushing roller 24 about the roller pin 22 .
  • the lubricant is distributed over the shank of the roller pin 22 as the crushing roller 24 rotates thereabout.
  • the seals 34 a , 34 b retain the lubricant on the shank of the roller pin 22 .
  • a second side port 22 i is located adjacent the second end 22 b of the roller pin 22 and intersects with the lubricant reservoir 22 c .
  • the side port 22 i opens into a groove 22 j .
  • the function of the groove 22 j and the side port 22 i will be described below.
  • a transverse retaining slot 22 g is formed adjacent the second end 22 b of the roller pin 22 .
  • the retaining slot 22 g is arranged so that the leading end of the retaining screw 29 in the second retainer 28 can be located in the retaining slot 22 g . In this manner, the roller pin 22 can be oriented relative to the second retainer 28 .
  • the use of a retaining slot 22 g enables limited rotation of the roller pin 22 after connection to the second plug 28 .
  • the pressure equalizer 36 is positioned against a counter bore formed in the lubricant reservoir 22 c .
  • the portion of the lubricant reservoir 22 c to the right side (as shown in FIG. 3 ) of the pressure equalizer 36 opens into the bore 28 e of the second plug 28 .
  • the second side port 22 i of the roller pin 22 opens into the groove 22 j ( FIG. 20 ) which in turn aligns with the minor bore 28 j formed in the second plug 28 .
  • the minor bore 28 j of the second plug 28 opens to the area surrounding the crushing roller 24 .
  • the pressure equalizer 36 acts to ensure that the pressure of the lubricant within the bearing cavity (i.e. the clearance between the roller pin 22 and the crushing roller 24 ) is substantially equal to the pressure of the drilling mud which completely envelopes the rotary roller reamer 10 during a reaming operation. It is important to equalize this pressure so as to prevent the seals 34 a , 34 b from blowing in or out.
  • the pressure equalizer may take the form of a filter 36 .
  • the filter 36 may be a sintered metal filter.
  • the sintered metal filter may have an alloy composition of 68% copper, 27% nickel and 5% tin and a micron capture equal to or about 30 ⁇ m.
  • the pressure equalizer may adopt other configurations.
  • the head 22 a of the roller pin 22 is shaped to mate with the sidewall 26 b of the first plug 26 .
  • the head 22 a is configured as a flanked trapezium shaped solid with a conical cut in its outer face.
  • the head 22 a includes a blind bore 22 f which is coincident with the elongate axis of the roller pin 22 .
  • the bore 22 f is threaded to enable connection of the connector pin 70 thereto. This connection will be described in detail subsequently.
  • the first thrust ring 30 is formed as a solid ring of low friction metal or reinforced polymer which bears against the roller side face of the head 22 a of the roller pin 22 and the face of the first end 24 a of the crushing roller 24 .
  • the first thrust ring 30 is designed to accept the vertical thrust imparted from the sidewalls of the drill hole on the crushing roller 24 as a result of the rotating upward travel of the rotary roller reamer 10 .
  • the first thrust ring 30 is a sacrificial thrust ring.
  • the first thrust ring 30 has an internal o-ring seal 30 a arranged to provide a small amount of shock absorption between the inside diameter of the thrust ring 30 and the shank of the roller pin 22 .
  • the o-ring seal 30 a also acts as a barrier to the flow of drilling mud.
  • the second thrust ring 32 is a solid ring of low friction metal or reinforced polymer which bears against the second end 24 b or the crushing roller 24 and the face of the second plug 28 .
  • the second thrust ring 32 is designed to accommodate the vertical thrust imparted from the sidewalls of the drill hole on the crushing roller 24 as a result of the rotating downward travel of the rotary roller reamer 10 within the hole being drilled.
  • the second thrust ring 32 is a sacrificial thrust ring.
  • the second thrust ring 32 has an internal o-ring seal 32 a arranged to provide a small amount of shock absorption between the inside diameter of the thrust ring 32 and the shank of the roller pin 22 .
  • the o-ring seal 32 a also acts as a barrier to the flow of drilling mud.
  • the o-ring seals 32 a , 32 b are preferably made of a fluoroelastomeric compound.
  • the assembly process for a roller assembly 20 is as follows.
  • a first thrust ring 30 is slid along the shank of the roller pin 22 until it abuts the head 22 a of the roller pin 22 .
  • the filter 36 is then seated against the counter bore of the lubricant reservoir 22 c.
  • Grease injection is continued until lubricant flows through the lubricant reservoir 22 c and out through the pressure equalization filter 36 . At this point, the grease injection equipment is removed and a pressure plug 63 is fitted in the first hole 62 b.
  • the second thrust ring 32 is then positioned on the shank of the roller pin 22 until it abuts with the second end 24 b of the crushing roller 24 .
  • the second plug 28 is slid onto the end of the roller pin 22 so that the trailing end of the second thrust ring 32 is located flush against the flat portion of the sidewall 28 d of the second plug 28 .
  • the retaining screw 29 is then located in the threaded aperture 28 f and screwed inwardly so that it locates within the retaining slot 22 g formed in the shank of the roller pin 22 .
  • the fastener 38 is then inserted in the fastener-receiving cavity 26 c of the first plug 26 and held in position by the self locking pins 38 a.
  • a steel ball 71 is then dropped in the blind bore 22 f .
  • a connector screw 70 is then screwed into the bore 22 f until it is firmly set against the steel ball 71 . This action ensures a constant depth of engagement of the first plug 26 to the roller pin 22 .
  • the head 70 a of the connector screw 70 is then passed through the upper portion 26 f ′ of the connector screw slot 26 f in the first plug 26 .
  • Connection between the first plug 26 and the roller pin 22 is maintained by inserting a retaining plug 72 in the threaded upper portion 26 f ′ of the connector screw slot 26 f .
  • the retaining plug 72 prevents the head 70 a of the connector screw 70 from inadvertently withdrawing from the connector screw slot 72 .
  • FIG. 18 The positioning of the connector screw 70 in the connector screw slot 26 f of the first plug 26 is best illustrated in FIG. 18 .
  • connection between the head 22 a of the roller pin 22 and the first plug 26 is such as to allow limited articulation of the first plug 26 relative to the roller pin 22 , whilst still ensuring proper alignment of the plug 26 relative to the roller pin 22 when the roller cartridge 20 is fitted into a pocket 18 of the rotary roller reamer 10 .
  • the roller cartridge forms a single cartridge which is ready for insertion into a pocket 18 of the rotary reamer 10 .
  • a roller cartridge 20 is fitted within a pocket 18 of the rotary roller reamer 10 as follows. Firstly, the roller cartridge 20 is held horizontally so that the second plug 28 is located in a forward position facing the end of the lower tapered socket 40 . The roller cartridge 20 is then tilted towards the floor 18 a of the pocket 18 . It is then lowered into the pocket 18 until the second plug 28 contacts the floor 18 a of the pocket 18 . The roller cartridge 20 is then slid forward and down into the pocket 18 until the second plug 28 is seated in the lower tapered socket 40 .
  • the first plug 26 aligns itself relative to the roller pin 22 and the upper tapered socket 46 so that it is properly positioned within the pocket 18 ready to be fastened in position by the fastener 38 .
  • This “self aligning” characteristic of the first plug 26 is a consequence of the nature of the connection between the first plug 26 , the connector screw 70 , the steel ball 71 and the head 22 a of the roller pin 22 .
  • FIG. 20 illustrates a roller cartridge 20 being fitted into a pocket 18 of a rotary roller reamer 10 .
  • pockets 18 may be provided on the reamer body 16 . Additionally, although the pockets 18 are described as being equally spaced about the periphery of the reamer body, this need not always be the case. They may for example be spaced by an exponential or logarithmic value.
  • the crushing roller 24 may include different arrangements and numbers of primary engagement diameters (i.e. may adopt a multi step form), carbide buttons, flutes and helixes.

Abstract

The invention relates to a roller assembly for a rotary roller reamer. The roller assembly includes a roller pin and a crushing roller. The crushing roller is arranged to be mounted on the roller pin and to rotate thereabout. The roller assembly is connected together so as to form a single cartridge which can be inserted into a pocket of the rotary roller reamer and secured thereto using a single fastener device.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of application Ser. No. 11/122,782, filed on May 4, 2005, which is a continuation of International Application No. PCT/AU2003/001485, filed on Nov. 7, 2003, which applications are hereby incorporated by reference in their entireties.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an improved rotary roller reamer and to improvements to the various components thereof.
  • 2. Description of the Related Art
  • During drilling operations, the drill bit is subject to wear and thus the dimension of the drill hole will vary over time. To ensure that the dimension of the drill hole is held true, rotary roller reamers are located in the drill string and are used to ream out the drill hole to the required dimension. The inclusion of rotary roller reamers in the drill string enables the drill bit to be used for a longer period without changeover and this prevents considerable costly downtime.
  • The working environment of rotary roller reamers is very harsh. Consequently, the components of the roller reamer frequently need servicing, repair or replacement. As downtime for repairs is very costly, it is advantageous to extend the working life of such roller reamers and to thereby reduce down time due to repairs. It is also advantageous for the roller assemblies used in rotary roller reamers to be quickly and easily removed and replaced from their respective pockets in the reamer body.
  • The present invention seeks to provide an improved rotary roller reamer and various components thereof.
  • The present invention also seeks to provide a pressure equalizer for a device.
  • SUMMARY OF THE INVENTION
  • According to a first aspect of the present invention there is provided a rotary roller reamer including a reamer body having at least one pocket for receiving a roller assembly and wherein said roller assembly includes a plurality of components which are connected together to form a single cartridge which can be inserted into said pocket.
  • Preferably, said cartridge is secured in said pocket by a single fastener device.
  • According to a second aspect of the invention there is provided a roller assembly for a rotary roller reamer, said roller assembly including a roller pin and a crushing roller arranged to be mounted on said roller pin and to rotate thereabout, and wherein the roller assembly is connected together so as to form a single cartridge which can be inserted into a pocket of the rotary roller reamer.
  • Preferably, the cartridge is arranged to be secured to the pocket by a single fastener device.
  • Preferably, said roller assembly further includes a first retainer for retaining said roller pin within said pocket, said first retainer including a first plug which is arranged to be connected to the roller pin so that the roller pin, crushing roller and first plug form said single cartridge which can be inserted into the pocket of the rotary roller reamer.
  • Preferably, the first plug has a first surface against which a first end of the roller pin mates and a second surface arranged to engage with a sidewall of said pocket, said sidewall of said pocket and said second surface of said first plug being configured so that the first plug is drawn into the pocket when said fastener device is used to secure the roller assembly to said pocket.
  • Preferably, the roller assembly further includes a second retainer.
  • Preferably, a first thrust ring is provided between the roller pin and a first end of the crushing roller and a second thrust ring is provided between a second end of the crushing roller and said second retainer. The first and second thrust rings are preferably sacrificial thrust rings arranged to accommodate thrust loads applied to the crushing roller during use of the rotary roller reamer.
  • Preferably, the first surface of the first plug is complimentary to the first end of the roller pin. The first end of the roller pin is preferably formed with an enlarged head.
  • The roller pin preferably includes a shank having central longitudinal blind bore formed therein that opens through a second end of the roller pin. The bore forms a lubricant reservoir. The bore opens into a side port that extends substantially perpendicular thereto and opens into a primary lubricant distribution groove. The primary lubricant distribution groove preferably extends substantially longitudinally of the roller pin and may adopt various configurations, for example, a “FIG. 8” configuration.
  • Lubricant can be supplied from the reservoir, through the side port and into the primary lubricant distribution groove during rotation of the crushing roller about the roller pin. The lubricant is distributed over the shank of the roller pin as the crushing roller rotates thereabout.
  • Seal are preferably provided between the crushing roller and the shank of the roller pin to prevent escape of lubricant.
  • Preferably, pressure equalizer is provided in the bore of the roller pin. The pressure equalizer is arranged to equalize the pressure between the drilling mud surrounding the body of the rotary roller reamer and the lubricant contained in the bore of the roller pin. The pressure equalizer may include a filter, such as a sintered metal filter.
  • In a preferred embodiment, the first plug is formed as a frustum having a base and a top. The frustum preferably has an angle of less than or equal to 7° to its central longitudinal axis. Preferably, this angle is approximately 3°. The base of the first plug is arranged to be positioned uppermost in the pocket. The base has an outer diameter which is smaller than the outer diameter of the top.
  • The base of the first plug has an underside that is preferably shaped to engage with a mating portion of the pocket. The mating portion of the pocket preferably includes a post that includes a central threaded bore that is arranged to enable the fastener to be screwed there into.
  • The first plug preferably includes a fastener-receiving cavity that opens through a sidewall of the first plug and also into the base of the first plug. The cavity is configured so that the fastener can be passed through the opening in the sidewall and located there within. In this position, the leading end of the fastener extends through the opening in the base. In this manner, the leading end of the fastener can be screwed into the threaded bore formed in the post of the pocket.
  • The first plug preferably also includes an elongate screw connector slot formed in the sidewall thereof. The screw connector slot being configured to receive the head of a screw connected to the enlarged head of the roller pin.
  • An aperture is preferably formed in the top of the first plug and is arranged so that a tool can be passed there through to enable the fastener to be screwed into the bore of the post.
  • In a particularly preferred form, the fastener is a socket head fastener and the socket head is arranged to be located within an upper portion of the fastener-receiving cavity. The upper portion of the cavity is configured so that when the fastener is screwed into the post of the pocket, the first plug is drawn into the pocket, and when the fastener is unscrewed, the first plug is lifted out of the pocket.
  • The second retainer preferably includes a second plug which is formed as a frustum. The frustum preferably has an angle of less than or equal to 7° to its central longitudinal axis. Preferably, the angle is approximately 3°. The second plug has a base, a top and a side wall. The base has a larger outer diameter than the top and is arranged to be positioned lowermost within the pocket.
  • A bore is formed in the second plug substantially perpendicular to the central longitudinal axis of the second plug. The bore is arranged to receive the second end of the roller pin. Preferably, the bore is sized for a sliding fit with the second end of the roller pin.
  • A minor bore is also preferably provided in the sidewall of the second plug. The minor bore is arranged to aid pressure equalization between the lubricant contained in the lubricant reservoir and the mud surrounding the roller assembly during use thereof.
  • Extending from the side wall of the second plug is a lug. The lug is arranged to engage with a complimentary shaped recess formed in a portion of the pocket.
  • In accordance with a preferred embodiment of the invention, each pocket of the rotary roller reamer includes a lower tapered socket, a primary cavity, a secondary cavity and an upper tapered socket. The upper tapered socket is preferably located at the up hole end of the rotary roller reamer and the lower tapered socket is preferably located at the down hole end of the rotary roller reamer.
  • The upper tapered socket is arranged to receive the first retainer. The upper tapered socket includes a semi-circular truncated conical seat of less than or equal to 7° angle to a normal axis of the socket (i.e. the axis normal to the longitudinal axis of the rotary roller reamer). Preferably, the angle is approximately 3°. The socket is tapered so that the smaller diameter of the socket forms part of the floor of the pocket. Tangential to the conical seat is an entrance guide-way having sides matching the taper of the conical seat. The seat extends for approximately 270° arc length, with the remainder of the arc length opening into the secondary cavity. Preferably, the seat extends for greater than 180° arc length.
  • Located substantially centrally of the upper tapered socket is the post in which the fastener of the first plug is preferably arranged to be secured.
  • The primary cavity (or roller cavity) is preferably configured to provide operating clearance for the crushing roller mounted on the roller pin. The primary cavity is necked down as compared to the external diameter of the reamer body. This results in the primary cavity having a depth in the direction normal to the longitudinal axis of the reamer body which is less than the depth of the upper and lower tapered sockets.
  • The secondary cavity is preferably formed as a flanked trapezium shape which narrows at the floor of the cavity. The secondary cavity forms a seat for the head of the roller pin.
  • The lower tapered socket is preferably arranged to receive the second retainer. The lower tapered socket includes a semi-circular truncated conical seat of less than or equal to 7° angle to a normal axis of the socket (i.e. the axis normal to the longitudinal axis of the rotary roller reamer). Preferably, the angle is approximately 3°. The socket is tapered so that the larger diameter of the socket forms part of the floor of the pocket.
  • Located in the sidewall portion of the lower tapered socket is a groove or ledge arranged to receive the security lug of the second plug. The groove or ledge is preferably substantially crescent shaped.
  • According to a third aspect of the invention there is provided a crushing roller for a rotary roller reamer, said crushing roller including a central portion and first and second end portions, the central portion having an external diameter greater than the external diameter of the first and second portions, and wherein the central, first and second portions are studded with projections.
  • The projections are preferably arranged on the central portion so that a contact area of the projections with a portion of a wall of a drill hole being reamed overlaps. The projections may be arranged on at least one helix about the central portion of the crushing roller. The helix may advantageously be a left hand helix. Such an arrangement serves to reduce the thrust loading in the vertical plane during use of the crushing roller.
  • Preferably, each projections includes a button mounted in a hole formed in the crushing roller. The button is preferably a domed shaped tungsten carbide button.
  • In accordance with one preferred form, the buttons on the central portion are arranged in four rows of eight and are set on a left-hand 3.31699″ pitch helix. Each row is separated by 90° of angular rotation and the starting point for each row commences in a progressive step equal to 0.125× 1/9th of the helical datum curve length. Each projections is spaced at 1/9th of the helical curve length.
  • Preferably, located between each of the helically spaced rows are flutes which are generated on the same helical datum path as the projections. The flutes are arranged to provide an increased mud flow past the roller and increase the clearance through which the residue from the reamer can pass.
  • According to a fourth aspect of the present invention there is provided a rotary roller reamer including a reamer body having at least one pocket for receiving a roller assembly, said roller assembly including a pin and a crushing roller arranged to be mounted on said pin, seal between the pin and the crushing roller and a retainer for retaining said pin within said pocket, and wherein the pin includes a bore having pressure equalizer located there within, the pressure equalizer serving to substantially equalize the pressure on the seal.
  • Preferably, the pressure equalizer serves to equalize the pressure between the drilling mud surrounding the body of the rotary roller reamer during use and a lubricant contained in the bore of the roller pin.
  • The crushing roller is preferably arranged to rotate about the roller pin.
  • The pressure equalizer may include a filter, such as a sintered metal filter.
  • According to a fifth aspect of the invention there is provided a rotary roller reamer including a reamer body having at least one pocket for receiving a roller assembly, said roller assembly including a roller pin and a crushing roller arranged to be mounted on said roller pin, wherein the reamer body has a primary outer diameter in an area distal to the crushing roller and a secondary outer diameter in an area adjacent to the crushing roller, and wherein the secondary outer diameter is reduced as compared to the primary outer diameter so as to provide stress relief.
  • According to a sixth aspect of the invention there is provided a pressure equalizer for a device having at least one seal for sealing a supply of lubricant located between a first and a second member of said device, said pressure equalizer being arranged to be mounted in said device and arranged so that it acts to equalize the pressure applied by the lubricant to a first side of said at least one seal with the pressure of a fluid being applied on a second side of the at least one seal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which:—
  • FIG. 1 is a cut-away view of a rotary roller reamer according to an embodiment of the invention;
  • FIG. 1A is an enlarged view of the central portion (i.e. the pocket and the roller assembly) of the rotary roller reamer shown in FIG. 1;
  • FIG. 2 is a partial assembly view of a roller assembly in accordance with an embodiment of the invention adjacent to a reamer body having multiple pockets;
  • FIG. 3 is a central longitudinal cross sectional view of the roller assembly shown in FIG. 2 mounted in a pocket of a rotary roller;
  • FIG. 3A is a part cross sectional view of one end of the roller assembly along a line offset from the centre line of the rotary roller reamer;
  • FIG. 4 is a longitudinal cross sectional view of the pocket of the rotary roller reamer shown in FIG. 3;
  • FIGS. 5 to 8 are perspective views of a first retainer in accordance with an embodiment of the invention;
  • FIGS. 9 to 11 are perspective views of a second retainer in accordance with an embodiment of the invention;
  • FIG. 12 is a side view of a crushing roller in accordance with an embodiment of the invention;
  • FIG. 13 is a longitudinal cross sectional view of the crushing roller shown in FIG. 12;
  • FIG. 14 is an end view of the crushing roller shown in FIG. 12;
  • FIGS. 15 to 17 are views of a roller pin in accordance with an embodiment of the invention;
  • FIG. 18 is a cross sectional view showing connection of the first retainer to the connector screw which extends from the enlarged head of the roller pin;
  • FIG. 19 is cross sectional view showing insertion of the retaining plug in the connector screw slot of the first retainer;
  • FIG. 20 is a partial cross sectional view showing insertion of a roller cartridge (i.e. the assembled roller assembly) into a pocket of the rotary reamer;
  • FIG. 21 is a perspective view of the stabilization band shown in FIG. 1A;
  • FIG. 22 is a front view of the stabilization band shown in FIG. 21; and
  • FIG. 23 is a side view of the stabilization band shown in FIG. 21.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIGS. 1 and 1A illustrate a rotary roller reamer 10 in accordance with an exemplary embodiment of the invention. The rotary roller reamer 10 has a male end 12 and a female end 14. The rotary roller reamer 10 is arranged to be attached to a drill string (not shown). As shown in this embodiment, the male end 12 is located at the down hole end of the rotary roller reamer 10 and the female end 14 is located at the up hole end of the rotary roller reamer 10. It will of course be appreciated that the configuration or nature of the respective ends of the rotary roller reamer 10 may vary.
  • The rotary roller reamer 10 includes a tubular reamer body 16 which includes three circumferentially spaced pockets 18. Located within each pocket 18 is a roller assembly or roller cartridge 20. The pockets 18 as illustrated are equally spaced about the periphery of the reamer body 16 and are located in a section 16 a of the body 16 that has a larger outer diameter than the remainder of the body 16. Although three pockets 18 are illustrated, it will be appreciated that arrangements with different numbers of pockets 18 and spacings are envisaged.
  • FIG. 2 better illustrates the pockets 18 formed in the reamer body 16. This figure also illustrates the cut away sections or mud ways 17 formed between adjacent pockets 18.
  • FIG. 2 illustrates the roller assembly 20 in a disassembled condition. The roller assembly 20 includes a roller pin 22, a crushing roller 24, a first retainer 26, a second retainer 28, a retaining screw 29, a first thrust ring 30, a second thrust ring 32, a pair of seals 34 a, 34 b, a pressure equalizer 36, a fastener 38, a pair of self locking pins 38 a, a connector screw 70 and a retaining plug 72.
  • When the components of the roller assembly 20 are assembled together they form a single cartridge which can be secured, using the fastener 38, in the pocket 18 of the rotary roller 10. During use, the crushing roller 24 is arranged to rotate about the roller pin 22 so that it can be used to ream the sidewalls of the drill hole through which the rotary roller reamer 10 is passed. The nature of each of the components of the roller assembly 20 and the pockets 18 formed in the reamer body 16 will now be described in more detail.
  • FIGS. 3, 3A and 4 best illustrate the configuration of each of the pockets 18 and the engagement of the roller assembly 20 within its respective pocket 18. Each pocket 18 includes a lower tapered socket 40, a primary cavity 42, a secondary cavity 44 and an upper tapered socket 46. The lower tapered socket 40 is located at the down hole end of the rotary roller reamer 10, whilst the upper tapered socket 46 is located at the up hole end of the rotary roller reamer 10. The lower tapered socket 40 is arranged to receive the second retainer 28, whilst the upper tapered socket 46 is arranged to receive the first retainer 26. The primary cavity 42 is arranged to receive the roller pin 22 and the crushing roller 24 which is mounted thereon. The primary cavity 42 is sized and configured to provide operating clearance for the crushing roller 24 during use of the rotary roller reamer 10. The secondary cavity 44 forms a seat for the head 22 a of the roller pin 22.
  • The lower tapered socket 40 includes a semi-circular truncated conical seat of less than or equal to 7° angle to a normal axis of the socket 18 (i.e. the axis normal to the longitudinal axis of the rotary roller reamer 10). As illustrated, this angle is approximately 3°. The lower tapered socket 40 is tapered so that the larger diameter of the socket 40 forms part of the floor 18 a of the pocket 18. Tangential to the conical seat is an entrance guide way 40 a having sides matching the taper of the conical seat.
  • Formed in the lower part of the lower tapered socket 40 and coincident with the floor 18 a of the pocket 18, is a semi-circular recess 40 b. This recess 40 b is a security recess which is arranged to receive a complimentary shaped lug 28 k formed on the second retainer 28. The function of the security recess 40 b and the lug 28 k will be discussed in more detail subsequently.
  • Installed in a portion of the floor 18 a of the lower tapered socket 40 so as to be positioned below the head 22 a of the roller pin 22 are four carbide inserts 18 b. The carbide inserts 18 b are provided to prevent wear of the floor 18 a of the pocket 18 due to movement of the head 22 a during use of the rotary roller reamer 10.
  • The primary cavity 42, as clearly illustrated in FIG. 4, is necked down as compared to the external diameter of the reamer body 16. Additionally, the floor 18 a of the primary cavity 42 steps downwardly in a direction towards the centre line of the reamer body 16. Thus, the primary cavity 42 has a depth in a direction normal to the longitudinal axis that is sufficient to provide working clearance for the crushing roller 24. Additionally, the external diameter of the reamer body 16 in this area is reduced or “necked down” as compared to the external diameter of the reamer body 16 in the areas adjacent to the lower and upper tapered sockets 40, 46. This necked down configuration of the reamer body 16 provides stress relief in the area of the pockets 18.
  • The secondary cavity 44 is formed with a flanked trapezium shape which narrows at the down hole end of the cavity 44.
  • The upper tapered socket 46 includes a semi-circular truncated conical seat of less than or equal to 7° angle to the normal axis of socket 46. As illustrated, this angle is approximately 3°. The upper socket 46 is tapered so that the smaller diameter of the socket 46 forms part of the floor 18 a of the pocket 18. The seat extends for approximately 270° arc length, with the remainder of the arc length opening into the secondary cavity 44. Located substantially centrally of the upper tapered socket 46 is a post 52. The post 52 includes a bore 54 which is threaded so that it can receive the fastener 38. Alternatively, as illustrated, a threaded insert 54 a may be located in the bore 54.
  • FIGS. 5 to 8 illustrate the first retainer 26. The first retainer 26 is formed as a first plug 26 and is arranged to be received within the upper tapered socket 46. The first plug 26 is formed as a frustum. The frustum has an angle of less than or equal to 7° to its central longitudinal axis and includes a base 26 a and a top 26 b. As illustrated, the frustum has an angle of approximately 3°. The base 26 a is arranged to be positioned lowermost in the lower tapered socket 46. The base 26 a has an outer diameter which is smaller than the outer diameter of the top 26 b. The underside of the base 26 a is shaped to engage with the floor 18 a of the pocket 18 in the area of the upper tapered socket 46. In particular, the base 26 a is shaped so that it will mate with the post 52.
  • The first plug 26 includes a fastener-receiving cavity 26 c that opens through a sidewall 26 d and also into the base 26 a of the first plug. The cavity 26 c is configured so that the fastener 38 can be positioned within and so that the leading end 38 b of the fastener 38 can be secured within the bore 54 formed in the post 52. An aperture 26 e is located in the top 26 b of the first plug 26 and is configured so that the working end of a tool can be passed there through. This enables the fastener 38 to be screwed into and out of the bore 54 of the post 52.
  • Formed in the top 26 a of the first plug 26 is a pair of bores arranged to receive the self locking pins 38 a. The self locking pins 38 a are configured to properly locate and lock the fastener 38 within the fastener-receiving cavity 26 c.
  • The sidewall 26 d of the first plug 26 also includes an elongate connector screw slot 26 f which enables the first plug 26 to be connected to a connector screw 70 which extends from the enlarged head 22 a of the roller pin 22. The connector screw slot 26 f includes a threaded upper portion 26 f′ which is arranged to receive a threaded retaining plug 72 (FIG. 19). Prior to receiving the retaining plug 72, the threaded upper portion 26 f′ is sized to enable the head 70 a of the connector screw 70 to pass there through. In this manner, the head 70 a of the connector screw 70 can be inserted into the connector screw slot 26 f and then the shank of the screw 70 can be moved along the length of the slot 26 f. The connection between the screw 70 and the first plug 26 will be described in more detail subsequently.
  • As best illustrated in FIG. 3, the fastener 38 is a socket head fastener. The head of the fastener 38 is arranged to be located within an upper portion of the cavity 26 c so that when the fastener 38 is screwed into the post 52, the first retainer 26 is drawn into the lower tapered socket 46 and when the fastener 38 is unscrewed, the first retainer 26 is lifted out of the upper tapered socket 46. The configuration of the sidewalls of the lower tapered socket 46 and the shape of the head 22 a of the roller pin 22 facilitate this action of the first retainer 26. As the first retainer 26 (first plug 26) is connected to the roller pin 22, movement of the first plug 26 in and out of the upper tapered pocket 46 will result in movement of the entire roller cartridge 20 in and out of the pocket 18.
  • FIGS. 9 to 11 illustrate the second retainer 28. The second retainer 28, or second plug, is formed as a frustum. The frustum has an angle of less than or equal to 7° to its central longitudinal axis. As illustrated, this angle is approximately 3°. The second plug 28 has a base 28 b, a top 28 c and a sidewall 28 d. The base 28 b has a larger external diameter than the top 28 c and is arranged for positioning lowermost within the upper tapered socket 40. A bore 28 e is formed in a flat portion of the sidewall 28 d of the second plug 28. The bore 28 e extends substantially perpendicular to the central longitudinal axis thereof. The bore 28 e is arranged to receive a second end 22 b of the roller pin 22. The bore 28 e is sized for a sliding fit with the second end 22 b of the roller pin 22.
  • A threaded aperture 28 f is formed in the base 28 b of the second plug 28. The threaded aperture 28 f is arranged to receive a retaining screw 29 which locates the second end 22 b of the roller pin 22 within the second plug 28. The engagement of the retaining screw 29 with the roller pin 22 will be described in more detail subsequently.
  • Formed in the sidewall 28 d of the second plug 28 is a minor bore 28 j. The function of the minor bore 28 j will be explained subsequently.
  • As mentioned previously, the second plug 28 has a lug 28 k formed on the lower part thereof. The lug 28 k is arranged to engage within the security recess 40 b formed in the lower tapered socket 40. This engagement serves to better retain the roller assembly 20 within the pocket 18.
  • FIGS. 12 to 14 illustrate the crushing roller 24. The crushing roller 24 is formed as a hollow cylindrical member having a central bore which is sized to receive the shank of the roller pin 22. The crushing roller 24 has reduced diameter portions at each end for primary engagement of the crushing roller 24 with the walls of the well bore. A secondary engagement diameter is formed therebetween and is studded with a plurality of buttons 60 (not shown in FIGS. 12 to 14). The buttons 60 are preferably domed shaped tungsten carbide buttons that are each mounted within an aperture 62. The carbide buttons 60, in accordance with a preferred embodiment, are arranged in four rows of eight and are set on a left-hand 3.31699″ pitch helix. Each row is separated by 90° of angular rotation and the starting point for each row commences in a progressive step equal to 0.125× 1/9th of the helical datum curve length. Each button 60 is spaced at 1/9th of the helical curve length.
  • It will be appreciated by those skilled in the art that the above arrangement of buttons 60 on the crushing roller 24 provides a very efficient use of the carbide buttons and thus significantly less carbide is used. This reduction in carbide use is also expected to reduce the torque loading in the drill string. It will further be appreciated that other arrangements of the carbide buttons on the crushing roller are envisaged. Advantageously, the carbide buttons are arranged so that during use they provide substantially complete coverage of the portion of the wall of the well or drill hole being reamed. In other words, the contact area of the various carbide buttons with the portion of the drill hole being reamed overlaps.
  • Located between each of helically spaced rows of buttons 60 are flutes 64. There are four flutes 64 and they are generated on the same helical datum path as the apertures 62. The flutes 64 are arranged to enable increased mud flow past the crushing roller 24 and to increase the clearance through which the crushing residue from the rotary roller reamer 10 can pass.
  • The inclusion of primary engagement diameters at the respective ends 24 a, 24 b of the crushing roller 24 enables the rotary roller reamer 10 to be bi-directional (i.e. either up hole or down hole in its application). Seven holes 62 a are located in each primary diameter for the insertion of further domed tungsten carbide buttons 60 a. The holes 62 a are equally spaced and circumferentially drilled on the surfaces normal to the roller central axis.
  • As illustrated in FIG. 12, a further hole 62 b drilled through to the central bore is formed in each of the primary engagement diameters. Each hole 62 b is tapped with a female thread and is arranged to receive a pressure plug 63. Each hole 62 b has the dual function of a grease injection port and a purge port. The use of the pressure plugs 63 will be described in more detail subsequently.
  • As illustrated in FIG. 13, a pair of seal retention grooves 66 is formed within the wall of the central bore of the crushing roller 24 and are arranged to receive respective seals 34 a, 34 b. As shown, the seals 34 a, 34 b are simple o-rings. However, the use of other types of seals is envisaged.
  • Also shown in FIG. 13 are further annular grooves 24 c intermediate the ends of the bore of the crushing roller 24. Each groove 24 c is arranged to receive a stabilizing band 75. As best illustrated in FIG. 21, each stabilization band 75 is a band which is broken at point A to provide a gap between the respective ends 75 a, 75 b of the band. The ends 75 a, 75 b terminate at an angle of about 45° (See FIG. 23). Termination at other angles is envisaged.
  • Each stabilization band 75 is sized to provide a minimal running fit about the shank of the roller pin 22 and to float within its respective groove 24 c. Thus, the stabilization band 75 may either be rotatable with the roller pin 22 or with the crushing roller 24.
  • Such a stabilizing band 75 is preferably made of a material that is reasonably hard and has a relatively low coefficient of friction. This material may be a fluoropolymer selected from the range of polytetrafluorethylenes (PTFE) marketed by DuPont under the TEFLON® trade mark. However, more preferably, such a material will be strengthened by the addition of a filler, such as with a glass, bronze or nickel filler. Ideally, the material will be a bronze filled PTFE.
  • In this form, the stabilizing band 75 tends to assist in maintaining the rotation of the roller pin 22 substantially stable about its longitudinal axis and along its entire length. In this respect, in some situations, a seals 34 a, 34 b may be somewhat sensitive to end-to-end bounce of the roller pin 22, such as would normally be expected due to the reasonably severe impact compression encountered by the roller assembly 20 during operation. The additional use of a stabilizing band 75 of this general type will thus assist with the smooth operation of the roller assembly 20.
  • FIGS. 15 to 18 illustrate the roller pin 22. The roller pin 22 includes a central longitudinal bore 22 c (best shown in FIGS. 3 and 15) that opens through the lower end 22 b. The bore 22 c in the shank of the roller pin 22 forms a lubricant reservoir. A side port 22 d extends between the lubricant reservoir 22 c and a primary lubricant distribution groove 22 e. The primary lubricant distribution groove 22 e extends longitudinally of the roller pin 22. As best shown in FIGS. 16 and 17, the primary lubricant distribution groove 22 e is formed in a “FIG. 8” configuration.
  • It will be appreciated that the lubricant reservoir 22 c enables a lubricant to be stored in the roller pin 22 and subsequently supplied, via the side port 22 d, to the distribution groove 22 e during rotation of the crushing roller 24 about the roller pin 22. The lubricant is distributed over the shank of the roller pin 22 as the crushing roller 24 rotates thereabout. The seals 34 a, 34 b retain the lubricant on the shank of the roller pin 22.
  • A second side port 22 i is located adjacent the second end 22 b of the roller pin 22 and intersects with the lubricant reservoir 22 c. The side port 22 i opens into a groove 22 j. The function of the groove 22 j and the side port 22 i will be described below.
  • Also formed adjacent the second end 22 b of the roller pin 22 is a transverse retaining slot 22 g. The retaining slot 22 g is arranged so that the leading end of the retaining screw 29 in the second retainer 28 can be located in the retaining slot 22 g. In this manner, the roller pin 22 can be oriented relative to the second retainer 28. The use of a retaining slot 22 g enables limited rotation of the roller pin 22 after connection to the second plug 28.
  • As best shown in FIGS. 3 and 20, the pressure equalizer 36 is positioned against a counter bore formed in the lubricant reservoir 22 c. When the roller cartridge 20 is located in the pocket 18, the portion of the lubricant reservoir 22 c to the right side (as shown in FIG. 3) of the pressure equalizer 36 opens into the bore 28 e of the second plug 28. The second side port 22 i of the roller pin 22 opens into the groove 22 j (FIG. 20) which in turn aligns with the minor bore 28 j formed in the second plug 28. The minor bore 28 j of the second plug 28 opens to the area surrounding the crushing roller 24. Thus, it will be appreciated that there is a pressure flow path from the area surrounding the crushing roller 24 to pressure equalizer 36.
  • The pressure equalizer 36 acts to ensure that the pressure of the lubricant within the bearing cavity (i.e. the clearance between the roller pin 22 and the crushing roller 24) is substantially equal to the pressure of the drilling mud which completely envelopes the rotary roller reamer 10 during a reaming operation. It is important to equalize this pressure so as to prevent the seals 34 a, 34 b from blowing in or out.
  • The pressure equalizer may take the form of a filter 36. In one embodiment, the filter 36 may be a sintered metal filter. The sintered metal filter may have an alloy composition of 68% copper, 27% nickel and 5% tin and a micron capture equal to or about 30 μm. The pressure equalizer may adopt other configurations.
  • As best illustrated in FIGS. 3, 18 and 19 the head 22 a of the roller pin 22 is shaped to mate with the sidewall 26 b of the first plug 26. Thus, the head 22 a is configured as a flanked trapezium shaped solid with a conical cut in its outer face.
  • The head 22 a includes a blind bore 22 f which is coincident with the elongate axis of the roller pin 22. The bore 22 f is threaded to enable connection of the connector pin 70 thereto. This connection will be described in detail subsequently.
  • The first thrust ring 30 is formed as a solid ring of low friction metal or reinforced polymer which bears against the roller side face of the head 22 a of the roller pin 22 and the face of the first end 24 a of the crushing roller 24. The first thrust ring 30 is designed to accept the vertical thrust imparted from the sidewalls of the drill hole on the crushing roller 24 as a result of the rotating upward travel of the rotary roller reamer 10. The first thrust ring 30 is a sacrificial thrust ring.
  • The first thrust ring 30 has an internal o-ring seal 30 a arranged to provide a small amount of shock absorption between the inside diameter of the thrust ring 30 and the shank of the roller pin 22. The o-ring seal 30 a also acts as a barrier to the flow of drilling mud.
  • The second thrust ring 32 is a solid ring of low friction metal or reinforced polymer which bears against the second end 24 b or the crushing roller 24 and the face of the second plug 28. The second thrust ring 32 is designed to accommodate the vertical thrust imparted from the sidewalls of the drill hole on the crushing roller 24 as a result of the rotating downward travel of the rotary roller reamer 10 within the hole being drilled. The second thrust ring 32 is a sacrificial thrust ring.
  • The second thrust ring 32 has an internal o-ring seal 32 a arranged to provide a small amount of shock absorption between the inside diameter of the thrust ring 32 and the shank of the roller pin 22. The o-ring seal 32 a also acts as a barrier to the flow of drilling mud.
  • The o-ring seals 32 a, 32 b are preferably made of a fluoroelastomeric compound.
  • The assembly process for a roller assembly 20 is as follows. A first thrust ring 30 is slid along the shank of the roller pin 22 until it abuts the head 22 a of the roller pin 22. A crushing roller 24 with seals 34 a, 34 b and stabilization bands 75 in position and carbide tips 60 fitted, is then slid onto the shank of the roller pin 22 until the first end 24 a of the crushing roller 24 abuts the first thrust ring 30. The filter 36 is then seated against the counter bore of the lubricant reservoir 22 c.
  • At this stage, grease is injected into the crushing roller 24 via one of the holes 62 b (“the first hole 62 b”). The grease is injected until grease flows through the hole 62 b (the “second hole 62 b”) in the other primary engagement diameter of the crushing roller 24. A pressure plug 63 is then installed to seal off the second hole 62 b.
  • Grease injection is continued until lubricant flows through the lubricant reservoir 22 c and out through the pressure equalization filter 36. At this point, the grease injection equipment is removed and a pressure plug 63 is fitted in the first hole 62 b.
  • The second thrust ring 32 is then positioned on the shank of the roller pin 22 until it abuts with the second end 24 b of the crushing roller 24. Finally, the second plug 28 is slid onto the end of the roller pin 22 so that the trailing end of the second thrust ring 32 is located flush against the flat portion of the sidewall 28 d of the second plug 28. The retaining screw 29 is then located in the threaded aperture 28 f and screwed inwardly so that it locates within the retaining slot 22 g formed in the shank of the roller pin 22.
  • The fastener 38 is then inserted in the fastener-receiving cavity 26 c of the first plug 26 and held in position by the self locking pins 38 a.
  • A steel ball 71 is then dropped in the blind bore 22 f. A connector screw 70 is then screwed into the bore 22 f until it is firmly set against the steel ball 71. This action ensures a constant depth of engagement of the first plug 26 to the roller pin 22. The head 70 a of the connector screw 70 is then passed through the upper portion 26 f′ of the connector screw slot 26 f in the first plug 26. Connection between the first plug 26 and the roller pin 22 is maintained by inserting a retaining plug 72 in the threaded upper portion 26 f′ of the connector screw slot 26 f. The retaining plug 72 prevents the head 70 a of the connector screw 70 from inadvertently withdrawing from the connector screw slot 72.
  • The positioning of the connector screw 70 in the connector screw slot 26 f of the first plug 26 is best illustrated in FIG. 18. The insertion of the retaining plug 72 in the threaded upper portion 26 f′ of the connector screw slot 26 f is best illustrated in FIG. 19.
  • As will be apparent, the connection between the head 22 a of the roller pin 22 and the first plug 26 is such as to allow limited articulation of the first plug 26 relative to the roller pin 22, whilst still ensuring proper alignment of the plug 26 relative to the roller pin 22 when the roller cartridge 20 is fitted into a pocket 18 of the rotary roller reamer 10.
  • Once the components of the roller assembly 20 have been assembled, the roller cartridge, as it is then known, forms a single cartridge which is ready for insertion into a pocket 18 of the rotary reamer 10.
  • A roller cartridge 20 is fitted within a pocket 18 of the rotary roller reamer 10 as follows. Firstly, the roller cartridge 20 is held horizontally so that the second plug 28 is located in a forward position facing the end of the lower tapered socket 40. The roller cartridge 20 is then tilted towards the floor 18 a of the pocket 18. It is then lowered into the pocket 18 until the second plug 28 contacts the floor 18 a of the pocket 18. The roller cartridge 20 is then slid forward and down into the pocket 18 until the second plug 28 is seated in the lower tapered socket 40.
  • During positioning of the second plug 28 in the lower tapered socket 40, the first plug 26 aligns itself relative to the roller pin 22 and the upper tapered socket 46 so that it is properly positioned within the pocket 18 ready to be fastened in position by the fastener 38. This “self aligning” characteristic of the first plug 26 is a consequence of the nature of the connection between the first plug 26, the connector screw 70, the steel ball 71 and the head 22 a of the roller pin 22.
  • A hex driver is then inserted through the aperture 26 d in the first plug 26 and the fastener 38 is screwed into the threaded bore 54 of the post 52 formed in the floor 18 a of the pocket 18. As the fastener 38 is screwed into the bore 54 the first plug 26 is drawn into the upper tapered socket 46. FIG. 20 illustrates a roller cartridge 20 being fitted into a pocket 18 of a rotary roller reamer 10.
  • It will be appreciated by those skilled in the art that different numbers of pockets 18 may be provided on the reamer body 16. Additionally, although the pockets 18 are described as being equally spaced about the periphery of the reamer body, this need not always be the case. They may for example be spaced by an exponential or logarithmic value.
  • It will also be appreciated that the crushing roller 24 may include different arrangements and numbers of primary engagement diameters (i.e. may adopt a multi step form), carbide buttons, flutes and helixes.
  • The described embodiment of the invention is advantageous because:
      • 1. Each roller cartridge 20 is retained in its respective pocket 18 using a single locking device (e.g. the bolt 38).
      • 2. Each roller cartridge 20 can be easily fitted and removed from its respective pocket 18 because the roller cartridge 20 is fitted as a single “one” piece assembly. This enables quick insertion and removal of the roller cartridge 20 from a pocket 18 and thus helps minimize down time of a rotary reamer 10 due to maintenance requirements.
      • 3. The arrangement of the first retainer (first plug) 26 is such that tightening of the fastener 38 draws the first retainer 26 into the pocket 18 and loosening of the fastener lifts the first retainer 26 and thus the entire roller assembly 20 out of the pocket 18. This ensures easy removal of the roller cartridge 20 even in the worst of on-site conditions.
      • 4. The necked down portion of the reamer body 16 adjacent the crushing roller 24 facilitates relief of torsional stress that would otherwise be concentrated in this area of the reamer body 16. The necked down portion also enable superior mud flow through the primary mud ways milled between the pockets 18 and through and over the pockets 18. The necked down portion also provides a uni-directional path linking each mud way should any one be obstructed during use of the rotary roller reamer 10.
      • 5. The arrangement of the carbide buttons 60, 60 a on the crushing roller 24 reduces the amount of carbide used whilst maintaining required performance. Additionally, it is envisaged that the arrangement of carbide buttons may serve to reduce the torque loading in the drill string.
      • 6. The described pressure equalization arrangement and in particular, the use of the filter 36 in the lubricant cavity 22 c, improves the operational life of the roller assembly 20.
      • 7. The load forces on the rotary roller reamer are all substantially longitudinal in direction rather than transversally. This results in a longer working life for the rotary roller reamer.
      • 8. During use, the rotary roller reamer will rotate towards the right (i.e. clockwise when viewed looking down the well bore). The crushing rollers 24 on engagement with the well bore will rotate towards the left. As the drill bit on the end of the drill string loses diameter through normal operational wear, the reamer will through its rolling and crushing action ensure the integrity of the gauge size of the well bore diameter for a period in excess of the drill bits ability to maintain the required bore gauge. Hence, the use of rotary reamers in accordance with embodiments of the invention reduces the frequency of complete removal of the drill string from the well bore in order to change out the drill bit.
      • 9. The roller cartridge 20 can be supplied on site, ready for use, without any further component assembly required.
  • The embodiments have been described by way of example only and modifications within the spirit and scope of the invention are envisaged.

Claims (22)

1. A roller assembly including a roller pin, a roller arranged to be mounted on said roller pin, at least one seal between the roller pin and the roller, and a filter, the at least one seal arranged to prevent leakage of a lubricant from a clearance between the roller pin and the roller, the roller pin including a bore which acts as a lubricant reservoir and arranged so that lubricant from the lubricant reservoir can flow into said clearance, said bore arranged to receive the filter, the filter being stationary relative to the roller pin, the filter serving during use of the roller assembly to substantially equalize the pressure of the lubricant in the clearance on the at least one seal with the pressure of drilling mud surrounding the roller during use of the roller assembly.
2. A roller assembly according to claim 1 wherein the filter is a sintered metal filter.
3. A roller assembly according to claim 1 wherein the filter has an alloy composition of about 68% copper, 27% nickel and 5% tin.
4. A roller assembly according to claim 1 wherein the filter has a porosity of about 30 μm.
5. A roller assembly according to claim 1 wherein the filter rests against a seat formed in the bore of the roller pin.
6. A roller assembly according to claim 1 wherein the bore in the roller pin includes a first side port that connects the lubricant reservoir with the clearance.
7. A roller according to claim 6 wherein the first side port opens into a first distribution groove formed in the roller pin.
8. A roller assembly according to claim 6 wherein the bore in the roller pin also includes a second side port that connects to a portion of the bore on an opposite side of the filter to the side of the lubricant reservoir so that the second side port does not open into the clearance.
9. A roller assembly according to claim 8 wherein the second side ports opens into a second distribution groove formed in the roller pin.
10. A roller assembly according to claim 1 further including a second seal.
11. A pressure equalizer for a device having at least one seal for sealing a supply of lubricant located between a first and a second member of said device, said pressure equalizer being arranged to be mounted in said device so that it is stationary and arranged so that it acts to equalize the pressure applied by the lubricant to a first side of said at least one seal with the pressure of a fluid being applied on a second side of the at least one seal.
12. A pressure equalizer according to claim 11 having a first end subject to the pressure of the fluid being applied on the second side of the at least one seal and a second end subject to the pressure of the lubricant.
13. A pressure equalizer according to claim 12 wherein the second end rests against a seat formed in a bore of the device, said bore acting as a reservoir for the lubricant.
14. A pressure equalizer according to claim 11 comprising a filter material.
15. A pressure equalizer according to claim 14 wherein the filter material is a sintered metal.
16. A pressure equalizer according to claim 11, wherein the filter material has an alloy composition of about 68% copper, 27% nickel and 5% tin.
17. A pressure equalizer according to claim 14 wherein the filter material has a porosity of about 30 μm.
18. A rotary roller reamer including a roller assembly according to claim 1.
19. A roller assembly comprising:
a roller pin comprising a lubricant reservoir;
a roller mounted on the roller pin, the roller and the roller pin together defining a bearing cavity, the lubricant reservoir being in fluid communication with the bearing cavity and with an outer environment of the roller;
at least one seal configured to prevent leakage of a lubricant from the bearing cavity; and
a filter configured to substantially equalize the pressure of the bearing cavity and the outer environment.
20. A roller assembly according to claim 19, wherein the filter is a metal filter.
21. A roller assembly according to claim 19, wherein the filter is disposed substantially within a bore of the roller pin.
22. A roller assembly according to claim 19, wherein the filter is positioned against a counter bore formed in the lubricant reservoir.
US12/423,754 2002-11-07 2009-04-14 Rotary roller reamer Expired - Lifetime US7793715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/423,754 US7793715B2 (en) 2002-11-07 2009-04-14 Rotary roller reamer

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
AU2002952522 2002-11-07
AU2002952522A AU2002952522A0 (en) 2002-11-07 2002-11-07 An Improved Rotary Roller Reamer
AU2003900650A AU2003900650A0 (en) 2003-02-13 2003-02-13 An improved rotary roller reamer
AU2003900650 2003-02-13
AU2003902189A AU2003902189A0 (en) 2003-05-07 2003-05-07 Seal for a roller assembly
AU2003902189 2003-05-07
PCT/AU2003/001485 WO2004042184A1 (en) 2002-11-07 2003-11-07 An improved rotary roller reamer
US11/122,782 US7530409B2 (en) 2002-11-07 2005-05-04 Rotary roller reamer
US12/423,754 US7793715B2 (en) 2002-11-07 2009-04-14 Rotary roller reamer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/122,782 Continuation US7530409B2 (en) 2002-11-07 2005-05-04 Rotary roller reamer

Publications (2)

Publication Number Publication Date
US20090194335A1 true US20090194335A1 (en) 2009-08-06
US7793715B2 US7793715B2 (en) 2010-09-14

Family

ID=32314657

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/122,782 Active 2025-05-14 US7530409B2 (en) 2002-11-07 2005-05-04 Rotary roller reamer
US12/423,754 Expired - Lifetime US7793715B2 (en) 2002-11-07 2009-04-14 Rotary roller reamer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/122,782 Active 2025-05-14 US7530409B2 (en) 2002-11-07 2005-05-04 Rotary roller reamer

Country Status (10)

Country Link
US (2) US7530409B2 (en)
EP (2) EP1561002B1 (en)
CN (1) CN101956532B (en)
AT (1) ATE455931T1 (en)
AU (2) AU2003275774B2 (en)
CA (2) CA2504775C (en)
DE (1) DE60331098D1 (en)
DK (1) DK1561002T3 (en)
NZ (2) NZ539564A (en)
WO (1) WO2004042184A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080202818A1 (en) * 2003-09-03 2008-08-28 Gearhart United Pty Ltd. Rotary Roller Reamer
WO2012021069A1 (en) * 2010-08-12 2012-02-16 Sinvent As Cutting tool integrated in a drillstring
US9157282B2 (en) 2011-11-30 2015-10-13 Smith International, Inc. Roller reamer compound wedge retention
US20190162028A1 (en) * 2017-11-30 2019-05-30 Duane Shotwell Roller reamer with mechanical face seal
US10718165B2 (en) * 2017-11-30 2020-07-21 Duane Shotwell Roller reamer integral pressure relief assembly

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003902189A0 (en) * 2003-05-07 2003-05-22 Extreme Machining Australia Pty Ltd Seal for a roller assembly
CA2461082A1 (en) * 2004-03-09 2005-09-09 William R. Wenzel Drilling on gauge sub
AU2006208449B2 (en) * 2005-01-27 2011-10-06 Transco Manufacturing Australia Pty Ltd Roller reamer
US7661489B2 (en) 2005-01-27 2010-02-16 Transco Manufacturing Australia Pty Ltd. Roller reamer
EP2038509A1 (en) * 2006-07-12 2009-03-25 Omni Oil Technologies A roller reamer
GB0712629D0 (en) * 2007-06-29 2007-08-08 Mcnay Graeme Transport assembly
AU2010244940B2 (en) 2009-05-06 2016-06-09 Dynomax Drilling Tools Inc. Slide reamer and stabilizer tool
US9243730B1 (en) 2010-09-28 2016-01-26 Pruitt Tool & Supply Co. Adapter assembly
GB201020129D0 (en) * 2010-11-26 2011-01-12 Simpson Neil A A Rotary drilling traction stabiliser
US8973652B1 (en) 2011-08-22 2015-03-10 Pruitt Tool & Supply Co. Pipe wiper box
US8905150B1 (en) 2011-08-22 2014-12-09 Pruitt Tool & Supply Co. Casing stripper attachment
DE112012003844T5 (en) * 2011-09-16 2014-07-10 Vermeer Manufacturing Company Widening head bearing arrangement
US10378285B2 (en) 2013-03-07 2019-08-13 Dynomax Drilling Tools Inc. Downhole motor
EP2975212A1 (en) 2014-07-17 2016-01-20 Tercel IP Limited A downhole tool assembly and a method for assembling and disassembling it
PT3073045T (en) * 2015-03-25 2018-05-15 Sandvik Intellectual Property Cutter for boring head
US10837237B2 (en) * 2017-11-30 2020-11-17 Duane Shotwell Roller reamer with labyrinth seal assembly
WO2019147820A1 (en) * 2018-01-24 2019-08-01 Stabil Drill Specialties, L.L.C. Eccentric reaming tool
GB2607048B (en) * 2021-05-26 2023-05-17 Nxg Tech Limited Cutter Assembly

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2122763A (en) * 1937-02-25 1938-07-05 Hughes Tool Co Cutter mounting
US2189038A (en) * 1938-12-16 1940-02-06 Reed Roller Bit Co Reamer
US2189032A (en) * 1938-12-08 1940-02-06 Reed Roller Bit Co Reamer
US2328735A (en) * 1941-04-07 1943-09-07 Harry P Miller Underreamer for oil wells
US2716020A (en) * 1952-03-01 1955-08-23 David P Blaker Reamer
US2742264A (en) * 1951-07-16 1956-04-17 Robert E Suyder Impact drill
US3056637A (en) * 1959-03-02 1962-10-02 Garlock Inc Bearing
US3306381A (en) * 1963-12-16 1967-02-28 Drilco Oil Tools Inc Reaming apparatus
US3659663A (en) * 1970-12-28 1972-05-02 Dresser Ind Borehole reamer-stabilizer with improved fluid circulation
US3719241A (en) * 1971-11-24 1973-03-06 Dresser Ind Free breathing lubrication system for sealed bearing rock bits
US3818999A (en) * 1970-05-19 1974-06-25 Smith International Wall contacting tool
US3820613A (en) * 1972-12-29 1974-06-28 Western Rock Bit Co Ltd Roller reamer stabilizer
US3866695A (en) * 1974-07-01 1975-02-18 Dresser Ind Bearing Cavity Pressure Maintenance Device For Sealed Bearing Rock Bit
US3907048A (en) * 1974-05-13 1975-09-23 Bralorne Resources Ltd Air cleaned and lubricated stabilizer
US3917361A (en) * 1974-01-30 1975-11-04 Reed Tool Co Friction bearing
US3980309A (en) * 1973-12-19 1976-09-14 Jacques Dechavanne Two-part scraper-type shaft-seal
US4013325A (en) * 1974-09-04 1977-03-22 Ian Graeme Rear Drill rod stabilizing tool
US4182425A (en) * 1977-05-23 1980-01-08 Smith International, Inc. Reamer
US4261426A (en) * 1979-05-01 1981-04-14 Smith International, Inc. Reamer stabilizer
US4262760A (en) * 1979-04-30 1981-04-21 Smith International, Inc. Reamer-stabilizer
US4499642A (en) * 1981-12-28 1985-02-19 Smith International, Inc. Composite bearing
US4508184A (en) * 1983-05-27 1985-04-02 Hansen Michael S Roller reamer/stabilizer
US4526387A (en) * 1983-01-28 1985-07-02 Cross Manufacturing Company (1938) Limited Rotatable shaft seals
US4548284A (en) * 1983-10-28 1985-10-22 Dresser Industries, Inc. Roller ball retention of reamer cutter assembly
US4561508A (en) * 1980-08-01 1985-12-31 Hughes Tool Company Roller-reamer
US5381868A (en) * 1993-10-08 1995-01-17 Triumph*Lor Inc Sealed bearing roller reamer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU522206B2 (en) * 1980-05-15 1982-05-20 Spelts, W.R. Reamer stabilizer
US4542797A (en) * 1980-08-01 1985-09-24 Hughes Tool Company Roller reamer
EP0248615A3 (en) 1986-06-04 1988-11-30 Diamond Products Limited Oreco Improvements in drilling apparatus
GB8700109D0 (en) 1987-01-06 1987-02-11 Darron Tool & Eng Sheffield Lt Drill member
US4793424A (en) * 1987-02-27 1988-12-27 Drilex Systems, Inc. Self-lubricating well tools and seal elements therefor
AU594885C (en) 1987-07-07 2004-10-07 Gearhart United Pty Ltd Rotary roller reamer
ATE126328T1 (en) 1991-04-09 1995-08-15 Cooper Ind Inc RETAINING RING.
WO1995013452A1 (en) * 1993-11-10 1995-05-18 Gearhart United Pty. Ltd. Improved rotary roller reamer
AU675186B2 (en) 1993-11-10 1997-01-23 Gearhart United Pty Ltd Improved rotary roller reamer
GB9908384D0 (en) * 1999-04-14 1999-06-09 Darron Oil Tools Ltd Roller reamer

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2122763A (en) * 1937-02-25 1938-07-05 Hughes Tool Co Cutter mounting
US2189032A (en) * 1938-12-08 1940-02-06 Reed Roller Bit Co Reamer
US2189038A (en) * 1938-12-16 1940-02-06 Reed Roller Bit Co Reamer
US2328735A (en) * 1941-04-07 1943-09-07 Harry P Miller Underreamer for oil wells
US2742264A (en) * 1951-07-16 1956-04-17 Robert E Suyder Impact drill
US2716020A (en) * 1952-03-01 1955-08-23 David P Blaker Reamer
US3056637A (en) * 1959-03-02 1962-10-02 Garlock Inc Bearing
US3306381A (en) * 1963-12-16 1967-02-28 Drilco Oil Tools Inc Reaming apparatus
US3818999A (en) * 1970-05-19 1974-06-25 Smith International Wall contacting tool
US3659663A (en) * 1970-12-28 1972-05-02 Dresser Ind Borehole reamer-stabilizer with improved fluid circulation
US3719241A (en) * 1971-11-24 1973-03-06 Dresser Ind Free breathing lubrication system for sealed bearing rock bits
US3820613A (en) * 1972-12-29 1974-06-28 Western Rock Bit Co Ltd Roller reamer stabilizer
US3980309A (en) * 1973-12-19 1976-09-14 Jacques Dechavanne Two-part scraper-type shaft-seal
US3917361A (en) * 1974-01-30 1975-11-04 Reed Tool Co Friction bearing
US3907048A (en) * 1974-05-13 1975-09-23 Bralorne Resources Ltd Air cleaned and lubricated stabilizer
US3866695A (en) * 1974-07-01 1975-02-18 Dresser Ind Bearing Cavity Pressure Maintenance Device For Sealed Bearing Rock Bit
US4013325A (en) * 1974-09-04 1977-03-22 Ian Graeme Rear Drill rod stabilizing tool
US4182425A (en) * 1977-05-23 1980-01-08 Smith International, Inc. Reamer
US4262760A (en) * 1979-04-30 1981-04-21 Smith International, Inc. Reamer-stabilizer
US4261426A (en) * 1979-05-01 1981-04-14 Smith International, Inc. Reamer stabilizer
US4561508A (en) * 1980-08-01 1985-12-31 Hughes Tool Company Roller-reamer
US4499642A (en) * 1981-12-28 1985-02-19 Smith International, Inc. Composite bearing
US4526387A (en) * 1983-01-28 1985-07-02 Cross Manufacturing Company (1938) Limited Rotatable shaft seals
US4508184A (en) * 1983-05-27 1985-04-02 Hansen Michael S Roller reamer/stabilizer
US4548284A (en) * 1983-10-28 1985-10-22 Dresser Industries, Inc. Roller ball retention of reamer cutter assembly
US5381868A (en) * 1993-10-08 1995-01-17 Triumph*Lor Inc Sealed bearing roller reamer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080202818A1 (en) * 2003-09-03 2008-08-28 Gearhart United Pty Ltd. Rotary Roller Reamer
US20110100722A1 (en) * 2003-09-03 2011-05-05 Gearhart United Pty Ltd Rotary roller reamer
US8397838B2 (en) 2003-09-03 2013-03-19 Gearhart United Pty Ltd Rotary roller reamer
WO2012021069A1 (en) * 2010-08-12 2012-02-16 Sinvent As Cutting tool integrated in a drillstring
US8789624B2 (en) 2010-08-12 2014-07-29 Sinvent As Cutting tool integrated in a drillstring
EA024272B1 (en) * 2010-08-12 2016-09-30 Синвент Ас Cutting tool integrated in a drillstring
US9157282B2 (en) 2011-11-30 2015-10-13 Smith International, Inc. Roller reamer compound wedge retention
US20190162028A1 (en) * 2017-11-30 2019-05-30 Duane Shotwell Roller reamer with mechanical face seal
US10718165B2 (en) * 2017-11-30 2020-07-21 Duane Shotwell Roller reamer integral pressure relief assembly
US10947786B2 (en) * 2017-11-30 2021-03-16 Chengdu Best Diamond Bit Co., Ltd. Roller reamer with mechanical face seal

Also Published As

Publication number Publication date
AU2009203076B2 (en) 2011-12-15
EP1561002B1 (en) 2010-01-20
NZ539564A (en) 2008-11-28
CN101956532B (en) 2013-04-17
EP2058470A2 (en) 2009-05-13
CA2720411C (en) 2013-08-13
NZ571515A (en) 2009-10-30
AU2009203076A1 (en) 2009-08-20
CA2720411A1 (en) 2004-05-21
EP2058470A3 (en) 2009-08-05
US20050252694A1 (en) 2005-11-17
CN101956532A (en) 2011-01-26
CA2504775C (en) 2012-01-24
CA2504775A1 (en) 2004-05-21
EP1561002A1 (en) 2005-08-10
AU2003275774B2 (en) 2009-04-30
AU2009203076B8 (en) 2012-01-19
EP1561002A4 (en) 2006-09-27
US7530409B2 (en) 2009-05-12
WO2004042184A1 (en) 2004-05-21
ATE455931T1 (en) 2010-02-15
AU2003275774A1 (en) 2004-06-07
DK1561002T3 (en) 2010-03-15
DE60331098D1 (en) 2010-03-11
US7793715B2 (en) 2010-09-14

Similar Documents

Publication Publication Date Title
US7793715B2 (en) Rotary roller reamer
CA2563188C (en) Drill bit and cutter element having aggressive leading side
US8601908B2 (en) Method and apparatus for a true geometry, durable rotating drill bit
US20050087370A1 (en) Increased projection for compacts of a rolling cone drill bit
EP0317089B1 (en) Precision roller bearing for rock bits
GB2081346A (en) Roller-reamer apparatus and a rollerreamer unit therefor
US6892828B2 (en) Nutating single cone drill bit
EP0585106A2 (en) Threaded retention ring for roller bit and method for manufacturing such a bit
US20070151768A1 (en) Stabilising band for a roller assembly
WO2005080741A1 (en) Mud debris diverter for earth-boring bit
AU2004236273B2 (en) Stabilising band for a roller assembly
EP1627128A1 (en) Stabilising band for a roller assembly
WO2016009299A2 (en) A downhole tool assembly and a method for assembling and disassembling it
CN1711404B (en) Roller assembly and rotary roller reamer using same

Legal Events

Date Code Title Description
AS Assignment

Owner name: EXTREME MACHINING AUSTRALIA PTY LTD., AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KENNEDY, JOHN FRANCIS;KENNEDY, MATHEW JOHN;SLATTERY, MICHAEL DESMOND;REEL/FRAME:022628/0593

Effective date: 20050711

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552)

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment: 12