US20090175175A1 - Radio link control reset using radio resource control signaling - Google Patents

Radio link control reset using radio resource control signaling Download PDF

Info

Publication number
US20090175175A1
US20090175175A1 US12/346,443 US34644308A US2009175175A1 US 20090175175 A1 US20090175175 A1 US 20090175175A1 US 34644308 A US34644308 A US 34644308A US 2009175175 A1 US2009175175 A1 US 2009175175A1
Authority
US
United States
Prior art keywords
reset
entity
radio link
link control
rlc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/346,443
Other languages
English (en)
Inventor
Shankar Somasundaram
Rajat P. Mukherjee
Mohammed Sammour
Stephen E. Terry
Jin Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Priority to US12/346,443 priority Critical patent/US20090175175A1/en
Assigned to INTERDIGITAL PATENT HOLDINGS, INC. reassignment INTERDIGITAL PATENT HOLDINGS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUKHERJEE, RAJAT P., SAMMOUR, MOHAMMED, SOMASUNDARAM, SHANKAR, TERRY, STEPHEN E., WANG, JIN
Publication of US20090175175A1 publication Critical patent/US20090175175A1/en
Priority to US13/293,528 priority patent/US8693479B2/en
Priority to US14/179,280 priority patent/US9167564B2/en
Priority to US14/791,642 priority patent/US9596674B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1841Resequencing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1838Buffer management for semi-reliable protocols, e.g. for less sensitive applications such as streaming video
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/32Flow control; Congestion control by discarding or delaying data units, e.g. packets or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms

Definitions

  • This application is related to wireless communications.
  • LTE Long Term Evolution
  • LTE-Advanced wireless communication programs are to bring new technology, new architecture and new methods in the new LTE settings and configurations in order to provide improved spectral efficiency and reduced latency.
  • the radio resources would be better utilized to bring faster user experiences and richer applications and services with less cost.
  • Radio Resource Control RRC
  • Radio Link Control RLC
  • UMTS Universal Mobile Telecommunication System
  • an RLC entity of a transmitter did not request a reset after reaching a maximum allowed number of RLC retransmissions. Instead, the RLC entity would attempt to keep the call alive and initiate its own reset without the RRC being aware. To do so, the RLC entity would continue retransmissions and then continue with the reset procedure until the RLC was able to recover or until the maximum number of retransmission for RLC reset was reached.
  • the RRC would initiate a radio link failure (RLF) recovery procedure, but would put the transmitter into IDLE mode rather than attempting a RRC connection re-establishment.
  • RLF radio link failure
  • a method and apparatus are disclosed wherein a reset procedure for a radio link control is implemented by radio resource control signaling. Triggers for the initiation and execution of the disclosed reset method are also disclosed.
  • a wireless transmit/receive unit detects a number of retransmissions exceeding a maximum number of allowed retransmissions as an indication of radio link failure and sends a radio link control reset request within a radio resource control message from a radio resource control entity to a peer radio link control entity at a base station.
  • a wireless transmit/receive unit receives a request for radio link control reset.
  • a processor at the WTRU comprises a radio resource control (RRC) entity and a radio link control (RLC) entity.
  • the RRC entity receives the request for a radio link control reset in a radio resource control message,
  • the RLC entity reassembles radio link control service data units (SDUs) from any protocol data units (PDUs) that are received out of sequence at a receiving side of the RLC entity.
  • the reassembled SDUs are delivered in sequence to a packet data convergence protocol entity.
  • any remaining PDUs that are not able to be reassembled are discarded.
  • all SDUs and PDUs stored in transmit buffers are discarded.
  • FIG. 1 is a functional block diagram of a transmitter and receiver configured to perform a RLC reset
  • FIG. 2 is a functional block diagram of a transmitter processor and a receiver processor configured to perform a RLC reset;
  • FIG. 3 is signal diagram for a Protocol Reset signal.
  • wireless transmit/receive unit includes but is not limited to a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a computer, or any other type of user device capable of operating in a wireless environment.
  • base station includes but is not limited to a Node-B, an evolved Node-B, a site controller, an access point (AP), or any other type of interfacing device capable of operating in a wireless environment.
  • RLC ‘Reset’ procedure may be referred to by other names such as RLC ‘Re-establishment’ or RLC ‘Re-configuration’.
  • RLC ‘Re-establishment’ or RLC ‘Re-configuration’ may be referred to by other names such as RLC ‘Re-establishment’ or RLC ‘Re-configuration’.
  • the disclosed method and apparatus applies even when the procedures proposed herein are described using other names or terms in the 3GPP standards specifications.
  • FIG. 1 is a functional block diagram of a transmitter and receiver 110 , 120 configured to perform the disclosed method.
  • the transmitter 110 and the receiver 120 includes: processors 115 , 125 configured to perform a reset of an RLC entity using RRC signaling; receivers 116 , 126 in communication with processors 115 , 125 ; transmitters 117 , 127 in communication with processors 115 , 125 ; and antennas 118 , 128 in communication with receivers 116 , 126 and transmitters 117 , 127 to facilitate the transmission and reception of wireless data.
  • the receiver 116 , the transmitter 117 and the antenna 118 may be a single receiver, transmitter and antenna, or may include a plurality of individual receivers, transmitters and antennas, respectively.
  • the transmitter 110 may be a WTRU transmitting to a base station receiver 120 .
  • the transmitter 110 may be a base station transmitting to a WTRU receiver 120 .
  • FIG. 2 shows a signaling diagram for the transmitter 110 and the receiver 120 , in which the processor 115 comprises a radio link control layer (RLC) entity 221 , a radio resource control layer (RRC) entity 222 , a packet data convergence protocol layer (PDCP) entity 223 , and the processor 125 comprises an RLC entity 231 , a RRC entity 232 , and a PDCP entity 233 .
  • RLC radio link control layer
  • RRC radio resource control layer
  • PDCP packet data convergence protocol layer
  • RLC entity 221 is shown for the processor 115
  • RLC entity 231 is shown for the processor 125
  • RLC entities including a transmitting Unacknowledged Mode (UM) RLC entity, a receiving UM RLC entity, a transmitting Transparent Mode (TM) RLC entity, a receiving TM RLC entity, and an Acknowledged Mode (AM) RLC entity.
  • UM Unacknowledged Mode
  • TM Transparent Mode
  • AM Acknowledged Mode
  • a single RLC entity 221 , 231 is shown for purpose of simplifying the description herein and is not meant to represent a limitation to the disclosed method and apparatus. It should be noted that the inter-layer entity activity disclosed below for the Radio Resource Control (RRC) and RLC may be accomplished by defining new primitives or information elements between the layers.
  • RRC Radio Resource Control
  • the RLC entity 221 included in transmitter processor 115 Upon detecting an RLC Reset trigger as an indication of RLC failure, the RLC entity 221 included in transmitter processor 115 sends a RLC reset request indication 201 to the RRC entity 222 indicating that a RLC Reset is desired (i.e., that both the peer RLC entity 231 and the RLC entity 221 itself should be reset).
  • a RLC Reset trigger may be, for an AM RLC entity 221 , that the maximum number of retransmissions allowed has been reached.
  • Other examples of triggers include a Service Data Unit (SDU) discard not being configured for an event, RLC Status PDUs indicating erroneous sequence numbers; unrecoverable errors; and any other event or trigger that requires the RLC to be reset.
  • SDU Service Data Unit
  • the RLC Reset request indication 201 that is forwarded to the RRC entity 222 may include one or more of the following types of request information in the form of an information element (IE) or a single or multiple bit value.
  • a cause value may be included to indicate the reason for the RLC Reset request indication 201 .
  • the RLC reset request indication 201 includes an indication of this to the RRC entity 222 .
  • Status information may also be included in the RLC Reset request indication 201 indicating the last sequence number (SN) correctly received for the RLC entity 221 requesting the RLC Reset.
  • the RLC Reset request indication 201 may also include an identification of the RLC entity 221 to be reset (e.g., the RLC entity identification may be according to the logical channel instance associated with the RLC entity or the radio bearer associated with the RLC entity), or alternatively, a new RLC entity ID may be defined and indicated for explicitly identifying the RLC entity.
  • the RLC entity identification may be according to the logical channel instance associated with the RLC entity or the radio bearer associated with the RLC entity
  • a new RLC entity ID may be defined and indicated for explicitly identifying the RLC entity.
  • the RLC entity 221 may perform one or more of the following:
  • the RRC entity 222 upon receiving an RLC reset indication 201 that an RLC reset is required, may send an RRC message 203 to the peer RRC entity 232 indicating a reset of RLC is required.
  • the parameters for the RLC reset may be included in any RRC message 203 (e.g., a RRC CONNECTION RE-ESTABLISHMENT message or a RRC CONNECTION RECONFIGURATION message) or in a new RRC message dedicated for reset procedures, such as a PROTOCOL RESET message as will be described further below.
  • a new IE such as an RLC Reset IE or a Protocol Reset Indicator Information Element (IE) may be used for indicating the reset request of the RLC entity 221 .
  • This IE may be carried in any RRC message 203 or in a specific message dedicated for reset procedures.
  • An example of the RLC Reset IE parameters is presented in Table 1 below.
  • Protocol Boolean Identifies whether the entity entity being reset is a PDCP entity or requesting an RLC entity. This may not be reset necessary if the reset indicator IE is defined specifically for RLC or PDCP.
  • Identity Integer Identification of the RLC entity being reset This may be either the logical channel instance mapped to the RLC entity, or the RB ID mapped to the entity or some other ID. This information may be implied by the presence of some other information in a parent field in the information tree.
  • RSN Integer The Reset sequence number (RSN) identifies if this is the first reset request for this entity or a retransmission.
  • the RSN may be defined for the entire RRC message instead of on a per- entity basis
  • Reset Boolean Identifies if the RLC entity is to configuration be reset to default/initial configurations or some different configuration >>>> If RLC entity is to be reset to a Parameters for configuration different from reset initial/default.
  • the individual IEs described in TABLE 1 are optional and the information contained in them may be passed in a different manner.
  • the RRC message 203 indicating the reset may be any indication of a reset.
  • the RRC message 203 may include, but is not limited to, a bit, or a few bits, that may be passed in any RRC message to more detailed IEs (e.g., see Protocol Reset Indicator IE) to dedicated messages.
  • the indications in the RRC message 203 may be explicit or implicit and may also include RLC and/or PDCP status. For an implicit indication, a separately sent RRC message that does not contain the reset IEs may indicate that a reset is required merely by the RRC message name according to a prearranged definition.
  • the RRC message 203 indicating the RLC reset request to the peer RRC entity 232 may include an explicit or implicit indication of the time of the reset/activation of reset. Alternatively this may be accomplished on a Transmission Time Interval (TTI) or a System Frame Number (SFN) basis. As an example, a synchronization may be achieved by alignment of the RLC reset with the SFN or a number of TTIs relative to the last TTI in which the RRC message 203 was transmitted/received.
  • TTI Transmission Time Interval
  • SFN System Frame Number
  • the RRC entity 222 may transmit the message indicating the reset over a radio bearer (RB), which is mapped to a different RLC entity of transmitter 110 .
  • RB radio bearer
  • a new RB and associated RLC entity may be configured.
  • the RRC message 203 containing the RLC reset IE can be transmitted on a Signaling RB (SRB).
  • SRB Signaling RB
  • This SRB may be dedicated to the reset of RLC and some other purposes (e.g., a reset of PDCP). It is preferable that the SRB be mapped to a RLC UM entity to avoid the possibility of this SRB being reset.
  • the RRC entity 222 may ensure that the RRC message 203 for RLC Reset will fit inside a single RLC PDU.
  • the RRC entity 222 may aggregate multiple reset requests from different RLC entities 221 into a single message 203 . If the transmitting RRC entity 222 receives a reset request for a transmitting RLC entity 221 for which a reset procedure is ongoing it may ignore the request.
  • the transmitting RRC entity 222 may acknowledge a reset request from the transmitting RLC layer/entity in an acknowledgment signal 202 .
  • the transmitting RRC entity 222 may send a pending RLC Reset indication 204 to the PDCP entity 223 . This may trigger the generation of a PDCP status PDU at the transmitter 110 .
  • the RRC entity 222 may perform one or more of the following:
  • the RRC entity 221 may initiate a different set of procedures.
  • the RRC entity 222 may initiate RRC RECONFIGURATION procedures or Radio Link Failure procedures or Physical Channel Reconfiguration procedures or some other recovery procedure.
  • the RRC entity 222 may use Hybrid Automatic Repeat Request (HARQ) assistance to retransmit the RRC message 203 that contains the reset indicator.
  • HARQ Hybrid Automatic Repeat Request
  • a HARQ entity 224 may indicate to the RRC entity 222 that delivery of the RRC PDU that contains the RLC reset has failed, and subsequently the RRC 222 retransmits the PDU.
  • the RRC entity 232 upon receipt of the RRC message 203 with the RLC Reset request, implements one or more of the following actions:
  • the receiver RRC entity 222 may transmit the message indicating the reset acknowledgment over a RB which is mapped to a different RLC entity.
  • a new RB and associated RLC entity may be configured.
  • the RRC message 213 comprising the RLC Reset acknowledgment IE can be transmitted on a Signaling RB (SRB).
  • SRB Signaling RB
  • This SRB may be dedicated to the reset acknowledgment of RLC and some other purposes (e.g., reset acknowledgment of PDCP).
  • This SRB may be mapped to a UM RLC entity to avoid the possibility of this SRB being reset.
  • the RRC entity 232 may ensure that the RRC message 213 for reset acknowledgment will fit inside a single RLC PDU.
  • the RRC entity 232 may aggregate multiple reset acknowledgments for different RLC entities 231 into a single message.
  • the RRC procedure may use HARQ assistance to retransmit the RRC message that contains the reset acknowledgment indicator.
  • a HARQ entity 234 may indicate to the RRC 232 that delivery of the RRC PDU that contains the RLC reset acknowledgment has failed, and subsequently the RRC entity 232 retransmits the PDU.
  • the RRC entity 232 upon receiving an RLC reset indication 212 that an RLC reset has occurred, may send an RRC message 213 to the peer RRC entity 222 indicating acknowledgment of the RLC reset.
  • the parameters for the RLC reset acknowledgment may be included in any RRC message 213 (e.g., a RRC CONNECTION REESTABLISHMENT COMPLETE message or a RRC CONNECTION RECONFIGURATION COMPLETE message) or in a new RRC message dedicated for reset procedures, such as a PROTOCOL RESET ACKNOWLEDGE message as will be described further below.
  • a new IE such as an RLC Reset Acknowledgment IE or a Protocol Reset ACK IE, may be used for indicating the reset of the RLC entity 231 .
  • This IE may be carried in any RRC message 213 or in a specific message dedicated for RLC reset procedures.
  • An example of the RLC Reset Acknowledgment IE parameters is presented in TABLE 2 below.
  • Protocol entity Boolean Identifies whether the entity for reset being being reset acknowledged is a acknowledged PDCP entity or an RLC entity. This may not be necessary if the reset acknowledge indicator IE is defined specifically for RLC or PDCP.
  • Identity Integer Identification of the RLC entity being reset acknowledged This may be either the logical channel instance mapped to the RLC entity, or the RB ID mapped to the entity or some other ID. This information may be implied by the presence of some other information in a parent field in the information tree.
  • RSN Integer The Reset SN identifies the corresponding reset request that is being acked. This shall be the same as the RSN in the corresponding reset request.
  • the RLC entity 231 at the receiver may implement one or more of the following:
  • the PDCP entity 233 may use an indication of the RLC reset (received via RRC indication 214 or RLC indication 215 ) to generate a PDCP Status PDU.
  • the RLC entity 231 reset may be synchronized with the RRC procedure (i.e., the RRC message 203 and/or message 213 ).
  • the RRC procedure may include an explicit or implicit indication of the time of the reset/activation of reset. Alternatively this may be accomplished on a TTI or SFN basis.
  • the synchronization between the RRC procedure and the RLC reset could also be aligned with the SFN or a number of TTI's relative to the last TTI in which the RRC message 203 and/or RRC message 213 was received.
  • the transmitter RRC entity 222 Upon reception of the acknowledgment of the RLC reset via RRC message 213 from the receiver RRC entity 232 , the transmitter RRC entity 222 implements one or more of the following:
  • the RLC entity 221 upon receiving acknowledgment of the reset request via the RRC indication 205 , implements one or more of the following:
  • the PDCP entity 223 may use the acknowledgment of the RLC reset (received via RRC indication 206 or RLC indication 208 ) to generate a PDCP Status PDU.
  • the RLC 221 reset may be synchronized with the RRC procedure (i.e., the RRC message 203 and/or message 213 ).
  • the RRC procedure may include an explicit or implicit indication of the time of the reset/activation of reset. Alternatively this may be accomplished on a TTI or SFN basis.
  • the synchronization between the RRC procedure and the RLC 221 reset could also be aligned with the SFN or a number of TTI's relative to the last TTI in which the RRC message 203 , and/or RRC message 213 was received.
  • the transmitting RRC entity 222 may initiate this Protocol Reset procedure whenever the RLC entity 221 in the transmitter 110 indicates the need for resetting a RLC entity.
  • the transmitting RRC entity 222 Upon initiation of the procedure the transmitting RRC entity 222 :
  • the transmitting RRC entity 222 takes the following actions when it initiates the transmission of a PROTOCOL RESET REQUEST message 301 :
  • the transmitting RRC entity 222 sets the contents of the PROTOCOL RESET message 301 as follows:
  • the RRC entity 232 sets the contents of the PROTOCOL RESET ACKNOWLEDGE message 302 as follows:
  • the RRC entity 222 Upon receiving a PROTOCOL RESET ACKNOWLEDGE 302 , the RRC entity 222 :
  • the PROTOCOL RESET REQUEST message 301 is used for requesting a reset of a lower-layer protocol entity:
  • the PROTOCOL RESET ACKNOWLEDGMENT message 302 is used for acknowledging a reset of a lower-layer protocol entity:
  • the PROTOCOL RESET COMPLETE message 303 is used for completing a reset of a lower-layer protocol entity (optional):
  • the disclosed methods and apparatuses are applicable to any wireless communication devices and systems, including those related to 3GPP LTE and/or HSPA enhancements (e.g. WCDMA evolution Rel-7, Rel-8, etc).
  • 3GPP LTE and/or HSPA enhancements e.g. WCDMA evolution Rel-7, Rel-8, etc.
  • ROM read only memory
  • RAM random access memory
  • register cache memory
  • semiconductor memory devices magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs).
  • Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine.
  • DSP digital signal processor
  • ASICs Application Specific Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • a processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (UE), terminal, base station, radio network controller (RNC), or any host computer.
  • the WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth® module, a frequency modulated (FM) radio unit, a liquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) or Ultra Wide Band (UWB) module.
  • WLAN wireless local area network
  • UWB Ultra Wide Band

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)
US12/346,443 2008-01-04 2008-12-30 Radio link control reset using radio resource control signaling Abandoned US20090175175A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/346,443 US20090175175A1 (en) 2008-01-04 2008-12-30 Radio link control reset using radio resource control signaling
US13/293,528 US8693479B2 (en) 2008-01-04 2011-11-10 Radio link control reset using radio resource control signaling
US14/179,280 US9167564B2 (en) 2008-01-04 2014-02-12 Radio link control reset using radio resource control signaling
US14/791,642 US9596674B2 (en) 2008-01-04 2015-07-06 Radio link control reset using radio resource control signaling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1904908P 2008-01-04 2008-01-04
US12/346,443 US20090175175A1 (en) 2008-01-04 2008-12-30 Radio link control reset using radio resource control signaling

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/293,528 Division US8693479B2 (en) 2008-01-04 2011-11-10 Radio link control reset using radio resource control signaling

Publications (1)

Publication Number Publication Date
US20090175175A1 true US20090175175A1 (en) 2009-07-09

Family

ID=40677621

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/346,443 Abandoned US20090175175A1 (en) 2008-01-04 2008-12-30 Radio link control reset using radio resource control signaling
US13/293,528 Active 2029-02-02 US8693479B2 (en) 2008-01-04 2011-11-10 Radio link control reset using radio resource control signaling
US14/179,280 Expired - Fee Related US9167564B2 (en) 2008-01-04 2014-02-12 Radio link control reset using radio resource control signaling
US14/791,642 Active US9596674B2 (en) 2008-01-04 2015-07-06 Radio link control reset using radio resource control signaling

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/293,528 Active 2029-02-02 US8693479B2 (en) 2008-01-04 2011-11-10 Radio link control reset using radio resource control signaling
US14/179,280 Expired - Fee Related US9167564B2 (en) 2008-01-04 2014-02-12 Radio link control reset using radio resource control signaling
US14/791,642 Active US9596674B2 (en) 2008-01-04 2015-07-06 Radio link control reset using radio resource control signaling

Country Status (10)

Country Link
US (4) US20090175175A1 (ja)
EP (1) EP2241045B1 (ja)
JP (4) JP5150734B2 (ja)
KR (4) KR101241056B1 (ja)
CN (2) CN107070607B (ja)
CA (1) CA2711241C (ja)
NO (1) NO2241045T3 (ja)
SG (1) SG187407A1 (ja)
TW (2) TWI536788B (ja)
WO (1) WO2009088903A2 (ja)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090204862A1 (en) * 2008-02-01 2009-08-13 Lg Electronics Inc. Method of an uplink harq operation at an expiry of time alignment timer
US20090207739A1 (en) * 2008-02-01 2009-08-20 Sung-Duck Chun Mobile communication system and method for transmitting pdcp status report thereof
US20090215456A1 (en) * 2008-02-01 2009-08-27 Lg Electronics Inc. Method for sending rlc pdu and allocating radio resource in mobile communications system and rlc entity of mobile communications
US20090239563A1 (en) * 2008-03-20 2009-09-24 Ou Meng-Hui Method and Apparatus for Improving RRC Connection Procedure
US20090285111A1 (en) * 2008-05-19 2009-11-19 Ou Meng-Hui Method of connection re-establishment and related communication device
US20090312007A1 (en) * 2008-03-21 2009-12-17 Nokia Corporation Re-establishment of a rlc entity
US20100173626A1 (en) * 2009-01-06 2010-07-08 Qualcomm Incorporated Adaptation of handover parameters
US20100240359A1 (en) * 2009-03-22 2010-09-23 Chih-Hsiang Wu Method of Handling Radio link Failure in a Wireless Communication System and Related Communication Device
US20100240357A1 (en) * 2009-03-22 2010-09-23 Chih-Hsiang Wu Method of Handling Radio link Failure Detection in a Wireless Communication System and Related Communication Device
US20100296454A1 (en) * 2008-02-01 2010-11-25 Sung-Jun Park Method of downlink harq operation at an expiry of time alignment timer
US20110206019A1 (en) * 2008-11-13 2011-08-25 Hengxing Zhai Synchronization Scheduling Method
US20130003542A1 (en) * 2011-07-01 2013-01-03 Qualcomm Incorporated Methods and apparatus for enhanced ul rlc flow control for mrab calls
WO2014025755A1 (en) * 2012-08-06 2014-02-13 Qualcomm Incorporated Method and apparatus for enhancing data retransmission to improve call performance
WO2014035906A1 (en) * 2012-08-31 2014-03-06 Marvell World Trade Ltd. Method and apparatus for detecting and processing a retransmitted data packet in a wireless network
US20140274083A1 (en) * 2013-03-13 2014-09-18 Qualcomm Incorporated Method and apparatus for improving re-transmission of reconfiguration messages
US20140293897A1 (en) * 2013-04-01 2014-10-02 Innovative Sonic Corporation Method and apparatus for adding serving cells in a wireless communication system
US8873535B2 (en) 2011-09-26 2014-10-28 Qualcomm Incorporated Systems, methods and apparatus for retransmitting protocol data units in wireless communications
US9232482B2 (en) 2011-07-01 2016-01-05 QUALOCOMM Incorporated Systems, methods and apparatus for managing multiple radio access bearer communications
CN105577330A (zh) * 2014-10-08 2016-05-11 展讯通信(上海)有限公司 一种数据重传系统及方法以及移动终端
US20160373962A1 (en) * 2013-10-17 2016-12-22 Zte Corporation Data package shunting transmission method and system, and computer stoarge medium
US9591593B2 (en) 2011-07-22 2017-03-07 Qualcomm Incorporated Systems, methods and apparatus for radio uplink power control
US9590792B2 (en) 2013-04-01 2017-03-07 Marvell World Trade Ltd. Termination of wireless communication uplink periods to facilitate reception of other wireless communications
US9686046B2 (en) 2011-09-13 2017-06-20 Qualcomm Incorporated Systems, methods and apparatus for wireless condition based multiple radio access bearer communications
CN107852768A (zh) * 2015-08-06 2018-03-27 高通股份有限公司 用于增强型分量载波下的分组数据汇聚协议(pdcp)重排序的方法、装置和计算机可读介质
US9930569B2 (en) 2011-08-04 2018-03-27 Qualcomm Incorporated Systems, methods and apparatus for wireless condition based multiple radio access bearer communications
CN108924964A (zh) * 2017-04-07 2018-11-30 中兴通讯股份有限公司 保证通信连续性的方法和用户设备
US20180376386A1 (en) * 2013-04-02 2018-12-27 Lg Electronics Inc. Method for performing a cell change procedure in a wireless communication system and a device therefor
US10219162B1 (en) 2013-12-19 2019-02-26 Marvell International Ltd. Interference suppression or cancellation in collocated receivers
CN109428687A (zh) * 2017-07-21 2019-03-05 华为技术有限公司 触发无线链路失败rlf的方法和装置
US20210400560A1 (en) * 2019-01-15 2021-12-23 Lenovo (Beijing) Limited Method and apparatus for reporting link assistant information and transmitting data

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175175A1 (en) * 2008-01-04 2009-07-09 Interdigital Patent Holdings, Inc. Radio link control reset using radio resource control signaling
EP2136501B1 (en) * 2008-06-20 2019-12-04 LG Electronics Inc. Method of delivering a PDCP data unit to an upper layer
CN102104892B (zh) * 2009-12-22 2015-06-03 中兴通讯股份有限公司 检测无线链路失败的方法
CN102668433B (zh) * 2010-02-11 2014-04-23 上海贝尔股份有限公司 检测和处理无线链路失败的方法和装置
US20130183990A1 (en) * 2010-10-21 2013-07-18 Nec Corporation Radio communication system, method for controlling same, base station, method for controlling same, and computer-readable medium
US9088976B2 (en) * 2012-04-29 2015-07-21 Blackberry Limited Provisioning radio resources in a radio access network
US10039149B2 (en) * 2014-03-19 2018-07-31 Ntt Docomo, Inc. User equipment and uplink data transmission method
US20150304061A1 (en) * 2014-04-21 2015-10-22 Qualcomm Incorporated Synchronization at a radio link control (rlc) layer entity
WO2016021820A1 (en) * 2014-08-08 2016-02-11 Lg Electronics Inc. Method for processing a packet data convergence protocol re-ordering function at a user equipment in a dual connectivity system and device therefor
US10009925B2 (en) 2014-10-03 2018-06-26 Qualcomm Incorporated Physical layer procedures for LTE in unlicensed spectrum
CN112672343B (zh) 2016-08-09 2022-04-26 三星电子株式会社 无线通信系统中管理用户平面操作的方法和装置
US11678246B2 (en) 2017-08-11 2023-06-13 Comcast Cable Communications, Llc Contention free random access failure
US10757615B2 (en) 2017-09-13 2020-08-25 Comcast Cable Communications, Llc Radio link failure information for PDCP duplication
EP3512140A1 (en) 2018-01-11 2019-07-17 Comcast Cable Communications LLC Cell configuration for packet duplication
CA3032474A1 (en) 2018-02-02 2019-08-02 Comcast Cable Communications, Llc Wireless communications using traffic information
WO2019153285A1 (zh) * 2018-02-09 2019-08-15 Oppo广东移动通信有限公司 Rlc实体的配置方法及相关设备
US11228974B2 (en) 2018-02-15 2022-01-18 Comcast Cable Communications, Llc Wireless communications and power configurations
WO2019193519A1 (en) * 2018-04-05 2019-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Radio link failure management in wireless communication networks
EP3589067A1 (en) 2018-05-10 2020-01-01 Comcast Cable Communications, LLC Packet duplication control
CN111465115A (zh) * 2019-01-22 2020-07-28 夏普株式会社 无线链路控制层的重置方法和用户设备

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030092458A1 (en) * 2001-11-13 2003-05-15 Lee-Chee Kuo Robust RLC reset procedure in a wireless communication system
US20030157927A1 (en) * 2002-02-16 2003-08-21 Lg Electronics Inc. Method for relocating SRNS in a mobile communication system
US20030206534A1 (en) * 2002-05-03 2003-11-06 Wu Frank Chih-Hsiang Scheme to handle radio link control service data units upon reception of a radio link control reset or reset acknowledge protocol data unit in a wireless communication system
US20030210714A1 (en) * 2002-05-10 2003-11-13 Chih-Hsiang Wu Method for avoiding loss of pdcp pdus in a wireless communications system
US20040203623A1 (en) * 2002-05-03 2004-10-14 Wu Frank Chih-Hsiang Scheme to retransmit radio resource control messages during a radio link control reset in a wireless communication system
US20040208160A1 (en) * 2003-03-31 2004-10-21 Dragan Petrovic Method of retransmission protocol reset synchronisation
US20050054298A1 (en) * 2003-09-10 2005-03-10 Rex Huan-Yueh Chen Handling of an unrecoverable error on a dedicated channel
US6904016B2 (en) * 2001-11-16 2005-06-07 Asustek Computer Inc. Processing unexpected transmission interruptions in a wireless communications system
US20060234706A1 (en) * 2002-11-05 2006-10-19 Pontus Wallentin Collective notification of node reset to subset of connections in radio access network
US20080095116A1 (en) * 2006-10-19 2008-04-24 Samsung Electronics Co., Ltd. Method and apparatus for performing handover using packet data convergence protocol (pdcp) reordering in mobile communication system
US20080123655A1 (en) * 2006-11-15 2008-05-29 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving ciphered packet in mobile communication system
US20080148136A1 (en) * 2006-12-13 2008-06-19 Samsung Electronics Co., Ltd Apparatus and method for transmitting/receiving data in a mobile communication system
US20080188224A1 (en) * 2007-02-02 2008-08-07 Interdigital Technology Corporation Method and apparatus for controlling a handover between utra r6 cells and r7 cells
US20080225817A1 (en) * 2004-12-24 2008-09-18 Ntt Docomo, Inc. Receiving Apparatus, Transmitting Apparatus, Communication System and Communication Method
US20090264127A1 (en) * 2005-10-04 2009-10-22 Sung-Duck Chun Optimized am rlc re-set mechanism

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0146536A1 (fr) * 1983-05-27 1985-07-03 BILLET, Philippe Combinaison blaireau - reservoir de creme a raser
FI106504B (fi) * 1998-10-06 2001-02-15 Nokia Networks Oy Datan segmentointimenetelmä tietoliikennejärjestelmässä
JP3769153B2 (ja) 1999-09-14 2006-04-19 ホシデン株式会社 多方向入力装置
KR100365356B1 (ko) * 2000-10-07 2002-12-18 엘지전자 주식회사 래디오 링크 콘트롤(rlc)의 인식 모드(am)에서데이터 송수신 처리방법
EP1440539A4 (en) * 2001-09-27 2009-08-26 Broadcom Corp STRONG INTEGRATED MEDIA ACCESS CONTROL
KR100541015B1 (ko) * 2002-02-04 2006-01-10 아스텍 컴퓨터 인코퍼레이티드 무선 통신 시스템에 있어서의 데이터 폐기 신호 절차
TWI220815B (en) * 2002-05-06 2004-09-01 Asustek Comp Inc Method and apparatus for handling abnormal transmission status in acknowledged mode and non-acknowledged mode
CN100512536C (zh) 2002-05-09 2009-07-08 诺基亚有限公司 在无线电接入网络中传输功率偏移信号的方法、装置和系统
TWI275272B (en) * 2002-05-10 2007-03-01 Interdigital Tech Corp Radio network controller and node-B
JP2005525757A (ja) * 2002-05-10 2005-08-25 インターディジタル テクノロジー コーポレイション サービング無線ネットワークコントローラによるノードbの消去制御を可能にするためのシステム
TWI317588B (en) * 2002-08-09 2009-11-21 Interdigital Tech Corp Method for sharing memory of wireless transmit receive unit and wireless transmit receive unit
US7227856B2 (en) * 2002-08-13 2007-06-05 Innovative Sonic Limited Method for handling timers after an RLC reset or re-establishment in a wireless communications system
EP1408658A3 (en) * 2002-08-13 2009-07-29 Innovative Sonic Limited Handling of an unrecoverable error on a dedicated channel of a radio link
CN1497922A (zh) * 2002-10-17 2004-05-19 华硕电脑股份有限公司 无线电通讯系统中针对无线电链路控制停止时处理重置程序的方法
SE0301048D0 (sv) * 2003-04-07 2003-04-07 Ericsson Telefon Ab L M RLC window reconfiguration
AU2003248218A1 (en) * 2003-06-18 2005-01-04 Utstarcom (China) Co. Ltd. Method and apparatus for discarding the service data units in the acknowledgement mode of the rlc in the wireless communications system
US8694869B2 (en) * 2003-08-21 2014-04-08 QUALCIMM Incorporated Methods for forward error correction coding above a radio link control layer and related apparatus
US7983716B2 (en) * 2003-09-30 2011-07-19 Interdigital Technology Corporation Centralized radio network controller
ATE541375T1 (de) * 2003-11-12 2012-01-15 Koninkl Philips Electronics Nv Datenpaketübertragung
KR20050118591A (ko) * 2004-06-14 2005-12-19 엘지전자 주식회사 무선통신 시스템에서의 무선링크제어(rlc) 데이터처리방법
US7391758B2 (en) * 2004-09-29 2008-06-24 Intel Corporation UMTS radio link control with full concatenation
CN100391201C (zh) * 2005-02-28 2008-05-28 华为技术有限公司 一种保持分组数据协议汇聚子层序列号同步的方法
CN1832389A (zh) * 2005-03-08 2006-09-13 华为技术有限公司 无线通信系统中链路控制层协商丢弃信息的实现方法
EP1708413A1 (en) * 2005-03-29 2006-10-04 Lg Electronics Inc. Multimedia broadcast/multicast service (MBMS) cells reconfigurations
JP4577505B2 (ja) * 2005-03-31 2010-11-10 日本電気株式会社 移動体通信システムにおけるダウンリンクrrcメッセージと移動機のセル間移動との競合救済方法
CN1949697B (zh) * 2005-10-14 2011-05-11 大唐移动通信设备有限公司 一种确保收发双方数据一致的数据传输方法
US7761767B2 (en) * 2005-10-21 2010-07-20 Interdigital Technology Corporation Method and apparatus for retransmission management for reliable hybrid ARQ process
US20070291695A1 (en) * 2006-05-01 2007-12-20 Interdigital Technology Corporation Method and apparatus for facilitating lossless handover in 3gpp long term evolution systems
US8160025B2 (en) * 2006-05-02 2012-04-17 Lg Electronics Inc. Method for data transmission during a handover in mobile communications system
EP1868311B1 (en) * 2006-06-16 2012-02-01 Panasonic Corporation Avoidance of retransmission requests in a packet retransmission scheme
KR100996069B1 (ko) * 2006-11-27 2010-11-22 삼성전자주식회사 이동통신 시스템에서 라디오 링크 제어 계층의 데이터 전송 방법 및 장치
EP2092676A4 (en) * 2006-12-15 2013-06-26 Ericsson Telefon Ab L M Single-SEGMENTATION INDICATOR
KR101483258B1 (ko) * 2007-03-16 2015-01-21 인터디지탈 테크날러지 코포레이션 무선 링크 제어 파라미터의 재구성을 지원하기 위한 무선 통신 방법 및 장치
US8068501B2 (en) * 2007-03-30 2011-11-29 Tektronix, Inc. System and method for real-time correlation of AAL2 and AAL5 messages for calls in UTRAN
KR100978320B1 (ko) * 2007-04-19 2010-08-26 이노베이티브 소닉 리미티드 무선통신시스템에서 재정렬 기능을 개선하는 방법 및 장치
US9307464B2 (en) 2007-06-21 2016-04-05 Sony Corporation Cellular communication system, apparatus and method for handover
US8270369B1 (en) * 2007-11-16 2012-09-18 Marvell International Ltd. Service data unit discard system for radio access networks
US20090175175A1 (en) * 2008-01-04 2009-07-09 Interdigital Patent Holdings, Inc. Radio link control reset using radio resource control signaling
KR101488015B1 (ko) * 2008-01-25 2015-01-29 엘지전자 주식회사 핸드오버 수행방법 및 데이터 생성방법
US8228938B2 (en) * 2009-02-02 2012-07-24 Samsung Electronics Co., Ltd. Method and apparatus for preventing a miss-detection of duplicated packets and an out-of-sequence delivery to the higher layer in unacknowledged mode operation
US8743896B2 (en) * 2009-03-16 2014-06-03 Htc Corporation Method and related communication device for radio link control reconfiguration in a wireless communications system
EP2622774B1 (en) * 2010-10-01 2023-12-13 InterDigital Patent Holdings, Inc. Mac and rlc architecture and procedures to enable reception from multiple transmission points
US9516524B2 (en) * 2011-10-25 2016-12-06 Mediatek, Inc. Transmitter assisted quality of service measurement
KR102104493B1 (ko) * 2013-05-10 2020-05-04 주식회사 팬택 이중 연결성을 지원하는 무선 통신 시스템에서 데이터 전송 방법 및 장치

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030092458A1 (en) * 2001-11-13 2003-05-15 Lee-Chee Kuo Robust RLC reset procedure in a wireless communication system
US6904016B2 (en) * 2001-11-16 2005-06-07 Asustek Computer Inc. Processing unexpected transmission interruptions in a wireless communications system
US20030157927A1 (en) * 2002-02-16 2003-08-21 Lg Electronics Inc. Method for relocating SRNS in a mobile communication system
US20030206534A1 (en) * 2002-05-03 2003-11-06 Wu Frank Chih-Hsiang Scheme to handle radio link control service data units upon reception of a radio link control reset or reset acknowledge protocol data unit in a wireless communication system
US20040203623A1 (en) * 2002-05-03 2004-10-14 Wu Frank Chih-Hsiang Scheme to retransmit radio resource control messages during a radio link control reset in a wireless communication system
US20030210714A1 (en) * 2002-05-10 2003-11-13 Chih-Hsiang Wu Method for avoiding loss of pdcp pdus in a wireless communications system
US20060234706A1 (en) * 2002-11-05 2006-10-19 Pontus Wallentin Collective notification of node reset to subset of connections in radio access network
US20040208160A1 (en) * 2003-03-31 2004-10-21 Dragan Petrovic Method of retransmission protocol reset synchronisation
US20050054298A1 (en) * 2003-09-10 2005-03-10 Rex Huan-Yueh Chen Handling of an unrecoverable error on a dedicated channel
US20080225817A1 (en) * 2004-12-24 2008-09-18 Ntt Docomo, Inc. Receiving Apparatus, Transmitting Apparatus, Communication System and Communication Method
US20090264127A1 (en) * 2005-10-04 2009-10-22 Sung-Duck Chun Optimized am rlc re-set mechanism
US20080095116A1 (en) * 2006-10-19 2008-04-24 Samsung Electronics Co., Ltd. Method and apparatus for performing handover using packet data convergence protocol (pdcp) reordering in mobile communication system
US20080123655A1 (en) * 2006-11-15 2008-05-29 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving ciphered packet in mobile communication system
US20080148136A1 (en) * 2006-12-13 2008-06-19 Samsung Electronics Co., Ltd Apparatus and method for transmitting/receiving data in a mobile communication system
US20080188224A1 (en) * 2007-02-02 2008-08-07 Interdigital Technology Corporation Method and apparatus for controlling a handover between utra r6 cells and r7 cells

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8243657B2 (en) 2008-02-01 2012-08-14 Lg Electronics Inc. Method of downlink HARQ operation at an expiry of time alignment timer
US20090207739A1 (en) * 2008-02-01 2009-08-20 Sung-Duck Chun Mobile communication system and method for transmitting pdcp status report thereof
US20090215456A1 (en) * 2008-02-01 2009-08-27 Lg Electronics Inc. Method for sending rlc pdu and allocating radio resource in mobile communications system and rlc entity of mobile communications
USRE49442E1 (en) 2008-02-01 2023-02-28 Lg Electronics Inc. Method of an uplink HARQ operation at an expiry of time alignment timer
US9425926B2 (en) 2008-02-01 2016-08-23 Lg Electronics Inc. Method of an uplink HARQ operation at an expiry of time alignment timer
US9049018B2 (en) 2008-02-01 2015-06-02 Lg Electronics Inc. Method of an uplink HARQ operation at an expiry of time alignment timer
US9008004B2 (en) 2008-02-01 2015-04-14 Lg Electronics Inc. Method for sending RLC PDU and allocating radio resource in mobile communications system and RLC entity of mobile communications
US8812925B2 (en) 2008-02-01 2014-08-19 Lg Electronics Inc. Method of an uplink harq operation at an expiry of time alignment timer
US8312336B2 (en) 2008-02-01 2012-11-13 Lg Electronics Inc. Method of an uplink HARQ operation at an expiry of time alignment timer
US20090204862A1 (en) * 2008-02-01 2009-08-13 Lg Electronics Inc. Method of an uplink harq operation at an expiry of time alignment timer
US20100296454A1 (en) * 2008-02-01 2010-11-25 Sung-Jun Park Method of downlink harq operation at an expiry of time alignment timer
US20120244866A1 (en) * 2008-03-20 2012-09-27 Innovative Sonic Limited Method and apparatus for improving rrc connection procedure
US8200226B2 (en) * 2008-03-20 2012-06-12 Innovative Sonic Limited Method and apparatus for improving RRC connection procedure
US9215742B2 (en) * 2008-03-20 2015-12-15 Innovative Sonic Limited Method and apparatus for improving RRC connection procedure
US20120243508A1 (en) * 2008-03-20 2012-09-27 Innovative Sonic Limited Method and apparatus for improving rrc connection procedure
US9173242B2 (en) * 2008-03-20 2015-10-27 Innovative Sonic Limiited Method and apparatus for improving RRC connection procedure
US20090239563A1 (en) * 2008-03-20 2009-09-24 Ou Meng-Hui Method and Apparatus for Improving RRC Connection Procedure
US20090312007A1 (en) * 2008-03-21 2009-12-17 Nokia Corporation Re-establishment of a rlc entity
US8553569B2 (en) * 2008-05-19 2013-10-08 Innovative Sonic Limited Method of connection re-establishment and related communication device
US20090285111A1 (en) * 2008-05-19 2009-11-19 Ou Meng-Hui Method of connection re-establishment and related communication device
US20110206019A1 (en) * 2008-11-13 2011-08-25 Hengxing Zhai Synchronization Scheduling Method
US20100173626A1 (en) * 2009-01-06 2010-07-08 Qualcomm Incorporated Adaptation of handover parameters
US20100173633A1 (en) * 2009-01-06 2010-07-08 Qualcomm Incorporated Handover failure messaging schemes
US8929894B2 (en) * 2009-01-06 2015-01-06 Qualcomm Incorporated Handover failure messaging schemes
US9326213B2 (en) 2009-01-06 2016-04-26 Qualcomm Incorporated Adaptation of handover parameters
US9107133B2 (en) 2009-01-06 2015-08-11 Qualcomm Incorporated Adaptation of handover parameters
US8700029B2 (en) 2009-03-22 2014-04-15 Htc Corporation Method of handling radio link failure detection in a wireless communication system and related communication device
US20100240359A1 (en) * 2009-03-22 2010-09-23 Chih-Hsiang Wu Method of Handling Radio link Failure in a Wireless Communication System and Related Communication Device
US20100240357A1 (en) * 2009-03-22 2010-09-23 Chih-Hsiang Wu Method of Handling Radio link Failure Detection in a Wireless Communication System and Related Communication Device
US20130003542A1 (en) * 2011-07-01 2013-01-03 Qualcomm Incorporated Methods and apparatus for enhanced ul rlc flow control for mrab calls
US9232482B2 (en) 2011-07-01 2016-01-05 QUALOCOMM Incorporated Systems, methods and apparatus for managing multiple radio access bearer communications
US9167472B2 (en) * 2011-07-01 2015-10-20 Qualcomm Incorporated Methods and apparatus for enhanced UL RLC flow control for MRAB calls
US9591593B2 (en) 2011-07-22 2017-03-07 Qualcomm Incorporated Systems, methods and apparatus for radio uplink power control
US9930569B2 (en) 2011-08-04 2018-03-27 Qualcomm Incorporated Systems, methods and apparatus for wireless condition based multiple radio access bearer communications
US9686046B2 (en) 2011-09-13 2017-06-20 Qualcomm Incorporated Systems, methods and apparatus for wireless condition based multiple radio access bearer communications
US8873535B2 (en) 2011-09-26 2014-10-28 Qualcomm Incorporated Systems, methods and apparatus for retransmitting protocol data units in wireless communications
US9119190B2 (en) 2012-08-06 2015-08-25 Qualcomm Incorporated Method and apparatus for enhancing data retransmission to improve call performance
WO2014025755A1 (en) * 2012-08-06 2014-02-13 Qualcomm Incorporated Method and apparatus for enhancing data retransmission to improve call performance
CN104662832A (zh) * 2012-08-06 2015-05-27 高通股份有限公司 用于增强数据重传以便改善呼叫性能的方法和装置
US9674730B2 (en) 2012-08-31 2017-06-06 Marvell World Trade Ltd. Method and apparatus for detecting and processing a retransmitted data packet in a wireless network
WO2014035906A1 (en) * 2012-08-31 2014-03-06 Marvell World Trade Ltd. Method and apparatus for detecting and processing a retransmitted data packet in a wireless network
US20140274083A1 (en) * 2013-03-13 2014-09-18 Qualcomm Incorporated Method and apparatus for improving re-transmission of reconfiguration messages
US9071433B2 (en) * 2013-03-13 2015-06-30 Qualcomm Incorporated Method and apparatus for improving re-transmission of reconfiguration messages
CN105009495A (zh) * 2013-03-13 2015-10-28 高通股份有限公司 用于改进重配置消息的重传的方法和装置
US9992693B2 (en) * 2013-04-01 2018-06-05 Innovative Sonic Corporation Method and apparatus for adding serving cells in a wireless communication system
US9590792B2 (en) 2013-04-01 2017-03-07 Marvell World Trade Ltd. Termination of wireless communication uplink periods to facilitate reception of other wireless communications
US20140293897A1 (en) * 2013-04-01 2014-10-02 Innovative Sonic Corporation Method and apparatus for adding serving cells in a wireless communication system
US10212721B2 (en) 2013-04-01 2019-02-19 Marvell World Trade Ltd. Termination of wireless communication uplink periods to facilitate reception of other wireless communications
US10785690B2 (en) * 2013-04-02 2020-09-22 Lg Electronics Inc. Method for performing a cell change procedure in a wireless communication system and a device therefor
US20180376386A1 (en) * 2013-04-02 2018-12-27 Lg Electronics Inc. Method for performing a cell change procedure in a wireless communication system and a device therefor
US11405832B2 (en) * 2013-04-02 2022-08-02 Lg Electronics Inc. Method for performing a cell change procedure in a wireless communication system and a device therefor
US20160373962A1 (en) * 2013-10-17 2016-12-22 Zte Corporation Data package shunting transmission method and system, and computer stoarge medium
US10219162B1 (en) 2013-12-19 2019-02-26 Marvell International Ltd. Interference suppression or cancellation in collocated receivers
CN105577330A (zh) * 2014-10-08 2016-05-11 展讯通信(上海)有限公司 一种数据重传系统及方法以及移动终端
CN107852768A (zh) * 2015-08-06 2018-03-27 高通股份有限公司 用于增强型分量载波下的分组数据汇聚协议(pdcp)重排序的方法、装置和计算机可读介质
CN108924964A (zh) * 2017-04-07 2018-11-30 中兴通讯股份有限公司 保证通信连续性的方法和用户设备
CN109428687A (zh) * 2017-07-21 2019-03-05 华为技术有限公司 触发无线链路失败rlf的方法和装置
US20210400560A1 (en) * 2019-01-15 2021-12-23 Lenovo (Beijing) Limited Method and apparatus for reporting link assistant information and transmitting data

Also Published As

Publication number Publication date
US8693479B2 (en) 2014-04-08
KR20140059282A (ko) 2014-05-15
TWI470986B (zh) 2015-01-21
JP2011509051A (ja) 2011-03-17
CN101919195A (zh) 2010-12-15
WO2009088903A3 (en) 2009-10-15
US20120093110A1 (en) 2012-04-19
TW200931924A (en) 2009-07-16
NO2241045T3 (ja) 2018-02-24
JP5883918B2 (ja) 2016-03-15
JP5150734B2 (ja) 2013-02-27
US20140161074A1 (en) 2014-06-12
US20150312896A1 (en) 2015-10-29
EP2241045A2 (en) 2010-10-20
CN107070607A (zh) 2017-08-18
CN107070607B (zh) 2022-02-01
KR20140101883A (ko) 2014-08-20
SG187407A1 (en) 2013-02-28
US9167564B2 (en) 2015-10-20
WO2009088903A2 (en) 2009-07-16
KR101661830B1 (ko) 2016-09-30
KR20100108444A (ko) 2010-10-06
CA2711241A1 (en) 2009-07-16
JP6189982B2 (ja) 2017-08-30
CA2711241C (en) 2014-10-14
KR20100106572A (ko) 2010-10-01
TW201524173A (zh) 2015-06-16
JP2015092723A (ja) 2015-05-14
JP2016106489A (ja) 2016-06-16
KR101571643B1 (ko) 2015-11-24
TWI536788B (zh) 2016-06-01
JP2013102442A (ja) 2013-05-23
US9596674B2 (en) 2017-03-14
KR101241056B1 (ko) 2013-03-19
EP2241045B1 (en) 2017-09-27
JP5676549B2 (ja) 2015-02-25

Similar Documents

Publication Publication Date Title
US9596674B2 (en) Radio link control reset using radio resource control signaling
US8897229B2 (en) Method and apparatus for delivery notification of non-access stratum retransmission
US20090175163A1 (en) Method and apparatus of performing packet data convergence protocol re-establishment
US20080170522A1 (en) Method and apparatus for indicating a transmission status to a higher layer
US20130094431A1 (en) Method and apparatus for using a relay to provide physical and hybrid automatic repeat request functionalities
WO2009076124A1 (en) Method and apparatus for detecting radio link control protocol errors and triggering radio link control re-establishment

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERDIGITAL PATENT HOLDINGS, INC., DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOMASUNDARAM, SHANKAR;MUKHERJEE, RAJAT P.;SAMMOUR, MOHAMMED;AND OTHERS;REEL/FRAME:022366/0285;SIGNING DATES FROM 20090212 TO 20090225

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION