US20090163627A1 - Symmetric Cyclic Phosphonate Compound, Method of Preparing the Same and Flame Retardant Styrenic Resin Composition Including the Same - Google Patents

Symmetric Cyclic Phosphonate Compound, Method of Preparing the Same and Flame Retardant Styrenic Resin Composition Including the Same Download PDF

Info

Publication number
US20090163627A1
US20090163627A1 US12/335,611 US33561108A US2009163627A1 US 20090163627 A1 US20090163627 A1 US 20090163627A1 US 33561108 A US33561108 A US 33561108A US 2009163627 A1 US2009163627 A1 US 2009163627A1
Authority
US
United States
Prior art keywords
weight
flame retardant
resin composition
styrenic resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/335,611
Inventor
Beom Jun Joo
Sang Hyen HONG
Min Soo Lee
Byun Kun LEE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cheil Industries Inc
Original Assignee
Cheil Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080098437A external-priority patent/KR101004674B1/en
Application filed by Cheil Industries Inc filed Critical Cheil Industries Inc
Assigned to CHEIL INDUSTRIES INC. reassignment CHEIL INDUSTRIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HONG, SANG HYEN, JOO, BEOM JUN, LEE, BYUN KUN, LEE, MIN SOO
Publication of US20090163627A1 publication Critical patent/US20090163627A1/en
Priority to US12/700,904 priority Critical patent/US8222329B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6571Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms
    • C07F9/657163Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom
    • C07F9/657181Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and oxygen atoms as the only ring hetero atoms the ring phosphorus atom being bound to at least one carbon atom the ring phosphorus atom and, at least, one ring oxygen atom being part of a (thio)phosphonic acid derivative
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • C08K5/5357Esters of phosphonic acids cyclic

Definitions

  • the present invention relates to a novel phosphonate compound and a flame retardant styrenic resin composition including the same.
  • styrenic resins have good processability and mechanical properties and have accordingly been used to produce housing parts for many electrical and electronic goods.
  • styrenic resins can be readily ignited, they are not able to resist fire. Particularly, once styrenic resins catch on fire by external ignition sources, they can further spread fire.
  • styrenic resins are subject to various mandatory controls on flammability for safety reasons in countries such as the United States, Japan and Europe, and are required to have high flame retardancy to meet the Underwriter's Laboratories Standard for use in the housings of electrical and electronic appliances. Accordingly, there is a need render styrenic resins flameproof to broaden their use in different applications.
  • a widely used and known method for imparting good flame retardancy to styrenic resin comprises adding a halogen-containing compound as a flame retardant to a rubber-modified styrenic resin and adding an antimony-containing compound as a flame retardant aid.
  • halogen-containing compounds used to impart flame retardancy include polybromodiphenyl ether, tetrabromobisphenol-A, epoxy compounds substituted with bromine, chlorinated polyethylene, and the like.
  • Antimony trioxide or antimony pentaoxide is commonly used as an antimony-containing compound.
  • halogen- and antimony-containing compounds When a halogen- and antimony-containing compound is used to improve flame retardancy of resins, a desired degree of flame retardancy can readily be imparted to the resulting products without significantly degrading the physical properties thereof. Therefore, the halogen- and antimony-containing compounds are widely used as the primary flame retardant for housing materials of electrical appliances and office equipment formed of ABS resins, PS resins, PBT resins, PET resins or epoxy resins.
  • hydrogen halide gases released by halogen-containing compounds during processing can have fatal effects on the human body and have high environmental persistence because these compounds are not naturally degradable. Also these compounds are not soluble in water, and thus can be highly bioaccumulated.
  • polybromodiphenyl ether which is widely used as a halogen-containing flame retardant, may produce toxic gases such as dioxin or furan during combustion, and is consequently harmful to humans and the environment. Accordingly, there is a need to develop flame retardancy methods that do not employ halogen-containing compounds.
  • the present invention is directed to a novel symmetric cyclic phosphonate compound and a highly flame retardant styrenic resin composition including the symmetric cyclic phosphonate compound.
  • aspects of the present invention provide a novel symmetric cyclic phosphonate compound that can exhibit excellent flame retardancy and a method of preparing the same.
  • aspects of the present invention also provide a flame retardant resin composition which includes the symmetric cyclic phosphonate compound as a flame retardant and which is environmentally friendly.
  • aspects of the present invention also provide a flame retardant resin composition which can be prepared by adding the symmetric cyclic phosphonate compound as a flame retardant and decreasing the amount of polyphenylene ether added to the composition.
  • the composition of the invention thus can exhibit good impact resistance and mold processability.
  • R 1 and R 2 are each independently hydrogen, C 1 -C 6 alkyl or C 6 -C 20 aryl.
  • the phosphate compound represented by Formula 1 may be prepared by reacting a phosphonic dichloride represented by the following Formula 2 with a polyol represented by the following Formula 3 in the presence of a base:
  • R 2 is hydrogen, C 1 -C 6 alkyl or C 6 -C 20 aryl
  • R 1 is hydrogen, C 1 -C 6 alkyl or C 6 -C 20 aryl.
  • a flame retardant styrenic resin composition may include about 100 parts by weight of a base resin comprising (A) a styrenic resin and (B) a polyphenylene ether resin; and about 0.5 to about 50 parts by weight of (C) the symmetric cyclic phosphonate compound represented by Formula 1.
  • the base resin may include about 60 to about 99% by weight of the styrenic resin (A) and about 1 to about 40% by weight of the polyphenylene ether resin (B).
  • the resin composition may further include about 0.1 to about 40 parts by weight of (D) an aromatic phosphate ester compound, (E) a phosphate compound or a mixture thereof, based on about 100 parts by weight of the base resin (A)+(B).
  • FIG. 1 illustrates a GC-MS analysis result of a symmetric cyclic phosphonate compound (I-1) prepared in Example 1 of the present invention.
  • FIG. 2 illustrates a 1 H-NMR analysis result of a symmetric cyclic phosphonate compound (I-1) prepared in Example 1 of the present invention.
  • FIG. 3 illustrates a PNMR analysis result of a symmetric cyclic phosphonate compound (I-1) prepared in Example 1 of the present invention.
  • a symmetric cyclic phosphonate compound according to the present invention can be represented by the following Formula 1:
  • R 1 and R 2 are each independently hydrogen, C 1 -C 6 alkyl or C 6 -C 20 aryl.
  • R 1 and R 2 can each be independently C 1 -C 6 alkyl.
  • R 1 and R 2 can each be independently methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl or isoamyl.
  • An exemplary phosphonate compound represented by the Formula 1 may include a compound represented by the following Formula I-1:
  • Et is ethyl and t-Bu is tert-butyl.
  • the present invention provides a method of synthesizing the symmetric cyclic phosphonate compound.
  • the symmetric cyclic phosphonate compound can be prepared by reacting a phosphonic dichloride represented by the following Formula 2 with a polyol represented by the following Formula 3 in the presence of a base:
  • R 2 is hydrogen, C 1 -C 6 alkyl or C 6 -C 20 aryl
  • R 1 is hydrogen, C 1 -C 6 alkyl or C 6 -C 20 aryl.
  • the phosphonic dichloride represented by Formula 2 may be reacted under reflux with the polyol represented by Formula 3.
  • about 2 equivalents of the phosphonic dichloride represented by Formula 2 may be reacted with about 1 equivalent of the polyol represented by Formula 3 in the presence of a base and a solvent.
  • the reaction temperature may be from about 80 to about 200° C., for example from about 100 to about 150° C.
  • the reaction may be conducted for from about 5 to about 20 hours, for example from about 7 to about 15 hours.
  • the base can be used in an amount of greater than or equal to about 4 equivalents per about 1 equivalent of the polyol represented by Formula 3.
  • the base used in the present invention is not particularly limited.
  • the base can include triethylamine, pyridine, sodium hydroxide and the like, and combinations thereof.
  • the solvent used in the present invention has no particular restriction and can be any conventional organic solvent, for example, toluene, benzene, xlyene, 1,4-dioxane, methyl chloride and the like, and combinations thereof.
  • the symmetric cyclic phosphonate compound of the present invention has a symmetric structure, and thus is high in phosphorus content. Therefore, when the symmetric cyclic phosphonate compound is used as a flame retardant, it can exhibit good flame retardancy. Additionally, the symmetric cyclic phosphonate compound does not release halide gases during processing or combustion, and accordingly, is environmentally friendly.
  • the present invention provides a flame retardant resin composition employing the symmetric cyclic phosphonate compound as a flame retardant.
  • a non-halogen flame retardant styrenic resin composition which employs the symmetric cyclic phosphonate compound to a styrenic resin is provided.
  • the non-halogen flame retardant styrenic resin composition comprises about 100 parts by weight of a base resin comprising (A) a styrenic resin and (B) a polyphenylene ether resin; and about 0.5 to about 50 parts by weight of (C) the symmetric cyclic phosphonate compound represented by Formula 1 or a combination thereof. Details of each of components will be described below.
  • the styrenic resin (A) that can be used in the resin composition of the president invention may include, without limitation, a polystyrene resin, a rubber modified aromatic vinyl resin (such as a rubber modified aromatic vinyl-cyanide vinyl graft copolymer resin), a rubber modified high impact polystyrene resin (HIPS), and the like, and combinations thereof.
  • a polystyrene resin such as a rubber modified aromatic vinyl-cyanide vinyl graft copolymer resin
  • HIPS high impact polystyrene resin
  • the styrenic resin (A) can be generally polymerized in the presence of an initiator, but can be polymerized with heat and no initiator.
  • the initiator may include, without limitation, one or more selected from the group consisting of organic peroxides such as benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide and cumene hydroperoxide, azo compounds such as azobisisobutyronitrile, and the like, and combinations thereof.
  • Polymerization methods for making the styrenic resin (A) can include bulk polymerization, suspension polymerization, emulsion polymerization or a combination thereof.
  • the rubber used in the polymerization of the styrenic resin (A) can include, without limitation, polybutadiene, polyisoprene, styrene-butadiene copolymer, alkyl acrylic rubber, ethylene-propylene-diene terpolymer (EPDM), ethylene/propylene rubber, silicon rubber and the like, and combinations thereof.
  • the amount of the rubber used can be about 3 to about 30% by weight, for example about 5 to about 15% by weight, based on a total weight of the styrenic resin.
  • Monomers used in the polymerization of the styrenic resin (A) can include aromatic mono-alkenyl monomers, such as but not limited to styrene, ⁇ -methyl styrene, and the like, and combinations thereof, and can be used in an amount of about 70 to about 90% by weight, for example about 85 to about 90% by weight, based on a total weight of the styrenic resin.
  • the styrenic resin (A) can be prepared by optionally adding one or more additional monomers copolymerizable with the aromatic mono-alkenyl monomer, such as an alkyl ester monomer, an unsaturated nitrile monomer such as acrylonitrile, methacrylonitrile, and the like, or a combination thereof.
  • additional monomers copolymerizable with the aromatic mono-alkenyl monomer such as acrylic acid, methacrylic acid, maleic anhydride, N-substituted maleimide and the like, or a combination thereof can also be added to the monomers and polymerized to impart properties such as chemical resistance, processability and heat resistance to the polymer. These can be added in an amount of about 0 to about 40 parts by weight per 100 parts by weight of a total weight of the monomers.
  • the average size of rubber particles can range from about 0.1 to about 4.0 ⁇ m to optimize physical properties when blending a styrenic resin and polyphenylene ether.
  • the styrenic resin (A) can be used in an amount of about 60 to about 99% by weight, for example about 65 to about 90% by weight, and as another example about 70 to about 85% by weight, based on a total weight of the base resin (A)+(B).
  • the resin composition according to the present invention may employ a polyphenylene ether resin (B) with the styrenic resin (A) as a base resin to further improve flame retardancy and heat resistance.
  • polyphenylene ether resin (B) can include, without limitation, poly(2,6-dimethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2,6-dipropyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2-methyl-6-propyl-1,4-phenylene) ether, poly(2-ethyl-6-propyl-1,4-phenylene) ether, poly(2,6-diphenyl-1,4-phenylene) ether, copolymer of poly(2,6-dimethyl-1,4-phenylene) ether and poly(2,3,6-trimethyl-1,4-phenylene) ether, copolymer of poly(2,6-dimethyl-1,4-pheylene) ether and poly(2,3,5-triethyl-1,4-phenylene) ether, and the like
  • the degree of polymerization of the polyphenylene ether resin (B) is not limited specifically, but can vary depending on factors such as heat-stability or processability of the resin composition.
  • the intrinsic viscosity of the polyphenylene ether resin may be in the range of about 0.2 to about 0.8 measured in chloroform solvent at 25° C.
  • the polyphenylene ether resin (B) of the present invention can be used in an amount of about 1 to about 40% by weight, for example about 10 to about 35% by weight, and as another example about 15 to about 30% by weight, based on a total weight of the base resin (A)+(B).
  • polyphenylene ether When the polyphenylene ether is used in an amount of greater than about 40% by weight, processability can be deteriorated. In addition when the polyphenylene ether is used in an amount of less than about 1% by weight, flame retardancy may tend to decrease significantly.
  • the symmetric cyclic phosphonate compound used in the resin composition of the present invention can be a compound represented by the following Formula 1 or a combination thereof:
  • R 1 and R 2 are each independently hydrogen, C 1 -C 6 alkyl or C 6 -C 20 aryl.
  • the symmetric cyclic phosphonate compound (C) represented by Formula 1 can be used in an amount of about 0.5 to about 50 parts by weight, for example about 1 to about 40 parts by weight, and as another example about 2.5 to about 35 parts by weight, based on about 100 parts by weight of the base resin (A)+(B).
  • the symmetric cyclic phosphonate compound (C) When the symmetric cyclic phosphonate compound (C) is used in an amount of greater than about 50 parts by weight, physical properties such as mechanical strength can be deteriorated. When the symmetric cyclic phosphonate compound (C) is used in an amount of less than about 0.5 parts by weight, flame retardancy tends to decrease.
  • the resin composition may further comprise (D) an aromatic phosphate ester compound, (E) a phosphate compound or a mixture thereof in order to further improve flame retardancy.
  • the aromatic phosphate ester compound (D), the phosphate compound (E) or a combination thereof can be used in an amount of about 0.1 to about 40 parts by weight, for example about 5 to about 30 parts by weight, and as another example about 10 to about 25 parts by weight, based on about 100 parts by weight of the base resin (A)+(B).
  • the aromatic phosphate ester compound (D), the phosphate compound (E) or the mixture thereof are used in an amount of less than about 0.1 parts by weight, it may be difficult to achieve improved flame retardant effect.
  • the aromatic phosphate ester compound (D), the phosphate compound (E) or the mixture thereof are used in an amount of greater than about 40 parts by weight, physical properties such as mechanical strength may be deteriorated.
  • the aromatic phosphate ester compound (D) and the phosphate compound (E) are used together, the aromatic phosphate ester compound (D) can be used in an amount of about 0.05 to about 30 parts by weight, and the phosphate compound (E) can be used in an amount of about 0.05 to about 10 parts by weight, based on about 100 parts by weight of the base resin (A)+(B).
  • the aromatic phosphate ester compound used in the present invention can have a structure represented by the following Formula 4:
  • R 3 , R 4 and R 5 are each independently hydrogen or C 1 -C4 alkyl;
  • X is C 6 -C 20 aryl or alkyl-substituted C 6 -C 20 aryl that is a derivative from, for example, resorcinol, hydroquinol or bisphenol-A; and
  • n is an integer of 0 to 4.
  • examples of the compound represented by Formula 4 can include, without limitation, triphenyl phosphate, tri(2,6-dimethyl) phosphate, and the like, and where n is 1, examples of the compound can include, without limitation, resorcinol bis(diphenyl) phosphate, resorcinol bis(2,6-dimethyl phenyl) phosphate, resorcinol bis(2,4-ditertiary butyl phenyl) phosphate, hydroquinol bis(2,6-dimethyl phenyl) phosphate, hydroquinol bis(2,4-ditertiary butyl phenyl) phosphate, and the like.
  • the aromatic phosphate ester compound (D) can be used alone or in combination thereof.
  • the phosphate compound used in the present invention can be an alkyl phosphinic acid metal salt and have a structure represented by the following Formula 5:
  • R 1 and R 2 are each independently hydrogen or C 1 -C 4 alkyl;
  • M is a metal selected from the group consisting of Al, Mg, K, Zn and Ca; and
  • n is an integer of 1 to 3.
  • alkyl phosphinic acid metal salt can include without limitation diethyl phosphinic acid aluminum salt.
  • the resin composition can further comprise various additives.
  • the additive can include without limitation a heat stabilizer, an anti-drip agent, an anti-oxidant, a compatibilizer, a light stabilizer, a plasticizer, a pigment, a dye, an inorganic filler and the like.
  • the inorganic filler can include without limitation glass fiber, asbestos, talc, ceramic, sulfonate and the like.
  • the additive can be used alone or in combination thereof.
  • the additive can be used in an amount of less that or equal to about 30 parts by weight, for example in an amount of about 0.001 to about 30 parts by weight, based on about 100 parts by weight of the base resin (A)+(B).
  • the resin composition of the present invention can be prepared by conventional methods employed in the manufacture of resin compositions.
  • the above-described components and additives can be mixed together, and the mixture melted and extruded with an extruder into pellets.
  • the resin composition according to the present invention has good flame retardancy and impact strength, and thus can be used for many products.
  • the resin composition can be widely used for the manufacture of electrical devices and electronic devices such as TVs, computers, audio systems, air conditioners, office automations and the like, which are subject to strict Underwriters' Laboratories Standard for flame retardancy.
  • the following components are used to prepare a flameproof resin composition in the following examples and comparative examples.
  • a rubber modified styrenic resin manufactured by Cheil Industries Inc. (product name: HG-1760S) is used.
  • a poly(2,6-dimethyl-phenylene) ether manufactured by Mitsubishi Engineering-Plastics Corp. of Japan (product name: PX-100F) is used.
  • the polyphenylene ether resin is in powder form having an average particle size of several dozen micrometers ( ⁇ m).
  • the symmetric cyclic phosphonate compound prepared in Example 1 is used.
  • a diethyl phosphinic acid aluminum salt manufactured by Clariant Co. (product name: Exolit OP930) is used.
  • Components as shown in below Table 1 are mixed, and the mixture is extruded at a temperature of 200 to 280° C. with a conventional twin-screw extruder into pellets.
  • the pellets are then dried at 80° C. for 2 hours, and molded into test specimens using a 6-oz injection molding machine at a temperature of 180 to 280° C. and mold temperature of 40 to 80° C.
  • the flame retardancy is measured in accordance with UL94VB using test specimens having a thickness of 1 ⁇ 8′′.
  • the impact strength is measured in accordance with ASTM D256 (1 ⁇ 8′′, kg ⁇ cm/cm) using test specimens having a thickness of 1 ⁇ 8′′.
  • the test results are shown in Table 1 below.
  • Comparative Examples 1-2 are prepared in the same manner as in Examples 2-7 except that each of the components is used as shown in below Table 1. The test results are shown in Table 1 below.
  • Examples 2-7 including the symmetric cyclic phosphonate compound of the present invention as a flame retardant exhibit good flame retardancy and impact strength under a thickness of 1 ⁇ 8′′, compared with Comparative Example 1 including both the aromatic phosphate ester compound and the phosphate compound, and Comparative Example 2 including the aromatic phosphate ester compound alone.
  • the symmetric cyclic phosphonate compound of the present invention has a symmetric structure, the symmetric cyclic phosphonate compound is high in phosphorous content and exhibits excellent flame retardancy. Moreover, the symmetric cyclic phosphonate compound does not contain halogen. Therefore, the symmetric cyclic phosphonate compound does not release hydrogen halide gases during processing or combustion, and accordingly is environmentally friendly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

Disclosed herein is a symmetric cyclic phosphonate compound represented by the following Formula 1, a method of preparing the same and a flame retardant styrenic resin composition including the same:
Figure US20090163627A1-20090625-C00001
    • wherein R1 and R2 are each independently hydrogen, C1-C6 alkyl or C6-C20 aryl.
The styrenic resin composition employing the symmetric cyclic phosphonate compound exhibits good flame retardancy and impact strength, does not release halide gas during preparation or combustion of the resin composition, and thus is environmentally friendly.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority from Korean Patent Application No. 10-2007-0134123, filed Dec. 20, 2007, in the Korean Intellectual Property Office, and Korean Patent Application No. 10-2008-0098437, filed Oct. 8, 2008, in the Korean Intellectual Property Office, the disclosure of each of which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention relates to a novel phosphonate compound and a flame retardant styrenic resin composition including the same.
  • BACKGROUND OF THE INVENTION
  • Generally, styrenic resins have good processability and mechanical properties and have accordingly been used to produce housing parts for many electrical and electronic goods. However, because styrenic resins can be readily ignited, they are not able to resist fire. Particularly, once styrenic resins catch on fire by external ignition sources, they can further spread fire. Moreover, styrenic resins are subject to various mandatory controls on flammability for safety reasons in countries such as the United States, Japan and Europe, and are required to have high flame retardancy to meet the Underwriter's Laboratories Standard for use in the housings of electrical and electronic appliances. Accordingly, there is a need render styrenic resins flameproof to broaden their use in different applications.
  • A widely used and known method for imparting good flame retardancy to styrenic resin comprises adding a halogen-containing compound as a flame retardant to a rubber-modified styrenic resin and adding an antimony-containing compound as a flame retardant aid. Examples of halogen-containing compounds used to impart flame retardancy include polybromodiphenyl ether, tetrabromobisphenol-A, epoxy compounds substituted with bromine, chlorinated polyethylene, and the like. Antimony trioxide or antimony pentaoxide is commonly used as an antimony-containing compound.
  • When a halogen- and antimony-containing compound is used to improve flame retardancy of resins, a desired degree of flame retardancy can readily be imparted to the resulting products without significantly degrading the physical properties thereof. Therefore, the halogen- and antimony-containing compounds are widely used as the primary flame retardant for housing materials of electrical appliances and office equipment formed of ABS resins, PS resins, PBT resins, PET resins or epoxy resins. However, hydrogen halide gases released by halogen-containing compounds during processing can have fatal effects on the human body and have high environmental persistence because these compounds are not naturally degradable. Also these compounds are not soluble in water, and thus can be highly bioaccumulated. Particularly, polybromodiphenyl ether, which is widely used as a halogen-containing flame retardant, may produce toxic gases such as dioxin or furan during combustion, and is consequently harmful to humans and the environment. Accordingly, there is a need to develop flame retardancy methods that do not employ halogen-containing compounds.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to a novel symmetric cyclic phosphonate compound and a highly flame retardant styrenic resin composition including the symmetric cyclic phosphonate compound.
  • Aspects of the present invention provide a novel symmetric cyclic phosphonate compound that can exhibit excellent flame retardancy and a method of preparing the same.
  • Aspects of the present invention also provide a flame retardant resin composition which includes the symmetric cyclic phosphonate compound as a flame retardant and which is environmentally friendly.
  • Aspects of the present invention also provide a flame retardant resin composition which can be prepared by adding the symmetric cyclic phosphonate compound as a flame retardant and decreasing the amount of polyphenylene ether added to the composition. The composition of the invention thus can exhibit good impact resistance and mold processability.
  • These and other objects of the present invention will be accomplished by the present invention as described below.
  • According to an aspect of the present invention, there is provided a novel symmetric cyclic phosphonate compound represented by the following Formula 1:
  • Figure US20090163627A1-20090625-C00002
  • wherein R1 and R2 are each independently hydrogen, C1-C6 alkyl or C6-C20 aryl.
  • In exemplary embodiments of the present invention, the phosphate compound represented by Formula 1 may be prepared by reacting a phosphonic dichloride represented by the following Formula 2 with a polyol represented by the following Formula 3 in the presence of a base:
  • Figure US20090163627A1-20090625-C00003
  • wherein R2 is hydrogen, C1-C6 alkyl or C6-C20 aryl;
  • Figure US20090163627A1-20090625-C00004
  • wherein R1 is hydrogen, C1-C6 alkyl or C6-C20 aryl.
  • According to exemplary embodiments of the present invention, a flame retardant styrenic resin composition may include about 100 parts by weight of a base resin comprising (A) a styrenic resin and (B) a polyphenylene ether resin; and about 0.5 to about 50 parts by weight of (C) the symmetric cyclic phosphonate compound represented by Formula 1.
  • In one exemplary embodiment of the present invention, the base resin may include about 60 to about 99% by weight of the styrenic resin (A) and about 1 to about 40% by weight of the polyphenylene ether resin (B).
  • In another exemplary embodiment of the present invention, the resin composition may further include about 0.1 to about 40 parts by weight of (D) an aromatic phosphate ester compound, (E) a phosphate compound or a mixture thereof, based on about 100 parts by weight of the base resin (A)+(B).
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a GC-MS analysis result of a symmetric cyclic phosphonate compound (I-1) prepared in Example 1 of the present invention.
  • FIG. 2 illustrates a 1H-NMR analysis result of a symmetric cyclic phosphonate compound (I-1) prepared in Example 1 of the present invention.
  • FIG. 3 illustrates a PNMR analysis result of a symmetric cyclic phosphonate compound (I-1) prepared in Example 1 of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention now will be described more fully hereinafter in the following detailed description of the invention, in which some, but not all embodiments of the invention are described. Indeed, this invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements.
  • Symmetric Cyclic Phosphonate Compound
  • A symmetric cyclic phosphonate compound according to the present invention can be represented by the following Formula 1:
  • Figure US20090163627A1-20090625-C00005
  • wherein R1 and R2 are each independently hydrogen, C1-C6 alkyl or C6-C20 aryl.
  • R1 and R2 can each be independently C1-C6 alkyl. For example, R1 and R2 can each be independently methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl or isoamyl.
  • An exemplary phosphonate compound represented by the Formula 1 may include a compound represented by the following Formula I-1:
  • Figure US20090163627A1-20090625-C00006
  • wherein Et is ethyl and t-Bu is tert-butyl.
  • Method of Preparing the Symmetric Cyclic Phosphonate Compound
  • The present invention provides a method of synthesizing the symmetric cyclic phosphonate compound.
  • The symmetric cyclic phosphonate compound can be prepared by reacting a phosphonic dichloride represented by the following Formula 2 with a polyol represented by the following Formula 3 in the presence of a base:
  • Figure US20090163627A1-20090625-C00007
  • wherein R2 is hydrogen, C1-C6 alkyl or C6-C20 aryl;
  • Figure US20090163627A1-20090625-C00008
  • wherein R1 is hydrogen, C1-C6 alkyl or C6-C20 aryl.
  • In exemplary embodiments of the present invention, the phosphonic dichloride represented by Formula 2 may be reacted under reflux with the polyol represented by Formula 3.
  • For example, about 2 equivalents of the phosphonic dichloride represented by Formula 2 may be reacted with about 1 equivalent of the polyol represented by Formula 3 in the presence of a base and a solvent. The reaction temperature may be from about 80 to about 200° C., for example from about 100 to about 150° C. The reaction may be conducted for from about 5 to about 20 hours, for example from about 7 to about 15 hours.
  • The base can be used in an amount of greater than or equal to about 4 equivalents per about 1 equivalent of the polyol represented by Formula 3. The base used in the present invention is not particularly limited. For example, the base can include triethylamine, pyridine, sodium hydroxide and the like, and combinations thereof. The solvent used in the present invention has no particular restriction and can be any conventional organic solvent, for example, toluene, benzene, xlyene, 1,4-dioxane, methyl chloride and the like, and combinations thereof.
  • The symmetric cyclic phosphonate compound of the present invention has a symmetric structure, and thus is high in phosphorus content. Therefore, when the symmetric cyclic phosphonate compound is used as a flame retardant, it can exhibit good flame retardancy. Additionally, the symmetric cyclic phosphonate compound does not release halide gases during processing or combustion, and accordingly, is environmentally friendly.
  • Flame Retardant Styrenic Resin Composition
  • The present invention provides a flame retardant resin composition employing the symmetric cyclic phosphonate compound as a flame retardant.
  • In one exemplary embodiment of the present invention, a non-halogen flame retardant styrenic resin composition which employs the symmetric cyclic phosphonate compound to a styrenic resin is provided.
  • The non-halogen flame retardant styrenic resin composition comprises about 100 parts by weight of a base resin comprising (A) a styrenic resin and (B) a polyphenylene ether resin; and about 0.5 to about 50 parts by weight of (C) the symmetric cyclic phosphonate compound represented by Formula 1 or a combination thereof. Details of each of components will be described below.
  • (A) Styrenic Resin
  • The styrenic resin (A) that can be used in the resin composition of the president invention may include, without limitation, a polystyrene resin, a rubber modified aromatic vinyl resin (such as a rubber modified aromatic vinyl-cyanide vinyl graft copolymer resin), a rubber modified high impact polystyrene resin (HIPS), and the like, and combinations thereof.
  • The styrenic resin (A) can be generally polymerized in the presence of an initiator, but can be polymerized with heat and no initiator. The initiator may include, without limitation, one or more selected from the group consisting of organic peroxides such as benzoyl peroxide, t-butyl hydroperoxide, acetyl peroxide and cumene hydroperoxide, azo compounds such as azobisisobutyronitrile, and the like, and combinations thereof.
  • Polymerization methods for making the styrenic resin (A) can include bulk polymerization, suspension polymerization, emulsion polymerization or a combination thereof.
  • The rubber used in the polymerization of the styrenic resin (A) can include, without limitation, polybutadiene, polyisoprene, styrene-butadiene copolymer, alkyl acrylic rubber, ethylene-propylene-diene terpolymer (EPDM), ethylene/propylene rubber, silicon rubber and the like, and combinations thereof. The amount of the rubber used can be about 3 to about 30% by weight, for example about 5 to about 15% by weight, based on a total weight of the styrenic resin.
  • Monomers used in the polymerization of the styrenic resin (A) can include aromatic mono-alkenyl monomers, such as but not limited to styrene, α-methyl styrene, and the like, and combinations thereof, and can be used in an amount of about 70 to about 90% by weight, for example about 85 to about 90% by weight, based on a total weight of the styrenic resin.
  • The styrenic resin (A) can be prepared by optionally adding one or more additional monomers copolymerizable with the aromatic mono-alkenyl monomer, such as an alkyl ester monomer, an unsaturated nitrile monomer such as acrylonitrile, methacrylonitrile, and the like, or a combination thereof. Other monomers copolymerizable with the aromatic mono-alkenyl monomer, such as acrylic acid, methacrylic acid, maleic anhydride, N-substituted maleimide and the like, or a combination thereof can also be added to the monomers and polymerized to impart properties such as chemical resistance, processability and heat resistance to the polymer. These can be added in an amount of about 0 to about 40 parts by weight per 100 parts by weight of a total weight of the monomers.
  • The average size of rubber particles can range from about 0.1 to about 4.0 μm to optimize physical properties when blending a styrenic resin and polyphenylene ether.
  • The styrenic resin (A) can be used in an amount of about 60 to about 99% by weight, for example about 65 to about 90% by weight, and as another example about 70 to about 85% by weight, based on a total weight of the base resin (A)+(B).
  • (B) Polyphenylene Ether Resin
  • The resin composition according to the present invention may employ a polyphenylene ether resin (B) with the styrenic resin (A) as a base resin to further improve flame retardancy and heat resistance.
  • Examples of the polyphenylene ether resin (B) can include, without limitation, poly(2,6-dimethyl-1,4-phenylene) ether, poly(2,6-diethyl-1,4-phenylene) ether, poly(2,6-dipropyl-1,4-phenylene) ether, poly(2-methyl-6-ethyl-1,4-phenylene) ether, poly(2-methyl-6-propyl-1,4-phenylene) ether, poly(2-ethyl-6-propyl-1,4-phenylene) ether, poly(2,6-diphenyl-1,4-phenylene) ether, copolymer of poly(2,6-dimethyl-1,4-phenylene) ether and poly(2,3,6-trimethyl-1,4-phenylene) ether, copolymer of poly(2,6-dimethyl-1,4-pheylene) ether and poly(2,3,5-triethyl-1,4-phenylene) ether, and the like. These can be used alone or as a combination thereof.
  • The degree of polymerization of the polyphenylene ether resin (B) is not limited specifically, but can vary depending on factors such as heat-stability or processability of the resin composition. The intrinsic viscosity of the polyphenylene ether resin may be in the range of about 0.2 to about 0.8 measured in chloroform solvent at 25° C.
  • The polyphenylene ether resin (B) of the present invention can be used in an amount of about 1 to about 40% by weight, for example about 10 to about 35% by weight, and as another example about 15 to about 30% by weight, based on a total weight of the base resin (A)+(B).
  • When the polyphenylene ether is used in an amount of greater than about 40% by weight, processability can be deteriorated. In addition when the polyphenylene ether is used in an amount of less than about 1% by weight, flame retardancy may tend to decrease significantly.
  • (C) Symmetric Cyclic Phosphonate Compound
  • The symmetric cyclic phosphonate compound used in the resin composition of the present invention can be a compound represented by the following Formula 1 or a combination thereof:
  • Figure US20090163627A1-20090625-C00009
  • wherein R1 and R2 are each independently hydrogen, C1-C6 alkyl or C6-C20 aryl.
  • The symmetric cyclic phosphonate compound (C) represented by Formula 1 can be used in an amount of about 0.5 to about 50 parts by weight, for example about 1 to about 40 parts by weight, and as another example about 2.5 to about 35 parts by weight, based on about 100 parts by weight of the base resin (A)+(B).
  • When the symmetric cyclic phosphonate compound (C) is used in an amount of greater than about 50 parts by weight, physical properties such as mechanical strength can be deteriorated. When the symmetric cyclic phosphonate compound (C) is used in an amount of less than about 0.5 parts by weight, flame retardancy tends to decrease.
  • In one exemplary embodiment of the present invention, the resin composition may further comprise (D) an aromatic phosphate ester compound, (E) a phosphate compound or a mixture thereof in order to further improve flame retardancy.
  • The aromatic phosphate ester compound (D), the phosphate compound (E) or a combination thereof can be used in an amount of about 0.1 to about 40 parts by weight, for example about 5 to about 30 parts by weight, and as another example about 10 to about 25 parts by weight, based on about 100 parts by weight of the base resin (A)+(B). When the aromatic phosphate ester compound (D), the phosphate compound (E) or the mixture thereof are used in an amount of less than about 0.1 parts by weight, it may be difficult to achieve improved flame retardant effect. In addition, when the aromatic phosphate ester compound (D), the phosphate compound (E) or the mixture thereof are used in an amount of greater than about 40 parts by weight, physical properties such as mechanical strength may be deteriorated.
  • When the aromatic phosphate ester compound (D) and the phosphate compound (E) are used together, the aromatic phosphate ester compound (D) can be used in an amount of about 0.05 to about 30 parts by weight, and the phosphate compound (E) can be used in an amount of about 0.05 to about 10 parts by weight, based on about 100 parts by weight of the base resin (A)+(B).
  • Details of the aromatic phosphate ester compound (D) and the phosphate compound (E) will be described below.
  • (D) Aromatic Phosphate Ester Compound
  • The aromatic phosphate ester compound used in the present invention can have a structure represented by the following Formula 4:
  • Figure US20090163627A1-20090625-C00010
  • wherein R3, R4 and R5 are each independently hydrogen or C1-C4 alkyl; X is C6-C20 aryl or alkyl-substituted C6-C20 aryl that is a derivative from, for example, resorcinol, hydroquinol or bisphenol-A; and n is an integer of 0 to 4.
  • Where n is 0, examples of the compound represented by Formula 4 can include, without limitation, triphenyl phosphate, tri(2,6-dimethyl) phosphate, and the like, and where n is 1, examples of the compound can include, without limitation, resorcinol bis(diphenyl) phosphate, resorcinol bis(2,6-dimethyl phenyl) phosphate, resorcinol bis(2,4-ditertiary butyl phenyl) phosphate, hydroquinol bis(2,6-dimethyl phenyl) phosphate, hydroquinol bis(2,4-ditertiary butyl phenyl) phosphate, and the like. The aromatic phosphate ester compound (D) can be used alone or in combination thereof.
  • (E) Phosphate Compound
  • The phosphate compound used in the present invention can be an alkyl phosphinic acid metal salt and have a structure represented by the following Formula 5:
  • Figure US20090163627A1-20090625-C00011
  • wherein R1 and R2 are each independently hydrogen or C1-C4 alkyl; M is a metal selected from the group consisting of Al, Mg, K, Zn and Ca; and n is an integer of 1 to 3.
  • Examples of the alkyl phosphinic acid metal salt can include without limitation diethyl phosphinic acid aluminum salt.
  • In another exemplary embodiment of the present invention, in addition to the above-described components, the resin composition can further comprise various additives. Examples of the additive can include without limitation a heat stabilizer, an anti-drip agent, an anti-oxidant, a compatibilizer, a light stabilizer, a plasticizer, a pigment, a dye, an inorganic filler and the like. Examples of the inorganic filler can include without limitation glass fiber, asbestos, talc, ceramic, sulfonate and the like. The additive can be used alone or in combination thereof. The additive can be used in an amount of less that or equal to about 30 parts by weight, for example in an amount of about 0.001 to about 30 parts by weight, based on about 100 parts by weight of the base resin (A)+(B).
  • The resin composition of the present invention can be prepared by conventional methods employed in the manufacture of resin compositions. For example, the above-described components and additives can be mixed together, and the mixture melted and extruded with an extruder into pellets.
  • The resin composition according to the present invention has good flame retardancy and impact strength, and thus can be used for many products. The resin composition can be widely used for the manufacture of electrical devices and electronic devices such as TVs, computers, audio systems, air conditioners, office automations and the like, which are subject to strict Underwriters' Laboratories Standard for flame retardancy.
  • The present invention may be better understood by reference to the following examples. The following examples are intended for the purpose of illustration and are not be construed as in any way limiting the scope of the present invention, which is defined in the claims appended hereto.
  • EXAMPLES Example 1 Preparation of the Symmetric Cyclic Phosphonate Compound
  • 2 equivalents of t-butyl phosphonic dichloride (IV) is reacted under reflux with 1 equivalent of tetraol (V) and 4 equivalents of triethylamine in the presence of toluene solvent at a temperature of 130° C. for 10 hours. After completion of the reaction, water is added, and the reaction mixture is stirred until solids disappeared. Then, the organic layer is separated and distilled in vacuum to obtain a symmetric cyclic phosphonate compound (I-1) having a purity of 99% and with a yield of 50%.
  • Figure US20090163627A1-20090625-C00012
  • GC-MS analysis, 1H-NMR analysis and PNMR analysis are conducted on the resulting symmetric cyclic phosphonate compound (I-1). The results are shown in FIGS. 1 to 3, respectively.
  • Preparation of the Flame Retardant Resin Composition
  • The following components are used to prepare a flameproof resin composition in the following examples and comparative examples.
  • (A) Styrenic Resin
  • A rubber modified styrenic resin manufactured by Cheil Industries Inc. (product name: HG-1760S) is used.
  • (B) Polyphenylene Ether Resin (PPE)
  • A poly(2,6-dimethyl-phenylene) ether manufactured by Mitsubishi Engineering-Plastics Corp. of Japan (product name: PX-100F) is used. The polyphenylene ether resin is in powder form having an average particle size of several dozen micrometers (μm).
  • (C) Symmetric Cyclic Phosphonate Compound
  • The symmetric cyclic phosphonate compound prepared in Example 1 is used.
  • (D) Aromatic Phosphate Ester Compound
  • A bisphenol-A bis(diphenyl) phosphate manufactured by Daihachi Chemical Industry Co., Ltd. of Japan (product name: CR741S) is used.
  • (E) Phosphate Compound
  • A diethyl phosphinic acid aluminum salt manufactured by Clariant Co. (product name: Exolit OP930) is used.
  • Examples 2-7
  • Components as shown in below Table 1 are mixed, and the mixture is extruded at a temperature of 200 to 280° C. with a conventional twin-screw extruder into pellets. The pellets are then dried at 80° C. for 2 hours, and molded into test specimens using a 6-oz injection molding machine at a temperature of 180 to 280° C. and mold temperature of 40 to 80° C. The flame retardancy is measured in accordance with UL94VB using test specimens having a thickness of ⅛″. The impact strength is measured in accordance with ASTM D256 (⅛″, kg·cm/cm) using test specimens having a thickness of ⅛″. The test results are shown in Table 1 below.
  • Comparative Examples 1-2
  • Comparative Examples 1-2 are prepared in the same manner as in Examples 2-7 except that each of the components is used as shown in below Table 1. The test results are shown in Table 1 below.
  • TABLE 1
    Comparative
    Examples Examples
    2 3 4 5 6 7 1 2
    A 85 85 85 75 75 70 85 85
    B 15 15 15 25 25 30 15 15
    C 20 2.5 35 20 2.5 20
    D 15 15 15 20
    E 2.5 2.5 5
    UL94 Flame V-1 V-1 V-0 V-0 V-0 V-0 V-1 Fail
    Retardancy
    (⅛″)
    IZOD Impact 7.64 4.06 8.12 8.05 6.52 8.21 3.08 4.88
    Strength
    (⅛″, kg · cm/
    cm)
  • As shown in Table 1, it can be seen that Examples 2-7 including the symmetric cyclic phosphonate compound of the present invention as a flame retardant exhibit good flame retardancy and impact strength under a thickness of ⅛″, compared with Comparative Example 1 including both the aromatic phosphate ester compound and the phosphate compound, and Comparative Example 2 including the aromatic phosphate ester compound alone.
  • In addition, it can also be seen that since the symmetric cyclic phosphonate compound of the present invention has a symmetric structure, the symmetric cyclic phosphonate compound is high in phosphorous content and exhibits excellent flame retardancy. Moreover, the symmetric cyclic phosphonate compound does not contain halogen. Therefore, the symmetric cyclic phosphonate compound does not release hydrogen halide gases during processing or combustion, and accordingly is environmentally friendly.
  • Many modifications and other embodiments of the invention will come to mind to one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing descriptions. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being defined in the claims.

Claims (16)

1. A symmetric cyclic phosphonate compound represented by the following Formula 1:
Figure US20090163627A1-20090625-C00013
wherein R1 and R2 are each independently hydrogen, C1-C6 alkyl or C6-C20 aryl.
2. A symmetric cyclic phosphonate compound of claim 1, represented by the following Formula I-1:
Figure US20090163627A1-20090625-C00014
wherein Et is ethyl and t-Bu is tert-butyl.
3. A method of preparing a symmetric cyclic phosphonate compound represented by Formula 1
Figure US20090163627A1-20090625-C00015
wherein R1 and R2 are each independently hydrogen, C1-C6 alkyl or C6-C20 aryl, the method comprising reacting a phosphonic dichloride represented by the following Formula 2 with a polyol represented by the following Formula 3 in the presence of a base:
Figure US20090163627A1-20090625-C00016
wherein R2 is hydrogen, C1-C6 alkyl or C6-C20 aryl;
Figure US20090163627A1-20090625-C00017
wherein R1 is hydrogen, C1-C6 alkyl or C6-C20 aryl.
4. A flame retardant styrenic resin composition comprising:
about 100 parts by weight of a base resin comprising (A) a styrenic resin and (B) a polyphenylene ether resin; and
about 0.5 to about 50 parts by weight of (C) a symmetric cyclic phosphonate compound represented by the following Formula 1 or a combination thereof;
Figure US20090163627A1-20090625-C00018
wherein R1 and R2 are each independently hydrogen, C1-C6 alkyl or C6-C20 aryl.
5. The flame retardant styrenic resin composition of claim 4, wherein said base resin comprises about 60 to about 99% by weight of said styrenic resin (A) and about 1 to about 40% by weight of said polyphenylene ether resin (B).
6. The flame retardant styrenic resin composition of claim 4, further comprising about 0.1 to about 40 parts by weight of (D) an aromatic phosphate ester compound, (E) a phosphate compound or a combination thereof, based on about 100 parts by weight of said base resin (A)+(B).
7. The flame retardant styrenic resin composition of claim 6, wherein said aromatic phosphate ester compound (D) has a structure represented by the following Formula 4:
Figure US20090163627A1-20090625-C00019
wherein R3, R4 and R5 are each independently hydrogen or C1-C4 alkyl; X is C6-C20 aryl or alkyl-substituted C6-C20 aryl derivative from resorcinol, hydroquinol or bisphenol-A; and n is an integer of 0 to 4.
8. The flame retardant styrenic resin composition of claim 6, wherein said phosphate compound (E) has a structure represented by the following Formula 5:
Figure US20090163627A1-20090625-C00020
wherein R1 and R2 are each independently hydrogen or C1-C4 alkyl; M is a metal selected from the group consisting of Al, Mg, K, Zn and Ca; and n is an integer of 1 to 3.
9. The flame retardant styrenic resin composition of claim 4, further comprising less than or equal to about 30 parts by weight of an additive selected from the group consisting of heat stabilizers, anti-drip agents, anti-oxidants, compatibilizers, light stabilizers, plasticizers, pigments, dyes, inorganic additives and combinations thereof, based on about 100 parts by weight of said base resin (A)+(B).
10. The flame retardant styrenic resin composition of claim 4, wherein said symmetric cyclic phosphonate compound is represented by the following Formula I-1:
Figure US20090163627A1-20090625-C00021
wherein Et is ethyl and t-Bu is tert-butyl.
11. The flame retardant styrenic resin composition of claim 5, wherein the base resin comprises about 65 to about 90% by weight of the styrenic resin and about 10 to about 35% by weight of the polyphenylene ether resin.
12. The flame retardant styrenic resin composition of claim 11, wherein the base resin comprises about 70 to about 85% by weight of the styrenic resin and about 15 to about 30% by weight of the polyphenylene ether resin.
13. The flame retardant styrenic resin composition of claim 4, wherein the styrenic resin comprises a rubber modified aromatic vinyl resin.
14. The flame retardant styrenic resin composition of claim 4, comprising the symmetric cyclic phosphonate compound in an amount of about 1 to about 40 parts by weight, based on about 100 parts by weight of the base resin (A)+(B).
15. The flame retardant styrenic resin composition of claim 14, comprising the symmetric cyclic phosphonate compound in an amount of about 2.5 to about 35 parts by weight, based on about 100 parts by weight of the base resin (A)+(B).
16. An article formed of a composition according to claim 4.
US12/335,611 2007-12-20 2008-12-16 Symmetric Cyclic Phosphonate Compound, Method of Preparing the Same and Flame Retardant Styrenic Resin Composition Including the Same Abandoned US20090163627A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/700,904 US8222329B2 (en) 2007-12-20 2010-02-05 Symmetric cyclic phosphonate compound, method of preparing the same and flame retardant styrenic resin composition including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR2007-0134123 2007-12-20
KR20070134123 2007-12-20
KR2008-0098437 2008-10-08
KR1020080098437A KR101004674B1 (en) 2007-12-20 2008-10-08 Symmetric Cyclic Phosphonate Compound, Method of Preparing the Same and Flame Retardant Styrenic Resin Composition Comprising the Same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/700,904 Division US8222329B2 (en) 2007-12-20 2010-02-05 Symmetric cyclic phosphonate compound, method of preparing the same and flame retardant styrenic resin composition including the same

Publications (1)

Publication Number Publication Date
US20090163627A1 true US20090163627A1 (en) 2009-06-25

Family

ID=40690286

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/335,611 Abandoned US20090163627A1 (en) 2007-12-20 2008-12-16 Symmetric Cyclic Phosphonate Compound, Method of Preparing the Same and Flame Retardant Styrenic Resin Composition Including the Same
US12/700,904 Expired - Fee Related US8222329B2 (en) 2007-12-20 2010-02-05 Symmetric cyclic phosphonate compound, method of preparing the same and flame retardant styrenic resin composition including the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/700,904 Expired - Fee Related US8222329B2 (en) 2007-12-20 2010-02-05 Symmetric cyclic phosphonate compound, method of preparing the same and flame retardant styrenic resin composition including the same

Country Status (4)

Country Link
US (2) US20090163627A1 (en)
JP (1) JP5416395B2 (en)
CN (1) CN101475593A (en)
DE (1) DE102008064234B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100137482A1 (en) * 2007-12-20 2010-06-03 Cheil Industries Inc. Symmetric Cyclic Phosphonate Compound, Method of Preparing the Same and Flame Retardant Styrenic Resin Composition Including the Same
CN101792465B (en) * 2009-12-11 2012-09-05 四川大学 Modifier of polyol ester phosphate and polyisocyanate, preparation method and application thereof
CN113336794A (en) * 2021-05-31 2021-09-03 中国药科大学 Novel saccharide bio-based cyclic phosphorus/phosphonate and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8921439B2 (en) * 2010-09-23 2014-12-30 Icl-Ip America Inc. Monohydroxy cyclic phosphonate substantially free of polyhydroxy phosphonate, process for making same and flame retardant flexible polyurethane foam obtained therefrom
JP6126960B2 (en) * 2013-09-27 2017-05-10 リンテック株式会社 Adhesive sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402882A (en) * 1980-09-02 1983-09-06 Ciba-Geigy Corporation Process for the production of diphosphaspiro compounds

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1503429A (en) * 1965-12-14 1967-11-24 Ciba Geigy Process for preparing cyclic esters of phosphonic acid
US3789091A (en) * 1971-11-15 1974-01-29 Mobil Oil Corp Cyclic phosphonate esters and their preparation
US4207271A (en) 1975-09-22 1980-06-10 Stauffer Chemical Company Bis(2,2,2-trihydroxymethyl ethane) methylphosphonate
US4520152A (en) * 1977-09-06 1985-05-28 General Electric Company Flame retardant composition of polyphenylene ether, styrene resin and cyclic phosphonate
GB2003888B (en) 1977-09-06 1982-02-03 Gen Electric Flame retardant composition of polyphenylene ether styrene resin and cyclic phosphonate
JP4585659B2 (en) * 2000-07-21 2010-11-24 帝人化成株式会社 Flame retardant resin composition and molded product therefrom
KR100665802B1 (en) * 2004-12-30 2007-01-09 제일모직주식회사 Flameproof Styrenic Resin Composition
US20090163627A1 (en) * 2007-12-20 2009-06-25 Cheil Industries Inc. Symmetric Cyclic Phosphonate Compound, Method of Preparing the Same and Flame Retardant Styrenic Resin Composition Including the Same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4402882A (en) * 1980-09-02 1983-09-06 Ciba-Geigy Corporation Process for the production of diphosphaspiro compounds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100137482A1 (en) * 2007-12-20 2010-06-03 Cheil Industries Inc. Symmetric Cyclic Phosphonate Compound, Method of Preparing the Same and Flame Retardant Styrenic Resin Composition Including the Same
US8222329B2 (en) 2007-12-20 2012-07-17 Cheil Industries Inc. Symmetric cyclic phosphonate compound, method of preparing the same and flame retardant styrenic resin composition including the same
CN101792465B (en) * 2009-12-11 2012-09-05 四川大学 Modifier of polyol ester phosphate and polyisocyanate, preparation method and application thereof
CN113336794A (en) * 2021-05-31 2021-09-03 中国药科大学 Novel saccharide bio-based cyclic phosphorus/phosphonate and preparation method and application thereof

Also Published As

Publication number Publication date
JP5416395B2 (en) 2014-02-12
DE102008064234B4 (en) 2018-12-27
JP2009149644A (en) 2009-07-09
CN101475593A (en) 2009-07-08
US8222329B2 (en) 2012-07-17
DE102008064234A1 (en) 2009-06-25
US20100137482A1 (en) 2010-06-03

Similar Documents

Publication Publication Date Title
US20080125526A1 (en) Flameproof Styrenic Resin Composition
US8367754B2 (en) Flameproof thermoplastic resin composition and method for preparing the same
TWI432444B (en) Flame retardant and impact modifier, method for preparing thereof, and thermoplastic resin composition containing the same
KR100654525B1 (en) Salt of carboxyethyl phosphinate ester and flame retardant thermoplastic resin composition containing therof
US8039535B2 (en) Flame retardant and impact modifier, method for preparing the same, and thermoplastic resin composition including the same
KR100778010B1 (en) Non-halogen flameproof styrenic resin composition
US8222329B2 (en) Symmetric cyclic phosphonate compound, method of preparing the same and flame retardant styrenic resin composition including the same
US8461236B2 (en) Phosphoric compound, method for preparing the same, and flame retardant thermoplastic resin composition including the same
WO2005017030A1 (en) Flameproof rubber-reinforced styrenic resin composition
US20060041040A1 (en) Flameproof styrenic resin composition
US7956110B2 (en) Non-halogen flameproof resin composition
US8329791B2 (en) Phosphonate compound and flame retardant styrenic resin composition including the same
KR101139864B1 (en) Novel Phosphoric Compound, Method of Preparing the Same and Flameproof Thermoplastic Resin Composition Using the Same
KR101004674B1 (en) Symmetric Cyclic Phosphonate Compound, Method of Preparing the Same and Flame Retardant Styrenic Resin Composition Comprising the Same
KR100560146B1 (en) Flameproof Thermoplastic Resin Composition
KR100815992B1 (en) Flameproof thermoplastic resin composition
KR100776212B1 (en) Halogen-free flameproof styrenic resin composition
KR101127439B1 (en) Non-halogen flameproof styrenic resin composition
KR101129464B1 (en) Novel phosphoanate based compound and flame retardant styrenic resin composition including the same
KR20140090290A (en) Flame retardant thermoplastic resin composition and article produced therefrom

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHEIL INDUSTRIES INC.,KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOO, BEOM JUN;HONG, SANG HYEN;LEE, MIN SOO;AND OTHERS;REEL/FRAME:021983/0796

Effective date: 20081216

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION