US20090161605A1 - Cooperative mimo in multicell wireless networks - Google Patents

Cooperative mimo in multicell wireless networks Download PDF

Info

Publication number
US20090161605A1
US20090161605A1 US12/396,160 US39616009A US2009161605A1 US 20090161605 A1 US20090161605 A1 US 20090161605A1 US 39616009 A US39616009 A US 39616009A US 2009161605 A1 US2009161605 A1 US 2009161605A1
Authority
US
United States
Prior art keywords
method
cooperative
space
base stations
transmissions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/396,160
Inventor
Manyuan Shen
Guanbin Xing
Hui Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADAPTIX Inc A DELAWARE Corp
Adaptix Inc
Original Assignee
Adaptix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/007,570 priority Critical patent/US7428268B2/en
Priority to US12/123,022 priority patent/US7529311B2/en
Application filed by Adaptix Inc filed Critical Adaptix Inc
Priority to US12/396,160 priority patent/US20090161605A1/en
Assigned to ADAPTIX, INC., A DELAWARE CORPORATION reassignment ADAPTIX, INC., A DELAWARE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XING, GUANBIN, LIU, HUI, SHEN, MANYUAN
Publication of US20090161605A1 publication Critical patent/US20090161605A1/en
Assigned to BAKER COMMUNICATIONS FUND II (QP) L.P., BAKER COMMUNICATIONS FUND II, L.P. reassignment BAKER COMMUNICATIONS FUND II (QP) L.P. SECURITY AGREEMENT Assignors: ADAPTIX, INC.
Assigned to ADAPTIX, INC. reassignment ADAPTIX, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BAKER COMMUNICATIONS FUND II (QP), L.P., BAKER COMMUNICATIONS FUND II, L.P.
Application status is Abandoned legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0625Transmitter arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter

Abstract

A method and system for cooperative multiple-input multiple output (MIMO) transmission operations in a multicell wireless network. Under the method, antenna elements from two or more base stations are used to from an augmented MIMO antenna array that is used to transmit and receive MIMO transmissions to and from one or more terminals. The cooperative MIMO transmission scheme supports higher dimension space-time-frequency processing for increased capacity and system performance.

Description

    FIELD OF THE INVENTION
  • The present invention relates to the field of communications systems; more particularly, the present invention relates to techniques for performing MIMO operations in a multicell wireless network.
  • BACKGROUND OF THE INVENTION
  • With high-speed wireless services increasingly in demand, there is a need for more throughput per bandwidth to accommodate more subscribers with higher data rates while retaining a guaranteed quality of service (QoS). In point-to-point communications, the achievable data rate between a transmitter and a receiver is constrained by the available bandwidth, propagation channel conditions, as well as the noise-plus-interference levels at the receiver. For wireless networks where a base-station communicates with multiple subscribers, the network capacity also depends on the way the spectral resource is partitioned and the channel conditions and noise-plus-interference levels of all subscribers. In current state-of-the-art, multiple-access protocols, e.g., time-division multiple access (TDMA), frequency-division multiple-access (FDMA), code-division multiple-access (CDMA), are used to distribute the available spectrum among subscribers according to subscribers' data rate requirements. Other critical limiting factors, such as the channel fading conditions, interference levels, and QoS requirements, are ignored in general.
  • The fundamental phenomenon that makes reliable wireless transmission difficult to achieve is time-varying multipath fading. Increasing the quality or reducing the effective error rate in a multipath fading channel may be extremely difficult. For instance, consider the following comparison between a typical noise source in a non-multipath environment and multipath fading. In environments having additive white Gaussian noise (AWGN), it may require only 1- or 2-db higher signal-to-noise ratio (SNR) using typical modulation and coding schemes to reduce the effective bit error rate (BER) from 10−2 to 10−3. Achieving the same reduction in a multipath fading environment, however, may require up to 10 db improvement in SNR. The necessary improvement in SRN may not be achieved by simply providing higher transmit power or additional bandwidth, as this is contrary to the requirements of next generation broadband wireless systems.
  • One set of techniques for reducing the effect of multipath fading is to employ a signal diversity scheme, wherein a combined signal is received via independently fading channels. Under a space diversity scheme, multiple antennas are used to receive and/or send the signal. The antenna spacing must be such that the fading at each antenna is independent (coherence distance). Under a frequency diversity scheme, the signal is transmitted in several frequency bands (coherence BW). Under a time diversity scheme, the signal is transmitted in different time slots (coherence time). Channel coding plus interleaving is used to provide time diversity. Under a polarization diversity scheme, two antennas with different polarization are employed for reception and/or division.
  • Spatial diversity is commonly employed in modern wireless communications systems. To achieve spatial diversity, spatial processing with antenna arrays at the receiver and/or transmitter is performed. Among many schemes developed to date, multiple-input multiple-output (MIMO) and beamforming are the two most studied and have been proved to be effective in increase the capacity and performance of a wireless network. (see, e.g., Ayman F. Naguib, Vahid Tarokh, Nambirajan Seshadri, A. Robert Calderbank, “A Space-Time Coding Modem for High-Data-Rate Wireless Communications”, IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, October 1998 pp. 1459-1478). In a block time-invariant environment, it can be shown that in a system equipped with Nt transmit antennas and Nr receive antennas, a well designed space-time coded (STC) systems can achieve a maximum diversity of Nr*Nt. Typical examples of STC include space-time trellis codes (STTC) (see, e.g., V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: performance criterion and code construction”, IEEE Trans. Inform. Theory, 44:744-765, March 1998) and space-time block codes from orthogonal design (STBC-OD) (see, e.g., V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs”, IEEE Trans. Inform. Theory, 45:1456-1467, July 1999.)
  • Since the capacity and performance of an MIMO system depends critically on its dimension (i.e., Nt and Nr) and the correlation between antenna elements, larger size and more scattered antenna arrays are desirable. On the other hand, costs and physical constraints prohibit the use of excessive antenna arrays in practice.
  • SUMMARY OF THE INVENTION
  • A method and system is disclosed herein for cooperative multiple-input multiple output (MIMO) transmission operations in a multicell wireless network. Under one embodiment, antenna elements from two or more base stations are used to from an augmented MIMO antenna array that is used to transmit and receive MIMO transmissions to and from one or more terminals.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments of the invention, which, however, should not be taken to limit the invention to the specific embodiments, but are for explanation and understanding only.
  • FIG. 1 depicts a multicell scenario where antenna elements from multiple base-stations are augmented to form a higher dimension MIMO transceiver array.
  • FIG. 2 shows a generic channel matrix H used for modeling the capacity of MIMO systems.
  • FIG. 3 shows the capacity increase of an MIMO system with respect to the number of transmitting antennas.
  • FIG. 4 a shows a cooperative MIMO architecture under which antenna arrays from two base stations are employed in a cooperative MIMO transmission scheme to transmit downlink signals to one terminal;
  • FIG. 4 b shows aspects of the cooperative MIMO architecture of FIG. 4 a employed for transmitting and processing uplink signals received by the augmented antenna array.
  • FIG. 5 shows an extension to the cooperative MIMO architecture of FIG. 4 a, wherein beamforming is used to direct a MIMO transmission toward one terminal while performing spatial nulling towards another terminal.
  • FIG. 6 shows a cooperative MIMO architecture under which two base-stations performing multiuser MIMO with two terminals simultaneously using joint encoding and decoding.
  • FIG. 7 a shows a block diagram of an MIMO OFDM encoder/transmitter.
  • FIG. 7 b shows the block diagram of an MIMO OFDM encoder/transmitter with beamforming.
  • FIG. 8 shows a block diagram of an MIMO OFDM receiver/decoder.
  • FIG. 9 shows a block diagram used to model a space-time coding transmission scheme.
  • FIG. 10 shows an exemplary PSK-based space-time trellis code (STTC) encoder.
  • FIG. 11 shows an exemplary QAM-based STTC encoder.
  • FIG. 12 shows a block diagram used to model a space-time block coding (STBC) transmission scheme.
  • FIG. 13 a shows a block diagram modeling an STTC delay diversity scheme.
  • FIG. 13 b shows a block diagram modeling an STBC delay diversity scheme.
  • FIG. 14 is a block diagram of an exemplary PSK-based STTC delay diversity encoder.
  • FIG. 15 is a schematic diagram illustrating a cooperative MIMO architecture under which STC encoding operations are performed at a master encoder;
  • FIG. 16 is a schematic diagram illustrating a cooperative MIMO architecture under which STC encoding operations are performed on respective instances of replicated data streams at multiple base stations.
  • DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • In accordance with aspects of the present invention, a method and apparatus to augment antenna elements from two or more base-stations/terminals to perform higher dimensional MIMO operations is disclosed. In one implementation, MIMO/joint space-time coding is employed across multiple base stations in a cellular environment, wherein the cooperative transmission of signals is performed at the modulation and coding level. This novel approach introduces additional diversities and capacities to existing network components with minimal additional costs. Because of the increase in the number of transmit antennas, the number of simultaneous users increases, leading to better spectrum efficiency.
  • In the following description, numerous details are set forth to provide a more thorough explanation of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the present invention.
  • Some portions of the detailed descriptions which follow are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
  • It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
  • The present invention also relates to apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a computer system bus.
  • The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present invention is not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein.
  • A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes read only memory (“ROM”); random access memory (“RAM”); magnetic disk storage media; optical storage media; flash memory devices; electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.); etc.
  • Overview
  • FIG. 1 depicts three cells 100, 102, and 104 for a typical wireless network with multiple base stations BS1, BS2 and BS3 and terminals A, B, and C. Each of base stations BS1 and BS2 includes a 4-element circular antenna array, while terminal A has two antennas 1 and 2.
  • From a theoretical viewpoint, the capacity between a transmitter and a receiver for a MIMO transmission scheme is determined by the vector channel H, which is also referred to as the channel matrix. As illustrated in FIG. 2, the channel matrix H includes M rows and N columns, wherein M is the number of receiver antennas (Rx) and N is the number of transmitter antennas (Tx). In the illustrated channel matrix H, each entry αij is the complex channel gain from the i-th transmit antenna to the j-th receive antenna.
  • The channel capacity for a Single-Input Single-Output (SISO) channel is,

  • C=log2(1+ρ)bits/sec/use  (1),
  • where ρ is the signal to noise ratio. The channel capacity for a MIMO channel is,
  • C = log 2 det [ I + ρ N HH * ] . ( 2 )
  • From above, the outage capacity can be shown to be,
  • C = 1 2 M log 2 ( 1 + σ { h } 2 ρ ) . ( 3 )
  • It is observed that under equation 3, the capacity increases linearly with the number of receive antennas when M is large. The channel capacity limit grows logarithmically when adding an antenna array at the receiver side (Single-Input Multiple-Output-SIMO). Meanwhile, the channel capacity limit grows as much as linearly with min(M,N), which is the maximum number of spatial eigenmodes, in the case of a MIMO system. An illustration of a MIMO system capacity as a function of channel matrix dimension is shown in FIG. 3.
  • Since the system capacity is dictated by the dimension (number of antennas) and the condition (correlation between antenna elements) of the channel, it is desirable to have large size antenna array with more scattered elements. However, there is a point of diminishing return, wherein the costs of adding antenna elements and corresponding processing complexity for a given base station exceeds the benefit of the incremental increase in system capacity. Furthermore, to obtain the added benefit of extra capacity, it may be necessary to add additional antenna elements to many or all base stations within a given wireless network.
  • Embodiments of the present invention take advantage of the benefit of having large size antenna arrays with more scattered elements without requiring additional antenna elements to be added to base stations. This is accomplished by augmenting the operations of antenna elements from two or more base stations to form a larger size antenna array. The augmented array performs “cooperative MIMO” transmission operations for one or more terminals. For example, FIG. 1 shows an exemplary use of a cooperative MIMO transmission scheme, wherein the antenna elements for base stations BS1 and BS2 are augmented to cooperatively communicate via receive antennas 1 and 2 for terminal A.
  • FIG. 4 a depicts a block diagram of one embodiment of a downlink (from base stations to terminals) cooperative MIMO architecture 400. For illustrative purposes, the architecture shown in FIG. 4 a include two base stations 402 and 404 and a single terminal 406. It will be understood that an actual implementation of MIMO architecture 400 may include two or more base stations that transmit signals that are received by one or more terminals.
  • In the illustrated embodiment of FIG. 4 a, base station 402 has an antenna array including Nt1 transmit antennas, while base station 404 has an antenna array including Nt2 antennas and terminal 406 includes Nr antennas. In view of the foregoing MIMO definitions, the cooperative use of the base station antennas increases the MIMO dimension to (Nt1+Nt2)*Nr. This increase in dimension is accomplished without requiring any additional antenna elements at the base stations, as well as the components use to drive the antennas.
  • According to aspects of various embodiments of the invention described herein, an information bit sequence corresponding to data to be transmitted to a subscriber (e.g., terminal 406) may be space-time, space-frequency, or space-time-frequency coded, as depicted by a block 408 in FIG. 4 a. In some embodiments, space-time, space-frequency, or space-time-frequency codes may be augmented to support delay diversity, as described below. After appropriate encoding is performed in block 408, the coded data is then passed to the base stations, whereupon it is transmitted via applicable antenna elements at those base stations. The two or more base stations then perform joint MIMO transmissions (depicted as signals 410 and 412) towards the subscriber (e.g., a user operating terminal 406) in view of applicable MIMO channel configuration parameters. For example, signals 410 and 412 transmitted from base stations 402 and 404 may employ selected antenna elements for each of the base stations based on the coding scheme and/or MIMO scheme that is currently employed for a particular subscriber. In general, cooperative MIMO transmissions can be performed during regular communication, or during handoff, where a subscriber moves across the boundary between cells
  • In one embodiment, space-time coding is employed. For example, incoming information bits are space-time coded (using e.g., space-time block or trellis codes) at block 408, and the encoded data are forwarded to each of base stations 402 and 404. Further details of space-time block encoding and the use of space-time trellis codes are discussed below.
  • In one embodiment, the space-time (or space-frequency, or space-time-frequency) coding is performed at a master encoder. In another embodiment, the space-time (or space-frequency, or space-time-frequency) is performed at separate locations (e.g., within the base stations) based on a common (replicated) information bit sequence received at each of the separate locations.
  • FIG. 4 b shows uplink signal processing aspects of cooperative MIMO architecture 400. In this instance, an uplink signal 414 is transmitted from terminal 406 via selected antennas from among transmit antennas 1-Nt. The uplink signal 414 is received by the respective receive antenna arrays (1-Nr1, 1-Nr2) for base stations 402 and 404. (It, is noted that the same antennas may be used for both transmit and receive operations for some embodiments, while separate sets of transmit and receive antennas may be employed for other embodiments.) Upon being received at the base stations, initial signal processing is performed on the uplink signals, and the processed signals are forwarded to a block 416 to perform joint MIMO decoding and demodulation, thus extracting the information bits corresponding to the data transmitted by terminal 406. In general, the components for performing the operations of block 416 may be implemented in a master decoder that is centrally located with respect to multiple base stations (e.g., base stations 402 and 404), or may be located at one of the multiple base stations.
  • FIG. 5 depicts a multi-user cooperative MIMO architecture 500. Under this embodiment, the augmented antenna array (comprising selected transmit antenna elements for base stations 502 and 504) is used to perform MIMO operation towards one or more intended subscribers while limiting the radio signal at the location/direction of un-intended subscribers using a beamforming and nulling scheme. For example, techniques are known for steering transmitted signals toward selected locations, while transmitted signals sent toward other directions are nullified due to signal canceling effects and/or fading effects. Collectively, these selective transmission techniques are referred to as beamforming, and are accomplished by using appropriate antenna elements (an augmented array of antennas hosted by two or more base stations under the embodiments herein) and applicable control of the signals transmitted from those antenna elements (e.g., via weighted inputs derived from feedback returned from a targeted terminal). Under beamforming embodiments of the invention, current techniques employed for antenna arrays located at a single base stations (see, e.g., D. J. Love, R. W. Heath Jr., and T. Strohmer, “Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems,” IEEE Transactions on Information Theory, vol. 49, pp. 2735-2747, October 2003) are extended to support beamforming operations via selected antenna elements hosted by multiple base stations. As described below, it may be necessary to employ signal synchronization between multiple base stations to obtain the desired beamforming results.
  • In the embodiment of FIG. 5, information bits are encoded using one of space-time, space-frequency, or space-time-frequency coding schemes in a block 514. Block 514 is also employed to perform beamforming operations, as describe below in further detail with reference to FIG. 7 b. The encoded output of block 514 is then provided to each of base stations 502 and 504, which in turn transmit respective signals 516 and 518. As depicted by lobes 520, 522, and 524, the channel characteristics of the combined signals 516 and 518 produce areas of higher gain in certain directions. At the same time, the gain of the combined signals 516 and 518 in other directions, such as depicted by a null direction 526, may be greatly reduced (e.g., to the point at which the signal cannot be decoded) due to spatial nulling. In one embodiment, spatial nulling is performed at the direction of un-intended subscribers.
  • For example, under the scenario illustrated in FIG. 5, the combined signals 516 and 518 are controlled so as to produce a high gain within lobe 522. As such, terminal 506 receives a good signal at its antenna array, and can decode the combined MIMO signal using appropriate MIMO decoding techniques that are well-known in the wireless communication system arts. Meanwhile, the strength of the combined signal received at a terminal 528 is nulled using spatial nulling. Accordingly, data corresponding to the information bits received at block 514 is transmitted to only terminal 506, and is not received by terminal 528.
  • FIG. 6 depicts another multi-user cooperative MIMO architecture 600. Instead of forming nulls to un-intended terminals, information from multiple users is jointed encoded, transmitted from multiple base stations via the augmented MIMO antenna array, and then decoded at the receiving terminals. In one embodiment of the invention, the information is decoded at the user ends independently. The signals intended for other users are treated as interference. In another embodiment, the information from all users are decoded jointly. In yet another embodiment, the information received at different user locations are consolidated for joint decoding.
  • The embodiment of FIG. 6 shows an example of joint decoding. In this instance, information to be sent to terminals 1 (606) and 2 (628) is jointly encoded using one of space-time, space-frequency, or space-time-frequency coding in a block 630. For clarity, the respective information to be sent to terminals 1 and 2 is depicted as data A and data B. The jointly encoded output of block 630 is provided as inputs to each of base stations 602 and 604. The base stations then transmit the jointly encoded data via selected antennas (corresponding to MIMO channels assigned to terminals 1 and 2) to terminals 606 and 628. Upon receipt of the jointly encoded data, it is decoded via operations performed in a block 632 for each of terminals 606 and 628. Upon being decoded, information intended for each recipient terminal is kept, while other information is discarded. Accordingly, terminal 606 keeps data A and discards data B, while terminal 628 keeps data B and discards data A. In one embodiment, information to keep and discard is identified by packet headers corresponding to packets that are extracted from the decoded data received at a given terminal.
  • A block diagram corresponding to one embodiment of an OFDMA (Orthogonal Frequency Division Multiple Access) encoding/transmitter module 700A for a base station having Nt transmit antennas is shown in FIG. 7 a. Information bits for each of 1-N subcarriers are received at respective space-time coding (STC) blocks 704 1-N. The size of the STCs is a function of the number of transmit antennas Nt. In general, the space-time codes may comprise space-time trellis codes (STTC), space-time block codes (STBC), as well as STTC or STBC with delay diversity, details of which are described below. Based on the applicable STC, each of blocks 704 1-p outputs a set of code words c1[j,k] to cNt[j,k], wherein j represents the sub-channel index and k is the time index. Each of the code words is then forwarded to an appropriate Fast Fourier Transform (FFT) blocks 706 1-Nt. The outputs of the FFT blocks 706 1-Nt are then fed to parallel to serial (P/S) conversion blocks 708 1-Nt, and cyclic prefixes are added via add cyclic prefix (CP) blocks 710 1-Nt. The outputs of add CP blocks 710 1-Nt are then provided to transmit antennas 1-Nt to be transmitted as downlink signals to various terminals within the base station's coverage area.
  • A block diagram corresponding to one embodiment of an OFDMA receiver/decoder module 800 for a terminal having Nr receive antennas is shown in FIG. 8. The signal processing at the receive end of a downlink signal is substantially the inverse of the process used for encoding and preparing the signal for transmission. First, the cyclic prefix for each of the signals received at respective receive antennas 1-Nr is removed by a respective remove CP block blocks 810 1-Nr. The respective signals are then fed into respective serial-to-parallel (S/P) conversion blocks 808 1-Nt to produce parallel sets of data, which are then provided as inputs to FFT blocks 806 1-Nr. The outputs of FFT blocks 806 1-Nr are then forwarded to appropriate STC decoding blocks 804 1-N for decoding. The decoded data is then output at the information bits for subcarriers 1-N.
  • A block diagram corresponding to one embodiment of an OFDMA encoding/beamforming/transmitter module 700B that performs beamforming is shown in FIG. 7 b. As depicted by like-numbered blocks, much of the signal processing performed by the embodiments of FIGS. 7 a and 7 b is similar. In addition to these processing operations, OFDMA encoding/beamforming/transmitter module 700B further includes beamforming blocks 705 1-N. Each of these beamforming blocks applies a weighted value W1-N to its respective inputs in view of control information provided by a beamforming control block 712, which is generated in response to beamforming feedback data 714. Further differences between the embodiments of FIGS. 7 a and 7 b include STC blocks 704A1-N, which now employ STCs having a size L, which represents the number of beamforming channels.
  • Space Time Encoding
  • Space-Time Codes (STC) were first introduced by Tarokh et al. from AT&T research labs (V. Tarokh, N. Seshadri, and A. R. Calderbank, Space-time codes for high data rates wireless communications: Performance criterion and code construction,” IEEE Trans. Inform. Theory, vol. 44, pp. 744-765, 1998) in 1998 as a novel means of providing transmit diversity for the multiple-antenna fading channel. There are two main types of STCs, namely space-time block codes (STBC) and space-time trellis codes (STTC). Space-time block codes operate on a block of input symbols, producing a matrix output whose columns represent time and rows represent antennas. Space-time block codes do not generally provide coding gain, unless concatenated with an outer code. Their main feature is the provision of full diversity with a very simple decoding scheme. On the other hand, space-time trellis codes operate on one input symbol at a time, producing a sequence of vector symbols whose length represents antennas. Like traditional TCM (trellis coded modulation) for a single-antenna channel, space-time trellis codes provide coding gain. Since they also provide full diversity gain, their key advantage over space-time block codes is the provision of coding gain. Their disadvantage is that they are difficult to design and generally require high complexity encoders and decoders.
  • FIG. 9 shows a block diagram of as STC MIMO transmission model. Under the model, data from an information source 900 is encoded using a STBC or STTC code by a space-time encoder 902. The encoded data is then transmitted over a MIMO link 904 to a receiver 906. The received signals are then decoded at the receiver to extract the original data.
  • An exemplary 8-PSK 8-state space-time trellis code for two antennas is shown in FIG. 10, while an exemplary 16-QAM 16-state STTC for two antennas is shown in FIG. 11. The encoding for STTCs are similar to TCM, except that at the beginning and the end of each frame, the encoder is required to be in the zero state. At each time t, depending on the state of the encoder and the input bits, a transition branch is selected. If the label of the transition branch is c1 t; c2 t: : : ; cn t, then transmit antenna i is used to send the constellation symbols ci t, i=1; 2; : : : ; n and all these transmissions are in parallel. In general, an STTC encoder may be implemented via a state machine programmed with states corresponding to the trellis code that is to be implemented.
  • FIG. 12 shows a block diagram corresponding to an STBC model employing two antennas. As before, data is received from an information source 1200. Space time block encoding is then performed by the operations of space time block code 1202 and constellation maps 1204A and 1204B.
  • In further detail, an STBC is defined by a p×n transmission matrix G, whose entries are linear combinations of xl; : : : ; xk and their conjugates xl*; : : : ; xk*, and whose columns are pairwise-orthogonal. In the case when p=n and {xi} are real, G is a linear processing orthogonal design which satisfies the condition that GTG=D, where D is a diagonal matrix with the (i; i)th diagonal element of the form (l1 i x1 2+l2 i x2 2+ . . . +ln i xn 2) with the coefficients l1 i, l2 i, . . . ln i>0. An example of a 2×2 STBC code is shown in FIG. 12.
  • Another signal diversity scheme is to employ a combination of STC with delay. For example, FIGS. 13 a and 13 b respectively show models corresponding to an STTC with delay transmission scheme and an STBC with delay transmission scheme. In FIG. 13 a, data from an information source 1300 is received by a code repetition block 1302, which produces a pair of replicated symbol sequences that are generated in view of the data. A first sequence of symbols is forwarded to an STTC encoder 1304A for encoding. Meanwhile, the replicated sequence of symbols is fed into a delay block 1306, which produces a one-symbol delay. The delayed symbol sequence output of delay block 1306 is then forwarded to STTC encoder 1304B for encoding. An exemplary 8-PSK 8-state delay diversity code for two antennas is shown in FIG. 14. As illustrated, the symbol sequence for transmission antenna T×2 is synchronized with the input sequence, while the symbol sequence for transmission antenna T×1 is delayed by one symbol.
  • Under the signal diversity scheme of FIG. 13 b, data from information source 1300 is received at best block code selection logic 1308, which outputs replicated block codes to produce two block code sequences. The first block code sequence is forwarded to constellation mapper 1310A for encoding, while the second block code sequence is delayed by one symbol via a delay block 1312 and then forwarded to constellation mapper 1310B for encoding. The encoded signals are then transmitted via first and second transmit antennas.
  • The foregoing STTC and STBC schemes are depicted herein in accordance with conventional usage for clarity. Under such usage, the various encoded signals are transmitted using multiple antennas at the same base station. In contrast, embodiments of the invention employ selective antenna elements in antenna arrays from multiple base stations to form an augmented MIMO antenna array.
  • In order to implement an STC transmission scheme using multiple base stations, additional control elements may be needed. For example, if the base stations are located at different distances from a master encoder facility, there may need to be some measure to synchronize the antenna outputs in order to obtain appropriate MIMO transmission signals. Likewise, appropriate timing must be maintained when implementing a delay diversity scheme using antenna arrays at base stations at different locations.
  • FIG. 15 shows a cooperative MIMO architecture 1500 that employs a master encoder 1502. In general, the master encoder 1502 may be located at a separate facility from base stations 402 and 404, or may be co-located with one of the base stations. In respective embodiments, master encoder 1502 performs STC encoding and signal processing operations similar to the operations performed by the OFDMA encoding/transmitter module 700A of FIG. 7A (as depicted in FIG. 15) or OFDMA encoding/beamforming/transmitter module 700B of FIG. 7B. However, the transmission output are not fed directly to the transmission antennas, since the transmission antennas for at least one of the base stations will be located at a separate facility. Rather, master encoder 1502 produces respective sets of antenna drive signals 1504 and 1506 for base stations 402 and 404. Upon receipt of the antenna drive signals, corresponding downlink signals are transmitted by selected antennas hosted by base stations 402 and 404 based on the different MIMO channels supported by the system. Control inputs to master encoder 1502 corresponding to the MIMO channels are provided by a subscriber MIMO channel assignment register 1508.
  • If necessary, signal synchronization is performed by one or more sync/delay blocks 1510. For example, in the embodiment of FIG. 15, two sync/delay blocks 1510A and 1510B are shown, with each being employed at a respective base station. In other embodiments, some base stations may not require a delay block, particularly if a co-located master encoder is employed. In general, the sync/delay blocks for a system are employed to synchronize the antenna signals or synchronize the delay of antenna signals (when delay diversity is employed).
  • Signal synchronization may be performed in any number of ways using principles known in the communication arts. For example, in one embodiment separate timing signals or sequences are provided to each of the base stations in a cooperative MIMO system. The timing signals or sequences contain information from which corresponding antenna drive signals may be synchronized. To perform such synchronization, each sync/delay blocks add an appropriate delay to its antenna signals. Synchronization feedback information may also be employed using well-known techniques.
  • Under one embodiment of a variation of architecture 1500, antenna signal processing operations corresponding to the FFT, P/S, and add CP blocks are implemented at the respective base stations. In this instance, STC code sequences are provided to each of the base stations, with further antenna signal processing being performed at the base stations. Under this approach, timing signals or the like may be embedded in the data streams containing the code sequences.
  • Another approach for implementing an cooperative MIMO system is depicted by cooperative MIMO architecture 1600 in FIG. 16. Under this architecture, replicated instances of input information streams for multiple channel subscribers are generated by a block 1602 and provided to each of the base stations used to form the augmented MIMO antenna array. In this case, the STC encoding and signal processing operations are performed at each base station in a manner similar to that described with respect to the OFDMA encoding/transmitter module 700A of FIG. 7A (as depicted in FIG. 16) or OFDMA encoding/beamforming/transmitter module 700B of FIG. 7B.
  • In one embodiment, subscriber MIMO channel information is embedded in the input data streams received at each base station. Accordingly, there is a need to determine which antenna elements are used to support each MIMO channel. This information is stored in a subscriber MIMO channel register 1604, and is used to control signal processing in a collaborative manner at the base stations.
  • As before, there may be a need to synchronize the antenna signals. For example, if the components used to perform the operations of block 1602 are located at different distances from the base stations, the input streams will be received at different times. In response, the corresponding antenna signals will be generated at different times. To address this situation, one or more sync/delay blocks 1606 may be employed (e.g., as depicted by sync/delay blocks 1606A and 1606B in FIG. 16B. In one embodiment, timing signals are encoded in the input data streams using one of many well-known schemes. The timing signals, which may typically comprise timing frames, timing bits, and/or timing sequences, are extracted by 1606A and 1606B. In view of the timing information, a variable delay is applied by sync/delay block for the data streams that are received earlier, such that at the point the data streams are ready received at the STC blocks, they have been resynchronized.
  • In general, the processing operations performed by the process blocks depicted herein may be performed using known hardware and/or software techniques. For example, the processing for a given block may be performed by processing logic that may comprise hardware (circuitry, dedicated logic, etc.), software (such as is run on a general purpose computer system or a dedicated machine), or a combination of both.
  • Whereas many alterations and modifications of the present invention will no doubt become apparent to a person of ordinary skill in the art after having read the foregoing description, it is to be understood that any particular embodiment shown and described by way of illustration is in no way intended to be considered limiting. Therefore, references to details of various embodiments are not intended to limit the scope of the claims which in themselves recite only those features regarded as essential to the invention.

Claims (62)

1. A method comprising:
employing antenna elements from a plurality of base stations to support cooperative multiple-input multiple-output (MIMO) transmissions in a wireless network.
2. The method of claim 1, wherein the cooperative MIMO transmissions comprise orthogonal frequency division multiple access (OFDMA) MIMO transmissions.
3. The method of claim 1, further comprising encoding the cooperative MIMO transmissions using space-time coding.
4. The method of claim 3, wherein the space-time coding comprises space-time trellis coding.
5. The method of claim 3, wherein the space-time coding comprises space-time block coding.
6. The method of claim 3, further comprising encoding the cooperative MIMO transmissions using space-time coding with delay diversity.
7. The method of claim 1, further comprising encoding the cooperative MIMO transmissions using space-frequency coding.
8. The method of claim 1, further comprising encoding the cooperative MIMO transmissions using space-time-frequency coding.
9. The method of claim 1, further comprising performing spatial multiplexing on the cooperative MIMO transmissions.
10. The method of claim 1, wherein the cooperative MIMO transmissions include downlink transmissions from the plurality of base stations to terminals and uplink transmissions from the terminals to the plurality of base stations.
11. The method of claim 1, further comprising performing spatial beamforming for selected MIMO transmissions.
12. The method of claim 11, further comprising performing spatial beamforming in combination with one of space-time, space-frequency and space-time-frequency coding of the selected MIMO transmissions.
13. The method of claim 1, further comprising transmitting a cooperative MIMO transmission to at least two terminals simultaneously.
14. The method of claim 13, further comprising performing spatial beamforming on the cooperative MIMO transmissions such that MIMO transmissions are directed toward intended users while spatial nulling is effected toward unintended users.
15. The method of claim 1, further comprising jointly decoding uplink MIMO transmissions received from multiple terminals.
16. The method of claim 1, further comprising jointly decoding downlink MIMO transmissions received at multiple terminals.
17. The method of claim 1, further comprising separately decoding uplink MIMO transmissions received from multiple terminals.
18. The method of claim 1, further comprising jointly encoding downlink MIMO transmissions sent to multiple terminals.
19. The method of claim 18, further comprising:
decoding a jointly encoded downlink MIMO transmission at a terminal; and
keeping portions of data sent via jointly encoded downlink MIMO transmission intended for the terminal, while discarding other portions of data that are not intended for the terminal.
20. The method of claim 18, further comprising separately decoding the jointly encoded downlink transmissions at each of the multiple terminals.
21.-25. (canceled)
26. The method of claim 1, further comprising performing cooperative MIMO transmissions to facilitate terminal handoff between wireless network cells or sectors.
27.-28. (canceled)
29. A multicell wireless network, comprising:
a plurality of base stations, each associated with a respective cell and having a respective antenna array including at least one antenna element; and
a cooperative multiple-input multiple-output (MIMO) transmission mechanism that employs selected antenna elements from the plurality of base stations to form an augmented antenna array used to support cooperative MIMO transmissions over the wireless network.
30. The multicell wireless network of claim 29, wherein the cooperative MIMO transmissions comprises orthogonal frequency division multiple access (OFDMA) MIMO transmissions.
31. The multicell wireless network of claim 29, wherein the cooperative MIMO transmission mechanism encodes the cooperative MIMO transmissions using space-time coding.
32. The multicell wireless network of claim 31, wherein the space-time coding comprises space-time trellis coding.
33. The multicell wireless network of claim 31, wherein the space-time coding comprises space-time block coding.
34. The multicell wireless network of claim 31, wherein the cooperative MIMO transmission mechanism encodes the cooperative MIMO transmissions using space-time coding with delay diversity.
35. The multicell wireless network of claim 29, wherein the cooperative MIMO transmission mechanism encodes the cooperative MIMO transmissions using space-frequency coding.
36. The multicell wireless network of claim 29, wherein the cooperative MIMO transmission mechanism encodes the cooperative MIMO transmissions using space-time-frequency coding.
37. The multicell wireless network of claim 29, wherein the cooperative MIMO transmission mechanism performs spatial multiplexing on the cooperative MIMO transmissions.
38. The multicell wireless network of claim 29, wherein the cooperative MIMO transmissions include downlink transmissions from the plurality of base stations to terminals and uplink transmissions from the terminals to the plurality of base stations.
39. The multicell wireless network of claim 29, wherein the cooperative MIMO transmission mechanism performs spatial beamforming for selected MIMO transmissions.
40. The multicell wireless network of claim 39, wherein the cooperative MIMO transmission mechanism performs spatial beamforming in combination with one of space-time, space-frequency and space-time-frequency coding of the selected MIMO transmissions.
41. The multicell wireless network of claim 29, wherein the cooperative MIMO transmission mechanism performs transmitting a cooperative MIMO transmission to at least two terminals simultaneously.
42. The multicell wireless network of claim 41, wherein the cooperative MIMO transmission mechanism further performs spatial beamforming on the cooperative MIMO transmissions such that MIMO transmissions are directed toward intended users while spatial nulling is effected toward unintended users.
43. The multicell wireless network of claim 29, wherein the cooperative MIMO transmission mechanism further performs jointly decoding uplink MIMO transmissions received from multiple terminals.
44. The multicell wireless network of claim 29, wherein the cooperative MIMO transmission mechanism further performs separately decoding uplink MIMO transmissions received from multiple terminals.
45. The multicell wireless network of claim 29, wherein the cooperative MIMO transmission mechanism further performs jointly encoding downlink MIMO transmissions sent to multiple terminals.
46.-52. (canceled)
53. The multicell wireless network of claim 29, wherein the cooperative MIMO transmission mechanism performs cooperative MIMO transmissions to facilitate terminal handoff between wireless network cells or sectors.
54. A wireless communication method, said method comprising:
performing cooperative multiple-input multiple-output (MIMO) reception by jointly receiving, at antenna elements of a plurality of base stations, signals from at least one terminal; and
transmitting signals corresponding to said signals received from at least one terminal from said plurality of base stations to a first facility.
55. The wireless communication method of claim 54 further comprising
performing, at said plurality of base stations, signal processing on said signals received from at least one terminal.
56. The wireless communication method of claim 54 further comprising:
extracting, at said first facility, information from said signals corresponding to said signals received from at least one terminal.
57. The wireless communication method of claim 56 wherein said extracting information comprises:
decoding said signals corresponding to said signals received from at least one terminal.
58. The wireless communication method of claim 57 wherein said decoding comprises:
joint MIMO decoding and demodulation of said signals corresponding to said signals received from at least one terminal.
59. The wireless communication method of claim 54 wherein said first facility is centrally located with respect to said plurality of base stations.
60. The wireless communication method of claim 54 wherein said first facility is co-located with one of said plurality of base stations.
61. A wireless communication method, said method comprising:
selecting, at a terminal, at least one antenna element from a plurality of available terminal elements to transmit signals to be jointly received by a plurality of base stations;
employing said selected antenna elements to support cooperative multiple-input multiple-output (MIMO) transmissions in a wireless network.
62. A wireless communications method, said method comprising:
receiving, at a terminal, cooperative MIMO transmissions jointly sent by antenna elements at a plurality of base stations.
63. The method of claim 62, wherein the cooperative MIMO transmissions comprise orthogonal frequency division multiple access (OFDMA) MIMO transmissions.
64. The method of claim 62 further comprising:
decoding said cooperative MIMO transmissions at said terminal.
65. The method of claim 64 wherein said decoding comprises determining a portion of said cooperative MIMO transmissions as intended to be received by said terminal and determining a portion of said cooperative MIMO transmissions as intended for another terminal.
66. The method of claim 65 further comprising treating said portion determined as intended for another terminal as interference.
67. The method of claim 64 wherein said decoding comprises consolidating said portions of said cooperative MIMO transmissions received at said terminal with portions of said cooperative MIMO transmissions received at another terminal for joint decoding.
68. A wireless communication method, said method comprising:
receiving signals at a plurality of base stations; and
performing cooperative multiple-input multiple-output (MIMO) transmission of said signals in a wireless network by transmitting said signals over an augmented antenna array to at least one terminal, wherein said augmented array comprises selected antenna elements at said plurality of base stations.
69. The method of claim 68 further comprising encoding said signals before said signals are received at the base stations.
70. The method of claim 69 further comprising processing of said encoded signals at said plurality of base stations by adding delay signals to said encoded signals.
71. The method of claim 70 wherein said processing synchronizes the encoded signal such that said processed signals are transmitted over said selected antenna elements at the base stations in synchrony.
72. The wireless communication method of claim 68 further comprising:
jointly encoding data intended to be received by a plurality of terminals; and
sending said jointly encoded data to said plurality of base stations.
73. The wireless communication method of claim 72 wherein said jointly encoded data is transmitted to at least one of said plurality of terminals over said selected antenna elements at the base stations by cooperative MIMO transmission.
US12/396,160 2004-12-07 2009-03-02 Cooperative mimo in multicell wireless networks Abandoned US20090161605A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/007,570 US7428268B2 (en) 2004-12-07 2004-12-07 Cooperative MIMO in multicell wireless networks
US12/123,022 US7529311B2 (en) 2004-12-07 2008-05-19 Cooperative MIMO in multicell wireless networks
US12/396,160 US20090161605A1 (en) 2004-12-07 2009-03-02 Cooperative mimo in multicell wireless networks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/396,160 US20090161605A1 (en) 2004-12-07 2009-03-02 Cooperative mimo in multicell wireless networks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/123,022 Continuation US7529311B2 (en) 2004-12-07 2008-05-19 Cooperative MIMO in multicell wireless networks

Publications (1)

Publication Number Publication Date
US20090161605A1 true US20090161605A1 (en) 2009-06-25

Family

ID=36574196

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/007,570 Expired - Fee Related US7428268B2 (en) 2004-12-07 2004-12-07 Cooperative MIMO in multicell wireless networks
US12/123,022 Expired - Fee Related US7529311B2 (en) 2004-12-07 2008-05-19 Cooperative MIMO in multicell wireless networks
US12/396,160 Abandoned US20090161605A1 (en) 2004-12-07 2009-03-02 Cooperative mimo in multicell wireless networks

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/007,570 Expired - Fee Related US7428268B2 (en) 2004-12-07 2004-12-07 Cooperative MIMO in multicell wireless networks
US12/123,022 Expired - Fee Related US7529311B2 (en) 2004-12-07 2008-05-19 Cooperative MIMO in multicell wireless networks

Country Status (11)

Country Link
US (3) US7428268B2 (en)
EP (1) EP1825607A4 (en)
JP (3) JP5139810B2 (en)
KR (1) KR101136785B1 (en)
CN (2) CN102647260B (en)
AU (1) AU2005314049B2 (en)
CA (1) CA2586082C (en)
IL (1) IL183174A (en)
MX (1) MX2007006649A (en)
TW (2) TWI383603B (en)
WO (1) WO2006063138A2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080049658A1 (en) * 2006-08-28 2008-02-28 Ntt Docomo, Inc. Relay node and relay method
US20090046794A1 (en) * 2007-07-25 2009-02-19 Buffalo Inc. Multi-input multi-output communication device, antenna device and communication system
US20090303932A1 (en) * 2008-06-09 2009-12-10 Qualcomm Incorporated Methods and apparatus for facilitating network-based control of a forwarding policy used by a mobile node
US20100232336A1 (en) * 2009-03-13 2010-09-16 Sharp Laboratories Of America, Inc. Systems and methods for selecting antennas for coordinated multipoint transmission
US20100232553A1 (en) * 2009-03-16 2010-09-16 Krishna Srikanth Gomadam Multi - user multiple input multiple output (mu - mimo) receiver
US20100267341A1 (en) * 2009-04-21 2010-10-21 Itsik Bergel Multi-Point Opportunistic Beamforming with Selective Beam Attenuation
US20100304773A1 (en) * 2009-05-27 2010-12-02 Ramprashad Sean A Method for selective antenna activation and per antenna or antenna group power assignments in cooperative signaling wireless mimo systems
US20100329222A1 (en) * 2005-11-01 2010-12-30 Hallbjoerner Paul Mimo based wireless telecommunications method and system
US20110002408A1 (en) * 2008-02-29 2011-01-06 France Telecom Method of transmitting multi-carrier signals in a multi-antenna system
US20110096704A1 (en) * 2009-02-27 2011-04-28 Adoram Erell Signaling of dedicated reference signal (drs) precoding granularity
WO2011055238A1 (en) 2009-11-09 2011-05-12 Marvell World Trade Ltd Asymmetrical feedback for coordinated transmission systems
US20110150052A1 (en) * 2009-12-17 2011-06-23 Adoram Erell Mimo feedback schemes for cross-polarized antennas
US20110194638A1 (en) * 2010-02-10 2011-08-11 Adoram Erell Codebook adaptation in mimo communication systems using multilevel codebooks
US20110228748A1 (en) * 2008-11-23 2011-09-22 Seung Hee Han Method and apparatus for transmitting data in radio communication system
US20120020425A1 (en) * 2009-04-02 2012-01-26 Samsung Electronics Co., Ltd. Apparatus and method for minimizing errors by a cell edge user in a multi-cell communication system
US8396153B1 (en) 2004-12-07 2013-03-12 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
US8615052B2 (en) 2010-10-06 2013-12-24 Marvell World Trade Ltd. Enhanced channel feedback for multi-user MIMO
US8670499B2 (en) 2009-01-06 2014-03-11 Marvell World Trade Ltd. Efficient MIMO transmission schemes
US8675794B1 (en) 2009-10-13 2014-03-18 Marvell International Ltd. Efficient estimation of feedback for modulation and coding scheme (MCS) selection
US8687741B1 (en) 2010-03-29 2014-04-01 Marvell International Ltd. Scoring hypotheses in LTE cell search
US8699633B2 (en) 2009-02-27 2014-04-15 Marvell World Trade Ltd. Systems and methods for communication using dedicated reference signal (DRS)
US8711970B2 (en) 2009-01-05 2014-04-29 Marvell World Trade Ltd. Precoding codebooks for MIMO communication systems
US8750404B2 (en) 2010-10-06 2014-06-10 Marvell World Trade Ltd. Codebook subsampling for PUCCH feedback
US8818447B2 (en) 2009-05-27 2014-08-26 Kyocera Corporation Radio communication system, radio terminal, and radio communication method
US8861391B1 (en) * 2011-03-02 2014-10-14 Marvell International Ltd. Channel feedback for TDM scheduling in heterogeneous networks having multiple cell classes
US8902842B1 (en) 2012-01-11 2014-12-02 Marvell International Ltd Control signaling and resource mapping for coordinated transmission
US8917796B1 (en) 2009-10-19 2014-12-23 Marvell International Ltd. Transmission-mode-aware rate matching in MIMO signal generation
US8923427B2 (en) 2011-11-07 2014-12-30 Marvell World Trade Ltd. Codebook sub-sampling for frequency-selective precoding feedback
US9020058B2 (en) 2011-11-07 2015-04-28 Marvell World Trade Ltd. Precoding feedback for cross-polarized antennas based on signal-component magnitude difference
US9031597B2 (en) 2011-11-10 2015-05-12 Marvell World Trade Ltd. Differential CQI encoding for cooperative multipoint feedback
US9048970B1 (en) 2011-01-14 2015-06-02 Marvell International Ltd. Feedback for cooperative multipoint transmission systems
US9124327B2 (en) 2011-03-31 2015-09-01 Marvell World Trade Ltd. Channel feedback for cooperative multipoint transmission
US9143951B2 (en) 2012-04-27 2015-09-22 Marvell World Trade Ltd. Method and system for coordinated multipoint (CoMP) communication between base-stations and mobile communication terminals
US9220087B1 (en) 2011-12-08 2015-12-22 Marvell International Ltd. Dynamic point selection with combined PUCCH/PUSCH feedback
US9521670B2 (en) 2013-03-05 2016-12-13 Marvell World Trade Ltd. Signal decoding in the presence of almost-blank subframes (ABS)

Families Citing this family (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9270421B2 (en) * 2002-05-14 2016-02-23 Genghiscomm Holdings, LLC Cooperative subspace demultiplexing in communication networks
US9225471B2 (en) * 2002-05-14 2015-12-29 Genghiscomm Holdings, LLC Cooperative subspace multiplexing in communication networks
US7583619B2 (en) * 2002-12-16 2009-09-01 Nortel Networks Limited Wireless access communications network
US7058367B1 (en) 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US7302278B2 (en) * 2003-07-03 2007-11-27 Rotani, Inc. Method and apparatus for high throughput multiple radio sectorized wireless cell
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
AU2012308632B2 (en) * 2011-09-14 2017-09-28 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US7428268B2 (en) * 2004-12-07 2008-09-23 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
US7787552B2 (en) * 2005-04-14 2010-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Distributed transmit diversity in a wireless communication network
US7603141B2 (en) * 2005-06-02 2009-10-13 Qualcomm, Inc. Multi-antenna station with distributed antennas
US9374746B1 (en) * 2008-07-07 2016-06-21 Odyssey Wireless, Inc. Systems/methods of spatial multiplexing
USRE47633E1 (en) 2005-06-22 2019-10-01 Odyssey Wireless Inc. Systems/methods of conducting a financial transaction using a smartphone
US8670493B2 (en) 2005-06-22 2014-03-11 Eices Research, Inc. Systems and/or methods of increased privacy wireless communications
US7406060B2 (en) * 2005-07-06 2008-07-29 Nortel Networks Limited Coverage improvement in wireless systems with fixed infrastructure based relays
CN101366197B (en) * 2005-09-28 2013-02-06 Lg电子株式会社 Method of cooperatively relaying data in cellular networks for a broadcast multicast services
CN101356748B (en) * 2005-09-28 2013-02-13 Lg电子株式会社 A method of identifying a space-time encoded signal in a wireless communication system
CN100407825C (en) * 2005-10-18 2008-07-30 上海贝尔阿尔卡特股份有限公司 Distributed base station, communication system and signal transmission method using
JP4852984B2 (en) * 2005-11-09 2012-01-11 株式会社日立製作所 Multi-channel transmission system using multiple base stations
KR100896442B1 (en) * 2005-12-23 2009-05-14 삼성전자주식회사 Apparatus and method for other cell interference cancellation in broadband wireless communication system
US7940640B2 (en) 2006-01-20 2011-05-10 Nortel Networks Limited Adaptive orthogonal scheduling for virtual MIMO system
US8781017B2 (en) 2006-02-28 2014-07-15 Intel Corporation Techniques for explicit feedback delay measurement
US7720030B2 (en) * 2006-02-28 2010-05-18 Intel Corporation Techniques for explicit feedback delay measurement
KR100817497B1 (en) * 2006-03-10 2008-03-27 삼성전자주식회사 Apparatus and method for generating simbol for multiple antennas
US7818013B2 (en) * 2006-03-20 2010-10-19 Intel Corporation Downlink channel parameters determination for a multiple-input-multiple-output (MIMO) system
CN102497672B (en) * 2006-06-19 2016-02-10 知识风险控股81有限责任公司 For eliminating inter-cell interference and the system scheduler
US7623589B2 (en) * 2006-07-14 2009-11-24 Intel Corporation Cooperative multiple-access using user-clustering and space-time-frequency coding techniques for higher reliability reception
EP1912370A1 (en) * 2006-10-11 2008-04-16 Thomson Licensing Device comprising a decoder of a multidimensional received signal and corresponding system
US7920511B2 (en) * 2006-10-31 2011-04-05 Samsung Electronics Co., Ltd. Method and system for managing channels in a wireless communication system
US7983366B2 (en) * 2006-12-05 2011-07-19 Intel Corporation Transmission signaling techniques to enhance receiver interference mitigation performance
JP5022017B2 (en) * 2006-12-15 2012-09-12 株式会社日立製作所 OFDM cellular wireless communication method, system and base station
US8670504B2 (en) * 2006-12-19 2014-03-11 Qualcomm Incorporated Beamspace-time coding based on channel quality feedback
US9106296B2 (en) * 2006-12-19 2015-08-11 Qualcomm Incorporated Beam space time coding and transmit diversity
US8009639B2 (en) 2006-12-27 2011-08-30 Wireless Technology Solutions Llc Feedback control in an FDD TDD-CDMA system
EP2098023A1 (en) * 2006-12-27 2009-09-09 Philips Electronics N.V. Wireless station clustering in cooperative communications
US8644363B2 (en) * 2006-12-31 2014-02-04 Intellectual Discovery Co., Ltd. Apparatus and method for estimating channel in MIMO system based OFDM/OFDMA
IL180537D0 (en) * 2007-01-04 2007-12-03 Runcom Technologies Ltd Mimo communication system and method
US8027301B2 (en) 2007-01-24 2011-09-27 The Board Of Trustees Of The Leland Stanford Junior University Cooperative OFDMA and distributed MIMO relaying over dense wireless networks
KR101353058B1 (en) * 2007-02-12 2014-01-17 삼성전자주식회사 Method and Apparatus for Handoff Control by Using Multi-In Multi-Out in WLAN
WO2008105684A1 (en) * 2007-02-28 2008-09-04 El Sanousi Geili Tawfieg Abdal A wimax network incorporating a mimo network to network technique
JP4813402B2 (en) * 2007-02-28 2011-11-09 日本電信電話株式会社 Packet signal demodulation circuit, demodulation method, and receiver
KR100930049B1 (en) * 2007-02-28 2009-12-08 삼성전자주식회사 Beam forming apparatus and method in a wireless communication system using a common antenna sector
AR067299A1 (en) 2007-03-30 2009-10-07 Interdigital Tech Corp Power control subchannels orthogonal wireless communications systems
US7965785B2 (en) 2007-04-04 2011-06-21 Ntt Docomo, Inc. Uplink multiple-input-multiple-output (MIMO) and cooperative MIMO transmissions
US7860465B2 (en) * 2007-05-01 2010-12-28 Research In Motion Limited Apparatus, and associated method, for providing open loop diversity in a radio communication system
US20100135177A1 (en) * 2007-05-10 2010-06-03 Hao Liu Method for scheduling uplink transmission in a wireless communication system and relevant devices
WO2008140268A2 (en) * 2007-05-16 2008-11-20 Posdata Co., Ltd. Apparatus and method for processing collaborative mimo
KR100905279B1 (en) 2007-05-16 2009-06-30 포스데이타 주식회사 Data Transmission Method and Apparatus for Collaborative MIMO
US9647347B2 (en) * 2007-05-21 2017-05-09 Spatial Digital Systems, Inc. Method and apparatus for channel bonding using multiple-beam antennas
US7446694B1 (en) * 2007-05-30 2008-11-04 Motorola, Inc. System for synchronization of multi-sensor data
US8576772B2 (en) * 2007-06-18 2013-11-05 Intel Corporation Cooperative multiple access in wireless networks
US8045497B2 (en) * 2007-07-02 2011-10-25 Samsung Electronics Co., Ltd. Method of allocating wireless resource for space division multiple access communication and wireless resource allocation system of enabling the method
JP2009049982A (en) * 2007-07-25 2009-03-05 Buffalo Inc Multiple input/output communication device, antenna device used in the same, and communications system using the device
KR101365565B1 (en) * 2007-08-08 2014-02-21 포항공과대학교 산학협력단 Space frequency block code signal processing system
CN101370241B (en) * 2007-08-19 2015-01-14 上海贝尔股份有限公司 Method and device for eliminating interference between received signal of multiple mobile stations
CN101373998B (en) * 2007-08-20 2012-07-25 上海贝尔阿尔卡特股份有限公司 Low information interactive multi-base station collaboration MIMO as well as scheduling method and apparatus thereof
KR101386188B1 (en) * 2007-09-21 2014-04-18 삼성전자주식회사 Method of communicating with user cooperation and terminal device of enabling the method
US8331308B1 (en) * 2007-11-09 2012-12-11 Research In Motion Limited Systems and methods for network MIMO
US8228809B1 (en) 2007-12-21 2012-07-24 Adaptix, Inc. Intelligent mode switching in communication networks
JP5409388B2 (en) * 2007-12-25 2014-02-05 パナソニック株式会社 Radio communication apparatus, radio communication base station apparatus, and radio communication mobile station apparatus
US20100284359A1 (en) * 2007-12-28 2010-11-11 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving downlink data in wireless communication network
CN101472241B (en) 2007-12-29 2010-10-06 中国科学院计算技术研究所 Method for collaborated receiving in honeycomb network
KR100995045B1 (en) * 2007-12-31 2010-11-19 엘지전자 주식회사 A method for receiving a precoded signal in collaborative multiple input multiple output communication system
KR100991794B1 (en) * 2007-12-31 2010-11-03 엘지전자 주식회사 Method For Reducing Inter-Cell Interference
KR101207570B1 (en) * 2008-01-16 2012-12-03 삼성전자주식회사 Method of mitigating inter-cell interference
KR101422029B1 (en) * 2008-01-23 2014-07-23 엘지전자 주식회사 A method for receiving a signal according to collaborative MIMO (Multiple Input Multiple Output) scheme in a mobile communication system
KR101522423B1 (en) * 2008-02-14 2015-05-21 삼성전자주식회사 Method and apparatus for down link data transmission/reception in wireless communication networks
JP5124306B2 (en) * 2008-02-18 2013-01-23 株式会社Kddi研究所 Radio base station control apparatus and radio base station control method
EP2246995B1 (en) * 2008-02-20 2012-12-26 Nippon Telegraph and Telephone Corporation Directionality control system, controller, cooperative station device, receiving station device, and method of controlling directionality
JP5086849B2 (en) * 2008-03-12 2012-11-28 株式会社Kddi研究所 Base station control apparatus and base station control method
JP5147476B2 (en) 2008-03-17 2013-02-20 株式会社日立製作所 Wireless communication system, base station, and data transmission timing control method
JP5111182B2 (en) * 2008-03-19 2012-12-26 株式会社Kddi研究所 Radio base station control apparatus and radio base station control method
JP5284459B2 (en) * 2008-03-28 2013-09-11 エルジー エレクトロニクス インコーポレイティド Inter-cell interference avoidance method in multi-cell environment
CN101557249B (en) * 2008-04-07 2012-11-07 上海贝尔阿尔卡特股份有限公司 Method and device for controlling cooperative transmission of downlink signal in wireless communication system
KR101452493B1 (en) * 2008-04-18 2014-10-21 엘지전자 주식회사 Method of transmitting channel information
KR101486378B1 (en) * 2008-05-07 2015-01-26 엘지전자 주식회사 Methods of transmitting and receciving data in collative multiple input multiple output antenna mobile communication system
US9276723B1 (en) * 2008-05-12 2016-03-01 Clearwire Ip Holdings Llc Systems and methods of transmission of user data packets
WO2010143780A2 (en) * 2009-06-10 2010-12-16 한국전자통신연구원 Multi-cell cooperative communication system and terminal device
KR101561704B1 (en) 2008-06-10 2015-10-20 한국전자통신연구원 Multi-cell cooperative communication system and terminal device
CN101919182B (en) 2008-06-20 2013-12-04 上海贝尔股份有限公司 Method and apparatus for collaboratively transmitting signals with other base stations in base station
KR101504506B1 (en) 2008-06-27 2015-03-20 삼성전자주식회사 Method for cooperative multi-antenna communication
CN101621317B (en) 2008-06-30 2012-08-22 上海贝尔阿尔卡特股份有限公司 Method and device for allocating uplink control signal resource in multi-base station network
KR101241910B1 (en) * 2008-07-07 2013-03-12 엘지전자 주식회사 A collaborative mimo using a sounding channel in a multi-cell environment
KR101527009B1 (en) 2008-07-11 2015-06-18 엘지전자 주식회사 A method for multi-cell mimo under multi cell environment
GB0813417D0 (en) * 2008-07-22 2008-08-27 M4S Nv Apparatus and method for reducing self-interference in a radio system
US8942165B2 (en) * 2008-08-01 2015-01-27 Qualcomm Incorporated System and method for distributed multiple-input multiple-output (MIMO) in a wireless communication system
US8559351B2 (en) 2008-08-01 2013-10-15 Qualcomm Incorporated Dedicated reference signal design for network MIMO
US8340605B2 (en) * 2008-08-06 2012-12-25 Qualcomm Incorporated Coordinated transmissions between cells of a base station in a wireless communications system
US9755705B2 (en) * 2008-08-07 2017-09-05 Qualcomm Incorporated Method and apparatus for supporting multi-user and single-user MIMO in a wireless communication system
CN101651880B (en) * 2008-08-11 2013-12-25 株式会社Ntt都科摩 Multi-cell coordination sending method
US9294160B2 (en) * 2008-08-11 2016-03-22 Qualcomm Incorporated Method and apparatus for supporting distributed MIMO in a wireless communication system
WO2010018958A2 (en) * 2008-08-11 2010-02-18 Electronics And Telecommunications Research Institute Precoding matrix design method for multiple base station using mimo technique
US8358631B2 (en) * 2008-09-04 2013-01-22 Telefonaktiebolaget L M Ericsson (Publ) Beamforming systems and method
KR101206116B1 (en) * 2008-09-10 2012-11-28 한국전자통신연구원 Transmit diversity scheme for multiple cell cooperative communications
IL194097A (en) * 2008-09-15 2012-05-31 Mariana Goldhamer Ofdma-based operation of a wireless subscriber terminal in a plurality of cells
US9397866B2 (en) * 2008-09-15 2016-07-19 Alcatel Lucent Distributed multi-cell successive interference cancellation for uplink cellular networks
JP5133831B2 (en) 2008-09-25 2013-01-30 京セラ株式会社 Wireless communication system, transmission system, wireless terminal, and wireless communication method
MX2011003100A (en) * 2008-09-26 2011-04-19 Ericsson Telefon Ab L M Techniques for uplink cooperation of access nodes.
US20100106797A1 (en) * 2008-10-23 2010-04-29 Qualcomm Incorporated Methods and apparatus for hybrid broadcast and peer-to-peer network using cooperative mimo
US8417252B2 (en) * 2008-10-24 2013-04-09 Qualcomm Incorporated Method and apparatus for interference reporting in a N-MIMO communication system
CN103281168B (en) * 2008-10-28 2016-06-29 富士通株式会社 Wireless communication system and method, radio communication terminal device and radio base station apparatus
AU2011211383B2 (en) * 2008-10-28 2012-12-06 Fujitsu Limited Wireless base station device using coordinated HARQ communication system, wireless terminal device, wireless communication system, and wireless communication method
EP2346272A4 (en) 2008-10-28 2013-12-11 Fujitsu Ltd Wireless base station device using cooperative harq communication method, wireless terminal device, wireless communication system, and wireless communication method
KR101484495B1 (en) * 2008-10-30 2015-01-20 알까뗄 루슨트 Cooperative type conversion technique of multi-sector cooperative communication
EP2182653A1 (en) * 2008-10-31 2010-05-05 Nokia Siemens Networks GmbH & Co. KG Method of transmitting data in a radio network, radio network and receiving station.
WO2010048745A1 (en) * 2008-10-31 2010-05-06 上海贝尔股份有限公司 Mimo-based multiple base station collaborative communication method and apparatus
DE602008003035D1 (en) * 2008-11-05 2010-11-25 Alcatel Lucent Synchronization method between base stations, radio communication system and base station thereof
US8861480B2 (en) * 2008-11-06 2014-10-14 Qualcomm Incorporated Methods and systems for inter-rat handover in multi-mode mobile station
US8385904B2 (en) * 2008-11-18 2013-02-26 At&T Intellectual Property Ii, L.P. Space time coding where space diversity derives from use of multiple base stations
CN103179075B (en) * 2008-11-20 2017-06-27 华为技术有限公司 The method of confirming resource mapping in cooperative multicast transmission, the network equipment and system
KR101002069B1 (en) 2008-12-09 2010-12-17 전자부품연구원 OFDM based cooporative communication system between buildings in U-City
US8665806B2 (en) * 2008-12-09 2014-03-04 Motorola Mobility Llc Passive coordination in a closed loop multiple input multiple out put wireless communication system
KR101013652B1 (en) * 2008-12-30 2011-02-10 주식회사 세아네트웍스 Method for transmitting signal in wireless communication system
KR101540482B1 (en) * 2009-01-08 2015-08-03 엘지전자 주식회사 Method of cooperatve transmission
KR101478843B1 (en) 2009-01-22 2015-01-05 엘지전자 주식회사 Method of transmitting data in coordinated multi-cell wireless communication system
US8396024B2 (en) * 2009-01-27 2013-03-12 Motorola Mobility Llc Cooperative communications using multiple access points to improve data integrity
WO2010095824A2 (en) * 2009-02-20 2010-08-26 (주)엘지전자 Method and apparatus for data communication through a coordinated multi-point transmission
CN101820405B (en) 2009-02-27 2013-11-06 富士通株式会社 Multiple input and multiple output cooperative communication method as well as precoding device and wireless communication system
EP2405591B1 (en) * 2009-03-02 2019-05-08 Panasonic Intellectual Property Corporation of America Radio transmitting apparatus, radio receiving apparatus and preamble sequence allocating method
EP2228920B1 (en) 2009-03-12 2013-05-15 Alcatel Lucent Antenna synchronization for coherent network MIMO
US20120002741A1 (en) * 2009-03-12 2012-01-05 He Wang Method for performing content synchronization for downlink service data in collaborative mimo and apparatus thereof
CN101841496B (en) 2009-03-17 2013-03-13 上海贝尔股份有限公司 Multi-cell cooperative communication method and device in multi-input multi-output system
KR101293070B1 (en) * 2009-03-25 2013-08-05 알까뗄 루슨트 Method and equipment for controlling co-channel interference in wireless communication system
EP2242187B1 (en) * 2009-04-14 2015-10-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and device for data processing in a communication network
US9160426B2 (en) * 2009-04-24 2015-10-13 Electronics And Telecommunications Research Institute Cooperative communication method in cellular wireless communication system and terminal for performing the method
EP2246991B1 (en) * 2009-04-27 2013-11-06 Alcatel Lucent Uplink communication in a wireless communication network
KR101296707B1 (en) 2009-04-28 2013-08-20 알까뗄 루슨트 Mobile communication method, base station and system adopting a configuration of multiple-layer virtual antennas
CN101877918B (en) 2009-04-30 2014-11-12 清华大学 Equipment and method for dynamic clustering of base station in mobile communication
US8675538B2 (en) * 2009-04-30 2014-03-18 Empire Technology Development Llc Wireless one-to-one communication using multicast
CN101877609B (en) 2009-04-30 2013-06-12 富士通株式会社 Communication device, base station and multipoint cooperative communication method
JP5315130B2 (en) 2009-05-27 2013-10-16 京セラ株式会社 Wireless communication system, wireless terminal, and wireless communication method
US8676221B2 (en) * 2009-06-11 2014-03-18 Qualcomm Incorporated Multiband antenna for cooperative MIMO
CA2766310C (en) 2009-06-23 2018-01-30 Koninklijke Philips Electronics N.V. Antenna configuration for co-operative beamforming
KR20100138263A (en) * 2009-06-24 2010-12-31 주식회사 팬택 Method for coordinated multi-point transmission/reception using adaptive cyclic delay diversity, system-side apparatus and receiving apparatus using the same, and method for determining coordinated multiple transmission points set using the same
US8675755B1 (en) 2009-07-08 2014-03-18 Marvell International Ltd. Method and apparatus for jointly decoding independently encoded signals
KR101576908B1 (en) 2009-07-15 2015-12-11 삼성전자주식회사 System and method for cooperative inter-cell interference control
KR101661685B1 (en) * 2009-07-27 2016-10-04 삼성전자주식회사 Method and appratus for data transmission of joint space division multiple access among collaborative base transceiver stations in downlink multiple-input mutiple-output wireless communication networks
CN102474737A (en) * 2009-07-29 2012-05-23 京瓷株式会社 Radio base station
KR101590198B1 (en) 2009-07-30 2016-02-15 엘지전자 주식회사 Method of multi cell cooperation in wireless communication system
KR101056276B1 (en) 2009-08-18 2011-08-11 성균관대학교산학협력단 Iterative IC Removal Method for Cooperative STBC-OPDM Systems
KR101663322B1 (en) * 2009-08-25 2016-10-07 한국전자통신연구원 Syncronization control method for data transmission/receipt and station for data transmission/receipt syncronization
CN101997650B (en) * 2009-08-28 2014-07-30 华为技术有限公司 Transmission method, device and system of multi-antenna system data signals
CN102025453B (en) * 2009-09-14 2015-01-21 华为技术有限公司 Space division multiplexing-based encoding method, device and system in cooperative multiple input multiple output (MIMO) communication
US8885746B2 (en) * 2009-10-08 2014-11-11 Koninklijke Philips N.V. Method for operating a radio station in a cellular communication network
US20120269146A1 (en) * 2009-11-02 2012-10-25 Kari Pekka Pajukoski Uplink Channel Sounding
KR101555836B1 (en) * 2009-11-06 2015-09-25 삼성전자주식회사 System for transmitting data in multi-cell
US9184877B1 (en) * 2009-11-09 2015-11-10 Marvell International Ltd. Method and apparatus for decoding independently encoded signals
FR2955221A1 (en) * 2010-01-13 2011-07-15 France Telecom Method for transmitting a digital signal for a distributed system, program product, and corresponding relay device
WO2011114079A1 (en) * 2010-03-19 2011-09-22 Fujitsu Limited Cell selection for multi-cell mimo transmission
US8233554B2 (en) 2010-03-29 2012-07-31 Eices Research, Inc. Increased capacity communications for OFDM-based wireless communications systems/methods/devices
CN101834649B (en) * 2010-04-19 2013-03-06 南京邮电大学 Random data joint detection method for multi-antenna cooperative communication system
EP2566266B1 (en) * 2010-04-27 2018-07-11 Fujitsu Limited Wireless communication method, wireless base station, mobile terminal, and wireless communication system
JP5521841B2 (en) * 2010-07-12 2014-06-18 株式会社リコー wireless access system
JP5741977B2 (en) * 2010-10-07 2015-07-01 日本電気株式会社 Scheduling method and system for multi-point coordinated transmission / reception
JP5765758B2 (en) * 2010-10-20 2015-08-19 国立大学法人電気通信大学 Communication device, communication method, and communication system
KR101102205B1 (en) * 2010-10-29 2012-01-05 세종대학교산학협력단 Method of base station cooperative transmission for interference reduction in ofdm based and system thereof
WO2012065622A1 (en) * 2010-11-15 2012-05-24 Telefonaktiebolaget L M Ericsson (Publ) Antenna architecture for maintaining beam shape in a reconfigurable antenna
EP2469721B1 (en) * 2010-12-22 2014-04-23 NTT DoCoMo, Inc. Apparatus and method for controlling a node of a wireless communication system
WO2012139101A1 (en) * 2011-04-07 2012-10-11 Blue Danube Labs, Inc. Techniques for achieving high average spectrum efficiency in a wireless system
US8644372B1 (en) 2011-05-09 2014-02-04 Marvell International Ltd. Method and apparatus for detecting modulation symbols in a communication system
CN102263582B (en) * 2011-07-21 2017-09-26 南京中兴软件有限责任公司 Cooperative diversity system beamforming method and device
JP5708345B2 (en) * 2011-07-26 2015-04-30 富士通株式会社 Wireless device and communication control method
KR101839808B1 (en) * 2011-08-24 2018-04-26 삼성전자주식회사 Mobile Terminal and Communication Method, Base Station Control Apparatus and Method, and Multi-Point Transmission System and Method using the Same
EP2757858A4 (en) * 2011-09-16 2016-04-13 Hitachi Ltd Base-station device and communication method
CN102347820B (en) * 2011-09-28 2014-06-11 东南大学 Joint coding and decoding method of multi-cell cooperation wireless communication system
US9450659B2 (en) * 2011-11-04 2016-09-20 Alcatel Lucent Method and apparatus to generate virtual sector wide static beams using phase shift transmit diversity
US20130331136A1 (en) * 2012-06-07 2013-12-12 Kai Yang Method And Apparatus For Coordinated Beamforming
CN102868652A (en) * 2012-07-30 2013-01-09 华南理工大学 Chaos coordinating communication method based on UKF (unscented Kalman filter)
US9337973B2 (en) 2012-09-11 2016-05-10 Industrial Technology Research Institute Method of cooperative MIMO wireless communication and base station using the same
CN103780290B (en) * 2012-10-23 2018-11-06 华为技术有限公司 A kind of joint data-signal receiving/transmission method and equipment
US20140169409A1 (en) * 2012-12-14 2014-06-19 Futurewei Technologies, Inc. Systems and Methods for Open-loop Spatial Multiplexing Schemes for Radio Access Virtualization
KR20140101557A (en) * 2013-02-12 2014-08-20 삼성전자주식회사 Cooperative communication system, transmitter, relay and receiver based on network compress-and-forward
US9590744B2 (en) 2013-05-06 2017-03-07 Alcatel Lucent Method and apparatus for beamforming
KR20140148270A (en) 2013-06-21 2014-12-31 삼성전자주식회사 A method and apparatus for energy efficient signal transmission in massive multi-antenna wireless communication systems
JP2015073260A (en) 2013-09-04 2015-04-16 富士通株式会社 Radio communication system and radio communication method
US10420118B2 (en) * 2013-09-27 2019-09-17 Qualcomm Incorporated Multiflow with antenna selection
CN103986509B (en) * 2014-05-30 2017-10-13 西安电子科技大学 A kind of cooperative multi-point transmission method neutralized based on interference alignment and interference
US9716572B2 (en) 2014-10-30 2017-07-25 At&T Intellectual Property I, L.P. MIMO based adaptive beamforming over OFDMA architecture
US10305584B2 (en) * 2015-10-20 2019-05-28 Samsung Electronics Co., Ltd. Apparatus and method for performing beamforming operation in communication system supporting frequency division-multiple input multiple output scheme
WO2018226223A1 (en) * 2017-06-07 2018-12-13 Nokia Technologies Oy Reducing interference between concurrent reference signals in multi-user muliple-in-multiple-out (mu-mimo) systems

Citations (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078821A (en) * 1998-02-25 2000-06-20 Motorola, Inc. Cordless radiotelephone system having an extendable geographic coverage area and method therefor
US20020102950A1 (en) * 2001-01-26 2002-08-01 Gore Dhananjay A. Method and apparatus for selection and use of optimal antennas in wireless systems
US20020181509A1 (en) * 2001-04-24 2002-12-05 Mody Apurva N. Time and frequency synchronization in multi-input, multi-output (MIMO) systems
US20020181390A1 (en) * 2001-04-24 2002-12-05 Mody Apurva N. Estimating channel parameters in multi-input, multi-output (MIMO) systems
US20030086366A1 (en) * 2001-03-06 2003-05-08 Branlund Dale A. Adaptive communications methods for multiple user packet radio wireless networks
US20030104808A1 (en) * 2001-12-05 2003-06-05 Foschini Gerard J. Wireless communication system with interference compensation
US20030125040A1 (en) * 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US20030190897A1 (en) * 2002-04-04 2003-10-09 The National University Of Singapore Method for selecting switched orthogonal beams for downlink diversity transmission
US6662024B2 (en) * 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US20040001429A1 (en) * 2002-06-27 2004-01-01 Jianglei Ma Dual-mode shared OFDM methods/transmitters, receivers and systems
US20040005897A1 (en) * 2001-06-21 2004-01-08 Naohito Tomoe Wireless communication base station system, wireless communication method, wireless communication program, and computer-readable recorded medium on which wireless communication program is recorded
US20040082366A1 (en) * 2001-04-23 2004-04-29 Nokia Corporation Method and system for implementing a signalling connection in a distributed radio access network
US20040082311A1 (en) * 2002-10-28 2004-04-29 Shiu Da-Shan Utilizing speed and position information to select an operational mode in a wireless communication system
US20040120274A1 (en) * 2002-04-25 2004-06-24 Frederik Petre CDMA transceiver techniques for wireless communications
US20040127223A1 (en) * 2002-09-30 2004-07-01 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources of a virtual cell in an OFDM mobile communication system
US20040162080A1 (en) * 2001-01-03 2004-08-19 Zoran Kostic Combined simulcasting and dedicated services in a wireless communication system
US20040192204A1 (en) * 2003-03-31 2004-09-30 Shalini Periyalwar Multi-hop intelligent relaying method and apparatus for use in a frequency division duplexing based wireless access network
US20050047517A1 (en) * 2003-09-03 2005-03-03 Georgios Giannakis B. Adaptive modulation for multi-antenna transmissions with partial channel knowledge
US20050070287A1 (en) * 2003-09-26 2005-03-31 Interdigital Technology Corporation Method for soft/softer handover for wireless communication systems
US20050141644A1 (en) * 2003-12-31 2005-06-30 Sadowsky John S. Symbol de-mapping methods in multiple-input multiple-output systems
US20050181799A1 (en) * 2003-04-23 2005-08-18 Rajiv Laroia Methods and apparatus of enhancing performance in wireless communication systems
US20050250506A1 (en) * 2004-05-04 2005-11-10 Beale Martin W Signalling MIMO allocations
US6985434B2 (en) * 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US6996056B2 (en) * 2001-05-31 2006-02-07 Nortel Networks Limited Method and apparatus for orthogonal code management in CDMA systems using smart antenna technology
US20060056530A1 (en) * 2004-09-10 2006-03-16 Seigo Nakao Receiving method and apparatus, and communication system using the same
US20060083195A1 (en) * 2004-09-07 2006-04-20 Samsung Electronics Co., Ltd. MIMO communication system using an adaptive transmission mode switching technique
US7058367B1 (en) * 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US20060120477A1 (en) * 2004-12-07 2006-06-08 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
US7126996B2 (en) * 2001-12-28 2006-10-24 Motorola, Inc. Adaptive transmission method
US20070010196A1 (en) * 2005-07-06 2007-01-11 Nortel Networks Limited Coverage improvement in wireless systems with fixed infrastructure based relays
US20070049218A1 (en) * 2005-08-30 2007-03-01 Qualcomm Incorporated Precoding and SDMA support
US7224977B2 (en) * 2003-07-31 2007-05-29 Siemens Mobile Communications S.P.A. Common radio resource management method in a multi-RAT cellular telephone network
US20080046949A1 (en) * 2006-07-25 2008-02-21 Adaptix, Inc. Spectrum sharing between broadcasting and multiple-access networks
US20080075033A1 (en) * 2000-11-22 2008-03-27 Shattil Steve J Cooperative beam-forming in wireless networks
US7352718B1 (en) * 2003-07-22 2008-04-01 Cisco Technology, Inc. Spatial division multiple access for wireless networks
US20080159203A1 (en) * 2006-12-29 2008-07-03 Choi Yang-Seok Wireless communications mode switching apparatus and methods
US20080175189A1 (en) * 2007-01-21 2008-07-24 Broadcom Corporation Transmit scheme adaptation for wireless data transmissions
US7460466B2 (en) * 2002-12-13 2008-12-02 Electronics And Telecommunications Research Institute Apparatus and method for signal constitution for downlink of OFDMA-based cellular system
US20090016290A1 (en) * 2007-07-06 2009-01-15 Zte (Usa) Inc. Resource Allocation in Wireless Multi-Hop Relay Networks
US7542504B2 (en) * 2002-10-26 2009-06-02 Electronics And Telecommunications Research Institute Frequency hopping ofdma method using symbols of comb pattern
US7646752B1 (en) * 2003-12-31 2010-01-12 Nortel Networks Limited Multi-hop wireless backhaul network and method
US20100119004A1 (en) * 2007-01-04 2010-05-13 Zion Hadad Mimo communication system and method for diversity mode selection
US7974571B2 (en) * 2007-01-09 2011-07-05 Viasat, Inc. Multi-antenna satellite system with wireless interface to vehicle
US20120130277A1 (en) * 2009-07-16 2012-05-24 Howard Shapland Universal adaptor
US8228809B1 (en) * 2007-12-21 2012-07-24 Adaptix, Inc. Intelligent mode switching in communication networks
US8396153B1 (en) * 2004-12-07 2013-03-12 Adaptix, Inc. Cooperative MIMO in multicell wireless networks

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US662024A (en) * 1900-01-23 1900-11-20 Valentine J A Rey Carbureter.
US6166650A (en) * 1991-05-29 2000-12-26 Microchip Technology, Inc. Secure self learning system
JP3113637B2 (en) * 1998-06-24 2000-12-04 三洋電機株式会社 Antenna directivity control method and apparatus
DE19909779A1 (en) 1999-03-05 2000-09-14 Siemens Ag A method for resource allocation in a radio communications system
EP1045604A3 (en) * 1999-04-16 2001-04-04 Lucent Technologies Inc. System for providing guaranteed wireless communication service to priority subscribers
US6393276B1 (en) 2000-01-12 2002-05-21 Telefonaktiebolaget Lm Ericsson Mobile station assisted forward link open loop power and rate control in a CDMA system
US7072315B1 (en) * 2000-10-10 2006-07-04 Adaptix, Inc. Medium access control for orthogonal frequency-division multiple-access (OFDMA) cellular networks
US20020193146A1 (en) * 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
US7042858B1 (en) * 2002-03-22 2006-05-09 Jianglei Ma Soft handoff for OFDM
JP2004040232A (en) * 2002-06-28 2004-02-05 Matsushita Electric Ind Co Ltd Wireless communication system, wireless transmission apparatus, and wireless reception apparatus
JP2004064108A (en) * 2002-07-24 2004-02-26 Natl Univ Of Singapore Wireless communication apparatus and method
JP4097129B2 (en) * 2002-08-08 2008-06-11 三菱電機株式会社 Wireless transmission device and wireless device
JP4602641B2 (en) * 2002-10-18 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ Signal transmission system, signal transmission method and transmitter
US7782970B2 (en) * 2003-02-27 2010-08-24 Intel Corporation Apparatus and associated methods to introduce diversity in a multicarrier communication channel
CN101002401B (en) * 2004-08-11 2011-11-09 松下电器产业株式会社 Communication system, base station control device, and base station device
JP4819053B2 (en) * 2004-08-17 2011-11-16 エルジー エレクトロニクス インコーポレイティド Packet transmission method using multiple antennas in wireless communication system
KR100938091B1 (en) * 2004-10-13 2010-01-21 삼성전자주식회사 Apparatus and method for providing efficient transmission using block coding and cyclic delay diversities in the OFDM based cellular systems

Patent Citations (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078821A (en) * 1998-02-25 2000-06-20 Motorola, Inc. Cordless radiotelephone system having an extendable geographic coverage area and method therefor
US6985434B2 (en) * 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US20080075033A1 (en) * 2000-11-22 2008-03-27 Shattil Steve J Cooperative beam-forming in wireless networks
US20040162080A1 (en) * 2001-01-03 2004-08-19 Zoran Kostic Combined simulcasting and dedicated services in a wireless communication system
US20020102950A1 (en) * 2001-01-26 2002-08-01 Gore Dhananjay A. Method and apparatus for selection and use of optimal antennas in wireless systems
US20030086366A1 (en) * 2001-03-06 2003-05-08 Branlund Dale A. Adaptive communications methods for multiple user packet radio wireless networks
US20040082366A1 (en) * 2001-04-23 2004-04-29 Nokia Corporation Method and system for implementing a signalling connection in a distributed radio access network
US20020181509A1 (en) * 2001-04-24 2002-12-05 Mody Apurva N. Time and frequency synchronization in multi-input, multi-output (MIMO) systems
US20020181390A1 (en) * 2001-04-24 2002-12-05 Mody Apurva N. Estimating channel parameters in multi-input, multi-output (MIMO) systems
US6662024B2 (en) * 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US6996056B2 (en) * 2001-05-31 2006-02-07 Nortel Networks Limited Method and apparatus for orthogonal code management in CDMA systems using smart antenna technology
US20040005897A1 (en) * 2001-06-21 2004-01-08 Naohito Tomoe Wireless communication base station system, wireless communication method, wireless communication program, and computer-readable recorded medium on which wireless communication program is recorded
US20030125040A1 (en) * 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US20030104808A1 (en) * 2001-12-05 2003-06-05 Foschini Gerard J. Wireless communication system with interference compensation
US7126996B2 (en) * 2001-12-28 2006-10-24 Motorola, Inc. Adaptive transmission method
US20030190897A1 (en) * 2002-04-04 2003-10-09 The National University Of Singapore Method for selecting switched orthogonal beams for downlink diversity transmission
US20040120274A1 (en) * 2002-04-25 2004-06-24 Frederik Petre CDMA transceiver techniques for wireless communications
US20040001429A1 (en) * 2002-06-27 2004-01-01 Jianglei Ma Dual-mode shared OFDM methods/transmitters, receivers and systems
US20040127223A1 (en) * 2002-09-30 2004-07-01 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources of a virtual cell in an OFDM mobile communication system
US7542504B2 (en) * 2002-10-26 2009-06-02 Electronics And Telecommunications Research Institute Frequency hopping ofdma method using symbols of comb pattern
US20040082311A1 (en) * 2002-10-28 2004-04-29 Shiu Da-Shan Utilizing speed and position information to select an operational mode in a wireless communication system
US7460466B2 (en) * 2002-12-13 2008-12-02 Electronics And Telecommunications Research Institute Apparatus and method for signal constitution for downlink of OFDMA-based cellular system
US7058367B1 (en) * 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US20040192204A1 (en) * 2003-03-31 2004-09-30 Shalini Periyalwar Multi-hop intelligent relaying method and apparatus for use in a frequency division duplexing based wireless access network
US20050181799A1 (en) * 2003-04-23 2005-08-18 Rajiv Laroia Methods and apparatus of enhancing performance in wireless communication systems
US7352718B1 (en) * 2003-07-22 2008-04-01 Cisco Technology, Inc. Spatial division multiple access for wireless networks
US7224977B2 (en) * 2003-07-31 2007-05-29 Siemens Mobile Communications S.P.A. Common radio resource management method in a multi-RAT cellular telephone network
US20050047517A1 (en) * 2003-09-03 2005-03-03 Georgios Giannakis B. Adaptive modulation for multi-antenna transmissions with partial channel knowledge
US20050070287A1 (en) * 2003-09-26 2005-03-31 Interdigital Technology Corporation Method for soft/softer handover for wireless communication systems
US7646752B1 (en) * 2003-12-31 2010-01-12 Nortel Networks Limited Multi-hop wireless backhaul network and method
US20050141644A1 (en) * 2003-12-31 2005-06-30 Sadowsky John S. Symbol de-mapping methods in multiple-input multiple-output systems
US20050250506A1 (en) * 2004-05-04 2005-11-10 Beale Martin W Signalling MIMO allocations
US20060083195A1 (en) * 2004-09-07 2006-04-20 Samsung Electronics Co., Ltd. MIMO communication system using an adaptive transmission mode switching technique
US20060056530A1 (en) * 2004-09-10 2006-03-16 Seigo Nakao Receiving method and apparatus, and communication system using the same
US20060120477A1 (en) * 2004-12-07 2006-06-08 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
US8396153B1 (en) * 2004-12-07 2013-03-12 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
US20130195000A1 (en) * 2004-12-07 2013-08-01 Adaptix, Inc. Cooperative mimo in multicell wireless networks
US7529311B2 (en) * 2004-12-07 2009-05-05 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
US7428268B2 (en) * 2004-12-07 2008-09-23 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
US20070010196A1 (en) * 2005-07-06 2007-01-11 Nortel Networks Limited Coverage improvement in wireless systems with fixed infrastructure based relays
US20070049218A1 (en) * 2005-08-30 2007-03-01 Qualcomm Incorporated Precoding and SDMA support
US20080046949A1 (en) * 2006-07-25 2008-02-21 Adaptix, Inc. Spectrum sharing between broadcasting and multiple-access networks
US20080159203A1 (en) * 2006-12-29 2008-07-03 Choi Yang-Seok Wireless communications mode switching apparatus and methods
US20100119004A1 (en) * 2007-01-04 2010-05-13 Zion Hadad Mimo communication system and method for diversity mode selection
US7974571B2 (en) * 2007-01-09 2011-07-05 Viasat, Inc. Multi-antenna satellite system with wireless interface to vehicle
US20080175189A1 (en) * 2007-01-21 2008-07-24 Broadcom Corporation Transmit scheme adaptation for wireless data transmissions
US20090016290A1 (en) * 2007-07-06 2009-01-15 Zte (Usa) Inc. Resource Allocation in Wireless Multi-Hop Relay Networks
US8228809B1 (en) * 2007-12-21 2012-07-24 Adaptix, Inc. Intelligent mode switching in communication networks
US20120275387A1 (en) * 2007-12-21 2012-11-01 Adaptix, Inc. Intelligent Mode Switching In Communication Networks
US20120130277A1 (en) * 2009-07-16 2012-05-24 Howard Shapland Universal adaptor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Papen, Wolfgang, "Improved Soft Handoff and Macro-Diversity for Mobile Radio", June 1995, IEEE International Conference on Communications, vol. 3, pp. 1828-33. *
Tang et al., "Coded Transmit Macrodiversity: Block Space-Time Codes Over Distributed Antennas", Spring 2001, Vehicular Technology Conference, Vol. 2, pp. 1435-38. *
Weiss, Ulrich, "Designing Macroscopic Diversity Cellular Systems", July 1999, IEEE 49th Vehicular Technology Conference, vol. 3, pp. 2054-58. *
Zehavi, Ephraim, "8-PSK Trellis Codes for a Rayleigh Channel", May 1992, IEEE Transactions on Communications, Vol. 40, Issue 5, pp. 873-84. *

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8396153B1 (en) 2004-12-07 2013-03-12 Adaptix, Inc. Cooperative MIMO in multicell wireless networks
US20100329222A1 (en) * 2005-11-01 2010-12-30 Hallbjoerner Paul Mimo based wireless telecommunications method and system
US20080049658A1 (en) * 2006-08-28 2008-02-28 Ntt Docomo, Inc. Relay node and relay method
US7852798B2 (en) * 2006-08-28 2010-12-14 Ntt Docomo, Inc. Relay node and relay method
US20090046794A1 (en) * 2007-07-25 2009-02-19 Buffalo Inc. Multi-input multi-output communication device, antenna device and communication system
US20110002408A1 (en) * 2008-02-29 2011-01-06 France Telecom Method of transmitting multi-carrier signals in a multi-antenna system
US8503566B2 (en) * 2008-02-29 2013-08-06 France Telecom Method of transmitting multi-carrier signals in a multi-antenna system
US20090303932A1 (en) * 2008-06-09 2009-12-10 Qualcomm Incorporated Methods and apparatus for facilitating network-based control of a forwarding policy used by a mobile node
US8570941B2 (en) * 2008-06-09 2013-10-29 Qualcomm Incorporated Methods and apparatus for facilitating network-based control of a forwarding policy used by a mobile node
US20110228748A1 (en) * 2008-11-23 2011-09-22 Seung Hee Han Method and apparatus for transmitting data in radio communication system
US8837393B2 (en) * 2008-11-23 2014-09-16 Lg Electronics Inc. Method and apparatus for transmitting data in radio communication system
US8711970B2 (en) 2009-01-05 2014-04-29 Marvell World Trade Ltd. Precoding codebooks for MIMO communication systems
US8670499B2 (en) 2009-01-06 2014-03-11 Marvell World Trade Ltd. Efficient MIMO transmission schemes
US20110096704A1 (en) * 2009-02-27 2011-04-28 Adoram Erell Signaling of dedicated reference signal (drs) precoding granularity
US8699633B2 (en) 2009-02-27 2014-04-15 Marvell World Trade Ltd. Systems and methods for communication using dedicated reference signal (DRS)
US8699528B2 (en) 2009-02-27 2014-04-15 Marvell World Trade Ltd. Systems and methods for communication using dedicated reference signal (DRS)
US20100232336A1 (en) * 2009-03-13 2010-09-16 Sharp Laboratories Of America, Inc. Systems and methods for selecting antennas for coordinated multipoint transmission
US20100232553A1 (en) * 2009-03-16 2010-09-16 Krishna Srikanth Gomadam Multi - user multiple input multiple output (mu - mimo) receiver
US8599976B2 (en) * 2009-03-16 2013-12-03 Marvell World Trade Ltd. Multi-user multiple input multiple output (MU-MIMO) receiver
US9391687B2 (en) * 2009-04-02 2016-07-12 Samsung Electronics Co., Ltd. Apparatus and method for minimizing errors by a cell edge user in a multi-cell communication system
US20120020425A1 (en) * 2009-04-02 2012-01-26 Samsung Electronics Co., Ltd. Apparatus and method for minimizing errors by a cell edge user in a multi-cell communication system
US20100267341A1 (en) * 2009-04-21 2010-10-21 Itsik Bergel Multi-Point Opportunistic Beamforming with Selective Beam Attenuation
US8543063B2 (en) 2009-04-21 2013-09-24 Marvell World Trade Ltd. Multi-point opportunistic beamforming with selective beam attenuation
US8818447B2 (en) 2009-05-27 2014-08-26 Kyocera Corporation Radio communication system, radio terminal, and radio communication method
US9191085B2 (en) 2009-05-27 2015-11-17 Kyocera Corporation Radio communication system, radio terminal, and radio communication method
US20100304773A1 (en) * 2009-05-27 2010-12-02 Ramprashad Sean A Method for selective antenna activation and per antenna or antenna group power assignments in cooperative signaling wireless mimo systems
US8675794B1 (en) 2009-10-13 2014-03-18 Marvell International Ltd. Efficient estimation of feedback for modulation and coding scheme (MCS) selection
US8917796B1 (en) 2009-10-19 2014-12-23 Marvell International Ltd. Transmission-mode-aware rate matching in MIMO signal generation
US20110110450A1 (en) * 2009-11-09 2011-05-12 Krishna Srikanth Gomadam Asymmetrical feedback for coordinated transmission systems
US8923455B2 (en) 2009-11-09 2014-12-30 Marvell World Trade Ltd. Asymmetrical feedback for coordinated transmission systems
US8325860B2 (en) 2009-11-09 2012-12-04 Marvell World Trade Ltd. Asymmetrical feedback for coordinated transmission systems
CN102550079A (en) * 2009-11-09 2012-07-04 马维尔国际贸易有限公司 Asymmetrical feedback for coordinated transmission systems
WO2011055238A1 (en) 2009-11-09 2011-05-12 Marvell World Trade Ltd Asymmetrical feedback for coordinated transmission systems
US20110150052A1 (en) * 2009-12-17 2011-06-23 Adoram Erell Mimo feedback schemes for cross-polarized antennas
US8761289B2 (en) 2009-12-17 2014-06-24 Marvell World Trade Ltd. MIMO feedback schemes for cross-polarized antennas
US8761297B2 (en) 2010-02-10 2014-06-24 Marvell World Trade Ltd. Codebook adaptation in MIMO communication systems using multilevel codebooks
US20110194638A1 (en) * 2010-02-10 2011-08-11 Adoram Erell Codebook adaptation in mimo communication systems using multilevel codebooks
US8611448B2 (en) 2010-02-10 2013-12-17 Marvell World Trade Ltd. Codebook adaptation in MIMO communication systems using multilevel codebooks
US8687741B1 (en) 2010-03-29 2014-04-01 Marvell International Ltd. Scoring hypotheses in LTE cell search
US8750404B2 (en) 2010-10-06 2014-06-10 Marvell World Trade Ltd. Codebook subsampling for PUCCH feedback
US8615052B2 (en) 2010-10-06 2013-12-24 Marvell World Trade Ltd. Enhanced channel feedback for multi-user MIMO
US9048970B1 (en) 2011-01-14 2015-06-02 Marvell International Ltd. Feedback for cooperative multipoint transmission systems
US8861391B1 (en) * 2011-03-02 2014-10-14 Marvell International Ltd. Channel feedback for TDM scheduling in heterogeneous networks having multiple cell classes
US9124327B2 (en) 2011-03-31 2015-09-01 Marvell World Trade Ltd. Channel feedback for cooperative multipoint transmission
US9020058B2 (en) 2011-11-07 2015-04-28 Marvell World Trade Ltd. Precoding feedback for cross-polarized antennas based on signal-component magnitude difference
US8923427B2 (en) 2011-11-07 2014-12-30 Marvell World Trade Ltd. Codebook sub-sampling for frequency-selective precoding feedback
US9031597B2 (en) 2011-11-10 2015-05-12 Marvell World Trade Ltd. Differential CQI encoding for cooperative multipoint feedback
US9220087B1 (en) 2011-12-08 2015-12-22 Marvell International Ltd. Dynamic point selection with combined PUCCH/PUSCH feedback
US8902842B1 (en) 2012-01-11 2014-12-02 Marvell International Ltd Control signaling and resource mapping for coordinated transmission
US9143951B2 (en) 2012-04-27 2015-09-22 Marvell World Trade Ltd. Method and system for coordinated multipoint (CoMP) communication between base-stations and mobile communication terminals
US9521670B2 (en) 2013-03-05 2016-12-13 Marvell World Trade Ltd. Signal decoding in the presence of almost-blank subframes (ABS)

Also Published As

Publication number Publication date
KR20070086976A (en) 2007-08-27
US7428268B2 (en) 2008-09-23
TW201244405A (en) 2012-11-01
US20080260064A1 (en) 2008-10-23
IL183174A (en) 2015-06-30
JP2008523665A (en) 2008-07-03
US20060120477A1 (en) 2006-06-08
WO2006063138A3 (en) 2007-02-01
TWI383603B (en) 2013-01-21
AU2005314049A1 (en) 2006-06-15
JP5726280B2 (en) 2015-05-27
JP5139810B2 (en) 2013-02-06
EP1825607A2 (en) 2007-08-29
JP2014099864A (en) 2014-05-29
EP1825607A4 (en) 2010-09-08
IL183174D0 (en) 2007-09-20
CA2586082C (en) 2015-08-18
CN102647260A (en) 2012-08-22
TW200640169A (en) 2006-11-16
CN102647260B (en) 2016-08-31
AU2005314049B2 (en) 2011-02-24
MX2007006649A (en) 2007-08-02
JP5726105B2 (en) 2015-05-27
TWI459743B (en) 2014-11-01
KR101136785B1 (en) 2012-04-19
CA2586082A1 (en) 2006-06-15
WO2006063138A2 (en) 2006-06-15
JP2012147447A (en) 2012-08-02
US7529311B2 (en) 2009-05-05
CN101095296A (en) 2007-12-26
CN101095296B (en) 2012-06-20

Similar Documents

Publication Publication Date Title
Jing et al. Using orthogonal and quasi-orthogonal designs in wireless relay networks
Chen et al. Pattern division multiple access—A novel nonorthogonal multiple access for fifth-generation radio networks
US8542765B2 (en) Hierarchical coding with multiple antennas in a wireless communication system
KR100950141B1 (en) Method and apparatus for utilizing channel state information in a wireless communication system
US7352819B2 (en) Multiantenna communications apparatus, methods, and system
US7103325B1 (en) Adaptive modulation and coding
US7167526B2 (en) Wireless communication apparatus and method
ES2339242T3 (en) Mimo system for wlan.
Mietzner et al. Multiple-antenna techniques for wireless communications-a comprehensive literature survey
US8687480B2 (en) Systems and methods for SC-FDMA transmission diversity
KR100887909B1 (en) Method and system for increased bandwidth efficiency in multiple input-multiple output channels
CN102647260B (en) Multi-cell radio network and method
US7933564B2 (en) Method for the multi-antenna transmission of a linearly-precoded signal, corresponding devices, signal and reception method
US7190734B2 (en) Space-time coded transmissions within a wireless communication network
EP3059890B1 (en) Method and apparatus for implementing space time processing with unequal modulation and coding schemes
JP3633872B2 (en) The combination of channel coding and space block coded in a multiple antenna structure
US8605812B2 (en) Wireless feedback system and method
EP2426844B1 (en) Improved MIMO communications
US7430243B2 (en) Space-time-frequency coded OFDM communications over frequency-selective fading channels
US20100002570A9 (en) Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
EP1608081A2 (en) Apparatus and method for space-frequency block coding/decoding in a communication system
EP1642435B1 (en) Method and apparatus for communicating symbols in a multiple input multiple output communication system using interleaved subcarriers across a plurality of antennas
US20060039496A1 (en) Apparatus and method for space-time-frequency block coding for increasing performance
JPWO2006030478A1 (en) Automatic retransmission request control system and retransmission method in MIMO-OFDM system
US7773685B2 (en) Transmitting and receiving methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: ADAPTIX, INC., A DELAWARE CORPORATION,WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHEN, MANYUAN;XING, GUANBIN;LIU, HUI;SIGNING DATES FROM 20050329 TO 20050408;REEL/FRAME:022850/0325

AS Assignment

Owner name: BAKER COMMUNICATIONS FUND II, L.P., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ADAPTIX, INC.;REEL/FRAME:023319/0904

Effective date: 20090928

Owner name: BAKER COMMUNICATIONS FUND II (QP) L.P., NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ADAPTIX, INC.;REEL/FRAME:023319/0904

Effective date: 20090928

Owner name: BAKER COMMUNICATIONS FUND II, L.P.,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ADAPTIX, INC.;REEL/FRAME:023319/0904

Effective date: 20090928

Owner name: BAKER COMMUNICATIONS FUND II (QP) L.P.,NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNOR:ADAPTIX, INC.;REEL/FRAME:023319/0904

Effective date: 20090928

AS Assignment

Owner name: ADAPTIX, INC., TEXAS

Free format text: RELEASE BY SECURED PARTY;ASSIGNORS:BAKER COMMUNICATIONS FUND II, L.P.;BAKER COMMUNICATIONS FUND II (QP), L.P.;REEL/FRAME:027531/0093

Effective date: 20120112

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION