US20090160190A1 - Electrical Generation Device - Google Patents

Electrical Generation Device Download PDF

Info

Publication number
US20090160190A1
US20090160190A1 US11/961,043 US96104307A US2009160190A1 US 20090160190 A1 US20090160190 A1 US 20090160190A1 US 96104307 A US96104307 A US 96104307A US 2009160190 A1 US2009160190 A1 US 2009160190A1
Authority
US
United States
Prior art keywords
piston
fluid
assembly
interior chamber
cam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/961,043
Inventor
Arsham Orami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/961,043 priority Critical patent/US20090160190A1/en
Publication of US20090160190A1 publication Critical patent/US20090160190A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/04Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving coil systems and stationary magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to electrical generators and more specifically to an electric generator having pneumatic cylinder piston pump.
  • An electric generator converts kinetic energy to electrical energy using electromagnetic induction.
  • a motor provides the mechanical energy for conversion.
  • Types of motors used in electric generators include reciprocating or turbine steam engines, moving water channeled through a turbine or water wheel, an internal combustion engine, a wind turbine, or a hand crank.
  • Generators which are more precisely termed an engine-generator set or gen-set, in a single device, typically include a diesel or gasoline engine to motivate a rotor relative to a stator.
  • the stator comprises either a naturally occurring permanent magnet or an electro-magnet
  • the rotor comprises several coil windings that move around the magnetic field of the stator.
  • Small versions of such generators are commonly used to generate electric power on a temporary basis as a standby power generator for a hospital, or as a portable generator for a construction site, for example.
  • the prior-art electrical generation devices have some limitations.
  • One common limitation of known electric generators includes parasitic losses due to friction between mechanical components. These losses can result in inefficiencies and power loss, typically ranging from 10-40%. Therefore, there is a need for a power generating system that minimizes frictional losses.
  • FIG. 1 is a schematic representation of a preferred embodiment of the present invention.
  • FIG. 2 is a top view of a preferred embodiment of the present invention.
  • FIG. 3 is a front cross-sectional view of a device according to a preferred embodiment of the present invention at a first position.
  • FIG. 4 is a front cross-sectional view of the device of FIG. 1 in a second position.
  • FIG. 5 is a front cross-sectional view of the device of FIG. 1 in a third position.
  • FIG. 6 is a front cross-sectional view of the device of FIG. 1 in a fourth position.
  • FIG. 7 is a front view of a cam according to a preferred embodiment of the present invention.
  • FIG. 8 is a side view of the cam of FIG. 7 .
  • FIG. 9 is a front view of a magnetic plate according to a preferred embodiment of the present invention.
  • FIG. 10 is a side view of the magnetic plate of FIG. 9 .
  • FIG. 10A is a detail view of the magnetic plate at the reference mark detail A of FIG. 10 .
  • FIG. 10B is a detail view showing the segment of FIG. 6 marked FIG. 10B .
  • a preferred embodiment of the present invention uses an inert gas, such as helium in its gaseous state, as a dynamic fluid to motivate a mechanical system coupled to a novel electrical generator.
  • the gas having fluidic properties, flows, compresses and expands according to well-understood principles and, the terms gas and fluid may be used interchangeably to indicate a gaseous substance.
  • the preferred embodiment of the present invention includes a feedback system that apportions a small portion of the generated electricity to provide mechanical assistance via a motor.
  • the motor can be A/C and draw current directly from the coil assembly, or DC after the alternating current is rectified using a rectifier, which is an electrical device that converts alternating current to direct current or at least to current with only positive value.
  • the motor couples to a cam assembly to power a piston, which drives the fluid pump.
  • an electrical generating device comprises an annular ring assembly coupled to a piston pump and reservoir.
  • the annular ring assembly 20 consists of a fluid intake means 26 , such as a one-way flow valve, or uni-directional check valve to prevent back-flow and direct the gas into the ring assembly.
  • the ring assembly further includes a fluid outflow means 28 , such as a one-way flow valve, or uni-directional check valve to prevent back-flow and direct gas out of the ring assembly. Both fluid flow means 26 and 28 are in fluid communication with the piston pump.
  • the piston pump consists of a first piston assembly 60 having a first variable-volume interior chamber 62 .
  • a first inflow check-valve 64 enables fluid or, preferably a gaseous substance such as helium gas, to be drawn into the chamber from the ring assembly when the piston chamber's volume increases and pressure increases.
  • a second outflow check valve 66 enables the gas to displace into a reservoir.
  • the piston assembly includes a first piston adapted to reciprocate within the first variable-volume interior chamber 62 and, includes a compression member 76 .
  • a first surface 70 of the first piston forms one wall of the first interior chamber.
  • a first connecting rod 74 having a first end couples to a second surface 72 of the first piston in a manner well-understood to those skilled in this art.
  • a reservoir tank 50 in fluid communication with the first piston outflow check valve 66 , uses a fluid flow path, such as piping or intake line 52 to direct fluid or gas from the first piston assembly to the reservoir.
  • a fluid flow path such as piping or intake line 52 to direct fluid or gas from the first piston assembly to the reservoir.
  • a second piston assembly comprising a second variable-volume interior chamber 82 draws the gas from the reservoir.
  • the second chamber has a second inflow check valve 84 in fluid communication with the reservoir tank.
  • a second piston reciprocates within the second variable-volume interior chamber.
  • a first surface 90 of the second piston forms one wall of the second interior chamber.
  • a second connecting rod 94 having a first end couples to a second surface 92 of the second piston.
  • a second outflow check valve 86 in fluid communication with the fluid intake means of the annular ring creates a fluid flow path from the second piston interior chamber to the annular ring assembly.
  • the first piston assembly further comprises a link-rod 100 pivotably coupled to the first connecting rod 74 at a second end of the rod. At that same second end, or adjacent thereto, a first cam 110 couples to the connecting rod 74 .
  • a small electric, direct current motor draws current from the coil assembly, for example 1.5 amps, and is coupled to the cam directly or by a shaft. Accordingly, whereby rotation of a shaft of the first motor 130 causes the first cam 110 to correspondingly rotate. This rotation is converted into the linear (up/down) displacement of the connecting rod 74 to the first piston assembly.
  • the link-rod 100 further couples to the second piston assembly at a second end of the second connecting rod 94 . Accordingly, upward displacement of the first connecting rod 74 results in a reciprocal but opposite downward displacement of the second connecting rod 94 .
  • the second piston assembly further comprises a second cam 120 , which is driven or motivated by a second motor 140 , which is similar in design and function as the previously discussed first motor 130 , the two motors operating and functioning similarly that the operation and function of the second motor is omitted here.
  • FIGS. 2-5 illustrate, as the respective first and second pistons linearly reciprocate, the gas is drawn from the ring assembly into the first piston chamber during the upstroke of the first piston. At the same time, the second piston traveling downward, forces fluid or gas into the ring assembly.
  • valve 64 When the first piston reverses and travels downward, the drawn fluid or gas, now prevented from flowing back into the ring by the one way valve 64 , forces the fluid or gas into the line 52 via valve 66 and flows to the reservoir tank 50 . At the same time, the second piston reverses direction and travels upward. This draws fluid from the reservoir into the chamber using line 54 and one-way valve 84 , while valve 86 “closes” and prevents the piston from drawing fluid from the ring assembly.
  • the electrical generating device also includes an annular ring assembly 20 .
  • the annular ring assembly consists of a annular housing 22 , which consists of a tubular shaped sidewall with a hollow interior portion, such as channel 24 . This forms an interior chamber or, more accurately, a hollow, enclosed pipe channel 24 having a generally circular cross-section.
  • An exterior face of the ring assembly adapts to support a continuous coil-winding 40 about the sidewall's circumference.
  • the hollow interior channel 24 forms a sealed and continuous chamber having a generally circular arrangement wherein no end-walls are required to create the sealed continuous chamber.
  • At least one traveling compartment 30 consisting of oppositely position end walls, each end wall being a disc-like or coin-shaped magnetic member. Each traveling compartment 30 locates in the annular housing and adapt to slideably travel within the hollow channel.
  • a first magnetic plate assembly 32 forms one endwall.
  • the first magnetic plate assembly has a generally circular cross section and resembles a coin.
  • the first magnetic plate includes an annular groove 38 adapted to couple to a sealing-ring member 34 .
  • the sealing ring member has an outer diameter greater than an outer diameter of the coin-shaped first magnet 32 .
  • the second magnetic plate assembly 36 forms a second endwall.
  • FIGS. 4 , 5 , and 6 illustrate the operation of the one-way cams 25 and 27 , which ensure one direction travel of the ring 20 .
  • FIG. 10B details a possible cam 25 consisting of a pivot element and a small, rotating, triangular-shaped cam member with a travel-limiting and rotational-assist tension device (or spring) that travels from a near horizontal position to enable the magnetic plate to travel in one direction, to its normal, open position, which presents a near vertical sidewall to prevent the reverse travel of the magnetic plate assembly 32 (as shown in FIG. 10A , for example).
  • the vertical position of the cam 25 prevents reverse travel of the plate 32 .
  • a fluid intake means 26 such as a one-way flow valve or check valve, is disposed to create a one-directional fluid flow path to the traveling compartment 30 and a corresponding fluid outflow means 28 comprises an outflow one-way check valve adapted to channel gas or fluid from the traveling compartment and send it to the piston pump.
  • the voltage generated through the coil by the magnet traveling in the annular housing can be determined. As the disc-like magnet travels past the static coil winding, there is an apparent change in the magnetic field with respect to a given point on the coil winding. And, any change in the magnetic environment of a coil of wire will cause a voltage (emf) to be “induced” in the coil.
  • Faraday's law is a fundamental relationship which comes from Maxwell's equations. It serves as a succinct summary of the ways a voltage (or emf) may be generated by a changing magnetic environment.
  • the induced emf in a coil is equal to the negative of the rate of change of magnetic flux times the number of turns in the coil. It involves the interaction of charge with magnetic field.
  • the coil winding in a preferred embodiment, generates about 15 amps.
  • the generated 15 amps is drawn off the coil winding 40 and split. About 1.5 amps is sent to the pair of AC motors driving the cams via feedback lead 42 , and the balance of the generated current is directed to an external device, such as a storage device, battery, appliance, etc. via connector 45 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

In a preferred embodiment of the present invention, an electric generating device accelerates a plurality of spaced magnetic disks inside a circular chamber. The exterior wall of the circular chamber includes a coil winding, so as the plurality of spaced magnetic discs move within the chamber, an electric current induces in the coil winding. A two-piston mechanical pump drives a gas into traveling compartments located between a pair of the spaced magnetic discs. By forcing fluid into the compartment, the discs are forced to travel within the circular chamber. A set of one-way flow valves ensures that the fluid is uni-directional and directs flow to cause the movement of the discs. A small portion of the generated electricity is returned to the system to energize a pair of helper motors. The electric helper motors, each couple to a respective cam. Rotation of the cams drives the piston pump.

Description

    BACKGROUND
  • The present invention relates to electrical generators and more specifically to an electric generator having pneumatic cylinder piston pump.
  • An electric generator converts kinetic energy to electrical energy using electromagnetic induction. Typically a motor provides the mechanical energy for conversion. Types of motors used in electric generators include reciprocating or turbine steam engines, moving water channeled through a turbine or water wheel, an internal combustion engine, a wind turbine, or a hand crank.
  • Each of these types of electromagnetic induction generators apply Faraday's discovery that an electrical conductor moving perpendicular to a magnetic field results in a potential difference, or current, between the opposite ends of the conductor. These principals led to today's generators, a single device that combines an engine and an electrical generator. Generators, which are more precisely termed an engine-generator set or gen-set, in a single device, typically include a diesel or gasoline engine to motivate a rotor relative to a stator. Commonly, the stator comprises either a naturally occurring permanent magnet or an electro-magnet, and the rotor comprises several coil windings that move around the magnetic field of the stator. Small versions of such generators are commonly used to generate electric power on a temporary basis as a standby power generator for a hospital, or as a portable generator for a construction site, for example.
  • The prior-art electrical generation devices, however, have some limitations. One common limitation of known electric generators includes parasitic losses due to friction between mechanical components. These losses can result in inefficiencies and power loss, typically ranging from 10-40%. Therefore, there is a need for a power generating system that minimizes frictional losses.
  • DRAWING
  • FIG. 1 is a schematic representation of a preferred embodiment of the present invention.
  • FIG. 2 is a top view of a preferred embodiment of the present invention.
  • FIG. 3 is a front cross-sectional view of a device according to a preferred embodiment of the present invention at a first position.
  • FIG. 4 is a front cross-sectional view of the device of FIG. 1 in a second position.
  • FIG. 5 is a front cross-sectional view of the device of FIG. 1 in a third position.
  • FIG. 6 is a front cross-sectional view of the device of FIG. 1 in a fourth position.
  • FIG. 7 is a front view of a cam according to a preferred embodiment of the present invention.
  • FIG. 8 is a side view of the cam of FIG. 7.
  • FIG. 9 is a front view of a magnetic plate according to a preferred embodiment of the present invention.
  • FIG. 10 is a side view of the magnetic plate of FIG. 9.
  • FIG. 10A is a detail view of the magnetic plate at the reference mark detail A of FIG. 10.
  • FIG. 10B is a detail view showing the segment of FIG. 6 marked FIG. 10B.
  • DESCRIPTION OF THE INVENTION
  • Possible preferred embodiments will now be described with reference to the drawings and those skilled in the art will understand that alternative configurations and combinations of components may be substituted without subtracting from the invention. Also, in some figures certain components are omitted to more clearly illustrate the invention.
  • A preferred embodiment of the present invention uses an inert gas, such as helium in its gaseous state, as a dynamic fluid to motivate a mechanical system coupled to a novel electrical generator. The gas, having fluidic properties, flows, compresses and expands according to well-understood principles and, the terms gas and fluid may be used interchangeably to indicate a gaseous substance. The preferred embodiment of the present invention includes a feedback system that apportions a small portion of the generated electricity to provide mechanical assistance via a motor. The motor can be A/C and draw current directly from the coil assembly, or DC after the alternating current is rectified using a rectifier, which is an electrical device that converts alternating current to direct current or at least to current with only positive value. The motor couples to a cam assembly to power a piston, which drives the fluid pump. Thus, once in a static state, the system according to a preferred embodiment is self-generating with an excess of current available for a storage system or to otherwise exit the system of the present invention.
  • In a preferred embodiment, an electrical generating device comprises an annular ring assembly coupled to a piston pump and reservoir. As FIGS. 1-6 show, the annular ring assembly 20 consists of a fluid intake means 26, such as a one-way flow valve, or uni-directional check valve to prevent back-flow and direct the gas into the ring assembly. The ring assembly further includes a fluid outflow means 28, such as a one-way flow valve, or uni-directional check valve to prevent back-flow and direct gas out of the ring assembly. Both fluid flow means 26 and 28 are in fluid communication with the piston pump.
  • The piston pump consists of a first piston assembly 60 having a first variable-volume interior chamber 62. A first inflow check-valve 64 enables fluid or, preferably a gaseous substance such as helium gas, to be drawn into the chamber from the ring assembly when the piston chamber's volume increases and pressure increases. A second outflow check valve 66 enables the gas to displace into a reservoir. The piston assembly includes a first piston adapted to reciprocate within the first variable-volume interior chamber 62 and, includes a compression member 76. A first surface 70 of the first piston forms one wall of the first interior chamber. And, a first connecting rod 74 having a first end couples to a second surface 72 of the first piston in a manner well-understood to those skilled in this art.
  • A reservoir tank 50, in fluid communication with the first piston outflow check valve 66, uses a fluid flow path, such as piping or intake line 52 to direct fluid or gas from the first piston assembly to the reservoir.
  • Also in fluid communication with the reservoir, a second piston assembly comprising a second variable-volume interior chamber 82 draws the gas from the reservoir. The second chamber has a second inflow check valve 84 in fluid communication with the reservoir tank. And, a second piston reciprocates within the second variable-volume interior chamber. A first surface 90 of the second piston forms one wall of the second interior chamber. A second connecting rod 94 having a first end couples to a second surface 92 of the second piston. A second outflow check valve 86 in fluid communication with the fluid intake means of the annular ring creates a fluid flow path from the second piston interior chamber to the annular ring assembly.
  • In a preferred embodiment, the first piston assembly further comprises a link-rod 100 pivotably coupled to the first connecting rod 74 at a second end of the rod. At that same second end, or adjacent thereto, a first cam 110 couples to the connecting rod 74. A small electric, direct current motor draws current from the coil assembly, for example 1.5 amps, and is coupled to the cam directly or by a shaft. Accordingly, whereby rotation of a shaft of the first motor 130 causes the first cam 110 to correspondingly rotate. This rotation is converted into the linear (up/down) displacement of the connecting rod 74 to the first piston assembly.
  • The link-rod 100 further couples to the second piston assembly at a second end of the second connecting rod 94. Accordingly, upward displacement of the first connecting rod 74 results in a reciprocal but opposite downward displacement of the second connecting rod 94.
  • The second piston assembly further comprises a second cam 120, which is driven or motivated by a second motor 140, which is similar in design and function as the previously discussed first motor 130, the two motors operating and functioning similarly that the operation and function of the second motor is omitted here.
  • As FIGS. 2-5 illustrate, as the respective first and second pistons linearly reciprocate, the gas is drawn from the ring assembly into the first piston chamber during the upstroke of the first piston. At the same time, the second piston traveling downward, forces fluid or gas into the ring assembly.
  • When the first piston reverses and travels downward, the drawn fluid or gas, now prevented from flowing back into the ring by the one way valve 64, forces the fluid or gas into the line 52 via valve 66 and flows to the reservoir tank 50. At the same time, the second piston reverses direction and travels upward. This draws fluid from the reservoir into the chamber using line 54 and one-way valve 84, while valve 86 “closes” and prevents the piston from drawing fluid from the ring assembly.
  • In a preferred embodiment of the present invention, the electrical generating device also includes an annular ring assembly 20. The annular ring assembly consists of a annular housing 22, which consists of a tubular shaped sidewall with a hollow interior portion, such as channel 24. This forms an interior chamber or, more accurately, a hollow, enclosed pipe channel 24 having a generally circular cross-section. An exterior face of the ring assembly adapts to support a continuous coil-winding 40 about the sidewall's circumference. The hollow interior channel 24 forms a sealed and continuous chamber having a generally circular arrangement wherein no end-walls are required to create the sealed continuous chamber.
  • Located inside the ring housing, at least one traveling compartment 30 consisting of oppositely position end walls, each end wall being a disc-like or coin-shaped magnetic member. Each traveling compartment 30 locates in the annular housing and adapt to slideably travel within the hollow channel. A first magnetic plate assembly 32 forms one endwall. The first magnetic plate assembly has a generally circular cross section and resembles a coin. The first magnetic plate includes an annular groove 38 adapted to couple to a sealing-ring member 34. The sealing ring member has an outer diameter greater than an outer diameter of the coin-shaped first magnet 32. Oppositely spaced, the second magnetic plate assembly 36 forms a second endwall.
  • To prevent reverse travel, and to ensure one-directional travel of the traveling compartment 30, a set of one- directional cam devices 25 and 27 are included. Those skilled in the art will appreciate their function, operation, and construction. FIGS. 4, 5, and 6 illustrate the operation of the one- way cams 25 and 27, which ensure one direction travel of the ring 20. FIG. 10B details a possible cam 25 consisting of a pivot element and a small, rotating, triangular-shaped cam member with a travel-limiting and rotational-assist tension device (or spring) that travels from a near horizontal position to enable the magnetic plate to travel in one direction, to its normal, open position, which presents a near vertical sidewall to prevent the reverse travel of the magnetic plate assembly 32 (as shown in FIG. 10A, for example). The vertical position of the cam 25 prevents reverse travel of the plate 32.
  • A fluid intake means 26, such as a one-way flow valve or check valve, is disposed to create a one-directional fluid flow path to the traveling compartment 30 and a corresponding fluid outflow means 28 comprises an outflow one-way check valve adapted to channel gas or fluid from the traveling compartment and send it to the piston pump.
  • By Faraday's Law, the voltage generated through the coil by the magnet traveling in the annular housing can be determined. As the disc-like magnet travels past the static coil winding, there is an apparent change in the magnetic field with respect to a given point on the coil winding. And, any change in the magnetic environment of a coil of wire will cause a voltage (emf) to be “induced” in the coil. Faraday's law is a fundamental relationship which comes from Maxwell's equations. It serves as a succinct summary of the ways a voltage (or emf) may be generated by a changing magnetic environment. The induced emf in a coil is equal to the negative of the rate of change of magnetic flux times the number of turns in the coil. It involves the interaction of charge with magnetic field. Thus, the coil winding, in a preferred embodiment, generates about 15 amps.
  • In a preferred embodiment of the present invention, the generated 15 amps is drawn off the coil winding 40 and split. About 1.5 amps is sent to the pair of AC motors driving the cams via feedback lead 42, and the balance of the generated current is directed to an external device, such as a storage device, battery, appliance, etc. via connector 45.
  • Although the invention has been particularly shown and described with reference to certain embodiments, it will be understood by those skilled in the art that various changes in form and detail may be made without departing from the spirit and scope of the invention.

Claims (9)

1. An electrical generating device comprising:
an annular ring assembly comprising a fluid intake means and a fluid outflow means, the fluid outflow means being in fluid communication with
a first piston assembly comprising a first variable-volume interior chamber, the first chamber having a first inflow check valve and a second outflow check valve, a first piston adapted to reciprocate within the first variable-volume interior chamber and a first surface of the first piston forming one wall of the first interior chamber, a first connecting rod having a first end coupled to a second surface of the first piston;
a reservoir tank being in fluid communication with the first piston outflow check valve to form a fluid path from the first piston interior chamber to the reservoir tank; and
a second piston assembly comprising a second variable-volume interior chamber, the second chamber having a second inflow check valve in fluid communication with the reservoir tank, a second piston adapted to reciprocate within the second variable-volume interior chamber and a first surface of the second piston forming one wall of the second interior chamber, a second connecting rod having a first end coupled to a second surface of the second piston and a second outflow check valve being in fluid communication with the fluid intake means of the annular ring whereby a fluid flow path forms from the second piston interior chamber to the annular ring assembly.
2. The device of claim 1 wherein the annular ring assembly further comprises:
a annular housing comprising a sidewall having an interior portion forming a hollow channel having a generally circular cross-section and an exterior face supporting a continuous coil-winding about the sidewall's circumference, the sidewall being magnetically inert and being an electrical insulator, and the hollow interior channel forming a sealed and continuous chamber having a generally circular arrangement wherein no end-walls are required to create the sealed continuous chamber,
a traveling compartment disposed in the annular housing and adapted to slideably travel within the hollow channel; the traveling compartment having a first magnetic plate assembly forming one endwall, the first magnetic plate assembly having a generally circular cross section and interface inside the hollow channel of the annular housing, the first magnet plate assembly comprising a coin-shaped first magnet having an annular grove adapted to couple to a sealing-ring member, the sealing ring member having a diameter greater than the coin-shaped first magnet, and a second magnetic plate assembly forming a second endwall; and wherein
the fluid intake means further comprises an intake one-way check valve adapted to create a fluid flow path to the traveling compartment and the fluid outflow means further comprises an outflow one-way check valve adapted to channel fluid from the traveling compartment.
3. The device of claim 2 wherein:
the first piston assembly further comprises a link-rod coupled to the first connecting rod at a second end of the rod and a first cam being motivated by a first motor; whereby rotation of a shaft of the first motor causes the first cam to correspondingly rotate;
the link-rod further coupled to the second piston assembly at a second end of the second connecting rod; whereby upward displacement of the first connecting rod results in a reciprocal but opposite downward displacement of the second connecting rod and the link-rod further adapted to engage the first cam; and
the second piston assembly further comprises a second cam being motivated by a second motor, the second cam adapted to engage the link-rod whereby rotation of a shaft of the second motor causes the second cam to correspondingly rotate.
4. The device of claim 2 further comprising:
A feedback lead adapted to provide current from the coil winding to the first motor; and
a connector for supplying a portion of the current from the coil winding to an external device.
5. An annular ring assembly for a self-sustaining electric-generating device comprising:
an outer coil-winding assembly comprising at least one continuously wound conductive wire wrapped around a circular-cross-section insulation member arranged to form a ring;
a means for receiving an input of an inert gas comprising a fluid intake directional valve in fluid communication with a traveling compartment,
the traveling compartment disposed internal to the outer coil winding and the traveling compartment comprising a generally cylindrical side wall coupled to a generally circular end wall consisting a ferrous material whereby the inert gas being directed through the fluid intake directional valve exerts a pressure sufficient to cause the end wall to displace within the annular ring assembly and wherein the arrangement of the end wall relative to the outer coil winding induces a current in the coil winding.
6. The device of claim 5 further comprising:
a fluid outflow means, the fluid outflow means adapted to enable a one-way flow of the inert gas from the traveling compartment external to the coil winding.
7. The device of claim 5 further comprising:
means for extracting a current from the coil winding.
8. The device of claim 5 further comprising:
a first piston assembly comprising a first variable-volume interior chamber, the first chamber having a first inflow check valve and a second outflow check valve, a first piston adapted to reciprocate within the first variable-volume interior chamber and a first surface of the first piston forming one wall of the first interior chamber, a first connecting rod having a first end coupled to a second surface of the first piston;
a reservoir tank being in fluid communication with the first piston outflow check valve to form a fluid path from the first piston interior chamber to the reservoir tank; and
a second piston assembly comprising a second variable-volume interior chamber, the second chamber having a second inflow check valve in fluid communication with the reservoir tank, a second piston adapted to reciprocate within the second variable-volume interior chamber and a first surface of the second piston forming one wall of the second interior chamber, a second connecting rod having a first end coupled to a second surface of the second piston and a second outflow check valve being in fluid communication with the fluid intake means of the annular ring whereby a fluid flow path forms from the second piston interior chamber to the annular ring assembly.
9. The device of claim 8 further comprising:
a motor coupled to a first cam, the first cam coupled to the first piston assembly and the motor drawing current from the coil winding whereby activation of the motor causes the first cam to rotate;
the first cam rotably coupled to the first piston assembly whereby rotation of the cam causes linear motion of the piston assembly via the first connecting rod.
US11/961,043 2007-12-20 2007-12-20 Electrical Generation Device Abandoned US20090160190A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/961,043 US20090160190A1 (en) 2007-12-20 2007-12-20 Electrical Generation Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/961,043 US20090160190A1 (en) 2007-12-20 2007-12-20 Electrical Generation Device

Publications (1)

Publication Number Publication Date
US20090160190A1 true US20090160190A1 (en) 2009-06-25

Family

ID=40787704

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/961,043 Abandoned US20090160190A1 (en) 2007-12-20 2007-12-20 Electrical Generation Device

Country Status (1)

Country Link
US (1) US20090160190A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150330356A1 (en) * 2013-01-03 2015-11-19 Otello GNANI Energy conversion apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3149255A (en) * 1962-03-23 1964-09-15 H & T Electrical Products Electrical reciprocating motor
US3206609A (en) * 1962-04-09 1965-09-14 Herbert G Dawes Reciprocating engine-generator
US3900749A (en) * 1974-04-02 1975-08-19 Hmw Industries Permanent magnet generator
US4065706A (en) * 1975-06-18 1977-12-27 Danfoss A/S Brushless D.C. motor
US4369383A (en) * 1979-09-05 1983-01-18 Kollmorgen Technologies Corporation Linear DC permanent magnet motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3149255A (en) * 1962-03-23 1964-09-15 H & T Electrical Products Electrical reciprocating motor
US3206609A (en) * 1962-04-09 1965-09-14 Herbert G Dawes Reciprocating engine-generator
US3900749A (en) * 1974-04-02 1975-08-19 Hmw Industries Permanent magnet generator
US4065706A (en) * 1975-06-18 1977-12-27 Danfoss A/S Brushless D.C. motor
US4369383A (en) * 1979-09-05 1983-01-18 Kollmorgen Technologies Corporation Linear DC permanent magnet motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150330356A1 (en) * 2013-01-03 2015-11-19 Otello GNANI Energy conversion apparatus

Similar Documents

Publication Publication Date Title
US20180023551A1 (en) Gaseous fluid pump
US3931554A (en) Reciprocating motor-compressor system
US7400069B2 (en) Generator having reciprocating and rotating permanent motor magnets
US8011903B2 (en) Systems and methods for energizing and distributing fluids
US8344560B2 (en) Magnetically actuated reciprocating motor and process using reverse magnetic switching
CN101994639B (en) Wave linear generator unit
KR20060039895A (en) Linear electrical machine for electric power generation or motive drive
JP2014117149A (en) Linear drive device and piston pump device
US20140111035A1 (en) Magnetically Actuated Reciprocating Motor and Process Using Reverse Magnetic Switching
CN102953956A (en) Compressor driven by brushless coreless linear motor
US20130302181A1 (en) Zero emissions pneumatic-electric engine
CN103437944B (en) Level vertically fully utilizes float body rope wheel power generation system
US20090160190A1 (en) Electrical Generation Device
CN102005891B (en) Single-phase alternating current permanent magnet linear disk type oscillating motor
CN107612266A (en) A kind of electromagnetic vibration energy transducer based on radial magnetic field
RU2265946C2 (en) Independent alternating-current magnetoelectric station for mobile and immobile objects
RU2578746C1 (en) Pump unit
CN106609705A (en) Magnetic return stroke internal combustion engine
CN107834805B (en) A kind of Novel DC linear motor and the method for straight reciprocating motion
RU175679U1 (en) ELECTRIC GENERATING DEVICE
KR100670994B1 (en) Driving apparatus
KR100252291B1 (en) Alternator
CA2335899A1 (en) Integrated linear motor-driven compressor with lubricant sump
US20240128831A1 (en) Hybrid compressed gas-electric piston engine
WO2011066794A1 (en) Forced vibration direct-drive generation system

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION