US20090156671A1 - Deuterium-enriched oxybutynin - Google Patents

Deuterium-enriched oxybutynin Download PDF

Info

Publication number
US20090156671A1
US20090156671A1 US12/368,651 US36865109A US2009156671A1 US 20090156671 A1 US20090156671 A1 US 20090156671A1 US 36865109 A US36865109 A US 36865109A US 2009156671 A1 US2009156671 A1 US 2009156671A1
Authority
US
United States
Prior art keywords
deuterium
abundance
compound
present
oxybutynin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/368,651
Inventor
Anthony W. Czarnik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Protia LLC
Original Assignee
Protia LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Protia LLC filed Critical Protia LLC
Priority to US12/368,651 priority Critical patent/US20090156671A1/en
Publication of US20090156671A1 publication Critical patent/US20090156671A1/en
Assigned to DEUTERIA PHARMACEUTICALS INCE reassignment DEUTERIA PHARMACEUTICALS INCE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PROTIA, LLC
Assigned to PROTIA, LLC reassignment PROTIA, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DEUTERIA PHARMACEUTICALS INC
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder

Definitions

  • This invention relates generally to deuterium-enriched oxybutynin, pharmaceutical compositions containing the same, and methods of using the same.
  • Oxybutynin shown below, is a well known anticholinergic.
  • Oxybutynin is a known and useful pharmaceutical, it is desirable to discover novel derivatives thereof. Oxybutynin is described in G.B. Patent No. 940,540; the contents of which are incorporated herein by reference.
  • one object of the present invention is to provide deuterium-enriched oxybutynin or a pharmaceutically acceptable salt thereof.
  • It is another object of the present invention to provide pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the deuterium-enriched compounds of the present invention or a pharmaceutically acceptable salt thereof.
  • Deuterium (D or 2 H) is a stable, non-radioactive isotope of hydrogen and has an atomic weight of 2.0144. Hydrogen naturally occurs as a mixture of the isotopes 1 H (hydrogen or protium), D ( 2 H or deuterium), and T ( 3 H or tritium). The natural abundance of deuterium is 0.015%.
  • the H atom actually represents a mixture of H and D, with about 0.015% being D.
  • compounds with a level of deuterium that has been enriched to be greater than its natural abundance of 0.015% should be considered unnatural and, as a result, novel over their non-enriched counterparts.
  • Deuterium-enriched can be achieved by either exchanging protons with deuterium or by synthesizing the molecule with enriched starting materials.
  • the present invention provides deuterium-enriched oxybutynin or a pharmaceutically acceptable salt thereof.
  • the hydrogens present on oxybutynin have different capacities for exchange with deuterium.
  • Hydrogen atom R 1 is easily exchangeable under physiological conditions and, if replaced by a deuterium atom, it is expected that it will readily exchange for a proton after administration to a patient.
  • the remaining hydrogen atoms are not easily exchangeable and may be incorporated by the use of deuterated starting materials or intermediates during the construction of oxybutynin.
  • the present invention is based on increasing the amount of deuterium present in oxybutynin above its natural abundance. This increasing is called enrichment or deuterium-enrichment. If not specifically noted, the percentage of enrichment refers to the percentage of deuterium present in the compound, mixture of compounds, or composition. Examples of the amount of enrichment include from about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 21, 25, 29, 33, 37, 42, 46, 50, 54, 58, 63, 67, 71, 75, 79, 84, 88, 92, 96, to about 100 mol %.
  • the present invention in an embodiment, relates to an amount of an deuterium enriched compound, whereby the enrichment recited will be more than naturally occurring deuterated molecules.
  • the present invention also relates to isolated or purified deuterium-enriched oxybutynin.
  • the isolated or purified deuterium-enriched oxybutynin is a group of molecules whose deuterium levels are above the naturally occurring levels (e.g., 3%).
  • the isolated or purified deuterium-enriched oxybutynin can be obtained by techniques known to those of skill in the art (e.g., see the syntheses described below).
  • the present invention also relates to compositions comprising deuterium-enriched oxybutynin.
  • the compositions require the presence of deuterium-enriched oxybutynin which is greater than its natural abundance.
  • the compositions of the present invention can comprise (a) a ⁇ g of a deuterium-enriched oxybutynin; (b) a mg of a deuterium-enriched oxybutynin; and, (c) a gram of a deuterium-enriched oxybutynin.
  • the present invention provides an amount of a novel deuterium-enriched oxybutynin.
  • amounts include, but are not limited to (a) at least 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, to 1 mole, (b) at least 0.1 moles, and (c) at least 1 mole of the compound.
  • the present amounts also cover lab-scale (e.g., gram scale), kilo-lab scale (e.g., kilogram scale), and industrial or commercial scale (e.g., multi-kilogram or above scale) quantities as these will be more useful in the actual manufacture of a pharmaceutical.
  • Industrial/commercial scale refers to the amount of product that would be produced in a batch that was designed for clinical testing, formulation, sale/distribution to the public, etc.
  • the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof.
  • R 1 -R 31 are independently selected from H and D; and the abundance of deuterium in R 1 -R 31 is at least 3%, provided that the compound is other than one where only R 22 -R 31 or R 20 -R 21 are D.
  • the abundance can also be (a) at least 6%, (b) at least 13%, (c) at least 19%, (d) at least 26%, (e) at least 32%, (f) at least 39%, (g) at least 45%, (h) at least 52%, (i) at least 58%, (j) at least 65%, (k) at least 71%, (l) at least 77%, (m) at least 84%, (n) at least 90%, (o) at least 97%, and (p) 100%.
  • the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 1 is at least 100%.
  • the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 1 , R 20 -R 21 , and R 22 -R 31 is at least 8%, provided that the compound is other than one where only R 22 -R 31 or R 20 -R 21 are D.
  • the abundance can also be (a) at least 15%, (b) at least 23%, (c) at least 31%, (d) at least 38%, (e) at least 46%, (f) at least 54%, (g) at least 62%, (h) at least 69%, (i) at least 77%, (j) at least 85%, (k) at least 92%, and (l) 100%.
  • the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 20 -R 21 and R 22 -R 31 is at least 8%, provided that the compound is other than one where only R 22 -R 31 or R 20 -R 21 are D.
  • the abundance can also be (a) at least 17%, (b) at least 25%, (c) at least 33%, (d) at least 42%, (e) at least 50%, (f) at least 58%, (g) at least 67%, (h) at least 75%, (i) at least 83%, (j) at least 92%, and (k) 100%.
  • the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 2 -R 6 is at least 20%.
  • the abundance can also be (a) at least 40%, (b) at least 60%, (c) at least 80%, and (d) 100%.
  • the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 7 -R 17 is at least 9%.
  • the abundance can also be (a) at least 18%, (b) at least 27%, (c) at least 36%, (d) at least 45%, (e) at least 56%, (f) at least 64%, (g) at least 73%, (h) at least 82%, (i) at least 91%, and (j) 100%.
  • the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof.
  • R 1 -R 31 are independently selected from H and D; and the abundance of deuterium in R 1 -R 31 is at least 3%, provided that the compound is other than one where only R 22 -R 31 or R 20 -R 21 are D.
  • the abundance can also be (a) at least 6%, (b) at least 13%, (c) at least 19%, (d) at least 26%, (e) at least 32%, (f) at least 39%, (g) at least 45%, (h) at least 52%, (i) at least 58%, (j) at least 65%, (k) at least 71%, (l) at least 77%, (m) at least 84%, (n) at least 90%, (o) at least 97%, and (p) 100%.
  • the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 1 is at least 100%.
  • the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 1 , R 20 -R 21 , and R 22 -R 31 is at least 8%, provided that the compound is other than one where only R 22 -R 31 or R 20 -R 21 are D.
  • the abundance can also be (a) at least 15%, (b) at least 23%, (c) at least 31%, (d) at least 38%, (e) at least 46%, (f) at least 54%, (g) at least 62%, (h) at least 69%, (i) at least 77%, (j) at least 85%, (k) at least 92%, and (l) 100%.
  • the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 20 -R 21 and R 22 -R 31 is at least 8%, provided that the compound is other than one where only R 22 -R 31 or R 20 -R 21 are D.
  • the abundance can also be (a) at least 17%, (b) at least 25%, (c) at least 33%, (d) at least 42%, (e) at least 50%, (f) at least 58%, (g) at least 67%, (h) at least 75%, (i) at least 83%, (j) at least 92%, and (k) 100%.
  • the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 2 -R 6 is at least 20%.
  • the abundance can also be (a) at least 40%, (b) at least 60%, (c) at least 80%, and (d) 100%.
  • the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 7 -R 17 is at least 9%.
  • the abundance can also be (a) at least 18%, (b) at least 27%, (c) at least 36%, (d) at least 45%, (e) at least 56%, (f) at least 64%, (g) at least 73%, (h) at least 82%, (i) at least 91%, and (j) 100%.
  • the present invention provides novel mixture of deuterium enriched compounds of formula I or a pharmaceutically acceptable salt thereof.
  • R 1 -R 31 are independently selected from H and D; and the abundance of deuterium in R 1 -R 31 is at least 3%, provided that the compound is other than one where only R 22 -R 31 or R 20 -R 21 are D.
  • the abundance can also be (a) at least 6%, (b) at least 13%, (c) at least 19%, (d) at least 26%, (e) at least 32%, (f) at least 39%, (g) at least 45%, (h) at least 52%, (i) at least 58%, (j) at least 65%, (k) at least 71%, (l) at least 77%, (m) at least 84%, (n) at least 90%, (o) at least 97%, and (p) 100%.
  • the present invention provides a novel mixture of, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 1 is at least 100%.
  • the present invention provides a novel mixture of, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 1 , R 20 -R 21 , and R 22 -R 31 is at least 8%, provided that the compound is other than one where only R 22 -R 31 or R 20 -R 21 are D.
  • the abundance can also be (a) at least 15%, (b) at least 23%, (c) at least 31%, (d) at least 38%, (e) at least 46%, (f) at least 54%, (g) at least 62%, (h) at least 69%, (i) at least 77%, (j) at least 85%, (k) at least 92%, and (l) 100%.
  • the present invention provides a novel mixture of, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 20 -R 21 and R 22 -R 31 is at least 8%, provided that the compound is other than one where only R 22 -R 31 or R 20 -R 21 are D.
  • the abundance can also be (a) at least 17%, (b) at least 25%, (c) at least 33%, (d) at least 42%, (e) at least 50%, (f) at least 58%, (g) at least 67%, (h) at least 75%, (i) at least 83%, (j) at least 92%, and (k) 100%.
  • the present invention provides a novel mixture of, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 2 -R 6 is at least 20%.
  • the abundance can also be (a) at least 40%, (b) at least 60%, (c) at least 80%, and (d) 100%.
  • the present invention provides a novel mixture of, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R 7 -R 17 is at least 9%.
  • the abundance can also be (a) at least 18%, (b) at least 27%, (c) at least 36%, (d) at least 45%, (e) at least 56%, (f) at least 64%, (g) at least 73%, (h) at least 82%, (i) at least 91%, and (j) 100%.
  • the present invention provides novel pharmaceutical compositions, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a deuterium-enriched compound of the present invention.
  • the present invention provides a novel method for treating overactive bladder comprising: administering to a patient in need thereof a therapeutically effective amount of a deuterium-enriched compound of the present invention.
  • the present invention provides an amount of a deuterium-enriched compound of the present invention as described above for use in therapy.
  • the present invention provides the use of an amount of a deuterium-enriched compound of the present invention for the manufacture of a medicament (e.g., for the treatment of overactive bladder).
  • the compounds of the present invention may have asymmetric centers.
  • Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. All processes used to prepare compounds of the present invention and intermediates made therein are considered to be part of the present invention. All tautomers of shown or described compounds are also considered to be part of the present invention.
  • “Host” preferably refers to a human. It also includes other mammals including the equine, porcine, bovine, feline, and canine families.
  • Treating covers the treatment of a disease-state in a mammal, and includes: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, e.g., arresting it development; and/or (c) relieving the disease-state, e.g., causing regression of the disease state until a desired endpoint is reached. Treating also includes the amelioration of a symptom of a disease (e.g., lessen the pain or discomfort), wherein such amelioration may or may not be directly affecting the disease (e.g., cause, transmission, expression, etc.).
  • a symptom of a disease e.g., lessen the pain or discomfort
  • “Therapeutically effective amount” includes an amount of a compound of the present invention that is effective when administered alone or in combination to treat the desired condition or disorder. “Therapeutically effective amount” includes an amount of the combination of compounds claimed that is effective to treat the desired condition or disorder.
  • the combination of compounds is preferably a synergistic combination. Synergy, as described, for example, by Chou and Talalay, Adv. Enzyme Regul. 1984, 22:27-55, occurs when the effect of the compounds when administered in combination is greater than the additive effect of the compounds when administered alone as a single agent. In general, a synergistic effect is most clearly demonstrated at sub-optimal concentrations of the compounds. Synergy can be in terms of lower cytotoxicity, increased antiviral effect, or some other beneficial effect of the combination compared with the individual components.
  • “Pharmaceutically acceptable salts” refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof.
  • Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of the basic residues.
  • the pharmaceutically acceptable salts include the conventional quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids.
  • such conventional non-toxic salts include, but are not limited to, those derived from inorganic and organic acids selected from 1,2-ethanedisulfonic, 2-acetoxybenzoic, 2-hydroxyethanesulfonic, acetic, ascorbic, benzenesulfonic, benzoic, bicarbonic, carbonic, citric, edetic, ethane disulfonic, ethane sulfonic, fumaric, glucoheptonic, gluconic, glutamic, glycolic, glycollyarsanilic, hexylresorcinic, hydrabamic, hydrobromic, hydrochloric, hydroiodide, hydroxymaleic, hydroxynaphthoic, isethionic, lactic, lactobionic, lauryl sulfonic, maleic, malic, mandelic, methanesulfonic, napsylic, nitric, oxalic, pamoic, pantothenic,
  • Scheme 1 shows two routes to oxybutynin (Majewski and Campbell, U.S. Pat. No. 3,176,019).
  • Scheme 2 shows how various deuterated starting materials and intermediates that can be used in the chemistry of Scheme 1 to make deuterated oxybutynin analogs.
  • a person skilled in the art of organic synthesis will recognize that these materials may be used in various combinations to access a variety of deuterated oxybutynins.
  • This FIGURE is meant to be illustrative and not comprehensive; it should be recognized that a person skilled in the art of organic synthesis will readily derive other chemical reactions and deuterated materials that may be used to make a wide variety of oxybutynin analogs.
  • Table 1 provides compounds that are representative examples of the present invention. When one of R 1 -R 31 is present, it is selected from H or D.
  • Table 2 provides compounds that are representative examples of the present invention. Where H is shown, it represents naturally abundant hydrogen.

Abstract

The present application describes deuterium-enriched oxybutynin, pharmaceutically acceptable salt forms thereof, and methods of treating using the same.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority benefit as a Continuation of U.S. patent application Ser. No. 11/757,333, filed 1 Jun. 2007, now allowed. The disclosure of this application is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates generally to deuterium-enriched oxybutynin, pharmaceutical compositions containing the same, and methods of using the same.
  • BACKGROUND OF THE INVENTION
  • Oxybutynin, shown below, is a well known anticholinergic.
  • Figure US20090156671A1-20090618-C00001
  • Since oxybutynin is a known and useful pharmaceutical, it is desirable to discover novel derivatives thereof. Oxybutynin is described in G.B. Patent No. 940,540; the contents of which are incorporated herein by reference.
  • SUMMARY OF THE INVENTION
  • Accordingly, one object of the present invention is to provide deuterium-enriched oxybutynin or a pharmaceutically acceptable salt thereof.
  • It is another object of the present invention to provide pharmaceutical compositions comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one of the deuterium-enriched compounds of the present invention or a pharmaceutically acceptable salt thereof.
  • It is another object of the present invention to provide a method for treating overactive bladder, comprising administering to a host in need of such treatment a therapeutically effective amount of at least one of the deuterium-enriched compounds of the present invention or a pharmaceutically acceptable salt thereof.
  • It is another object of the present invention to provide a novel deuterium-enriched oxybutynin or a pharmaceutically acceptable salt thereof for use in therapy.
  • It is another object of the present invention to provide the use of a novel deuterium-enriched oxybutynin or a pharmaceutically acceptable salt thereof for the manufacture of a medicament (e.g., for the treatment of overactive bladder).
  • These and other objects, which will become apparent during the following detailed description, have been achieved by the inventor's discovery of the presently claimed deuterium-enriched oxybutynin.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • Deuterium (D or 2H) is a stable, non-radioactive isotope of hydrogen and has an atomic weight of 2.0144. Hydrogen naturally occurs as a mixture of the isotopes 1H (hydrogen or protium), D (2H or deuterium), and T (3H or tritium). The natural abundance of deuterium is 0.015%. One of ordinary skill in the art recognizes that in all chemical compounds with a H atom, the H atom actually represents a mixture of H and D, with about 0.015% being D. Thus, compounds with a level of deuterium that has been enriched to be greater than its natural abundance of 0.015%, should be considered unnatural and, as a result, novel over their non-enriched counterparts.
  • All percentages given for the amount of deuterium present are mole percentages.
  • It can be quite difficult in the laboratory to achieve 100% deuteration at any one site of a lab scale amount of compound (e.g., milligram or greater). When 100% deuteration is recited or a deuterium atom is specifically shown in a structure, it is assumed that a small percentage of hydrogen may still be present. Deuterium-enriched can be achieved by either exchanging protons with deuterium or by synthesizing the molecule with enriched starting materials.
  • The present invention provides deuterium-enriched oxybutynin or a pharmaceutically acceptable salt thereof. There are thirty-one hydrogen atoms in the oxybutynin portion of oxybutynin as show by variables R1-R31 in formula I below.
  • Figure US20090156671A1-20090618-C00002
  • The hydrogens present on oxybutynin have different capacities for exchange with deuterium. Hydrogen atom R1 is easily exchangeable under physiological conditions and, if replaced by a deuterium atom, it is expected that it will readily exchange for a proton after administration to a patient. The remaining hydrogen atoms are not easily exchangeable and may be incorporated by the use of deuterated starting materials or intermediates during the construction of oxybutynin. Oxybutynin with R22-R31=D is known (Patrick, K. S., et al., “Gas chromatographic-mass spectrometric analysis of plasma oxybutynin using a deuterated internal standard,” J. Chromatog. 1989, 487, 90-98). Oxybutynin with R20-R21=D is known (Lindeke, B., et al., “Metabolism of oxybutynin: Establishment of desethyloxybutynin and oxybutynine N-oxide formation in rat liver preparations using deuterium substitution and gas chromatographic mass spectrometric analysis,” Biomed. Mass Spect. 1981, 8, 506-513).
  • The present invention is based on increasing the amount of deuterium present in oxybutynin above its natural abundance. This increasing is called enrichment or deuterium-enrichment. If not specifically noted, the percentage of enrichment refers to the percentage of deuterium present in the compound, mixture of compounds, or composition. Examples of the amount of enrichment include from about 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 21, 25, 29, 33, 37, 42, 46, 50, 54, 58, 63, 67, 71, 75, 79, 84, 88, 92, 96, to about 100 mol %. Since there are 31 hydrogens in oxybutynin, replacement of a single hydrogen atom with deuterium would result in a molecule with about 3% deuterium enrichment. In order to achieve enrichment less than about 3%, but above the natural abundance, only partial deuteration of one site is required. Thus, less than about 3% enrichment would still refer to deuterium-enriched oxybutynin.
  • With the natural abundance of deuterium being 0.015%, one would expect that for approximately every 6,667 molecules of oxybutynin (1/0.00015=6,667), there is one naturally occurring molecule with one deuterium present. Since oxybutynin has 31 positions, one would roughly expect that for approximately every 206,677 molecules of oxybutynin (31×6,667), all 31 different, naturally occurring, mono-deuterated oxybutynins would be present. This approximation is a rough estimate as it doesn't take into account the different exchange rates of the hydrogen atoms on oxybutynin. For naturally occurring molecules with more than one deuterium, the numbers become vastly larger. In view of this natural abundance, the present invention, in an embodiment, relates to an amount of an deuterium enriched compound, whereby the enrichment recited will be more than naturally occurring deuterated molecules.
  • In view of the natural abundance of deuterium-enriched oxybutynin, the present invention also relates to isolated or purified deuterium-enriched oxybutynin. The isolated or purified deuterium-enriched oxybutynin is a group of molecules whose deuterium levels are above the naturally occurring levels (e.g., 3%). The isolated or purified deuterium-enriched oxybutynin can be obtained by techniques known to those of skill in the art (e.g., see the syntheses described below).
  • The present invention also relates to compositions comprising deuterium-enriched oxybutynin. The compositions require the presence of deuterium-enriched oxybutynin which is greater than its natural abundance. For example, the compositions of the present invention can comprise (a) a μg of a deuterium-enriched oxybutynin; (b) a mg of a deuterium-enriched oxybutynin; and, (c) a gram of a deuterium-enriched oxybutynin.
  • In an embodiment, the present invention provides an amount of a novel deuterium-enriched oxybutynin.
  • Examples of amounts include, but are not limited to (a) at least 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, to 1 mole, (b) at least 0.1 moles, and (c) at least 1 mole of the compound. The present amounts also cover lab-scale (e.g., gram scale), kilo-lab scale (e.g., kilogram scale), and industrial or commercial scale (e.g., multi-kilogram or above scale) quantities as these will be more useful in the actual manufacture of a pharmaceutical. Industrial/commercial scale refers to the amount of product that would be produced in a batch that was designed for clinical testing, formulation, sale/distribution to the public, etc.
  • In another embodiment, the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof.
  • Figure US20090156671A1-20090618-C00003
  • wherein R1-R31 are independently selected from H and D; and the abundance of deuterium in R1-R31 is at least 3%, provided that the compound is other than one where only R22-R31 or R20-R21 are D. The abundance can also be (a) at least 6%, (b) at least 13%, (c) at least 19%, (d) at least 26%, (e) at least 32%, (f) at least 39%, (g) at least 45%, (h) at least 52%, (i) at least 58%, (j) at least 65%, (k) at least 71%, (l) at least 77%, (m) at least 84%, (n) at least 90%, (o) at least 97%, and (p) 100%.
  • In another embodiment, the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R1 is at least 100%.
  • In another embodiment, the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R1, R20-R21, and R22-R31 is at least 8%, provided that the compound is other than one where only R22-R31 or R20-R21 are D. The abundance can also be (a) at least 15%, (b) at least 23%, (c) at least 31%, (d) at least 38%, (e) at least 46%, (f) at least 54%, (g) at least 62%, (h) at least 69%, (i) at least 77%, (j) at least 85%, (k) at least 92%, and (l) 100%.
  • In another embodiment, the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R20-R21 and R22-R31 is at least 8%, provided that the compound is other than one where only R22-R31 or R20-R21 are D. The abundance can also be (a) at least 17%, (b) at least 25%, (c) at least 33%, (d) at least 42%, (e) at least 50%, (f) at least 58%, (g) at least 67%, (h) at least 75%, (i) at least 83%, (j) at least 92%, and (k) 100%.
  • In another embodiment, the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R2-R6 is at least 20%. The abundance can also be (a) at least 40%, (b) at least 60%, (c) at least 80%, and (d) 100%.
  • In another embodiment, the present invention provides a novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R7-R17 is at least 9%. The abundance can also be (a) at least 18%, (b) at least 27%, (c) at least 36%, (d) at least 45%, (e) at least 56%, (f) at least 64%, (g) at least 73%, (h) at least 82%, (i) at least 91%, and (j) 100%.
  • In another embodiment, the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof.
  • Figure US20090156671A1-20090618-C00004
  • wherein R1-R31 are independently selected from H and D; and the abundance of deuterium in R1-R31 is at least 3%, provided that the compound is other than one where only R22-R31 or R20-R21 are D. The abundance can also be (a) at least 6%, (b) at least 13%, (c) at least 19%, (d) at least 26%, (e) at least 32%, (f) at least 39%, (g) at least 45%, (h) at least 52%, (i) at least 58%, (j) at least 65%, (k) at least 71%, (l) at least 77%, (m) at least 84%, (n) at least 90%, (o) at least 97%, and (p) 100%.
  • In another embodiment, the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R1 is at least 100%.
  • In another embodiment, the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R1, R20-R21, and R22-R31 is at least 8%, provided that the compound is other than one where only R22-R31 or R20-R21 are D. The abundance can also be (a) at least 15%, (b) at least 23%, (c) at least 31%, (d) at least 38%, (e) at least 46%, (f) at least 54%, (g) at least 62%, (h) at least 69%, (i) at least 77%, (j) at least 85%, (k) at least 92%, and (l) 100%.
  • In another embodiment, the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R20-R21 and R22-R31 is at least 8%, provided that the compound is other than one where only R22-R31 or R20-R21 are D. The abundance can also be (a) at least 17%, (b) at least 25%, (c) at least 33%, (d) at least 42%, (e) at least 50%, (f) at least 58%, (g) at least 67%, (h) at least 75%, (i) at least 83%, (j) at least 92%, and (k) 100%.
  • In another embodiment, the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R2-R6 is at least 20%. The abundance can also be (a) at least 40%, (b) at least 60%, (c) at least 80%, and (d) 100%.
  • In another embodiment, the present invention provides an isolated novel, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R7-R17 is at least 9%. The abundance can also be (a) at least 18%, (b) at least 27%, (c) at least 36%, (d) at least 45%, (e) at least 56%, (f) at least 64%, (g) at least 73%, (h) at least 82%, (i) at least 91%, and (j) 100%.
  • In another embodiment, the present invention provides novel mixture of deuterium enriched compounds of formula I or a pharmaceutically acceptable salt thereof.
  • Figure US20090156671A1-20090618-C00005
  • wherein R1-R31 are independently selected from H and D; and the abundance of deuterium in R1-R31 is at least 3%, provided that the compound is other than one where only R22-R31 or R20-R21 are D. The abundance can also be (a) at least 6%, (b) at least 13%, (c) at least 19%, (d) at least 26%, (e) at least 32%, (f) at least 39%, (g) at least 45%, (h) at least 52%, (i) at least 58%, (j) at least 65%, (k) at least 71%, (l) at least 77%, (m) at least 84%, (n) at least 90%, (o) at least 97%, and (p) 100%.
  • In another embodiment, the present invention provides a novel mixture of, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R1 is at least 100%.
  • In another embodiment, the present invention provides a novel mixture of, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R1, R20-R21, and R22-R31 is at least 8%, provided that the compound is other than one where only R22-R31 or R20-R21 are D. The abundance can also be (a) at least 15%, (b) at least 23%, (c) at least 31%, (d) at least 38%, (e) at least 46%, (f) at least 54%, (g) at least 62%, (h) at least 69%, (i) at least 77%, (j) at least 85%, (k) at least 92%, and (l) 100%.
  • In another embodiment, the present invention provides a novel mixture of, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R20-R21 and R22-R31 is at least 8%, provided that the compound is other than one where only R22-R31 or R20-R21 are D. The abundance can also be (a) at least 17%, (b) at least 25%, (c) at least 33%, (d) at least 42%, (e) at least 50%, (f) at least 58%, (g) at least 67%, (h) at least 75%, (i) at least 83%, (j) at least 92%, and (k) 100%.
  • In another embodiment, the present invention provides a novel mixture of, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R2-R6 is at least 20%. The abundance can also be (a) at least 40%, (b) at least 60%, (c) at least 80%, and (d) 100%.
  • In another embodiment, the present invention provides a novel mixture of, deuterium enriched compound of formula I or a pharmaceutically acceptable salt thereof, wherein the abundance of deuterium in R7-R17 is at least 9%. The abundance can also be (a) at least 18%, (b) at least 27%, (c) at least 36%, (d) at least 45%, (e) at least 56%, (f) at least 64%, (g) at least 73%, (h) at least 82%, (i) at least 91%, and (j) 100%.
  • In another embodiment, the present invention provides novel pharmaceutical compositions, comprising: a pharmaceutically acceptable carrier and a therapeutically effective amount of a deuterium-enriched compound of the present invention.
  • In another embodiment, the present invention provides a novel method for treating overactive bladder comprising: administering to a patient in need thereof a therapeutically effective amount of a deuterium-enriched compound of the present invention.
  • In another embodiment, the present invention provides an amount of a deuterium-enriched compound of the present invention as described above for use in therapy.
  • In another embodiment, the present invention provides the use of an amount of a deuterium-enriched compound of the present invention for the manufacture of a medicament (e.g., for the treatment of overactive bladder).
  • The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. This invention encompasses all combinations of preferred aspects of the invention noted herein. It is understood that any and all embodiments of the present invention may be taken in conjunction with any other embodiment or embodiments to describe additional more preferred embodiments. It is also to be understood that each individual element of the preferred embodiments is intended to be taken individually as its own independent preferred embodiment. Furthermore, any element of an embodiment is meant to be combined with any and all other elements from any embodiment to describe an additional embodiment.
  • DEFINITIONS
  • The examples provided in the definitions present in this application are non-inclusive unless otherwise stated. They include but are not limited to the recited examples.
  • The compounds of the present invention may have asymmetric centers. Compounds of the present invention containing an asymmetrically substituted atom may be isolated in optically active or racemic forms. It is well known in the art how to prepare optically active forms, such as by resolution of racemic forms or by synthesis from optically active starting materials. All processes used to prepare compounds of the present invention and intermediates made therein are considered to be part of the present invention. All tautomers of shown or described compounds are also considered to be part of the present invention.
  • “Host” preferably refers to a human. It also includes other mammals including the equine, porcine, bovine, feline, and canine families.
  • “Treating” or “treatment” covers the treatment of a disease-state in a mammal, and includes: (a) preventing the disease-state from occurring in a mammal, in particular, when such mammal is predisposed to the disease-state but has not yet been diagnosed as having it; (b) inhibiting the disease-state, e.g., arresting it development; and/or (c) relieving the disease-state, e.g., causing regression of the disease state until a desired endpoint is reached. Treating also includes the amelioration of a symptom of a disease (e.g., lessen the pain or discomfort), wherein such amelioration may or may not be directly affecting the disease (e.g., cause, transmission, expression, etc.).
  • “Therapeutically effective amount” includes an amount of a compound of the present invention that is effective when administered alone or in combination to treat the desired condition or disorder. “Therapeutically effective amount” includes an amount of the combination of compounds claimed that is effective to treat the desired condition or disorder. The combination of compounds is preferably a synergistic combination. Synergy, as described, for example, by Chou and Talalay, Adv. Enzyme Regul. 1984, 22:27-55, occurs when the effect of the compounds when administered in combination is greater than the additive effect of the compounds when administered alone as a single agent. In general, a synergistic effect is most clearly demonstrated at sub-optimal concentrations of the compounds. Synergy can be in terms of lower cytotoxicity, increased antiviral effect, or some other beneficial effect of the combination compared with the individual components.
  • “Pharmaceutically acceptable salts” refer to derivatives of the disclosed compounds wherein the parent compound is modified by making acid or base salts thereof. Examples of pharmaceutically acceptable salts include, but are not limited to, mineral or organic acid salts of the basic residues. The pharmaceutically acceptable salts include the conventional quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, such conventional non-toxic salts include, but are not limited to, those derived from inorganic and organic acids selected from 1,2-ethanedisulfonic, 2-acetoxybenzoic, 2-hydroxyethanesulfonic, acetic, ascorbic, benzenesulfonic, benzoic, bicarbonic, carbonic, citric, edetic, ethane disulfonic, ethane sulfonic, fumaric, glucoheptonic, gluconic, glutamic, glycolic, glycollyarsanilic, hexylresorcinic, hydrabamic, hydrobromic, hydrochloric, hydroiodide, hydroxymaleic, hydroxynaphthoic, isethionic, lactic, lactobionic, lauryl sulfonic, maleic, malic, mandelic, methanesulfonic, napsylic, nitric, oxalic, pamoic, pantothenic, phenylacetic, phosphoric, polygalacturonic, propionic, salicyclic, stearic, subacetic, succinic, sulfamic, sulfanilic, sulfuric, tannic, tartaric, and toluenesulfonic.
  • Synthesis
  • Scheme 1 shows two routes to oxybutynin (Majewski and Campbell, U.S. Pat. No. 3,176,019).
  • Figure US20090156671A1-20090618-C00006
  • Scheme 2 shows how various deuterated starting materials and intermediates that can be used in the chemistry of Scheme 1 to make deuterated oxybutynin analogs. A person skilled in the art of organic synthesis will recognize that these materials may be used in various combinations to access a variety of deuterated oxybutynins. This FIGURE is meant to be illustrative and not comprehensive; it should be recognized that a person skilled in the art of organic synthesis will readily derive other chemical reactions and deuterated materials that may be used to make a wide variety of oxybutynin analogs. The use of the deuterated amine 4 in the synthesis of 2 or in equation (2) in Scheme 1 will produces oxybutynin with R22-R31=D. The use of the deuterated amine 5 in the synthesis of 2 or in equation (2) in Scheme 1 will produces oxybutynin with R22-R25=D. The use of the deuterated amine 6 in the synthesis of 2 or in equation (2) in Scheme 1 will produces oxybutynin with R26-R31=D. The use of the deuterated formaldehyde 7 in the synthesis of 2 or in equation (2) in Scheme 1 will produces oxybutynin with R20-R21=D. The use of 8, a deuterated form of 1, in equation (1) in Scheme 1 will produces oxybutynin with R2-R6=D. The use of 9, a deuterated form of 1, in equation (1) in Scheme 1 will produces oxybutynin with R7-R17=D. The use of 10, a deuterated form of 3, in equation (2) in Scheme 1 will produces oxybutynin with R20-R21=D.
  • Figure US20090156671A1-20090618-C00007
  • Figure US20090156671A1-20090618-C00008
  • Examples
  • Table 1 provides compounds that are representative examples of the present invention. When one of R1-R31 is present, it is selected from H or D.
  • Figure US20090156671A1-20090618-C00009
    Figure US20090156671A1-20090618-C00010
    Figure US20090156671A1-20090618-C00011
    Figure US20090156671A1-20090618-C00012
  • Table 2 provides compounds that are representative examples of the present invention. Where H is shown, it represents naturally abundant hydrogen.
  • Figure US20090156671A1-20090618-C00013
    Figure US20090156671A1-20090618-C00014
    Figure US20090156671A1-20090618-C00015
    Figure US20090156671A1-20090618-C00016
  • Numerous modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise that as specifically described herein.

Claims (27)

1. A method for treating overactive bladder comprising: administering, to a patient in need thereof, a therapeutically effective amount of a deuterium-enriched compound of formula I or a pharmaceutically acceptable salt thereof:
Figure US20090156671A1-20090618-C00017
wherein R1-R31 are independently selected from H and D; and the abundance of deuterium in R1-R31 is at least 3% provided that the compound is other than:
(a) a compound where each of R22-R31 is D or
(b) a compound where each of R20-R21 is D.
2. The method of claim 1, wherein the abundance of deuterium in R1-R31 is selected from at least 3%, at least 6%, at least 13%, at least 19%, at least 26%, at least 32%, at least 39%, at least 45%, at least 52%, at least 58%, at least 65%, at least 71%, at least 77%, at least 84%, at least 90%, at least 97%, and 100%.
3. The method of claim 1, wherein the abundance of deuterium in R1 is 100%.
4. The method of claim 1, wherein the abundance of deuterium in R1, R20-R21, and R22-R31 is selected from at least 8%, at least 15%, at least 23%, at least 31%, at least 38%, at least 46%, at least 54%, at least 62%, at least 69%, at least 77%, at least 85%, at least 92%, and 100%.
5. The method of claim 1, wherein the abundance of deuterium in R20-R21 and R22-R31 is selected from at least 8%, at least 17%, at least 25%, at least 33%, at least 42%, at least 50%, at least 58%, at least 67%, at least 75%, at least 83%, at least 92%, and 100%.
6. The method of claim 1, wherein the abundance of deuterium in R2-R6 is selected from at least 20%, at least 40%, at least 60%, at least 80%, and 100%.
7. The method of claim 1, wherein the abundance of deuterium in R7-R17 is selected from at least 9%, at least 18%, at least 27%, at least 36%, at least 45%, at least 56%, at least 64%, at least 73%, at least 82%, at least 91%, and 100%.
8. The method of claim 1, wherein the compound is selected from compounds 1-8 of Table 1:
Figure US20090156671A1-20090618-C00018
Figure US20090156671A1-20090618-C00019
Figure US20090156671A1-20090618-C00020
Figure US20090156671A1-20090618-C00021
9. The method of claim 1, wherein the compound is selected from compounds 9-16 of Table 2:
Figure US20090156671A1-20090618-C00022
Figure US20090156671A1-20090618-C00023
Figure US20090156671A1-20090618-C00024
Figure US20090156671A1-20090618-C00025
10. A method for treating overactive bladder comprising: administering, to a patient in need thereof, a therapeutically effective amount of a compound of formula I or a pharmaceutically acceptable salt thereof:
Figure US20090156671A1-20090618-C00026
wherein R1-R31 are independently selected from H and D; and the abundance of deuterium in R1-R31 is at least 3% provided that the compound is other than:
(a) a compound where each of R22-R31 is D or
(b) a compound where each of R20-R21 is D.
11. The method of claim 10, wherein the abundance of deuterium in R1-R31 is selected from at least 3%, at least 6%, at least 13%, at least 19%, at least 26%, at least 32%, at least 39%, at least 45%, at least 52%, at least 58%, at least 65%, at least 71%, at least 77%, at least 84%, at least 90%, at least 97%, and 100%.
12. The method of claim 10, wherein the abundance of deuterium in R1 is 100%.
13. The method claim 10, wherein the abundance of deuterium in R1, R20-R21, and R22-R31 is selected from at least 8%, at least 15%, at least 23%, at least 31%, at least 38%, at least 46%, at least 54%, at least 62%, at least 69%, at least 77%, at least 85%, at least 92%, and 100%.
14. The method of claim 10, wherein the abundance of deuterium in R20-R21 and R22-R31 is selected from at least 8%, at least 17%, at least 25%, at least 33%, at least 42%, at least 50%, at least 58%, at least 67%, at least 75%, at least 83%, at least 92%, and 100%.
15. The method of claim 10, wherein the abundance of deuterium in R2-R6 is selected from at least 20%, at least 40%, at least 60%, at least 80%, and 100%.
16. The method of claim 10, wherein the abundance of deuterium in R7-R17 is selected from at least 9%, at least 18%, at least 27%, at least 36%, at least 45%, at least 56%, at least 64%, at least 73%, at least 82%, at least 91%, and 100%.
17. The method of claim 10, wherein the compound is selected from compounds 1-8 of Table 1:
Figure US20090156671A1-20090618-C00027
Figure US20090156671A1-20090618-C00028
Figure US20090156671A1-20090618-C00029
Figure US20090156671A1-20090618-C00030
18. The method of claim 10, wherein the compound is selected from compounds 9-16 of Table 2:
Figure US20090156671A1-20090618-C00031
Figure US20090156671A1-20090618-C00032
Figure US20090156671A1-20090618-C00033
Figure US20090156671A1-20090618-C00034
19. A method for treating overactive bladder comprising: administering, to a patient in need thereof, a therapeutically effective amount of a mixture of deuterium-enriched compounds of formula I or a pharmaceutically acceptable salt thereof:
Figure US20090156671A1-20090618-C00035
wherein R1-R31 are independently selected from H and D; and the abundance of deuterium in R1-R31 is at least 3% provided that the compound is other than:
(a) a compound where each of R22-R31 is D or
(b) a compound where each of R20-R21 is D.
20. The method of claim 19, wherein the abundance of deuterium in R1-R31 is selected from at least 3%, at least 6%, at least 13%, at least 19%, at least 26%, at least 32%, at least 39%, at least 45%, at least 52%, at least 58%, at least 65%, at least 71%, at least 77%, at least 84%, at least 90%, at least 97%, and 100%.
21. The method of claim 19, wherein the abundance of deuterium in R1 is 100%.
22. The method of claim 19, wherein the abundance of deuterium in R1, R20-R21, and R22-R31 is selected from at least 8%, at least 15%, at least 23%, at least 31%, at least 38%, at least 46%, at least 54%, at least 62%, at least 69%, at least 77%, at least 85%, at least 92%, and 100%.
23. The method of claim 19, wherein the abundance of deuterium in R20-R21 and R22-R31 is selected from at least 8%, at least 17%, at least 25%, at least 33%, at least 42%, at least 50%, at least 58%, at least 67%, at least 75%, at least 83%, at least 92%, and 100%.
24. The method of claim 19, wherein the abundance of deuterium in R2-R6 is selected from at least 20%, at least 40%, at least 60%, at least 80%, and 100%.
25. The method of claim 19, wherein the abundance of deuterium in R7-R17 is selected from at least 9%, at least 18%, at least 27%, at least 36%, at least 45%, at least 56%, at least 64%, at least 73%, at least 82%, at least 91%, and 100%.
26. The method of claim 19, wherein the compounds are selected from compounds I-8 of Table 1:
Figure US20090156671A1-20090618-C00036
Figure US20090156671A1-20090618-C00037
Figure US20090156671A1-20090618-C00038
Figure US20090156671A1-20090618-C00039
27. The method of claim 19, wherein the compounds are selected from compounds 9-16 of Table 2:
Figure US20090156671A1-20090618-C00040
Figure US20090156671A1-20090618-C00041
Figure US20090156671A1-20090618-C00042
Figure US20090156671A1-20090618-C00043
US12/368,651 2007-06-01 2009-02-10 Deuterium-enriched oxybutynin Abandoned US20090156671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/368,651 US20090156671A1 (en) 2007-06-01 2009-02-10 Deuterium-enriched oxybutynin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/757,333 US7531685B2 (en) 2007-06-01 2007-06-01 Deuterium-enriched oxybutynin
US12/368,651 US20090156671A1 (en) 2007-06-01 2009-02-10 Deuterium-enriched oxybutynin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/757,333 Continuation US7531685B2 (en) 2007-06-01 2007-06-01 Deuterium-enriched oxybutynin

Publications (1)

Publication Number Publication Date
US20090156671A1 true US20090156671A1 (en) 2009-06-18

Family

ID=40088524

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/757,333 Active US7531685B2 (en) 2007-06-01 2007-06-01 Deuterium-enriched oxybutynin
US12/368,651 Abandoned US20090156671A1 (en) 2007-06-01 2009-02-10 Deuterium-enriched oxybutynin

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/757,333 Active US7531685B2 (en) 2007-06-01 2007-06-01 Deuterium-enriched oxybutynin

Country Status (1)

Country Link
US (2) US7531685B2 (en)

Families Citing this family (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8841334B2 (en) * 2006-05-31 2014-09-23 Abbvie Inc. Compounds as cannabinoid receptor ligands and uses thereof
MX2008015214A (en) * 2006-05-31 2008-12-12 Abbott Lab Compounds as cannabinoid receptor ligands and uses thereof.
CN101454302A (en) * 2006-05-31 2009-06-10 艾博特公司 Thiazole compounds as cannabinoid receptor ligands and uses thereof
CA2681586A1 (en) 2007-03-28 2008-10-09 Abbott Laboratories 1, 3-thiazol-2 (3h) -ylidene compounds as cannabinoid receptor ligands
US7872033B2 (en) 2007-04-17 2011-01-18 Abbott Laboratories Compounds as cannabinoid receptor ligands
US8501794B2 (en) * 2007-04-17 2013-08-06 Abbvie Inc. Compounds as cannabinoid receptor ligands
CN101711253A (en) * 2007-05-18 2010-05-19 雅培制药有限公司 Novel compounds as cannabinoid receptor ligands
US20090076144A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched bazedoxifene
US20090076007A1 (en) * 2007-09-17 2009-03-19 Protia, Llc Deuterium-enriched aprepitant
US9193713B2 (en) * 2007-10-12 2015-11-24 Abbvie Inc. Compounds as cannabinoid receptor ligands
WO2009114566A1 (en) * 2008-03-11 2009-09-17 Abbott Laboratories Novel compounds as cannabinoid receptor ligands
US20090247628A1 (en) * 2008-03-25 2009-10-01 Auspex Pharmaceuticals, Inc. Substituted phenylcyclohexylglycolates
JP5554319B2 (en) 2008-04-01 2014-07-23 アボット ゲーエムベーハー ウント カンパニー カーゲー Tetrahydroisoquinolines, pharmaceutical compositions containing them and their use in therapy
WO2009151613A1 (en) * 2008-06-13 2009-12-17 Concert Pharmaceuticals, Inc. Oxybutynin derivatives
US20100035919A1 (en) * 2008-08-05 2010-02-11 Abbott Laboratories Compounds useful as inhibitors of protein kinases
CA2731102A1 (en) * 2008-08-15 2010-02-18 Abbott Laboratories Imine derivatives as cannabinoid receptor ligands
US8846730B2 (en) * 2008-09-08 2014-09-30 Abbvie Inc. Compounds as cannabinoid receptor ligands
EP2428507B1 (en) 2008-09-16 2015-10-21 AbbVie Bahamas Ltd. Cannabinoid receptor ligands
AR073631A1 (en) * 2008-10-17 2010-11-17 Abbott Lab ANTIGONISTS OF THE POTENTIAL TRANSITORY RECEIVER OF VANILLOIDES 1 (TRPV1) USEFUL TO TREAT INFLAMMATION AND PAIN
WO2010045402A1 (en) * 2008-10-17 2010-04-22 Abbott Laboratories Trpv1 antagonists
US8557983B2 (en) 2008-12-04 2013-10-15 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US20100160322A1 (en) 2008-12-04 2010-06-24 Abbott Laboratories Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
UA108193C2 (en) 2008-12-04 2015-04-10 APOPTOZINDUCE FOR THE TREATMENT OF CANCER AND IMMUNE AND AUTO-IMMUNE DISEASES
SG10201500767RA (en) 2008-12-05 2015-04-29 Abbvie Inc Sulfonamide derivatives as bcl-2-selective apoptosis-inducing agents for the treatment of cancer and immune diseases
US8586754B2 (en) 2008-12-05 2013-11-19 Abbvie Inc. BCL-2-selective apoptosis-inducing agents for the treatment of cancer and immune diseases
US8563735B2 (en) 2008-12-05 2013-10-22 Abbvie Inc. Bcl-2-selective apoptosis-inducing agents for the treatment of cancer and immune diseases
PA8854001A1 (en) * 2008-12-16 2010-07-27 Abbott Lab NEW COMPOUNDS AS CANABINOID RECEIVERS LIGANDS
SG193849A1 (en) 2009-01-19 2013-10-30 Abbott Lab Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
ES2593427T3 (en) 2009-01-19 2016-12-09 Abbvie Inc. Agents inducing apoptosis for the treatment of cancer and autoimmune and immune diseases
TW201038569A (en) 2009-02-16 2010-11-01 Abbott Gmbh & Co Kg Heterocyclic compounds, pharmaceutical compositions containing them, and their use in therapy
AR075442A1 (en) 2009-02-16 2011-03-30 Abbott Gmbh & Co Kg AMINOTETRALINE DERIVATIVES, PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM AND THEIR USES IN THERAPY
TWI519530B (en) * 2009-02-20 2016-02-01 艾伯維德國有限及兩合公司 Carboxamide compounds and their use as calpain inhibitors
US8288428B2 (en) * 2009-03-27 2012-10-16 Abbott Laboratories Compounds as cannabinoid receptor ligands
CA2756178A1 (en) 2009-03-27 2010-09-30 Abbott Laboratories Compounds as cannabinoid receptor ligands
ES2542234T3 (en) * 2009-03-27 2015-08-03 Abbvie Inc. Compounds as cannabinoid receptor ligands
EP2243479A3 (en) 2009-04-20 2011-01-19 Abbott Laboratories Novel amide and amidine derivates and uses thereof
US8236798B2 (en) 2009-05-07 2012-08-07 Abbott Gmbh & Co. Kg Carboxamide compounds and their use as calpain inhibitors
US8546399B2 (en) * 2009-05-26 2013-10-01 Abbvie Inc. Apoptosis inducing agents for the treatment of cancer and immune and autoimmune diseases
US20220315555A1 (en) 2009-05-26 2022-10-06 Abbvie Inc. Apoptosis inducing agents for the treatment of cancer and immune and autoimmune diseases
US9034875B2 (en) 2009-05-26 2015-05-19 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
KR20170037683A (en) 2009-05-26 2017-04-04 애브비 아일랜드 언리미티드 컴퍼니 Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US8962639B2 (en) * 2009-05-29 2015-02-24 Abbvie Inc. Potassium channel modulators
US20110095033A1 (en) 2009-10-28 2011-04-28 Belkin International, Inc. Portable Multi-Media Communication Device Protective Carrier and Method of Manufacture Therefor
MX2012006036A (en) 2009-11-25 2012-06-19 Abbott Lab Potassium channel modulators.
TW201130855A (en) 2009-12-16 2011-09-16 Abbott Lab Prodrug compounds useful as cannabinoid ligands
US20110178180A1 (en) * 2010-01-18 2011-07-21 Kurt Nielsen Deuterium-enriched colchicine, thiocolchicine, and derivatives thereof; methods of preparation; and use thereof
NZ602055A (en) * 2010-03-25 2014-08-29 Abbvie Inc Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
TWI520960B (en) 2010-05-26 2016-02-11 艾伯維有限公司 Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
US8586596B2 (en) 2010-06-15 2013-11-19 Abbvie Inc. Compounds as cannabinoid receptor ligands
KR20130097748A (en) 2010-08-10 2013-09-03 아비에 인코포레이티드 Novel trpv3 modulators
US9045459B2 (en) 2010-08-13 2015-06-02 AbbVie Deutschland GmbH & Co. KG Phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy
US9051280B2 (en) 2010-08-13 2015-06-09 AbbVie Deutschland GmbH & Co. KG Tetraline and indane derivatives, pharmaceutical compositions containing them, and their use in therapy
US8877794B2 (en) 2010-08-13 2014-11-04 Abbott Laboratories Phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy
US8883839B2 (en) 2010-08-13 2014-11-11 Abbott Laboratories Tetraline and indane derivatives, pharmaceutical compositions containing them, and their use in therapy
US8846743B2 (en) 2010-08-13 2014-09-30 Abbott Laboratories Aminoindane derivatives, pharmaceutical compositions containing them, and their use in therapy
US9266855B2 (en) 2010-09-27 2016-02-23 AbbVie Deutschland GmbH & Co. KG Heterocyclic compounds and their use as glycogen synthase kinase-3 inhibitors
UA113500C2 (en) 2010-10-29 2017-02-10 MEL EXTRUSION SOLID DISPERSIONS CONTAINING AN APOPTOSIS-INDUCING AGENT
CA2811805A1 (en) 2010-10-29 2012-05-03 Abbvie Inc. Solid dispersions containing an apoptosis-inducing agent
WO2012059431A1 (en) 2010-11-01 2012-05-10 Abbott Gmbh & Co. Kg Benzenesulfonyl or sulfonamide compounds suitable for treating disorders that respond to the modulation of the serotonin 5-ht6 receptor
WO2012059432A1 (en) 2010-11-01 2012-05-10 Abbott Gmbh & Co. Kg N-phenyl-(homo)piperazinyl-benzenesulfonyl or benzenesulfonamide compounds suitable for treating disorders that respond to the modulation of the 5-ht6 receptor
WO2012067965A1 (en) 2010-11-15 2012-05-24 Abbott Laboratories Nampt and rock inhibitors
MX2013005479A (en) 2010-11-15 2013-06-12 Abbvie Inc Nampt inhibitors.
US8609669B2 (en) 2010-11-16 2013-12-17 Abbvie Inc. Potassium channel modulators
WO2012067824A1 (en) 2010-11-16 2012-05-24 Abbott Laboratories Potassium channel modulators
RU2593231C2 (en) 2010-11-23 2016-08-10 ЭббВи Айэленд Анлимитед Компани Methods for treatment using selective bcl-2 inhibitors
CN107266435A (en) 2010-11-23 2017-10-20 Abbvie 公司 The salt and crystalline form of cell death inducer
US9090592B2 (en) 2010-12-30 2015-07-28 AbbVie Deutschland GmbH & Co. KG Heterocyclic compounds and their use as glycogen synthase kinase-3 inhibitors
US8802693B1 (en) 2011-03-09 2014-08-12 Abbvie Inc. Azaadamantane derivatives and methods of use
WO2012129491A1 (en) 2011-03-24 2012-09-27 Abbott Laboratories Trpv3 modulators
CN103635458B (en) 2011-03-25 2016-10-19 艾伯维公司 TRPV1 antagonist
US9309200B2 (en) 2011-05-12 2016-04-12 AbbVie Deutschland GmbH & Co. KG Benzazepine derivatives, pharmaceutical compositions containing them, and their use in therapy
US8859549B2 (en) 2011-05-13 2014-10-14 Abbvie, Inc. Potassium channel modulators
TW201319049A (en) 2011-08-05 2013-05-16 Abbott Gmbh & Co Kg Aminochromane, aminothiochromane and amino-1,2,3,4-tetrahydroquinoline derivatives, pharmaceutical compositions containing them, and their use in therapy
TWI571466B (en) 2011-10-14 2017-02-21 艾伯維有限公司 Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
TWI561521B (en) 2011-10-14 2016-12-11 Abbvie Inc Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
WO2013062964A2 (en) 2011-10-24 2013-05-02 Abbvie Inc. Novel trpv3 modulators
US20130116241A1 (en) 2011-11-09 2013-05-09 Abbvie Inc. Novel inhibitor compounds of phosphodiesterase type 10a
EP2780328A1 (en) 2011-11-18 2014-09-24 Abbvie Deutschland GmbH & Co. KG N-substituted aminobenzocycloheptene, aminotetraline, aminoindane and phenalkylamine derivatives, pharmaceutical compositions containing them, and their use in therapy
US8969325B2 (en) 2011-12-19 2015-03-03 Abbvie Inc. TRPV1 antagonists
WO2013096223A1 (en) 2011-12-19 2013-06-27 Abbvie Inc. Trpv1 antagonists
US9365512B2 (en) 2012-02-13 2016-06-14 AbbVie Deutschland GmbH & Co. KG Isoindoline derivatives, pharmaceutical compositions containing them, and their use in therapy
WO2013149376A1 (en) 2012-04-02 2013-10-10 Abbott Laboratories Chemokine receptor antagonists
CA2870931A1 (en) 2012-04-20 2013-10-24 Abbvie Inc. Isoindolone derivatives
AR091023A1 (en) 2012-05-11 2014-12-30 Abbvie Inc NAMPT INHIBITORS
MX2014013752A (en) 2012-05-11 2014-12-08 Abbvie Inc Nampt inhibitors.
JP2015516435A (en) 2012-05-11 2015-06-11 アッヴィ・インコーポレイテッド NAMPT inhibitor
EP2850081A1 (en) 2012-05-11 2015-03-25 AbbVie Inc. Thiazolecarboxamide derivatives for use as nampt inhibitors
US20130317054A1 (en) 2012-05-24 2013-11-28 Abbvie Inc. Neuronal nicotinic agonist and methods of use
US20130317055A1 (en) 2012-05-24 2013-11-28 Abbvie Inc. Neuronal nicotinic agonist and methods of use
BR112014031068A2 (en) 2012-06-12 2017-06-27 Abbvie Inc pyridinone and pyridazinone derivatives
US8796328B2 (en) 2012-06-20 2014-08-05 Abbvie Inc. TRPV1 antagonists
WO2014041131A1 (en) 2012-09-14 2014-03-20 AbbVie Deutschland GmbH & Co. KG Tricyclic quinoline and quinoxaline derivatives
US20140080813A1 (en) 2012-09-14 2014-03-20 AbbVie Deutschland GmbH & Co. KG Tricyclic quinoline and quinoxaline derivatives
CN105189481A (en) 2013-03-13 2015-12-23 艾伯维公司 Pyridine cdk9 kinase inhibitors
BR112015023013A2 (en) 2013-03-13 2017-07-18 Abbvie Inc cdk9 kinase inhibitors
BR112015021701A2 (en) 2013-03-14 2017-07-18 Abbvie Deutschland new phosphoestearase inhibitor compounds type 10a
WO2014160028A1 (en) 2013-03-14 2014-10-02 Abbvie Inc. Pyrrolopyrimindine cdk9 kinase inhibitors
EP2970278A4 (en) 2013-03-14 2016-12-07 Abbvie Inc Pyrrolo[2,3-b]pyridine cdk9 kinase inhibitors
US20140275082A1 (en) 2013-03-14 2014-09-18 Abbvie Inc. Apoptosis-inducing agents for the treatment of cancer and immune and autoimmune diseases
WO2014151444A1 (en) 2013-03-14 2014-09-25 Abbvie Inc. Pyrrolo[2,3-b]pyridine cdk9 kinase inhibitors
CA2903141A1 (en) 2013-03-14 2014-09-18 AbbVie Deutschland GmbH & Co. KG Oxindole derivatives carrying an oxetane substituent and use thereof for treating vasopressine-related diseases
US9713330B1 (en) 2013-03-15 2017-07-25 Deuteria Agrochemicals, Llc Deuterium-enriched aldehydes
BR112015023392A2 (en) 2013-03-15 2017-07-18 Deuteria Agrochemicals Llc composition and method of insect behavior modulation
US9656955B2 (en) 2013-03-15 2017-05-23 Abbvie Inc. Pyrrolidine derivatives, pharmaceutical compositions containing them, and their use in therapy
US9650334B2 (en) 2013-03-15 2017-05-16 Abbvie Inc. Pyrrolidine derivatives, pharmaceutical compositions containing them, and their use in therapy
EP3057958B1 (en) 2013-10-17 2019-05-01 AbbVie Deutschland GmbH & Co. KG Aminotetraline and aminoindane derivatives, pharmaceutical compositions containing them, and their use in therapy
WO2015055770A1 (en) 2013-10-17 2015-04-23 AbbVie Deutschland GmbH & Co. KG Aminochromane, aminothiochromane and amino-1,2,3,4-tetrahydroquinoline derivatives, pharmaceutical compositions containing them, and their use in therapy
WO2015091931A1 (en) 2013-12-20 2015-06-25 AbbVie Deutschland GmbH & Co. KG Oxindole derivatives carrying a piperidyl-substituted azetidinyl substituent and use thereof for treating vasopressine-related diseases
US9328112B2 (en) 2014-02-06 2016-05-03 Abbvie Inc. Tetracyclic CDK9 kinase inhibitors
EP3143023B1 (en) 2014-05-15 2018-04-11 AbbVie Deutschland GmbH & Co. KG Oxindole compounds carrying a co-bound spiro substituent and use thereof for treating vasopressin-related diseases
US9617226B2 (en) 2014-09-05 2017-04-11 AbbVie Deutschland GmbH & Co. KG Fused heterocyclic or carbocyclic compounds carrying a substituted cycloaliphatic radical and use thereof for treating vasopressin-related diseases
US9550754B2 (en) 2014-09-11 2017-01-24 AbbVie Deutschland GmbH & Co. KG 4,5-dihydropyrazole derivatives, pharmaceutical compositions containing them, and their use in therapy
WO2016160938A1 (en) 2015-04-02 2016-10-06 Abbvie Inc. N-(1,3-thiazol-2-yl)pyrimidine-5-carboxamides as trpv3 modulators
EP3636651A1 (en) 2015-11-25 2020-04-15 AbbVie Deutschland GmbH & Co. KG Hexahydropyrazinobenz- or -pyrido-oxazepines carrying an oxygen-containing substituent and use thereof in the treatment of 5-ht2c-dependent disorders
TWI752026B (en) 2016-05-07 2022-01-11 大陸商上海複尚慧創醫藥研究有限公司 Certain protein kinase inhibitors
US11168078B2 (en) 2016-11-28 2021-11-09 Shanghai Fochon Pharmaceutical Co., Ltd. Sulfoximine, sulfonimidamide, sulfondiimine and diimidosulfonamide compounds as inhibitors of indoleamine 2,3-dioxygenase
US20200039930A1 (en) 2017-03-21 2020-02-06 AbbVie Deutschland GmbH & Co. KG Proline amide compounds and their azetidine analogues carrying a specifically substituted benzyl radical
SI3612531T1 (en) 2017-04-18 2022-11-30 Shanghai Fochon Pharmaceutical Co., Ltd. Apoptosis-inducing agents
KR20200141035A (en) 2018-03-14 2020-12-17 포천 파마슈티컬즈, 엘티디. Substituted (2-azabicyclo [3.1.0] hexan-2-yl) pyrazolo [1, 5-a] pyrimidine and imidazo [1, 2-b] pyridazine compounds as TRK kinase inhibitors
CA3092749A1 (en) 2018-03-23 2019-09-26 Fochon Pharmaceuticals, Ltd. Deuterated compounds as rock inhibitors

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE372966T1 (en) * 1994-03-25 2007-09-15 Isotechnika Inc IMPROVED EFFECTIVENESS OF DRUGS THROUGH DEUTERATION

Also Published As

Publication number Publication date
US7531685B2 (en) 2009-05-12
US20080299219A1 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
US20090156671A1 (en) Deuterium-enriched oxybutynin
US8524780B2 (en) Deuterium-enriched bupropion
US20090069379A1 (en) Deuterium-enriched lenalidomide
US20090069388A1 (en) Deuterium-enriched sorafenib
US7776866B2 (en) Deuterium-enriched risperidone
US20090076162A1 (en) Deuterium-enriched desvenlafaxine
US20090076056A1 (en) Deuterium-enriched topotecan
US20090076118A1 (en) Deuterium-enriched saxagliptin
US20090069404A1 (en) Deuterium-enriched vernakalant
US20090076013A1 (en) Deuterium-enriched sitagliptin
US20090082364A1 (en) Deuterium-enriched levocedtirizine
US20090082417A1 (en) Deuterium-enriched sdx-101
US20090069431A1 (en) Deuterium-enriched milnacipran
US20090082361A1 (en) Deuterium-enriched imatinib
US20090082383A1 (en) Deuterium-enriched buprenorphine
US20090082363A1 (en) Deuterium-enriched posaconazole
US20090062398A1 (en) Deuterium-enriched tolterodine
US20090082385A1 (en) Deuterium-enriched desloratidine
US20090082452A1 (en) Deuterium-enriched lumiracoxib
US20090076163A1 (en) Deuterium-enriched dapoxetine
US20090076010A1 (en) Deuterium-enriched lamotrigine
US20090076164A1 (en) Deuterium-enriched tapentadol
US20090062299A1 (en) Deuterium-enriched doxazosin
US20090076095A1 (en) Deuterium-enriched nicorandil
US20090076135A1 (en) Deuterium-enriched hydromorphone

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEUTERIA PHARMACEUTICALS INCE, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PROTIA, LLC;REEL/FRAME:026609/0689

Effective date: 20110701

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: PROTIA, LLC, NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DEUTERIA PHARMACEUTICALS INC;REEL/FRAME:029732/0858

Effective date: 20121203