US20090156491A1 - Methods of inhibiting angiogenesis with fragments and homologs of troponin subunit i - Google Patents
Methods of inhibiting angiogenesis with fragments and homologs of troponin subunit i Download PDFInfo
- Publication number
- US20090156491A1 US20090156491A1 US12/254,651 US25465108A US2009156491A1 US 20090156491 A1 US20090156491 A1 US 20090156491A1 US 25465108 A US25465108 A US 25465108A US 2009156491 A1 US2009156491 A1 US 2009156491A1
- Authority
- US
- United States
- Prior art keywords
- troponin
- fragments
- seq
- cells
- hutni
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 64
- 230000033115 angiogenesis Effects 0.000 title claims abstract description 42
- 230000002401 inhibitory effect Effects 0.000 title claims abstract description 41
- 239000012634 fragment Substances 0.000 title description 101
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 38
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 26
- 208000035475 disorder Diseases 0.000 claims abstract description 14
- 201000010099 disease Diseases 0.000 claims abstract description 12
- 239000008194 pharmaceutical composition Substances 0.000 claims description 15
- 241000124008 Mammalia Species 0.000 claims description 3
- 125000003275 alpha amino acid group Chemical group 0.000 claims 3
- 241000282414 Homo sapiens Species 0.000 abstract description 32
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 21
- 125000000539 amino acid group Chemical group 0.000 abstract description 5
- 108090001027 Troponin Proteins 0.000 description 126
- 102000004903 Troponin Human genes 0.000 description 125
- 108010065729 Troponin I Proteins 0.000 description 87
- 210000004027 cell Anatomy 0.000 description 73
- 210000002889 endothelial cell Anatomy 0.000 description 62
- 230000005764 inhibitory process Effects 0.000 description 46
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 41
- 102000013394 Troponin I Human genes 0.000 description 41
- 150000001413 amino acids Chemical group 0.000 description 39
- 238000003556 assay Methods 0.000 description 38
- 108090000623 proteins and genes Proteins 0.000 description 38
- 230000035755 proliferation Effects 0.000 description 36
- 230000001225 therapeutic effect Effects 0.000 description 36
- 239000000243 solution Substances 0.000 description 32
- 239000000203 mixture Substances 0.000 description 30
- 235000018102 proteins Nutrition 0.000 description 29
- 102000004169 proteins and genes Human genes 0.000 description 29
- 206010028980 Neoplasm Diseases 0.000 description 28
- 206010029113 Neovascularisation Diseases 0.000 description 28
- 235000001014 amino acid Nutrition 0.000 description 28
- 229940024606 amino acid Drugs 0.000 description 28
- 108090000362 Lymphotoxin-beta Proteins 0.000 description 23
- 241000283973 Oryctolagus cuniculus Species 0.000 description 23
- 102000013534 Troponin C Human genes 0.000 description 23
- 239000011780 sodium chloride Substances 0.000 description 22
- 238000012360 testing method Methods 0.000 description 22
- 241000283690 Bos taurus Species 0.000 description 21
- 238000011282 treatment Methods 0.000 description 21
- 102000004987 Troponin T Human genes 0.000 description 20
- 108090001108 Troponin T Proteins 0.000 description 20
- 210000001043 capillary endothelial cell Anatomy 0.000 description 20
- 239000003112 inhibitor Substances 0.000 description 19
- 230000000694 effects Effects 0.000 description 18
- 150000007523 nucleic acids Chemical class 0.000 description 18
- 239000000872 buffer Substances 0.000 description 17
- 230000004663 cell proliferation Effects 0.000 description 17
- 210000004087 cornea Anatomy 0.000 description 16
- 238000001727 in vivo Methods 0.000 description 16
- 108020004707 nucleic acids Proteins 0.000 description 16
- 102000039446 nucleic acids Human genes 0.000 description 16
- 210000001519 tissue Anatomy 0.000 description 16
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 16
- 210000003711 chorioallantoic membrane Anatomy 0.000 description 15
- 150000001875 compounds Chemical class 0.000 description 15
- 210000000845 cartilage Anatomy 0.000 description 14
- 241000700159 Rattus Species 0.000 description 13
- 230000002491 angiogenic effect Effects 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 12
- 230000012010 growth Effects 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 12
- 238000012552 review Methods 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 238000005119 centrifugation Methods 0.000 description 11
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 11
- 238000000338 in vitro Methods 0.000 description 11
- 210000004379 membrane Anatomy 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 210000003205 muscle Anatomy 0.000 description 11
- 239000002953 phosphate buffered saline Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 108020004414 DNA Proteins 0.000 description 10
- 206010028347 Muscle twitching Diseases 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 10
- 239000007983 Tris buffer Substances 0.000 description 10
- 239000007943 implant Substances 0.000 description 10
- 238000013508 migration Methods 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 10
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 9
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 9
- 230000006820 DNA synthesis Effects 0.000 description 9
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 9
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 9
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 9
- 239000001110 calcium chloride Substances 0.000 description 9
- 229910001628 calcium chloride Inorganic materials 0.000 description 9
- 239000002773 nucleotide Substances 0.000 description 9
- 125000003729 nucleotide group Chemical group 0.000 description 9
- 239000008188 pellet Substances 0.000 description 9
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 8
- 206010027476 Metastases Diseases 0.000 description 8
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 8
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 8
- 239000004037 angiogenesis inhibitor Substances 0.000 description 8
- 239000002299 complementary DNA Substances 0.000 description 8
- 238000011161 development Methods 0.000 description 8
- 230000018109 developmental process Effects 0.000 description 8
- 238000011534 incubation Methods 0.000 description 8
- 230000005012 migration Effects 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 210000002027 skeletal muscle Anatomy 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 7
- 102000005937 Tropomyosin Human genes 0.000 description 7
- 108010030743 Tropomyosin Proteins 0.000 description 7
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 7
- 235000011130 ammonium sulphate Nutrition 0.000 description 7
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 7
- 210000004899 c-terminal region Anatomy 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- GZCWLCBFPRFLKL-UHFFFAOYSA-N 1-prop-2-ynoxypropan-2-ol Chemical compound CC(O)COCC#C GZCWLCBFPRFLKL-UHFFFAOYSA-N 0.000 description 6
- 102000013563 Acid Phosphatase Human genes 0.000 description 6
- 108010051457 Acid Phosphatase Proteins 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 208000022873 Ocular disease Diseases 0.000 description 6
- 238000010240 RT-PCR analysis Methods 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 201000011510 cancer Diseases 0.000 description 6
- 230000000747 cardiac effect Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000013270 controlled release Methods 0.000 description 6
- 235000021186 dishes Nutrition 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 235000013601 eggs Nutrition 0.000 description 6
- 208000030533 eye disease Diseases 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- 229920000609 methyl cellulose Polymers 0.000 description 6
- 239000001923 methylcellulose Substances 0.000 description 6
- 235000010981 methylcellulose Nutrition 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 230000000699 topical effect Effects 0.000 description 6
- 208000005243 Chondrosarcoma Diseases 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 5
- 238000002869 basic local alignment search tool Methods 0.000 description 5
- 238000004166 bioassay Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- 238000001802 infusion Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 5
- 230000010046 negative regulation of endothelial cell proliferation Effects 0.000 description 5
- 230000001613 neoplastic effect Effects 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 5
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 5
- 238000002560 therapeutic procedure Methods 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 230000014616 translation Effects 0.000 description 5
- VEEGZPWAAPPXRB-BJMVGYQFSA-N (3e)-3-(1h-imidazol-5-ylmethylidene)-1h-indol-2-one Chemical compound O=C1NC2=CC=CC=C2\C1=C/C1=CN=CN1 VEEGZPWAAPPXRB-BJMVGYQFSA-N 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 4
- 241000972773 Aulopiformes Species 0.000 description 4
- 201000009030 Carcinoma Diseases 0.000 description 4
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 4
- 229920001917 Ficoll Polymers 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 102000003505 Myosin Human genes 0.000 description 4
- 201000004681 Psoriasis Diseases 0.000 description 4
- 206010038933 Retinopathy of prematurity Diseases 0.000 description 4
- 239000002246 antineoplastic agent Substances 0.000 description 4
- 238000000376 autoradiography Methods 0.000 description 4
- 230000027455 binding Effects 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- 244000309466 calf Species 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 230000012292 cell migration Effects 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 230000010595 endothelial cell migration Effects 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 230000005714 functional activity Effects 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 238000002523 gelfiltration Methods 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000009401 metastasis Effects 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 4
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- 235000019515 salmon Nutrition 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000000829 suppository Substances 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- 230000004614 tumor growth Effects 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- -1 β-methyl amino acids Chemical class 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 206010012689 Diabetic retinopathy Diseases 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 102100031706 Fibroblast growth factor 1 Human genes 0.000 description 3
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 3
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 239000007995 HEPES buffer Substances 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 102000007327 Protamines Human genes 0.000 description 3
- 108010007568 Protamines Proteins 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 201000000582 Retinoblastoma Diseases 0.000 description 3
- 229920005654 Sephadex Polymers 0.000 description 3
- 239000012507 Sephadex™ Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 108090000631 Trypsin Proteins 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000002870 angiogenesis inducing agent Substances 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 210000003837 chick embryo Anatomy 0.000 description 3
- 210000001612 chondrocyte Anatomy 0.000 description 3
- 238000011210 chromatographic step Methods 0.000 description 3
- 210000002808 connective tissue Anatomy 0.000 description 3
- 229940127089 cytotoxic agent Drugs 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- KAKKHKRHCKCAGH-UHFFFAOYSA-L disodium;(4-nitrophenyl) phosphate;hexahydrate Chemical compound O.O.O.O.O.O.[Na+].[Na+].[O-][N+](=O)C1=CC=C(OP([O-])([O-])=O)C=C1 KAKKHKRHCKCAGH-UHFFFAOYSA-L 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 238000000099 in vitro assay Methods 0.000 description 3
- 238000007914 intraventricular administration Methods 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 201000001441 melanoma Diseases 0.000 description 3
- 230000003278 mimic effect Effects 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 230000001855 preneoplastic effect Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000000069 prophylactic effect Effects 0.000 description 3
- 229940048914 protamine Drugs 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 230000004936 stimulating effect Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 229940104230 thymidine Drugs 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- IQFYYKKMVGJFEH-OFKYTIFKSA-N 1-[(2r,4s,5r)-4-hydroxy-5-(tritiooxymethyl)oxolan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound C1[C@H](O)[C@@H](CO[3H])O[C@H]1N1C(=O)NC(=O)C(C)=C1 IQFYYKKMVGJFEH-OFKYTIFKSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 2
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- 102000012936 Angiostatins Human genes 0.000 description 2
- 108010079709 Angiostatins Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 238000011725 BALB/c mouse Methods 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 238000011740 C57BL/6 mouse Methods 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 208000005590 Choroidal Neovascularization Diseases 0.000 description 2
- 206010060823 Choroidal neovascularisation Diseases 0.000 description 2
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 2
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 208000010412 Glaucoma Diseases 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 206010065630 Iris neovascularisation Diseases 0.000 description 2
- 229930182816 L-glutamine Natural products 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 2
- 239000006137 Luria-Bertani broth Substances 0.000 description 2
- 102000005741 Metalloproteases Human genes 0.000 description 2
- 108010006035 Metalloproteases Proteins 0.000 description 2
- 102100039364 Metalloproteinase inhibitor 1 Human genes 0.000 description 2
- 102100026262 Metalloproteinase inhibitor 2 Human genes 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 101000686934 Mus musculus Prolactin-7D1 Proteins 0.000 description 2
- 108060008487 Myosin Proteins 0.000 description 2
- 108030001204 Myosin ATPases Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 102000013566 Plasminogen Human genes 0.000 description 2
- 108010051456 Plasminogen Proteins 0.000 description 2
- 108090000778 Platelet factor 4 Proteins 0.000 description 2
- 102000004211 Platelet factor 4 Human genes 0.000 description 2
- 102000003946 Prolactin Human genes 0.000 description 2
- 108010057464 Prolactin Proteins 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 238000010266 Sephadex chromatography Methods 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 238000000692 Student's t-test Methods 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 102000002938 Thrombospondin Human genes 0.000 description 2
- 108060008245 Thrombospondin Proteins 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- 108010009583 Transforming Growth Factors Proteins 0.000 description 2
- 102000009618 Transforming Growth Factors Human genes 0.000 description 2
- 206010046851 Uveitis Diseases 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000021736 acetylation Effects 0.000 description 2
- 238000006640 acetylation reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 208000009956 adenocarcinoma Diseases 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000001772 anti-angiogenic effect Effects 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- 210000003433 aortic smooth muscle cell Anatomy 0.000 description 2
- 206010003246 arthritis Diseases 0.000 description 2
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 2
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- 238000007398 colorimetric assay Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- XVOYSCVBGLVSOL-UHFFFAOYSA-N cysteic acid Chemical compound OC(=O)C(N)CS(O)(=O)=O XVOYSCVBGLVSOL-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 208000024519 eye neoplasm Diseases 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 229960000890 hydrocortisone Drugs 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 208000027866 inflammatory disease Diseases 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000003601 intercostal effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 208000002780 macular degeneration Diseases 0.000 description 2
- 235000019359 magnesium stearate Nutrition 0.000 description 2
- 230000036210 malignancy Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 239000002480 mineral oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 239000003226 mitogen Substances 0.000 description 2
- 201000003142 neovascular glaucoma Diseases 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 201000008106 ocular cancer Diseases 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 230000035790 physiological processes and functions Effects 0.000 description 2
- 230000003169 placental effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229940097325 prolactin Drugs 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 238000010188 recombinant method Methods 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 150000003839 salts Chemical group 0.000 description 2
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 238000007910 systemic administration Methods 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000012353 t test Methods 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 238000004885 tandem mass spectrometry Methods 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 2
- 210000003556 vascular endothelial cell Anatomy 0.000 description 2
- 230000003442 weekly effect Effects 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- 230000029663 wound healing Effects 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- BVAUMRCGVHUWOZ-ZETCQYMHSA-N (2s)-2-(cyclohexylazaniumyl)propanoate Chemical compound OC(=O)[C@H](C)NC1CCCCC1 BVAUMRCGVHUWOZ-ZETCQYMHSA-N 0.000 description 1
- MRTPISKDZDHEQI-YFKPBYRVSA-N (2s)-2-(tert-butylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC(C)(C)C MRTPISKDZDHEQI-YFKPBYRVSA-N 0.000 description 1
- NPDBDJFLKKQMCM-SCSAIBSYSA-N (2s)-2-amino-3,3-dimethylbutanoic acid Chemical compound CC(C)(C)[C@H](N)C(O)=O NPDBDJFLKKQMCM-SCSAIBSYSA-N 0.000 description 1
- GXVUZYLYWKWJIM-UHFFFAOYSA-N 2-(2-aminoethoxy)ethanamine Chemical compound NCCOCCN GXVUZYLYWKWJIM-UHFFFAOYSA-N 0.000 description 1
- MIJDSYMOBYNHOT-UHFFFAOYSA-N 2-(ethylamino)ethanol Chemical compound CCNCCO MIJDSYMOBYNHOT-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- 238000010600 3H thymidine incorporation assay Methods 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- NALREUIWICQLPS-UHFFFAOYSA-N 7-imino-n,n-dimethylphenothiazin-3-amine;hydrochloride Chemical class [Cl-].C1=C(N)C=C2SC3=CC(=[N+](C)C)C=CC3=NC2=C1 NALREUIWICQLPS-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 208000003120 Angiofibroma Diseases 0.000 description 1
- 201000003076 Angiosarcoma Diseases 0.000 description 1
- 235000003911 Arachis Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 208000002109 Argyria Diseases 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 208000037260 Atherosclerotic Plaque Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 206010004146 Basal cell carcinoma Diseases 0.000 description 1
- 108010081589 Becaplermin Proteins 0.000 description 1
- 206010004593 Bile duct cancer Diseases 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 1
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 1
- 206010039499 Cartilage sarcomas Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 201000009047 Chordoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 208000032544 Cicatrix Diseases 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 208000003322 Coinfection Diseases 0.000 description 1
- 206010009944 Colon cancer Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 208000009798 Craniopharyngioma Diseases 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 239000012594 Earle’s Balanced Salt Solution Substances 0.000 description 1
- 201000009051 Embryonal Carcinoma Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 206010014967 Ependymoma Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 1
- 208000006168 Ewing Sarcoma Diseases 0.000 description 1
- 208000001382 Experimental Melanoma Diseases 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 description 1
- 102100037362 Fibronectin Human genes 0.000 description 1
- 108010067306 Fibronectins Proteins 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- 101000993347 Gallus gallus Ciliary neurotrophic factor Proteins 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010051815 Glutamyl endopeptidase Proteins 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 208000001258 Hemangiosarcoma Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 1
- 102100021866 Hepatocyte growth factor Human genes 0.000 description 1
- 101000669513 Homo sapiens Metalloproteinase inhibitor 1 Proteins 0.000 description 1
- 101000645296 Homo sapiens Metalloproteinase inhibitor 2 Proteins 0.000 description 1
- 101000595923 Homo sapiens Placenta growth factor Proteins 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 102100023915 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 102100026236 Interleukin-8 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical compound OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 208000018142 Leiomyosarcoma Diseases 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 208000007054 Medullary Carcinoma Diseases 0.000 description 1
- 208000000172 Medulloblastoma Diseases 0.000 description 1
- 206010027406 Mesothelioma Diseases 0.000 description 1
- 206010027458 Metastases to lung Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 206010028851 Necrosis Diseases 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 201000010133 Oligodendroglioma Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 208000034038 Pathologic Neovascularization Diseases 0.000 description 1
- 235000019483 Peanut oil Nutrition 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- 208000007641 Pinealoma Diseases 0.000 description 1
- 102100035194 Placenta growth factor Human genes 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000006994 Precancerous Conditions Diseases 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 206010037649 Pyogenic granuloma Diseases 0.000 description 1
- 239000012614 Q-Sepharose Substances 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 108010077895 Sarcosine Proteins 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 229920001800 Shellac Polymers 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical class [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 208000024313 Testicular Neoplasms Diseases 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000007614 Thrombospondin 1 Human genes 0.000 description 1
- 108010046722 Thrombospondin 1 Proteins 0.000 description 1
- 102100031372 Thymidine phosphorylase Human genes 0.000 description 1
- 108700023160 Thymidine phosphorylases Proteins 0.000 description 1
- 108010031374 Tissue Inhibitor of Metalloproteinase-1 Proteins 0.000 description 1
- 108010031372 Tissue Inhibitor of Metalloproteinase-2 Proteins 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 206010070995 Vascular compression Diseases 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 208000014070 Vestibular schwannoma Diseases 0.000 description 1
- 208000013058 Weber syndrome Diseases 0.000 description 1
- 208000008383 Wilms tumor Diseases 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 241001433070 Xiphoides Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- VRGWBRLULZUWAJ-XFFXIZSCSA-N [(2s)-2-[(1r,3z,5s,8z,12z,15s)-5,17-dihydroxy-4,8,12,15-tetramethyl-16-oxo-18-bicyclo[13.3.0]octadeca-3,8,12,17-tetraenyl]propyl] acetate Chemical compound C1\C=C(C)/CC\C=C(C)/CC[C@H](O)\C(C)=C/C[C@@H]2C([C@@H](COC(C)=O)C)=C(O)C(=O)[C@]21C VRGWBRLULZUWAJ-XFFXIZSCSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 108010022164 acetyl-LDL Proteins 0.000 description 1
- 208000004064 acoustic neuroma Diseases 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 210000004404 adrenal cortex Anatomy 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 210000004712 air sac Anatomy 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000006427 angiogenic response Effects 0.000 description 1
- 230000000964 angiostatic effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 230000004596 appetite loss Effects 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- WHGYBXFWUBPSRW-FOUAGVGXSA-N beta-cyclodextrin Chemical compound OC[C@H]([C@H]([C@@H]([C@H]1O)O)O[C@H]2O[C@@H]([C@@H](O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O[C@H]3O[C@H](CO)[C@H]([C@@H]([C@H]3O)O)O3)[C@H](O)[C@H]2O)CO)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H]3O[C@@H]1CO WHGYBXFWUBPSRW-FOUAGVGXSA-N 0.000 description 1
- 201000007180 bile duct carcinoma Diseases 0.000 description 1
- 238000011953 bioanalysis Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 1
- 201000001531 bladder carcinoma Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000015624 blood vessel development Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 201000007293 brain stem infarction Diseases 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 208000003362 bronchogenic carcinoma Diseases 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 238000007816 calorimetric assay Methods 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 210000003321 cartilage cell Anatomy 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000012568 clinical material Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000512 collagen gel Substances 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000599 controlled substance Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 201000000159 corneal neovascularization Diseases 0.000 description 1
- 210000003683 corneal stroma Anatomy 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 210000000695 crystalline len Anatomy 0.000 description 1
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 1
- 208000002445 cystadenocarcinoma Diseases 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000002074 deregulated effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 230000007646 directional migration Effects 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 229940126534 drug product Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 230000013020 embryo development Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009144 enzymatic modification Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 208000002854 epidermolysis bullosa simplex superficialis Diseases 0.000 description 1
- 208000037828 epithelial carcinoma Diseases 0.000 description 1
- 238000002481 ethanol extraction Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229940126864 fibroblast growth factor Drugs 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000022244 formylation Effects 0.000 description 1
- 238000006170 formylation reaction Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- VRGWBRLULZUWAJ-UHFFFAOYSA-N fusaproliferin Natural products C1C=C(C)CCC=C(C)CCC(O)C(C)=CCC2C(C(COC(C)=O)C)=C(O)C(=O)C21C VRGWBRLULZUWAJ-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229960003692 gamma aminobutyric acid Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229960004198 guanidine Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 201000002222 hemangioblastoma Diseases 0.000 description 1
- 201000011066 hemangioma Diseases 0.000 description 1
- 208000014617 hemorrhoid Diseases 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000001969 hypertrophic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 229960003444 immunosuppressant agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 210000003000 inclusion body Anatomy 0.000 description 1
- 201000001371 inclusion conjunctivitis Diseases 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229950000038 interferon alfa Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 229940096397 interleukin-8 Drugs 0.000 description 1
- XKTZWUACRZHVAN-VADRZIEHSA-N interleukin-8 Chemical compound C([C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@@H](NC(C)=O)CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCSC)C(=O)N1[C@H](CCC1)C(=O)N1[C@H](CCC1)C(=O)N[C@@H](C)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC=1C=CC(O)=CC=1)C(=O)N[C@H](CO)C(=O)N1[C@H](CCC1)C(N)=O)C1=CC=CC=C1 XKTZWUACRZHVAN-VADRZIEHSA-N 0.000 description 1
- 210000004347 intestinal mucosa Anatomy 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 229960004194 lidocaine Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 206010024627 liposarcoma Diseases 0.000 description 1
- 238000005567 liquid scintillation counting Methods 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 201000005296 lung carcinoma Diseases 0.000 description 1
- 208000037829 lymphangioendotheliosarcoma Diseases 0.000 description 1
- 208000012804 lymphangiosarcoma Diseases 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 208000023356 medullary thyroid gland carcinoma Diseases 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 210000003632 microfilament Anatomy 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 210000002200 mouth mucosa Anatomy 0.000 description 1
- 230000004118 muscle contraction Effects 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 208000001611 myxosarcoma Diseases 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 208000025189 neoplasm of testis Diseases 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000033667 organ regeneration Effects 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 208000004019 papillary adenocarcinoma Diseases 0.000 description 1
- 201000010198 papillary carcinoma Diseases 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 230000008529 pathological progression Effects 0.000 description 1
- 239000000312 peanut oil Substances 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 208000024724 pineal body neoplasm Diseases 0.000 description 1
- 201000004123 pineal gland cancer Diseases 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 230000030114 positive regulation of endothelial cell proliferation Effects 0.000 description 1
- 230000000270 postfertilization Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 229930185346 proliferin Natural products 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000003161 proteinsynthetic effect Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000027272 reproductive process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000037387 scars Effects 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000013077 scoring method Methods 0.000 description 1
- 238000010845 search algorithm Methods 0.000 description 1
- 201000008407 sebaceous adenocarcinoma Diseases 0.000 description 1
- 208000037921 secondary disease Diseases 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 239000004208 shellac Substances 0.000 description 1
- 229940113147 shellac Drugs 0.000 description 1
- ZLGIYFNHBLSMPS-ATJNOEHPSA-N shellac Chemical compound OCCCCCC(O)C(O)CCCCCCCC(O)=O.C1C23[C@H](C(O)=O)CCC2[C@](C)(CO)[C@@H]1C(C(O)=O)=C[C@@H]3O ZLGIYFNHBLSMPS-ATJNOEHPSA-N 0.000 description 1
- 235000013874 shellac Nutrition 0.000 description 1
- 229920000260 silastic Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- WEPNHBQBLCNOBB-FZJVNAOYSA-N sucrose octasulfate Chemical compound OS(=O)(=O)O[C@@H]1[C@H](OS(O)(=O)=O)[C@H](COS(=O)(=O)O)O[C@]1(COS(O)(=O)=O)O[C@@H]1[C@H](OS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@@H](OS(O)(=O)=O)[C@@H](COS(O)(=O)=O)O1 WEPNHBQBLCNOBB-FZJVNAOYSA-N 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 201000010965 sweat gland carcinoma Diseases 0.000 description 1
- 206010042863 synovial sarcoma Diseases 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 201000003120 testicular cancer Diseases 0.000 description 1
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 1
- 229950003937 tolonium Drugs 0.000 description 1
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 210000001585 trabecular meshwork Anatomy 0.000 description 1
- 206010044325 trachoma Diseases 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 229960001322 trypsin Drugs 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 1
- 208000010570 urinary bladder carcinoma Diseases 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000000759 vasoinhibitory effect Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000007998 vessel formation Effects 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 108010047303 von Willebrand Factor Proteins 0.000 description 1
- 102100036537 von Willebrand factor Human genes 0.000 description 1
- 229960001134 von willebrand factor Drugs 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000002417 xiphoid bone Anatomy 0.000 description 1
- 229940072358 xylocaine Drugs 0.000 description 1
- 210000001325 yolk sac Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/1703—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- A61K38/1709—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4716—Muscle proteins, e.g. myosin, actin
Definitions
- the present invention provides for novel pharmaceutical compositions, and methods of use thereof for the treatment of diseases or disorders involving abnormal angiogenesis.
- the present invention is based, in part, on the discovery that troponin subunits C, I and T and fragments thereof inhibit stimulated endothelial cell proliferation.
- Pharmaceutical compositions containing therapeutically effective amounts of troponin C, I, or T, subunits, fragments, or homologs and methods of therapeutic use thereof are provided.
- Angiogenesis the process of new blood vessel development and formation, plays an important role in numerous physiological events, both normal and pathological. Angiogenesis occurs in response to specific signals and involves a complex process characterized by infiltration of the basal lamina by vascular endothelial cells in response to angiogenic growth signal(s), migration of the endothelial cells toward the source of the signal(s), and subsequent proliferation and formation of the capillary tube. Blood flow through the newly formed capillary is initiated after the endothelial cells come into contact and connect with a preexisting capillary.
- angiogenesis is stringently regulated and spatially and temporally delimited. Under conditions of pathological angiogenesis such as that characterizing solid tumor growth, these regulatory controls fail.
- Unregulated angiogenesis becomes pathologic and sustains progression of many neoplastic and non-neoplastic diseases.
- a number of serious diseases are dominated by abnormal neovascularization including solid tumor growth and metastases, arthritis, some types of eye disorders, and psoriasis.
- neovascularization including solid tumor growth and metastases, arthritis, some types of eye disorders, and psoriasis.
- ocular neovascularization occurs in response to the diseased state.
- ocular disorders include diabetic retinopathy, neovascular glaucoma, inflammatory diseases and ocular tumors (e.g., retinoblastoma).
- neovascularization There are also a number of other eye diseases which are also associated with neovascularization, including retrolental fibroplasia, uveitis, retinopathy of prematurity, macular degeneration, and approximately twenty eye diseases which are associated with choroidal neovascularization and approximately forty eye diseases associated with iris neovascularization. See, e.g., reviews by Waltman et al., 1978 , Am. J. Ophthal. 85:704-710 and Gartner et al., 1978 , Surv. Ophthal. 22:291-312. Currently, the treatment of these diseases, especially once neovascularization has occurred, is inadequate and blindness often results. Studies have suggested that vaso-inhibitory factors which are present in normal ocular tissue (cornea and vitreous) are lost in the diseased state.
- An inhibitor of angiogenesis could have an important therapeutic role in limiting the contributions of this process to pathological progression of the underlying disease states as well as providing a valuable means of studying their etiology.
- agents that inhibit tumor neovascularization could play an important role in inhibiting metastatic tumor growth.
- angiogenesis relating to vascular endothelial cell proliferation, migration and invasion, have been found to be regulated in part by polypeptide growth factors.
- endothelial cells exposed to a medium containing suitable growth factors can be induced to evoke some or all of the angiogenic responses.
- polypeptides with in vitro endothelial growth promoting activity have been identified. Examples include acidic and basic fibroblast growth factors, transforming growth factors ⁇ and ⁇ , platelet-derived endothelial cell growth factor, granulocyte colony-stimulating factor, interleukin-8, hepatocyte growth factor, proliferin, vascular endothelial growth factor and placental growth factor. See, e.g., review by Folkman et al., 1995 , N. Engl. J. Med., 333:1757-1763.
- Capillary endothelial cells proliferate in response to an angiogenic stimulus during neovascularization. Ausprunk and Folkman, 1977 , J. Microvasc. Res. 14:153-65.
- An in vitro assay assessing endothelial cell proliferation in response to known angiogenesis simulating factors, such as acidic or basic fibroblast growth factor (aFGF and bFGF, respectively) has been developed to mimic the process of neovascularization in vitro. This type of assay is the assay of choice to demonstrate the stimulation of capillary EC proliferation by various angiogenic factors. Shing et al., 1984, Science 223:1296-1298.
- CAM bioassay fertilized chick embryos are cultured in Petri dishes. On day 6 of development, a disc of a release polymer, such as methyl cellulose, impregnated with the test sample or an appropriate control substance is placed onto the vascular membrane at its advancing edge. On day 8 of development, the area around the implant is observed and evaluated. Avascular zones surrounding the test implant indicate the presence of an inhibitor of embryonic neovascularization. Moses et al., 1990 , Science, 248:1408-1410 and Taylor et al., 1982 , Nature, 297:307-312. The reported doses for previously described angiogenesis inhibitors tested alone in the CAM assay are 50 ⁇ g of protamine (Taylor et al.
- angiogenesis inhibitors 200 ⁇ g of bovine vitreous extract (Lutty et al., 1983 , Invest. Opthalmol. Vis. Sci. 24:53-56), and 10 ⁇ g of platelet factor IV (Taylor et al. (1982)).
- the lowest reported doses of angiogenesis inhibitors effective as combinations include heparin (50 ⁇ g) and hydrocortisone (60 ⁇ g), and B-cyclodextrin tetradecasulfate (14 ⁇ g) and hydrocortisone (60 ⁇ g), reported by Folkman et al., 1989 , Science 243:1490.
- polymer pellets of ethylene vinyl acetate copolymer (“EVAC”) are impregnated with test substance and surgically implanted in a pocket in the rabbit cornea approximately 1 mm from the limbus. Langer et al., 1976 , Science 193:707-72.
- EVAC ethylene vinyl acetate copolymer
- angiogenesis inhibitor either a piece of carcinoma or some other angiogenic stimulant is implanted distal to the polymer 2 mm from the limbus.
- control polymer pellets that are empty are implanted next to an angiogenic stimulant in the same way.
- capillary blood vessels start growing towards the tumor implant in 5-6 days, eventually sweeping over the blank polymer.
- the directional growth of new capillaries from the limbal blood vessel towards the tumor occurs at a reduced rate and is often inhibited such that an avascular region around the polymer is observed.
- This assay is quantitated by measurement of the maximum vessel lengths with a stereospecific microscope.
- Troponin a complex of three polypeptides is an accessory protein that is closely associated with actin filaments in vertebrate muscle.
- the troponin complex acts in conjunction with the muscle form of tropomyosin to mediate the Ca 2+ dependency of myosin ATPase activity and thereby regulate muscle contraction.
- the troponin polypeptides T, I, and C are named for their tropomyosin binding, inhibitory, and calcium binding activities, respectively.
- Troponin T binds to tropomyosin and is believed to be responsible for positioning the troponin complex on the muscle thin filament.
- Troponin I binds to actin, and the complex formed by troponins I and T, and tropomyosin, inhibits the interaction of actin and myosin.
- Troponin C is capable of binding up to four calcium molecules. Studies suggest that when the level of calcium in the muscle is raised, troponin C causes troponin I to loose its hold on the actin molecule, causing the tropomyosin molecule shift, thereby exposing the myosin binding sites on actin and stimulating myosin ATPase activity.
- the present invention relates to pharmaceutical compositions containing troponin subunits C, I, or T, or fragments thereof, in therapeutically effective amounts that are capable of inhibiting angiogenesis, for example, by inhibiting endothelial cell proliferation.
- the invention also relates to pharmaceutical compositions containing homologs of troponin subunits C, I, or T and homologs of their fragments, in therapeutically effective amounts that are capable of inhibiting angiogenesis, for example, by inhibiting endothelial cell proliferation.
- the invention further relates to treatment of neovascular disorders by administration of a therapeutic compound of the invention.
- Such therapeutic compounds include: troponin subunits C, I, and T, and fragments and homologs thereof, in particular, fragments of troponin subunit I comprising the inhibitory (I′) and carboxy terminal (C′) regions.
- a Therapeutic of the invention is administered to treat a cancerous condition, for example, to inhibit the growth or reduce the volume of a solid tumor, or to prevent progression from the pre-neoplastic or pre-malignant state into a neoplastic or a malignant state or to inhibit metastasis.
- a Therapeutic of the invention is administered to treat ocular disorders associated with neovascularization.
- troponin subunit when not preceding the terms C, I or T, means generically any of troponin subunits C, I, or T.
- the amino-terminal, inhibitory and carboxy-terminal regions of troponin I are designated N′, I′, and C′, respectively.
- FIG. 1 Inhibition of bovine capillary Endothelial Cell (BCE) proliferation by troponin C. Percent inhibition of bFGF-stimulated BCE proliferation is shown as a function of troponin C concentration ( ⁇ g/well). Percent inhibition was determined by comparing results obtained for cells treated with stimulus alone with those obtained for samples exposed to both stimulus and inhibitor. Well volume was 200 ⁇ l.
- BCE bovine capillary Endothelial Cell
- FIG. 2 Inhibition of capillary BCE proliferation by troponin I. Percent inhibition of bFGF-stimulated BCE proliferation is shown as a function of troponin I concentration ( ⁇ g/well). Percent inhibition was determined as described in FIG. 1 . Well volume was 200 ⁇ l.
- FIG. 3 Inhibition of capillary BCE proliferation by troponin T. Percent inhibition of bFGF-stimulated BCE proliferation is shown as a function of troponin T concentration ( ⁇ g/well). Percent inhibition was determined as described in FIG. 1 . Well volume was 200 ⁇ l.
- FIG. 4 Inhibition of BCE proliferation by troponins C and I. Percent inhibition of bFGF-stimulated BCE proliferation is shown as a function of troponin I and C concentration ( ⁇ g/well). Percent inhibition was determined as described in FIG. 1 . Well volume was 200 ⁇ l.
- FIG. 5 Inhibition of capillary BCE proliferation by troponin C, I and T. Percent inhibition of bFGF-stimulated BCE proliferation is shown as a function of troponin C, I, and T concentration ( ⁇ g/well). Percent inhibition was determined as described in FIG. 1 . Well volume was 200 ⁇ l.
- FIG. 6 Schematic representation of amino acid sequences of tryptic peptides (LQIAATELEK, SEQ ID NO:18; IDVAEEEKYDMEVK, SEQ ID NO:19; AND LFDLR, SEQ ID NO:20) purified from cartilage as described in Methods. Sequence similarity to human TnI is indicated by alignment with the amino acid sequence of the human isoform.
- FIG. 7 (A) RT-PCR products amplified from total RNA purified from two separate human intercostal cartilage specimens. Gene-specific primers were designed based on the cDNA sequence of human fast-twitch skeletal muscle TnI. (B) Nucleotide sequence of these PCR products showing identity to the cDNA sequence of human fast-twitch skeletal muscle TnI (nt 189-nt 384) (SEQ ID NO:16). (C) RT-PCR amplification, from total RNA (20 ng each lane) purified from rat skeletal muscle (lane 1), xyphoid (lane 2), chondrosarcoma (lane 3) and liver (lane 4). Gene-specific primers were designed based on the cDNA sequence of rat fast-twitch skeletal muscle TnI as described in Methods.
- FIG. 8 SDS-PAGE of recombinant human TnI before (lane A) and after (lane B) purification. In both cases, approximately 1 ⁇ g of total protein was electrophoresed, followed by silver staining as described in Methods. Recombinant TnI migrates at a molecular weight of approximately 21,000 Da.
- FIG. 9 Inhibition of capillary EC proliferation by rTnI. Percent inhibition was determined by comparing wells exposed to the angiogenic stimulus bFGF (A) and VEGF (B) with those exposed to stimulus and inhibitor. Each point represents the mean of duplicate control and inhibitor wells. This is a representative experiment of four different EC proliferation assays, each testing different TnI preparations.
- FIG. 10 Inhibition of embryonic angiogenesis in vivo by rTnI. After a 48 h exposure to rTnI as described in Methods, avascular zones, free of capillaries and small vessels were observed using a binocular dissecting microscope at ⁇ 7-10 magnification. This zone was produced by approximately 380 pmoles of TnI (A). A normal chorioallantoic membrane (CAM) implanted with a methylcellulose disk containing buffer alone is shown in (B).
- a normal chorioallantoic membrane (CAM) implanted with a methylcellulose disk containing buffer alone is shown in (B).
- CAM normal chorioallantoic membrane
- FIG. 11 Inhibition of FGF induced angiogenesis by systemic administration of TnI.
- TnI 50 mg/kg was administered systemically every 12 hours to mice whose corneas had been implanted with pellets containing bFGF (40 ng/ml) on Day 1. After-six days of treatment, significant inhibition of FGF-induced neovascularization was observed in TnI-treated corneas (B) as compared to control corneas (A).
- FIG. 12 (A) Derived amino acid sequence of recombinant human TnI (Hu) (SEQ ID NO:17) and its sequence comparison with recombinant rabbit TnI (Rb) (SEQ ID NO:10). Identical residues are shown by dashes. (B) Schematic representation of various recombinant TnI deletion fragments based on rabbit TnI and wild-type rabbit TnI w (SEQ ID NO:10). The troponin I inhibitory region is designated I′, and the sequences located on amino- and carboxy-terminal sides of this region are designated N′ and C′, respectively.
- TnI 1-120 , TnI 1-94 , TnI 96-181 , TnI 122-181 contain the N′ and I′, N′, I′ and C′, and C′ regions, respectively. The number of amino acids at the beginning and end of each fragment is indicated.
- TnI 98-114 containing amino acid residues 98-114 is a synthetic peptide representing the I region.
- the present invention relates to therapeutic methods and compositions based on troponin subunits.
- the invention provides for treatment of neovascular disorders by, for example, inhibiting angiogenesis, comprising administration of a therapeutic compound of the invention.
- therapeutic compounds include: troponin C, I, and T subunits, fragments and homologs thereof (collectively “peptides of the invention”).
- the peptides of the invention are characterized by the property of inhibiting bovine endothelial cell (EC) proliferation in culture preferably with an IC 50 of about 10 ⁇ M or less, more preferably with an IC 50 of about 5 ⁇ M or less, most preferably with an IC 50 of about 1 ⁇ M or less.
- EC bovine endothelial cell
- a Therapeutic of the invention is administered to treat a cancerous condition, for example, to inhibit the growth or reduce the volume of a solid tumor, or to prevent progression from a pre-neoplastic or non-malignant state into a neoplastic or a malignant state or to inhibit metastases.
- a Therapeutic of the invention is administered to treat an ocular disorder associated with neovascularization.
- a Therapeutic of the invention is a peptide consisting of at least a fragment of troponin C, troponin I, troponin T, or combinations thereof which is effective to inhibit angiogenesis. More preferably, the Therapeutic is a peptide consisting of the inhibitory (I′) and carboxy terminal (C′) region (C′+I′) (SEQ ID NO:14) of troponin subunit I or a fragment thereof.
- the peptides of the invention are troponin C, troponin I and troponin T subunits, or fragments thereof of the fast twitch, slow twitch and cardiac isoforms from mammalian species, e.g., human, rabbit, rat, mouse, bovine, ovine and porcine.
- the peptides of the invention are troponin C, troponin I and troponin T subunits, or fragments thereof from nonmuscle tissues, e.g., cartilage, preferably from mammalian species, e.g., human, rabbit, rat, mouse, bovine, ovine and porcine.
- troponin subunits examples include but are not limited to the subunits of troponin from human fast twitch skeletal muscle, the sequences of which are given below:
- the invention encompasses peptides which are homologous to troponin C (SEQ ID NO:1) or fragments thereof, troponin I (SEQ ID NOS:2, 10, or 15) or fragments thereof, or troponin T (SEQ ID NO:3) or fragments thereof.
- the peptides of the invention are fragments of troponin I (SEQ ID NOS:11-15) or homologous to fragments of troponin I (SEQ ID NOS:11-15).
- a Therapeutic of the invention is combined with a therapeutically effective amount of another molecule which negatively regulates angiogenesis which may be, but is not limited to, platelet factor 4, thrombospondin-1, tissue inhibitors of metalloproteases (TIMP1 and TIMP2) prolactin (16-Kd fragment), angiostatin (38-Kd fragment of plasminogen), bFGF soluble receptor, transforming growth factor ⁇ , interferon alfa, and placental proliferin-related protein.
- a therapeutically effective amount of another molecule which negatively regulates angiogenesis which may be, but is not limited to, platelet factor 4, thrombospondin-1, tissue inhibitors of metalloproteases (TIMP1 and TIMP2) prolactin (16-Kd fragment), angiostatin (38-Kd fragment of plasminogen), bFGF soluble receptor, transforming growth factor ⁇ , interferon alfa, and placental proliferin-related protein.
- the invention provides for a pharmaceutical composition of the present invention in combination with a chemotherapeutic agent.
- a Therapeutic of the invention is combined with chemotherapeutic agents or radioactive isotope exposure.
- the invention is illustrated by way of examples infra which disclose, inter alia, the inhibition of capillary endothelial cell proliferation by troponin subunits C, I, and T and the means for determining inhibition of capillary endothelial cell migration and inhibition of neovascularization in vivo by troponin subunits.
- the invention provides for pharmaceutical compositions comprising troponin subunits, fragments, and homologs thereof.
- the subunits, fragments, or homologs are of fly, frog, mouse, rat, rabbit, pig, cow, dog, monkey, or human troponin subunits.
- the invention encompasses peptides which are homologous to troponin C (SEQ ID NO:1) or fragments thereof.
- the amino acid sequence of the peptide has at least 80% identity compared to the troponin C from which it is derived. In another embodiment, this identity is greater than 85%. In a more preferred embodiment, this identity is greater than 90%. In a most preferred embodiment, the amino acid sequence of the peptide has at least 95% identity with the troponin C or fragment thereof. Fragments are generally at least 10 amino acids, and in alternate embodiments at least 20, 30, 40, 50, 75, and 100 amino acids in length.
- the invention encompasses a troponin submit subunit or fragment thereof encoded by a nucleic acid hybridizable to the complement of a nucleic acid encoding a troponin subunit, preferably troponin C, under low stringency, moderate stringency or high stringency conditions.
- the invention encompasses peptides which are homologous to troponin I (SEQ ID NOS:2, 10 or 15) or fragments thereof.
- the amino acid sequence of the peptide has at least 80% identity with the troponin I or fragment thereof. In another embodiment, this identity is greater than 85%. In a more preferred embodiment, this identity is greater than 90%. In a most preferred embodiment, the amino acid sequence of the peptide has at least 95% identity with the troponin I or fragment thereof. Fragments are generally at least 4 amino acids, and in alternate embodiments at least 8, 10, 20, 30, 40, 50, 75, and 100 amino acids in length.
- the invention encompasses a troponin submit subunit or fragment thereof encoded by a nucleic acid hybridizable to the complement of a nucleic acid encoding a troponin subunit, preferably troponin I, under low stringency, moderate stringency or high stringency conditions.
- the invention encompasses peptides which are homologous to troponin T (SEQ ID NO:3) or fragments thereof.
- the amino acid sequence of the peptide has at least 80% identity with the troponin T or fragment thereof. In another embodiment, this identity is greater than 85%. In a more preferred embodiment, this identity is greater than 90%. In a most preferred embodiment, the amino acid sequence of the peptide has at least 95% identity with the troponin T or fragment thereof. Fragments are generally at least 10 amino acids, and in alternate embodiments at least 20, 30, 40, 50, 75, 100, 150, and 200 amino acids in length.
- the invention encompasses a troponin submit subunit or fragment thereof encoded by a nucleic acid hybridizable to the complement of a nucleic acid encoding a troponin subunit, preferably troponin T, under low stringency, moderate stringency or high stringency conditions.
- the invention encompasses peptides which are homologous to the Inhibitory (I′) and carboxy terminus (C′) region (C′+I′) (SEQ ID NO: 14).
- the invention encompasses peptides that are homologous to the C′+I′ region of human troponin I (huTnI) (SEQ ID NO:17) corresponding to amino acid residues of SEQ ID NO:17, including but not limited to residues: 94-123 (huTnI 94-123 ), 104-133 (huTnI 104-133 ), 114-143 (huTnI 114-143 ), 129-153 (huTnI 129-153 ), 134-173 (huTnI 134-173 ), 144-182 (huTnI 144-182 ), 93-112 (huTnI 93-112 ), 98-117 (huTnI 99-117 ), 103-
- Additional embodiments include 94-113 (huTnI.sub.94-113), 98-117 (huTnI 98-117 ), 102-121 (huTnI 102-121 ), 106-125 (huTnI 106-125 ) 110-129 (huTnI 110-129 ), and 114-133 (huTnI 114-133 ).
- Still other embodiments include carboxy terminus region (C′) of human troponin I (huTnI), 116-123 (huTnI 116-123 ), 118-125 (huTnI 118-125 ), 120-127 (huTnI 120-127 ) 122-129 (huTnI 122-129 ), 124-131 (huTnI 124-131 ), 126-133 (huTnI 126-133 ), 128-135 (huTnI 128-135 ), 130-137 (huTnI 130-137 ), 132-139 (huTnI 132-139 ), 134-141 (huTnI 134-141 ), and 136-143 (huTnI 136-143 ).
- C′ carboxy terminus region
- Fragments are generally at least 4 amino acids, and in alternate embodiments at least 8, 10, 20, 30, 40, 50, and 75 amino acids in length.
- “Homologous,” as defined herein, refers to identity over an amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art or whose encoding nucleic acid is capable of hybridizing to a coding gene sequence, under high stringency, moderate stringency, or low stringency conditions.
- computer programs for determining homology may include but are not limited to TBLASTN, BLASTP, FASTA, TEASTA, and CLUSTALW (Pearson and Lipman, 1988, Proc. Natl. Acad. Sci. USA 85(8):2444-8; Altschul et al., 1990, J. Mol. Biol. 215(3):403-10; Thompson, et al., 1994, Nucleic Acids Res. 22(22):4673-80; Higgins, et al., 1996, Methods Enzymol 266:383-402; Altschul, et al., 1990, J. Mol. Biol. 215(3):403-10). Default parameters for each of these computer programs are well known and should be utilized.
- BLAST Basic Local Alignment Search Tool
- the BLASTP program compares an amino acid query sequence against a protein sequence database
- the BLASTN program compares a nucleotide query sequence against a nucleotide sequence database
- the BLASTX program compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database
- the TBLASTN program compares a protein query sequence against a nucleotide sequence database translated in all six reading frames (both strands); 5)
- the TBLASTX program compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database.
- Smith-Waterman (database: European Bioinformatics Institute wwwz.ebi.ac.uk/bic_sw/) (Smith-Waterman, 1981, J. of Molec. Biol., 147:195-197) is a mathematically rigorous algorithm for sequence alignments.
- FASTA (see Pearson et al., 1988, Proc. Nat'l Acad. Sci. USA, 85:2444-2448) is a heuristic approximation to the Smith-Waterman algorithm.
- Smith-Waterman and FASTA algorithms see Nicholas et al., 1998, “A tutorial on Searching Sequence Databases and Sequence Scoring Methods” (www.psc.edu) and references cited therein.
- troponin subunits and fragments can be made by altering troponin sequences by substitutions, additions or deletions that provide for functionally equivalent molecules capable of displaying one or more functional activities associated with a full-length wild-type troponin subunit.
- Such functional activities include but are not limited to inhibition of angiogenesis; inhibition of metastases; inhibition of tumor growth.
- These include, but are not limited to, troponin subunits, fragments, or homologs containing, as a primary amino acid sequence, all or part of the amino acid sequence of a troponin subunit including altered sequences in which functionally equivalent amino acid residues are substituted for residues within the sequence resulting in a silent change.
- one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent alteration.
- Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs.
- the nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine.
- the polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine.
- the positively charged (basic) amino acids include arginine, lysine and histidine.
- the negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
- One embodiment of the invention provides for molecules consisting of or comprising a fragment of at least 4 (contiguous) amino acids of a troponin subunit which is capable of inhibiting endothelial cell proliferation as discussed above. In other embodiments, this molecule consists of at least 8, 10, 20 or 50 amino acids of the troponin subunit.
- such molecules consist of or comprise fragments of a troponin subunit that are at least 8, 10, 20, 30, 40, 50, 75, 100 and 150 amino acids in length, including but not limited to, C′+I′ (SEQ ID NO:14), huTnI 94-123 , huTnI 104-133 , huTnI 114-143 , huTnI129-153, huTnI 134-173 , huTnI 144-182 , huTnI 93-112 , huTnI 98-117 , huTnI 103-122 , huTnI 108-127 , huTnI 113-132 , and carboxy terminus region (C′) huTnI 118-137 .
- C′+I′ SEQ ID NO:14
- huTnI 94-123 huTnI 104-133 , huTnI 114
- Additional embodiments include 94-113 (huTnI 94-113 ) 98-117 (huTnI 98-117 ), 102-121 (huTnI 102-121 ), 106-125 (huTnI 106-125 ), 110-129 (huTnI 110-129 ), and 114-133 (huTnI 114-133 ).
- Still other embodiments include carboxy terminus region (C′), 116-123 (huTnI 116-123 ), 118-125 (huTnI 118-125 ), 120-127 (huTnI 120-127 ), 122-129 (huTnI 122-129 ),124-131 (huTnI 124-131 ), 126-133 (huTnI 126-133 ), 128-135 (huTnI 128-135 ), 130-137 (huTnI 130-137 ), 132-139 (huTnI 132-139 ), 134-141 (huTnI 134-141 ), and 136-143 (huTnI 136-143 ).
- the protein is a mammalian troponin subunit. In more preferred embodiments, it is a mammalian troponin C, I, or T subunit.
- the troponin subunits, fragments and homologs of the invention can be derived from tissue (see, for example, Section 6, Examples 1 and 7; Ebashi et al., 1968 , J. Biochem. 64:465; Yasui et al., 1968 , J. Riol. Chem. 243:735; Hartshorne et al., 1968 , Biochem. Biophys. Res. Commun. 31:647; Shaub et al., 1969 , Biochem. J. 115:993; Greaser et al., 1971 , J. Biol. Chem. 246:4226-4733; Brekke et al., 1976 , J. Biol. Chem.
- troponin subunits can occur at the gene or protein level.
- a cloned troponin gene sequence coding for troponin subunits C, I, or T can be modified by any of numerous strategies known in the art. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. The sequence can be cleaved at appropriate sites with restriction endonuclease(s), followed by further enzymatic modification if desired, isolated, and ligated in vitro.
- a nucleic acid which is hybridizable to the complement of a troponin nucleic acid e.g., having a sequence as set forth in SEQ ID NOS:13-17
- a nucleic acid encoding a troponin fragment or derivative under conditions of low stringency is provided.
- procedures using such conditions of low stringency are as follows (see also Shilo and Weinberg, 1981, Proc. Natl. Acad. Sci. U.S.A. 78, 6789-6792). Filters containing DNA are pretreated for 6 h at 40° C.
- a nucleic acid which is hybridizable to a troponin nucleic acid under conditions of high stringency is provided.
- procedures using such conditions of high stringency are as follows. Prehybridization of filters containing DNA is carried out for 8 h to overnight at 65° C. in buffer composed of 6 ⁇ SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 ⁇ g/ml denatured salmon sperm DNA. Filters are hybridized for 48 h at 65° C.
- a nucleic acid which is hybridizable to a troponin nucleic acid under conditions of moderate stringency is provided. Selection of appropriate conditions for such stringencies is well known in the art (see e.g., Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; see also, Ausubel et al., eds., in the Current Protocols in Molecular Biology series of laboratory technique manuals, ⁇ 1987-1997 Current Protocols, ⁇ 1994-1997 John Wiley and Sons, Inc.).
- the troponin subunit encoding nucleic acid sequence can be mutated in vitro or in vivo, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions and/or form new restriction endonuclease sites or destroy preexisting ones, to facilitate further in vitro modification.
- Any technique for mutagenesis known in the art can be used, including, but not limited to, in vitro site-directed mutagenesis (Hutchinson et al., 1978 , J. Biol. Chem. 253:6551), use of TAB® linkers (Pharmacia), etc.
- troponin subunit C, I, or T sequence may also be made at the protein level. Included within the scope of the invention are troponin subunit fragments or other fragments or homologs which are differentially modified during or after translation, e.g., by acetylation, phosphorylation, carboxylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc.
- Non-classical amino acids include, but are not limited to, the D-isomers of the common amino acids, ⁇ -amino isobutyric acid, 4-aminobutyric acid, hydroxyproline, sarcosine, citrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, ⁇ -alanine, designer amino acids such as ⁇ -methyl amino acids, C ⁇ -methyl amino acids, and N ⁇ methyl amino acids.
- the invention encompasses a chimeric, or fusion, protein comprising a troponin subunit or fragment thereof (consisting of at least a domain or motif of the troponin subunit that is responsible for inhibiting endothelial cell proliferation) joined at its amino or carboxy-terminus via a peptide bond to an amino acid sequence of a different protein.
- a chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other by methods known in the art, in the proper coding frame, and expressing the chimeric product by methods commonly known in the art.
- such a chimeric product may be made by protein synthetic techniques, e.g., by use of a peptide synthesizer.
- the invention encompasses combination of the troponin subunits, fragments, or homologs of the present invention to inhibit angiogenesis.
- Another embodiment provides for the combination of troponin subunits, fragments, or homologs with other angiogenesis inhibiting factors.
- Such angiogenesis inhibiting factors include, but are not limited to: angiostatic steroids, thrombospondin, platelet factor IV, transforming growth factor ⁇ , interferons, tumor necrosis factor ⁇ , bovine vitreous extract, protamine, tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), prolactin (16-kd fragment), angiostatin (38-kd fragment of plasminogen), bFGF soluble receptor, and placental proliferin-related protein. See, e.g., reviews by Folkman et al., 1995 , N. Engl. J. Med. 333:1757-1763 and Klagsbrun et al., 1991 , Annu. Rev. Physiol. 53:217-239.
- the functional activity and/or therapeutically effective dose of troponin subunits, fragments and homologs can be assayed in vitro by various methods. These methods are based on the physiological processes involved in angiogenesis and while they are within the scope of the invention, they are not intended to limit the methods by which troponin subunits, fragments and homologs inhibiting angiogenesis are defined and/or a therapeutically effective dosage of the pharmaceutical composition is determined.
- bioassays known in the art can be used, including, but not limited to, radioactive incorporation into nucleic acids, calorimetric assays and cell counting.
- Inhibition of endothelial cell proliferation may be measured by calorimetric determination of cellular acid phosphatase activity or electronic cell counting. These methods provide a quick and sensitive screen for determining the number of endothelial cells in culture after treatment with the troponin subunit, fragment, or homolog of the invention, and an angiogenesis stimulating factor such as aFGF.
- the calorimetric determination of cellular acid phosphatase activity is described by Connolly et al., 1986 , J. Anal. Biochem. 152:136-140. According to this method, described in Example 9, capillary endothelial cells are treated with angiogenesis stimulating factors, such as aFGF, and a range of potential inhibitor concentrations.
- the incorporation of radioactive thymidine by capillary endothelial cells represents another means by which to assay for the inhibition of endothelial cell proliferation by a potential angiogenesis inhibitor.
- a predetermined number of capillary endothelial cells are grown in the presence of 3 H-Thymidine stock, an angiogenesis stimulator such as for example, bFGF, and a range of concentrations of the angiogenesis inhibitor to be tested.
- angiogenesis stimulator such as for example, bFGF
- the ability of varying concentrations of troponin subunits, fragments or homologs to interfere with the process of capillary endothelial cell migration in response to an angiogenic stimulus can be assayed using the modified Boyden chamber technique. See, e.g., Section 6, Example 4, infra.
- Another means by which to assay the functional activity of troponin subunits, fragments and homologs involves examining the ability of the compounds to inhibit the directed migration of capillary endothelial cells which ultimately results in capillary tube formation. This ability may be assessed for example, using an assay in which capillary endothelial cells plated on collagen gels are challenged with the inhibitor, and determining whether capillary-like tube structures are formed by the cultured endothelial cells.
- Assays for the ability to inhibit angiogenesis in vivo include the chorioallantoic membrane assay and corneal pocket assays (see, e.g., Section 6, infra, Example 10, and Example 11, respectively). See also, Polverini et al., 1991 , Methods Enzymol. 198:440-450.
- a tumor of choice is implanted into the cornea of the test animal in the form of a corneal pocket.
- the potential angiogenesis inhibitor is applied to the corneal pocket and the corneal pocket is routinely examined for neovascularization. See, e.g., Example 11 infra.
- the therapeutically effective dosage for inhibition of angiogenesis in vivo may be extrapolated from in vitro inhibition assays using the compositions of the invention above or in combination with other angiogenesis inhibiting factors.
- the effective dosage is also dependent on the method and means of delivery.
- the inhibitor is delivered in a topical-ophthalmic carrier.
- the inhibitor is delivered by means of a biodegradable, polymeric implant.
- the invention provides for compositions and methods for inhibition of angiogenesis.
- the invention further provides for compositions and methods for treatment or prevention of diseases or disorders associated with neovascularization by administration of a therapeutic compound of the invention.
- Such compounds include troponin subunits and fragments and homologs thereof (e.g., as described supra).
- Malignant and metastatic conditions which can be treated with the Therapeutic compounds of the present invention include, but are not limited to, the solid tumors listed in Table 1 (for a review of such disorders, see Fishman et al., 1985 , Medicine, 2d Ed., J. B. Lippincott Co., Philadelphia) and blood-borne tumors such as leukemias.
- Ocular disorders associated with neovascularization which can be treated with the Therapeutic compounds of the present invention include, but are not limited to:
- Therapeutic compounds of the present invention include, but are not limited to, hemangioma, arthritis, psoriasis, angiofibroma, atherosclerotic plaques, delayed wound healing, granulations, hemophilic joints, hypertrophic scars, nonunion fractures, Osler-Weber syndrome, pyogenic granuloma, scleroderma, trachoma, and vascular adhesions.
- the Therapeutics of the invention can be tested in vivo for the desired therapeutic or prophylactic activity as well as for determination of therapeutically effective dosage.
- such compounds can be tested in suitable animal model systems prior to testing in humans, including, but not limited to, rats, mice, chicken, cows, monkeys, rabbits, etc.
- suitable animal model systems prior to testing in humans, including, but not limited to, rats, mice, chicken, cows, monkeys, rabbits, etc.
- any animal model system known in the art may be used.
- the invention provides methods of inhibition of angiogenesis and method of treatment (and prophylaxis) by administration to a subject an effective amount of a Therapeutic of the invention.
- the Therapeutic is substantially purified as set forth in Examples 1 and 7.
- the subject is preferably an animal, including, but not limited to, animals such as cows, pigs, chickens, etc., and is more preferably a mammal, and most preferably a human.
- the invention also provides for methods of treatment and prevention by administration of an effective amount of a Therapeutic of the invention to an immunocompromised patient, for example, a patient having cancer or infected with human immunodeficiency virus (HIV).
- a Therapeutic of the invention may be used to treat or prevent secondary infections or diseases associated with HIV infection or cancers.
- the invention further provides methods of treatment and prevention by administration to a subject, an effective amount of a Therapeutic of the invention combined with a chemotherapeutic agent and/or radioactive isotope exposure.
- the invention also provides for methods of treatment and prevention of a Therapeutic of the invention for patients who have entered a remission in order to maintain a dormant state.
- a Therapeutic of the invention e.g., encapsulation in liposomes, microparticles, microcapsules, receptor-mediated endocytosis (see, e.g., Wu and Wu, 1987 , J. Biol. Chem. 262:4429-4432).
- Methods of introduction include, but are not limited to, topical, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, ophthalmic, and oral routes.
- the compounds may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. It is preferred that administration is localized, but it may be systemic. In addition, it may be desirable to introduce the pharmaceutical compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
- epithelial or mucocutaneous linings e.g., oral mucosa, rectal and intestinal mucosa, etc.
- administration may be administered together with other biologically active agents. It is preferred that administration is localized, but it
- compositions of the invention may be desirable to administer the pharmaceutical compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.
- administration can be by direct injection at the site (or former site) of a malignant tumor or neoplastic or pre-neoplastic tissue.
- the purified troponin subunit is combined with a carrier so that an effective dosage is delivered, based on the desired activity (i.e., ranging from an effective dosage, for example, of 1.0 ⁇ M to 1.0 mM to prevent localized angiogenesis, endothelial cell migration, and/or inhibition of capillary endothelial cell proliferation.
- a topical troponin subunit, fragment or homolog is applied to the skin for treatment of diseases such as psoriasis.
- the carrier may in the form of, for example, and not by way of limitation, an ointment, cream, gel, paste, foam, aerosol, suppository, pad or gelled stick.
- a topical Therapeutic for treatment of some of the eye disorders discussed infra consists of an effective amount of troponin subunit, fragment, or homolog, in a opthalmologically acceptable excipient such as buffered saline, mineral oil, vegetable oils such as corn or arachis oil, petroleum jelly, Miglyol 182, alcohol solutions, or liposomes or liposome-like products. Any of these compositions may also include preservatives, antioxidants, antibiotics, immunosuppressants, and other biologically or pharmaceutically effective agents which do not exert a detrimental effect on the troponin subunit.
- the troponin subunit, fragment, or homolog composition may be in the form of tablets or capsules, which can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; or a glidant such as colloidal silicon dioxide.
- a binder such as microcrystalline cellulose, gum tragacanth or gelatin
- an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch
- a lubricant such as magnesium stearate or Sterotes
- a glidant such as colloidal silicon dioxide.
- dosage unit form can contain, in addition to material of the above type, a liquid carrier such as a fatty oil.
- Suppositories generally contain active ingredient in the range of 0.5% to 10% by weight; oral formulations preferably contain 10% to 95% active ingredient.
- the Therapeutic can be delivered in a vesicle, in particular a liposome.
- a vesicle in particular a liposome. See, Langer et al., 1990 , Science 249:1527-1533; Treat et al., 1989, in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365; Lopez-Berestein, ibid., pp. 317-327.
- the Therapeutic can be delivered in a controlled release system.
- an infusion pump may be used to administer troponin subunit, such as for example, that used for delivering insulin or chemotherapy to specific organs or tumors (see Langer, supra; Sefton, CRC Crit. Ref. Biomed., 1987, Eng. 14:201; Buchwald et al., 1980 , Surgery 88:507; Saudek et al., 1989 , N. Engl. J. Med. 321:574.
- the troponin subunit, fragment, or homolog is administered in combination with a biodegradable, biocompatible polymeric implant which releases the troponin subunit, fragment, or homolog over a controlled period of time at a selected site.
- a biodegradable, biocompatible polymeric implant which releases the troponin subunit, fragment, or homolog over a controlled period of time at a selected site.
- preferred polymeric materials include polyanhydrides, polyorthoesters, polyglycolic acid, polylactic acid, polyethylene vinyl acetate, and copolymers and blends thereof. See, Medical Applications of Controlled Release, Langer and Wise (eds.), 1974, CRC Pres., Boca Raton, Fla.; Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), 1984, Wiley, New York; Ranger and Peppas, 1983 , J.
- a controlled release system can be placed in proximity of the therapeutic target, i.e., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, 1989, supra, vol. 2, pp. 115-138).
- compositions comprise a therapeutically effective amount of a Therapeutic, and a pharmaceutically acceptable carrier.
- compositions of the invention can be formulated as neutral or salt forms.
- Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
- the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans.
- carrier refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered.
- Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents. Water is a preferred carrier when the pharmaceutical composition is administered intravenously.
- Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
- suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
- the composition if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents such as acetates, citrates or phosphates.
- Antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; and agents for the adjustment of tonicity such as sodium chloride or dextrose are also envisioned.
- the parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like.
- the composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides, microcrystalline cellulose, gum tragacanth or gelatin.
- Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin.
- Such compositions will contain a therapeutically effective amount of the Therapeutic, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient.
- the formulation should suit the mode of administration.
- the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings.
- compositions for intravenous administration are solutions in sterile isotonic aqueous buffer.
- the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection.
- the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.
- composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline.
- an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- the amount of the Therapeutic of the invention which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques. In addition, in vitro assays such as those discussed in section 5.2 may optionally be employed to help identify optimal dosage ranges.
- the precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. However, suitable dosage ranges for intravenous administration of full-length troponin subunits are generally about 20-500 micrograms of active compound per kilogram body weight.
- Suitable dosage ranges for intranasal administration of full-length troponin subunits are generally about 0.01 pg/kg body weight to 1 mg/kg body weight.
- Suitable dosage ranges for intravenous administration of troponin fragments are generally about 10 micrograms to 1 milligram of active compound per kilogram body weight, preferably about 150 milligrams per administration, more preferably about 120 milligrams per human.
- Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test bioassays or systems.
- the doses recited above can be repeated.
- the doses recited above are administered 2 to 7 times per week.
- the duration of treatment depends upon the patient's clinical progress and responsiveness to therapy.
- the invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
- a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention.
- Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
- the following non-limiting examples demonstrate the discovery of troponin subunit inhibition of angiogenic stimulus induced endothelial cell proliferation, and means for determining the effective dosage of troponin subunit, fragment, or homolog to inhibit angiogenesis, as well as for identifying troponin subunit fragments and homologs (i.e., those fragments or homologs of troponin subunit capable of inhibiting angiogenesis.
- the troponin subunit used in the examples is purified as described infra.
- Rabbit back and leg muscles are removed, cleaned of fat and connective tissue, and ground.
- the ground muscle (1 kg) is stirred for 5 min. in 2 liters of a solution containing 20 mM KCl, 1 mM KHCO 3 , 0.1 mM CaCl 2 , and 0.1 mM DTT. 1
- the suspension is filtered through cheesecloth, and the washing of the residue is repeated four times.
- Two liters of 95% ethanol are then added to the washed residue and the solution filtered after 10 min.
- the ethanol extraction is repeated twice.
- the residue is then washed 3 times with 2 liters of diethyl ether for 10 min. Finally the residue is allowed to dry at room temperature for 2 to 3 hours.
- DDT dithiothreitol
- EGTA ethylene glycol bis( ⁇ -aminoethyl ether)-N,N′-tetraacetate
- SDS sodium dodecyl sulfate
- SE- sulfoethyl
- the dried powder (from 1 kg of muscle) is extracted overnight at 22° with 2 liters of a solution containing 1 M KCl, 25 mM Tris (pH 8.0), 0.1 mM CaCl 2 , and 1 mM DTT. After filtration through cheesecloth, the residue is once more extracted with 1 liter of 1 M KCl.
- the extracts are combined and cooled to 4° C. Solid ammonium sulfate is added to produce approximately 40% saturation (230 g per liter). After 30 min. the solution is centrifuged and 125 g of ammonium sulfate is then added per liter of supernatant (60% saturation). After centrifugation the precipitate is dissolved in 500 ml of a solution containing 5 mM Tris (pH 7.5), 0.1 mM CaCl 2 , and 0.1 mM DTT and dialyzed against 15 liters of the same solution for 6 hours and against a fresh solution overnight.
- 5 mM Tris pH 7.5
- 0.1 mM CaCl 2 0.1 mM DTT
- Solid KCl is added to a final concentration of 1 M and 1 M KCl solution is added to bring the volume to 1 liter.
- the pH is then adjusted to 4.6 by addition of HCl, and the tropomyosin precipitate is removed by centrifugation.
- the pH of the supernatant is adjusted to 7.0 with KOH, and 450 g of ammonium sulfate are added per liter (70% saturation).
- the precipitate is dissolved in a solution containing 5 mM Tris (pH 7.5, 0.1 mM CaCl 2 , and 0.1 mM DTT, and dialyzed overnight against the same solution.
- Bovine hearts are obtained approximately 30 min. after death and immediately cut open, rinsed of blood, and immersed in ice. The left ventricle is removed, trimmed of excess fat and connective tissue, and ground. All subsequent extraction and preparation steps are performed at 0-3° except where noted.
- the ground muscle 500 g is homogenized in a Waring Blender for 1 min. in 2.5 liters of solution containing 0.09 M KH 2 PO 4 , 0.06 M K 2 HPO 4 , 0.3 M KCl, 5 mM 2-mercaptoethanol, pH 6.8. The homogenized muscle suspension is then stirred for 30 min. and centrifuged at 1000 ⁇ g for 20 min. The precipitate is re-extracted for 30 min. and centrifuged.
- the residue is then washed with 2.5 liters of 5 mM 2-mercaptoethanol and centrifuged at 1000 ⁇ g for 10 min., followed by two successive washings and centrifugations with 1.5 liters of 50 mM KCl, 5 mM Tris-HCl (pH 8.1), and 5 mM 2-mercaptoethanol.
- the residue is then washed and centrifuged twice with 1.5 liters of 50 mM Tris-HCl (pH 8.1), and 5 mM 2-mercaptoethanol.
- the volume of the residue is measured, and the residue is mixed with 0.5 volume of 3 M KCl, 50 mM Tris-HCl (pH 8.1), and 5 mM 2-mercaptoethanol.
- the suspension is centrifuged at 15,000 ⁇ g for 10 min.
- the sediment is discarded, and the supernatant is adjusted to pH 7.6 with 0.05 N HCl.
- the filamentous precipitate which forms upon pH adjustment is removed by filtering the extract through nylon gauze.
- the protein that precipitates between 30 and 50% ammonium sulfate saturation is collected, dissolved in a solution containing 1 M KCl, and 1 mM potassium phosphate (pH 6.8), and 5 mM 2-mercaptoethanol, and dialyzed against the same solution for 4 hours and against a fresh solution overnight.
- the protein solution is clarified by centrifugation at 105,000 ⁇ g for 30 min.
- the troponin is then purified by chromatography on a hydroxylapatite column with the protein being eluted between 0.08 and 0.10 M phosphate.
- Rabbit cardiac troponin is prepared in a similar manner using a pooled batch of hearts which has been stored at ⁇ 20° C. prior to extraction.
- the troponin subunits are separated by DEAE-Sephadex chromatography in 6 M urea.
- Bovine cardiac tropomyosin is prepared from the 50% ammonium sulfate saturation supernatant from the troponin extraction scheme (see above). Ammonium sulfate is added to 65% saturation, and the precipitate is dissolved in and dialyzed versus 1 M KCl, 1 mM potassium phosphate (pH 7.0), and 5 mM 2-mercaptoethanol. The protein is then purified by hydroxylapatite chromatography.
- Protein concentrations are determined by the biuret method of Gornall et al. using bovine serum albumin as a standard. Gornall et al., 1949 , J. Biol. Chem., 177:751-766.
- DNA encoding various troponin subunits and isoforms are known in the art. See, e.g., Wu et al., 1994 , DNA Cell. Biol. 13:217-233; Schreier et al., 1990 , J. Biol. Chem. 265:21247-21253; and Gahlmann et al., 1990 , J. Biol. Chem. 265:12520-12528.
- DNA encoding the subunit is subcloned into a high copy number expression plasmid, such as KP3998, using recombinant techniques known in the art.
- E. coli transformed with the insert-containing pKP1500 vector is grown overnight at 37° C., then inoculated into 4 liters of Luria-Bertani broth (LB) medium and grown at 42° C. until mid-log phase. Isopropyl-1-thio- ⁇ -D-gal-actopyranoside is then added to 0.5 mM, and the culture is allowed to grow at 42° C. overnight. Purification of expressed troponin subunit, fragment, or homolog may be adapted from published procedures (Reinach et al., 1988 , J. Biol. Chem. 250:4628-4633 and Xu et al., 1988 , J. Biol.
- Chem. 263:13962-13969 The cells are harvested by centrifugation and suspended in 20 ml of 20 mM Tris, 20% sucrose, 1 mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride, 1 mg/ml lysozyme, pH 7.5. After incubation on ice for 30 min., 80 ml of 20 mM Tris, 1 mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride, 0.5 mm DTT is added and the cells broken in a French press (SLM Instruments).
- SLM Instruments French press
- the cell debris is pelleted; the supernatant is made 35% in saturated (NH 4 ) 2 SO 4 and stirred on ice for 30 min. After sedimentation, the supernatant is made 50 mM in NaCl, 5 mM in CaCl 2 , 1 mM in MgCl 2 , and 1 mM in DTT and then loaded onto a 1.5 ⁇ 25-cm phenyl-Sepharose (Pharmacia LKB Biotechnology Inc.) column.
- the column is washed first with 50 mM Tris, 50 mM NaCl, 5 mM CaCl 2 , 1 mM MgCl 2 , 1 mM DTT, pH 7.5, then with 50 mM Tris, 1 mM NaCl, 0.1 mM CaCl 2 , 1 mM DTT, pH 7.5, until no more protein is eluted.
- the crude troponin subunit is then eluted with 50 mM Tris, 1 mM EDTA, 1 mM DTT, pH 7.5.
- Troponin subunit, fragment, or homolog Fractions that contain troponin subunit, fragment, or homolog are pooled, dialyzed against 25 mM Tris, 6 M urea (United States Biochemical Corp.), 1 mM MgCl 2 , 1 mM DTT, pH 8.0, and loaded onto a 1.5 ⁇ 25-cm DE52 (Whatman) column. The column is eluted with a 0-0.6 M NaCl linear gradient. Troponin subunit, fragment, or homolog which elutes from the column is dialyzed against 0.1 mM NH 4 HCO 3 , 1 mM ⁇ -mercaptoethanol, lyophilized, and stored. Purity is assessed by SDS-polyacrylamide gel electrophoresis and UV spectrophotometry. Typical yields of 6 mg of purified recombinant troponin subunit, fragment, or homolog/liter of bacterial culture are expected.
- the lyophilized recombinant protein is resuspended in a take up buffer consisting of 6M urea, 20 mM Hepes (pH 7.5), 0.5M NaCl, 2 mM EDTA, and 5 mM DTT.
- the mixture is nutated at room temperature for 1 hour.
- the solution is then dialyzed at 4° C. for six hours with 1 exchange against a dialysis buffer consisting of 0.5M NaCl, 20 mM Hepes (pH 7.5), and 0.5 mM DTT.
- Protein concentration is determined for each subunit at 280 ⁇ .
- the extension coefficient of Troponin I is 0.40 and Troponin T is 0.50.
- the lyophilized recombinant protein is resuspended in a take up buffer consisting of 0.1 M NaCl, 20 mM Hepes (pH 7.5), 2 mM EDTA, and 5 mM DTT. This solution is dialyzed for 6 hours at 4° C. with one exchange against a dialysis buffer of 0.1 M NaCl, 20 mM Hepes (pH 7.5), and 0.5 mM DTT.
- Protein concentration is determined by measuring absorbance at 280 ⁇ .
- the extension coefficient for troponin C is 0.18.
- Protein concentrations having the same reconstitution molar ratios of troponin subunits C, I, and T are maintained for all various combinations. These concentrations of the respective proteins are combined in a reconstitution buffer consisting of 0.1 M NaCl, 0.1 M CaCl2, 5 mM DTT, 5 mM Hepes (pH 7.5). Dialysis is for 20-24 hours at 4° C. with three exchanges over a dialysis buffer consisting of 0.1 M NaCl, 0.1 m CaCl 2 , 0.5 mM DTT, and 5 mM Hepes (pH 7.5).
- Protein concentration is approximated by measuring absorption at 278 ⁇ .
- the troponin trimer has an extension coefficient of 0.45 at 278 ⁇ .
- the inhibitory effect of troponin subunit, fragment, or homolog on the proliferation of bFGF-stimulated EC can be measured according to the following procedure.
- bovine capillary endothelial cells in DMEM/10% CS/1% GPS are plated onto each well of a 96-well pregelatinized tissue culture plate.
- the cell media is changed to DMEM, 2% CS, 1% GPS, 0.5% BSA (complete medium), supplemented with 10 ⁇ l of 1 mg/ml “cold” thymidine per 50 ml of medium.
- test samples in complete medium are added in duplicate.
- beta Fibroblast Growth Factor (bFGF) is added to each well except for the appropriate controls, to a final concentration of 0.2 ng/well.
- DNA synthesis in bFGF-stimulated 3T3 cells provides a control with which to evaluate results obtained for bFGF stimulated endothelial cell proliferation.
- DNA synthesis in the 3T3 cells can be determined according to the following method.
- BALB/c 3T3 cells are trypsinized and resuspended at a concentration of 5 ⁇ 10 4 cells/ml. Aliquots of 200 ⁇ l are plated into 0.3 cm 2 microtiter wells (Microtest II tissue Culture Plates, Falcon). After reaching confluence, in a period of 2 to 3 days, the cells are further incubated for a minimum of 5 days in order to deplete the media of growth promoting factors. These growth conditions yield confluent monolayers of non-dividing BALB/c 3T3 cells. Test samples are dissolved in 50 ⁇ l of 0.15 M NaCl and added to microtiter wells, along with [ 3 H]TdR.
- cells are lysed in 150 ⁇ l of 0.3 N NaOH and counted in 5 ml of Insta-Gel liquid scintillation cocktail (Packard) using a Packard Tri-Carb liquid scintillation counter.
- Autoradiography may be used to quantitate DNA synthesis by punching out the bottoms of the microtiter wells and mounting them on glass slides with silastic glue. The slides are dipped in a 1 g/ml solution of NTB2 nuclear track emulsion (Kodak) and exposed for 3-4 days.
- the emulsion is developed with Microdol-X solution (Kodak) for 10 minutes, rinsed with distilled H 2 O, and fixed with Rapid Fixer (Kodak) for three minutes.
- the autoradiographs are stained with a modified Giemsa stain. At least 1000 nuclei are counted in each well and DNA synthesis, expressed as the percentage of nuclei labeled. Cell division is measured by counting the number of cells in microtiter wells with the aid of a grid after 40-48 hour incubations with test samples.
- a quick and sensitive screen for inhibition of EC proliferation in response to treatment with a troponin subunit, homolog, or derivative of the invention involves incubating the cells in the presence of varying concentrations of the inhibitor and determining the number of endothelial cells in culture based on the colorimetric determination of cellular acid phosphatase activity, described by Connolly, et al., 1986 , J. Anal. Biochem. 152:136-140.
- EC capillary endothelial cells
- Capillary endothelial cells and Balb/c 3T3 cells were separately plated (2 ⁇ 10 3 /0.2 ml) onto gelatin-coated 96-well tissue culture dishes on day 1.
- cells were refed with Dulbecco's modified Eagle's medium (Gibco) with 5% calf serum (Hyclone) (DMEM/5) and bFGF (10 ng/ml) (FGF Co.) and increasing concentrations of one or more troponin subunits. These substances were added simultaneously in volumes that did not exceed 10% of the final volume.
- Wells containing phosphate buffered saline (PBS) (Gibco) alone and PBS+bFGF were included as controls.
- PBS phosphate buffered saline
- Percent inhibition was determined by comparing the cell number of wells exposed to stimulus with those exposed to stimulus and troponin subunits.
- Troponin C inhibited bFGF-stimulated endothelial cell proliferation in a dose-dependent manner in all concentrations tested ( FIG. 1 ).
- Percent inhibition of bovine endothelial cell proliferation (“BCE”) was 54%, 86%, 83%, and 100% at concentrations of 280 nM, 1.4 ⁇ M, 2.8 ⁇ M and 5.6 ⁇ M, respectively. An inhibition of 100% was observed at a concentration of 20 ⁇ g/well (5.6 ⁇ M).
- IC 50 represents the concentration at which 50% inhibition of bFGF growth factor-induced stimulation was observed. The IC 50 of troponin C was determined to be 278 nM.
- Troponin I inhibited bFGF-stimulated BCE proliferation at concentrations of 1 and 5 ⁇ g/well, but inhibition was not observed in the sample tested at 10 ⁇ g/well ( FIG. 2 ).
- the percent inhibition of BCE was 33% and 46% at concentrations of 240 nM and 1.2 ⁇ M, respectively.
- the IC 50 of troponin I was determined to be 1.14 ⁇ M.
- Troponin T inhibited bFGF-stimulated EC proliferation at concentrations of 10 and 20 ⁇ g/well, but not at concentrations of 1 and 5 ⁇ g/well ( FIG. 3 ). BCE proliferation was inhibited 23% and 62% at 1.6 ⁇ M and 3.3 ⁇ M, respectively. The IC 50 of troponin T was determined to be 2.14 ⁇ M.
- the combination of troponin subunits C and I inhibited EC at all concentrations tested ( FIG. 4 ).
- the percent inhibition of proliferation of BCE was 52%, 54% 73% and 47% at 130 nM, 645 nM, 1.3 ⁇ M and 2.6 ⁇ M, respectively.
- the IC 50 of this combination was determined to be 110 nM.
- troponin subunits C, I and T were observed to inhibit bFGF-stimulated BCE proliferation by 16% at a concentration of 360 nM (5 ⁇ g/well, FIG. 5 ).
- the troponin samples tested had no detectable inhibitory effect on the growth of Balb/c 3T3 cells, a non-endothelial cell type.
- Determination of the ability of the troponin Subunit, fragment, or homolog to inhibit the angiogenic process of capillary EC migration in response to an angiogenic stimulus can be determined using a modification of the Boyden chamber technique is used to study the effect of troponin subunit, fragment, or homolog on capillary EC migration. Falk et al., 1980 , J. Immunol. 118:239-247 (1980).
- a blind-well Boyden chamber consists of two wells (upper and lower) separated by a porous membrane. J. Exp. Med. 115:453-456 (1962).
- a known concentration of growth factor is placed in the lower wells and a predetermined number of cells and troponin subunit, fragment, or homolog is placed in the upper wells. Cells attach to the upper surface of the membrane, migrate through and attach to the lower membrane surface. The membrane can then be fixed and stained for counting, using the method of Glaser et al., 1980 , Nature 288:483-484.
- Migration is measured using blind well chambers (Neuroprobe, no. 025-187) and polycarbonate membranes with 8 micron pores (Nucleopore) precoated with fibronectin (6.67 ⁇ g/ml in PBS) (human, Cooper).
- Basic FGF Takeda Co.
- DMEM 1% calf serum
- the upper wells receive 5 ⁇ 10 5 capillary EC/ml and increasing concentrations of purified troponin subunit, fragment or homolog is used within 24 hours of purification.
- Control wells receive DMEM/1, either with or without bFGF.
- the migration chambers are incubated at 37° C. in 10% CO 2 for 4 hours.
- the cells on the upper surface of the membrane are then wiped off by drawing the membrane over a wiper blade (Neuroprobe).
- the cells which have migrated through the membrane onto the lower surface are fixed in 2% glutaraldehyde followed by methanol (4° C.) and stained with hematoxylin. Migration is quantified by counting the number of cells on the lower surface in 16 oil immersion fields and comparing this number with that obtained for the control.
- the chick chorioallantoic membrane assay may be used to determine whether troponin subunit, fragment or homolog is capable of inhibiting neovascularization in vivo. Taylor and Folkman, 1982 , Nature (London) 297:307-312. The effect of troponin subunit, fragment or homolog on growing embryonic vessels is studied using chick embryos in which capillaries appear in the yolk sac at 48 h and grow rapidly over the next 6-8 days.
- test specimens having avascular zones completely free of India-ink filled capillaries surrounding the test implant indicate the presence of an inhibitor of embryonic neovascularization.
- control specimens show neovascularization in close proximity or in contact with the methylcellulose disks.
- Histological mesodermal studies are performed on the CAMs of test and control specimens.
- the specimens are embedded in JB-4 plastic (Polysciences) at 4° C. and 3 ⁇ m sections are cut using a Reichert 2050 microtome. Sections are stained with toluidine blue and micrographs are taken on a Zeiss photomicroscope using KodakTM x100 and a green filter.
- mice weighing 4-5 lbs. are anesthetized with intravenous pentobarbital (25 mg/kg) and 2% xylocaine solution is applied to the cornea.
- the eye is proptosed and rinsed intermittently with Ringer's solution to prevent drying.
- the adult rabbit cornea has a diameter of approximately 12 mm.
- An intracorneal pocket is made by an incision approximately 0.15 mm deep and 1.5 mm long in the center of the cornea with a No. 11 scalpel blade, using aseptic technique.
- a 5 mm-long pocket is formed within the corneal stroma by inserting a 1.5 mm wide, malleable iris spatula.
- the end of the corneal pocket is extended to within 1 mm of the corneal-scleral junction.
- pockets are placed at greater distances—2-6 mm from the corneal-scleral junction by starting the incision away from the center.
- polymer pellets of ethylene vinyl acetate (EVAc) copolymer are impregnated with test substance and surgically implanted in a pocket in the rabbit cornea approximately 1 mm from the limbus.
- EVAc ethylene vinyl acetate copolymer
- test substance either a piece of V2 carcinoma or some other angiogenic stimulant is implanted distal to the polymer, 2 mm from the limbus.
- control polymer pellets that are empty are implanted next to an angiogenic stimulant in the same way.
- capillary blood vessels start growing towards the tumor implant in 5-6 days, eventually sweeping over the blank polymer.
- Troponin I was purified from bovine veal scapulae using a modification of a protocol previously described by us (Moses, et al., 1990 , Science 2488, 1408-1410). Briefly, veal scapulae were vacuum frozen immediately after slaughter and stored at ⁇ 20° C. until used. Cartilage was scraped first with a periosteal elevator (Arista) and then with a scalpel blade (No. 10, Bard-Parker) until clean of all muscle and connective tissue.
- Cartilage slices were extracted in 2 M NaCl, precipitated with HCl and ammonium sulfate (25-20%), and fractionated using a series of chromatography steps: gel filtration on A-1.5m Sepharose (Bio-Rad) in the presence of 4M guanidine-HCl, ion exchange on a Bio-Rex 70 (Bio-Rad) cation exchange column, gel filtration on a Sephadex G-75 (superfine) (Pharmacia) column, reversed-phase high-performance liquid chromatography (HPLC) on a Hi-Pore 304 column (Bio-Rad) and gel filtration on a Progel-TSK G3000SWXL column (3.0 cm ⁇ 7.8 mm) (Supelco).
- Proteins were each reduced, S-carboxyamidomethylated and subjected to digestion with trypsin.
- the resulting peptide mixtures were fractionated by narrow bore high performance liquid chromatography using a Zorbax C18 1.0 mm by 150 mm reverse-phase column on a Hewlett-Packard 1090 HPLC with a 1040 diode array detector.
- Optimum fractions were chosen based on differential UV absorbance at 205, 277 nm and 292 nm, peak symmetry and resolution (Lane, et al., 1991 , J. Prot; Chem. 10, 151-160).
- Human intercostal cartilage tissue was obtained according to bioethical guidelines pertaining to discarded clinical material.
- the cDNA encoding a fragment of human fast-twitch skeletal muscle troponin I was amplified by standard reverse transcriptase polymerase chain reaction (RT-PCR) from the total RNA isolated from a core sample of human cartilage using primers based on the nucleotide sequence of human fast-twitch skeletal muscle TnI (Zhu, et al., 1994 , Biochim. Biophys.
- the cDNA encoding the full-length open reading frame (ORF) of human fast-twitch skeletal muscle troponin I was cloned from human skeletal muscle mRNA with Pfu polymerase (Stratagene) under standard PCR conditions, using forward primer (5′-CTCACCATGGGAGATGAGGAGAAGC-3′) (SEQ ID NO:6) and the reverse primer (5′-GCCTCGAGTGGCCTAGGACTCGGAC-3′) (SEQ ID NO:7).
- the PCR product was cloned into the expression vector Pet24d (Novagen) using 5′-Ncol and 3′-Xhol sites and sequenced as above.
- Tissue expression of TnI was analyzed by RT-PCR as described above.
- Total RNA 400 ng/sample
- the design of the forward (5′-GAACACTGCCCGCCTCTGCACATC-3′) (SEQ ID NO:8) and reverse (5′-GAGCCCAGCAGCGCCTTCAGCATG-3′) (SEQ ID NO:9) primers was based on the nucleotide sequence of rat fast-twitch skeletal muscle TnI.
- Recombinant(r) human TnI was expressed according to standard protocols (Sambrook, et al., 1989 , Molecular Cloning: A laboratory manual . (Cold Spring Harbor Press, New York, N.Y.)). After 5 hrs of expression, bacteria were harvested by centrifugation. Following centrifugation at 12,000 ⁇ g for 15 min, the pellet was resuspended in 1.0 ml of Buffer A (15 mM Tris-HCl, 0.1 mM EDTA, pH 7.0). The cells were disrupted by sonication. The inclusion bodies were isolated by centrifugation at 12,000 ⁇ g once for 15 min in Buffer A, followed by centrifugation once at 11,000 ⁇ g once for 15 min in Buffer A.
- the washed pellet was dissolved in 6 M urea, 0.5 M NaCl, 5 mM HEPES, 2 mM EDTA, 5 mM DTT (pH 7.5), and nutated in the above buffer for 6-8 hours at 4° C.
- the sample was then dialyzed against 0.5 M NaCl, 5 mM HEPES, 5 mM DTT (pH 7.5) and concentrated using an Amicon concentrator (YM-10, MWCO 10,000 Da) prior to application to a Progel-TSK G3000SWXL column (30 cm ⁇ 7.8 mm).
- the sample was eluted using the above buffer (0.5 M NaCl, 5 mM HEPES, 5 mM DTT, pH 7.5).
- rTnI phosphate buffered saline
- PBS phosphate buffered saline
- Protein concentration was determined by scanning densitometric comparison (IS-1000 Digital Imaging System, Version 2.00, Alpha Innotech Corp.) with known protein standards (Novex) coelectrophoresed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by staining with Coomassie Blue.
- Proteins were then transferred to nitrocellulose (Hybond-ECL, Amersham) using a Transblot apparatus (Biorad),incubated with a monoclonal antibody to rabbit skeletal muscle TnI (Advanced Immunochemical Inc.) and developed using the ECL western blotting system according to the manufacturer's protocol (Amersham).
- Inhibitory activity eluted at an approximate molecular weight of 25,000 Da from the A-1.5 m size exclusion column, at approximately 0.2M NaCl from the Biorex 70 cation exchange column, at approximately 23,000 Da from the Sephadex G-75 gel filtration column, at an acetonitrile concentration of approximately 38.5%, and at an approximate Mr of 22,000 Da from the Progel-TSK G3000SWXL column.
- Inhibitory fractions obtained from the final chromatography step were subjected to tryptic digestion and the resultant peptides were sequenced by microcapillary LC-ESI tandem mass spectrometry or automated Edman degradation.
- a cDNA encoding full length human fast skeletal muscle troponin I was cloned into expression vector pET-24d and transformed into E. coli BL21(DE3) p LysS strain.
- the expression level of recombinant human skeletal muscle troponin I was approximately 30-40% of total cellular protein.
- recombinant TnI migrated as a single band, at approximately 21 kDa on SDS-PAGE ( FIG. 8 ).
- Capillary EC isolated from bovine adrenal cortex (Folkman, et al., 1979 , Proc. Natl. Acad. Sci. USA 76, 5217-5221) were obtained from Children's Hospital (Boston, Mass.). These cells were demonstrated to be endothelial by staining with antisera to von Willebrand factor and by their uptake of fluoresceinated, acetylated low density lipoprotein.
- DME Dulbecco's Modified Eagle's Medium, Gibco Laboratories
- DME/10 10% calf serum
- VEGF Vascular Endothelial Growth Factor
- BALB/c mouse 3T3 cells were maintained in DME/10, L-glutamine (292 ⁇ g/ml) as previously described (Klagsbrun, et al., 1977 , Exp. Cell Res. 105, 99-108).
- Bovine aortic smooth muscle cells (SMC), isolated by explant from the medial layer of bovine aortas, were obtained from Children's Hospital (Boston, Mass.). These cells were cultured in DME/10 on uncoated tissue culture plastic as previously described (D'Amore and Smith, 1993, Growth Factors 8, 61-75).
- capillary EC (2,000 cells per well) were plated on gelatinized 96-Well culture plates in DMEM supplemented with 5% (v/v) calf serum and incubated for 24 hours. On day 2, cells were treated with bFGF (Scios Nova; 1 ng/ml) and challenged with the test fractions and/or with purified TnI. For experiments in which VEGF was used as the mitogen, 800 cells per well were plated and allowed to incubate for 3 hours before VEGF (Biomedical Technologies Incorporated; 30 ng/ml) and TnI was added. Control wells contained cells alone and cells stimulated with bFGF or VEGF.
- bFGF Scios Nova; 1 ng/ml
- TnI purified TnI
- EC inhibitory activity was verified by electronic cell counting assays as previously described by us (Moses, et al., 1990 , Science 2488, 1408-1410; Moses, et al., 1990 , J. Cell. Biol. 119, 474-481). Tritiated thymidine incorporation assays were conducted according to the method of Shing (Shing, 1990, in Methods in Enzymology , eds. Barnes, D., Mather, J. P. and Sato, G. H. (Academic Press, New York), pp. 91-95).
- rTnI was tested for its ability to inhibit bFGF and VEGF-stimulated capillary EC and was found to inhibit EC proliferation in a dose-dependent and saturable manner with an IC 50 (the inhibitory concentration at which one observes 50% suppression of proliferation) of approximately 65 nM when bFGF was used as the mitogen ( FIG. 9A ) and approximately 1.5 nM when VEGF was used ( FIG. 9B ).
- Native TnI inhibited capillary EC proliferation in an equipotent manner.
- Tritiated thymidine assays demonstrated that recombinant TnI inhibited capillary EC DNA synthesis in a dose-dependent and saturable manner with an IC 50 of approximately 240 nM.
- SMC bovine aortic SMC and Balb c/3T3 cells were inhibited by TnI.
- SMC were plated into multiwell dishes (2.1 cm 2 /well) at a density of 10,000 cells/well. After allowing the cells to attach overnight, fresh media was applied containing either 3 ng/ml PDGF-BB alone or in combination with increasing concentrations of purified TnI. Following incubation for 72 hrs at 37° C. in 10% CO 2 , the cells were rinsed in PBS, detached by trypsinization and counted electronically.
- the CAM assay was used to determine whether rTnI was an inhibitor of angiogenesis in vivo.
- the results shown in FIG. 10 demonstrate the significant inhibition of embryonic neovascularization as evidenced by the large avascular zone caused by 130 picomoles of rTnI. This effect was observed in 66% of the eggs tested at this dose and 100% of the eggs tested at a dose of approximately 380 picomoles. This observation was reproduced in three separate sets of CAM assays using three different TnI preparations. Over 125 CAMs were tested in this series of experiments.
- Murine melanoma B16-BL6 were cultured in RPMI 1640 (Gibco) supplemented with 10% (v/v) fetal calf serum (Hyclone), L-glutamine and NaHCO 3 .
- Cells were washed with EBSS (Gibco) and trypsinized for 3 to 5 mm with 0.25% TRL/0.2% EDTA to which culture buffer was added for washing. This preparation was then centrifuged for 10 mm at 1000 rpm, the cell pellet resuspended in fresh culture media, cell number determined using a coulter counter and cell viability determined with trypan blue (100% viability). The cell suspension was adjusted to 2.5 ⁇ 10 5 cells/ml for implantation.
- B16-BL6 cells (5 ⁇ 10 5 /0.2 ml) were injected into the tail veins of C57BL/6 mice (approximately 6-7 weeks old).
- animals were sacrificed, the number of lung surface metastases counted and the lungs weighed.
- Recombinant TnI was tested for its ability to inhibit lung metastasis in vivo caused by a very aggressive variant of the B16 melanoma cell line, B16-BL6 (Saiki, et al., 1989 Cancer Res. 49, 3815-3822).
- Recombinant peptides corresponding to fragments of rabbit (rb) TnI (SEQ ID NO:10) ( FIG. 12 ) were tested for ability to inhibit bFGF-stimulated capillary EC as described above in Section 6, Examples 2 and 8.
- the rbTnI fragments (SEQ ID NOS:11-15) were prepared according to Jha et al., 1996, Biochemistry 35(34):11026-11035.
- the C′+I′ fragment (SEQ ID NO:14) significantly inhibited EC proliferation.
- the percent inhibition of EC was 54% and 48% at concentrations of 0.1 ⁇ g/well and 0.3 ⁇ g/well, respectively.
- the IC 50 was determined to be 0.1 to 0.2 ⁇ g/well (0.05 ⁇ M to 0.1 ⁇ M).
- the N′+I′ (SEQ ID NO:12) fragment interfered with the inhibitory activity of the C′ (SEQ ID NO:15) fragment and the N′ (SEQ ID NO:11) fragment interfered with the inhibitory activity of the C′+I′ (SEQ ID NO:14) fragment.
- TnI As shown in Section 6, Example 3, supra, full-length TnI inhibited EC proliferation approximately 46% at a concentration of 5 ⁇ g/well (1.2 ⁇ M). Thus, the C′+I′ fragment had 25 to 50-fold EC inhibitory activity compared to the full-length TnI.
- troponin subunits particularly the C′+I′ fragment (SEQ ID NO:14), inhibited EC proliferation in an assay that was developed to mimic the process of neovascularization.
- troponin subunit fragments inhibit angiogenesis.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Immunology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Toxicology (AREA)
- Marine Sciences & Fisheries (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention relates to methods of inhibiting angiogenesis associated with a disease or disorder with peptides homolgous to amino acid residues 130-137 or 132-139 of human troponin subunit I.
Description
- This is a continuation of co-pending U.S. patent application Ser. No. 11/327,174 filed on Jan. 5, 2006, which is a continuation of U.S. patent application Ser. No. 10/176,416 filed Jun. 18, 2002, now U.S. Pat. No. 7,078,385, which is a continuation-in-part of co-pending U.S. patent application Ser. No. 09/442,099 filed Nov. 17, 1999, now U.S. Pat. No. 6,465,431, which is a continuation-in-part of Ser. No. 09/268,274 filed Mar. 15, 1999, abandoned, which is a continuation-in-part of U.S. application Ser. No. 08/961,264 filed Oct. 30, 1997, now U.S. Pat. No. 6,025,331, which is a continuation of U.S. application Ser. No. 08/602,941, filed Feb. 16, 1996, now U.S. Pat. No. 5,837,680, the contents of which are all incorporated by reference herein in their entirety.
- The present invention provides for novel pharmaceutical compositions, and methods of use thereof for the treatment of diseases or disorders involving abnormal angiogenesis.
- More particularly, the present invention is based, in part, on the discovery that troponin subunits C, I and T and fragments thereof inhibit stimulated endothelial cell proliferation. Pharmaceutical compositions containing therapeutically effective amounts of troponin C, I, or T, subunits, fragments, or homologs and methods of therapeutic use thereof are provided.
- Angiogenesis, the process of new blood vessel development and formation, plays an important role in numerous physiological events, both normal and pathological. Angiogenesis occurs in response to specific signals and involves a complex process characterized by infiltration of the basal lamina by vascular endothelial cells in response to angiogenic growth signal(s), migration of the endothelial cells toward the source of the signal(s), and subsequent proliferation and formation of the capillary tube. Blood flow through the newly formed capillary is initiated after the endothelial cells come into contact and connect with a preexisting capillary.
- The naturally occurring balance between endogenous stimulators and inhibitors of angiogenesis is one in which inhibitory influences predominate. Rastinejad et al., 1989, Cell 56:345-355. In those rare instances in which neovascularization occurs under normal physiological conditions, such as wound healing, organ regeneration, embryonic development, and female reproductive processes, angiogenesis is stringently regulated and spatially and temporally delimited. Under conditions of pathological angiogenesis such as that characterizing solid tumor growth, these regulatory controls fail.
- Unregulated angiogenesis becomes pathologic and sustains progression of many neoplastic and non-neoplastic diseases. A number of serious diseases are dominated by abnormal neovascularization including solid tumor growth and metastases, arthritis, some types of eye disorders, and psoriasis. See, e.g., reviews by Moses et al., 1991, Biotech. 9:630-634; Folkman et al., 1995, N. Engl. J. Med., 333:1757-1763; Auerbach et al., 1985, J. Microvasc. Res. 29:401-411; Folkman, 1985, Advances in Cancer Research, eds. Klein and Weinhouse, Academic Press, New York, pp. 175-203; Patz, 1982, Am. J. Opthalmol. 94:715-743; and Folkman et al., 1983, Science 221:719-725. In a number of pathological conditions, the process of angiogenesis contributes to the disease state. For example, significant data have accumulated which suggest that the growth of solid tumors is dependent on angiogenesis. Folkman and Klagsbrun, 1987, Science 235:442-447.
- The maintenance of the avascularity of the cornea, lens, and trabecular meshwork is crucial for vision as well as to ocular physiology. There are several eye diseases, many of which lead to blindness, in which ocular neovascularization occurs in response to the diseased state. These ocular disorders include diabetic retinopathy, neovascular glaucoma, inflammatory diseases and ocular tumors (e.g., retinoblastoma). There are also a number of other eye diseases which are also associated with neovascularization, including retrolental fibroplasia, uveitis, retinopathy of prematurity, macular degeneration, and approximately twenty eye diseases which are associated with choroidal neovascularization and approximately forty eye diseases associated with iris neovascularization. See, e.g., reviews by Waltman et al., 1978, Am. J. Ophthal. 85:704-710 and Gartner et al., 1978, Surv. Ophthal. 22:291-312. Currently, the treatment of these diseases, especially once neovascularization has occurred, is inadequate and blindness often results. Studies have suggested that vaso-inhibitory factors which are present in normal ocular tissue (cornea and vitreous) are lost in the diseased state.
- An inhibitor of angiogenesis could have an important therapeutic role in limiting the contributions of this process to pathological progression of the underlying disease states as well as providing a valuable means of studying their etiology. For example, agents that inhibit tumor neovascularization could play an important role in inhibiting metastatic tumor growth.
- The components of angiogenesis relating to vascular endothelial cell proliferation, migration and invasion, have been found to be regulated in part by polypeptide growth factors. Experiments in culture, indicate that endothelial cells exposed to a medium containing suitable growth factors can be induced to evoke some or all of the angiogenic responses. Several polypeptides with in vitro endothelial growth promoting activity have been identified. Examples include acidic and basic fibroblast growth factors, transforming growth factors α and β, platelet-derived endothelial cell growth factor, granulocyte colony-stimulating factor, interleukin-8, hepatocyte growth factor, proliferin, vascular endothelial growth factor and placental growth factor. See, e.g., review by Folkman et al., 1995, N. Engl. J. Med., 333:1757-1763.
- Although extracts from several different tissue sources have been shown to contain anti-angiogenic activity, several molecules such as platelet factor-4, thrombospondin, protamine, and transforming growth factor B, have been found to negatively regulate different aspects of angiogenesis, such as cell proliferation or cell migration. No single tissue-derived macromolecule capable of inhibiting angiogenesis has been identified in the prior art. See, e.g., reviews by Folkman, J., 1995, N. Engl. J. Med. 333:1757-1763 and D'Amore, 1985, Prog. Clin. Biol. Res. 221:269-283. There is therefore a great need for the further identification and characterization of chemical agents which can prevent the continued deregulated spread of vascularization and which would potentially have broad applicability as a therapy for those diseases in which neovascularization plays a prominent role.
- Capillary endothelial cells (“EC”) proliferate in response to an angiogenic stimulus during neovascularization. Ausprunk and Folkman, 1977, J. Microvasc. Res. 14:153-65. An in vitro assay assessing endothelial cell proliferation in response to known angiogenesis simulating factors, such as acidic or basic fibroblast growth factor (aFGF and bFGF, respectively), has been developed to mimic the process of neovascularization in vitro. This type of assay is the assay of choice to demonstrate the stimulation of capillary EC proliferation by various angiogenic factors. Shing et al., 1984, Science 223:1296-1298.
- The process of capillary EC migration through the extracellular matrix towards an angiogenic stimulus is also a critical event required for angiogenesis. See, e.g., review by Ausprunk et al., 1977, J. Microvasc. Res. 14:53-65. This process provides an additional assay by which to mimic the process of neovascularization in vitro. A modification of the Boyden chamber technique has been developed to monitor EC migration. Boyden et al., 1962, J. Exptl. Med. 115:453-456, Example 4. To date, only a few tissue-derived EC cell migration inhibitors are known. See, e.g., review by Langer et al., 1976, Science 193:70-72.
- In the early 1970's, a number of in vivo angiogenesis model bioassays were widely used. These model systems included rabbit corneal pocket, chick chorioallantoic membrane (“CAM”), rat dorsal air sac and rabbit air chamber bioassays. For review, see, Blood et al., 1990, Biochem. et Biophys. Acta 1032:89-118. The development of controlled release polymers capable of releasing large molecules such as angiogenesis stimulators and inhibitors was critical to the use of these assays. Langer et al., 1976, Nature 263:797-800.
- In the CAM bioassay, fertilized chick embryos are cultured in Petri dishes. On
day 6 of development, a disc of a release polymer, such as methyl cellulose, impregnated with the test sample or an appropriate control substance is placed onto the vascular membrane at its advancing edge. Onday 8 of development, the area around the implant is observed and evaluated. Avascular zones surrounding the test implant indicate the presence of an inhibitor of embryonic neovascularization. Moses et al., 1990, Science, 248:1408-1410 and Taylor et al., 1982, Nature, 297:307-312. The reported doses for previously described angiogenesis inhibitors tested alone in the CAM assay are 50 μg of protamine (Taylor et al. (1982)), 200 μg of bovine vitreous extract (Lutty et al., 1983, Invest. Opthalmol. Vis. Sci. 24:53-56), and 10 μg of platelet factor IV (Taylor et al. (1982)). The lowest reported doses of angiogenesis inhibitors effective as combinations include heparin (50 μg) and hydrocortisone (60 μg), and B-cyclodextrin tetradecasulfate (14 μg) and hydrocortisone (60 μg), reported by Folkman et al., 1989, Science 243:1490. - According to the rabbit corneal pocket assay, polymer pellets of ethylene vinyl acetate copolymer (“EVAC”) are impregnated with test substance and surgically implanted in a pocket in the rabbit cornea approximately 1 mm from the limbus. Langer et al., 1976, Science 193:707-72. To test for an angiogenesis inhibitor, either a piece of carcinoma or some other angiogenic stimulant is implanted distal to the
polymer 2 mm from the limbus. In the opposite eye of each rabbit, control polymer pellets that are empty are implanted next to an angiogenic stimulant in the same way. In these control corneas, capillary blood vessels start growing towards the tumor implant in 5-6 days, eventually sweeping over the blank polymer. In test corneas, the directional growth of new capillaries from the limbal blood vessel towards the tumor occurs at a reduced rate and is often inhibited such that an avascular region around the polymer is observed. This assay is quantitated by measurement of the maximum vessel lengths with a stereospecific microscope. - Troponin, a complex of three polypeptides is an accessory protein that is closely associated with actin filaments in vertebrate muscle. The troponin complex, acts in conjunction with the muscle form of tropomyosin to mediate the Ca2+ dependency of myosin ATPase activity and thereby regulate muscle contraction. The troponin polypeptides T, I, and C, are named for their tropomyosin binding, inhibitory, and calcium binding activities, respectively. Troponin T binds to tropomyosin and is believed to be responsible for positioning the troponin complex on the muscle thin filament. Troponin I binds to actin, and the complex formed by troponins I and T, and tropomyosin, inhibits the interaction of actin and myosin. Troponin C is capable of binding up to four calcium molecules. Studies suggest that when the level of calcium in the muscle is raised, troponin C causes troponin I to loose its hold on the actin molecule, causing the tropomyosin molecule shift, thereby exposing the myosin binding sites on actin and stimulating myosin ATPase activity.
- The citation of a reference herein shall not be construed as an admission that such reference is prior art to the present invention.
- The present invention relates to pharmaceutical compositions containing troponin subunits C, I, or T, or fragments thereof, in therapeutically effective amounts that are capable of inhibiting angiogenesis, for example, by inhibiting endothelial cell proliferation. The invention also relates to pharmaceutical compositions containing homologs of troponin subunits C, I, or T and homologs of their fragments, in therapeutically effective amounts that are capable of inhibiting angiogenesis, for example, by inhibiting endothelial cell proliferation. The invention further relates to treatment of neovascular disorders by administration of a therapeutic compound of the invention. Such therapeutic compounds (termed herein “Therapeutics”), include: troponin subunits C, I, and T, and fragments and homologs thereof, in particular, fragments of troponin subunit I comprising the inhibitory (I′) and carboxy terminal (C′) regions. In one embodiment, a Therapeutic of the invention is administered to treat a cancerous condition, for example, to inhibit the growth or reduce the volume of a solid tumor, or to prevent progression from the pre-neoplastic or pre-malignant state into a neoplastic or a malignant state or to inhibit metastasis. In other specific embodiments, a Therapeutic of the invention is administered to treat ocular disorders associated with neovascularization. As used herein, the term “troponin subunit”, when not preceding the terms C, I or T, means generically any of troponin subunits C, I, or T. The amino-terminal, inhibitory and carboxy-terminal regions of troponin I are designated N′, I′, and C′, respectively.
-
FIG. 1 . Inhibition of bovine capillary Endothelial Cell (BCE) proliferation by troponin C. Percent inhibition of bFGF-stimulated BCE proliferation is shown as a function of troponin C concentration (μg/well). Percent inhibition was determined by comparing results obtained for cells treated with stimulus alone with those obtained for samples exposed to both stimulus and inhibitor. Well volume was 200 μl. -
FIG. 2 . Inhibition of capillary BCE proliferation by troponin I. Percent inhibition of bFGF-stimulated BCE proliferation is shown as a function of troponin I concentration (μg/well). Percent inhibition was determined as described inFIG. 1 . Well volume was 200 μl. -
FIG. 3 . Inhibition of capillary BCE proliferation by troponin T. Percent inhibition of bFGF-stimulated BCE proliferation is shown as a function of troponin T concentration (μg/well). Percent inhibition was determined as described inFIG. 1 . Well volume was 200 μl. -
FIG. 4 . Inhibition of BCE proliferation by troponins C and I. Percent inhibition of bFGF-stimulated BCE proliferation is shown as a function of troponin I and C concentration (μg/well). Percent inhibition was determined as described inFIG. 1 . Well volume was 200 μl. -
FIG. 5 . Inhibition of capillary BCE proliferation by troponin C, I and T. Percent inhibition of bFGF-stimulated BCE proliferation is shown as a function of troponin C, I, and T concentration (μg/well). Percent inhibition was determined as described inFIG. 1 . Well volume was 200 μl. -
FIG. 6 . Schematic representation of amino acid sequences of tryptic peptides (LQIAATELEK, SEQ ID NO:18; IDVAEEEKYDMEVK, SEQ ID NO:19; AND LFDLR, SEQ ID NO:20) purified from cartilage as described in Methods. Sequence similarity to human TnI is indicated by alignment with the amino acid sequence of the human isoform. -
FIG. 7 . (A) RT-PCR products amplified from total RNA purified from two separate human intercostal cartilage specimens. Gene-specific primers were designed based on the cDNA sequence of human fast-twitch skeletal muscle TnI. (B) Nucleotide sequence of these PCR products showing identity to the cDNA sequence of human fast-twitch skeletal muscle TnI (nt 189-nt 384) (SEQ ID NO:16). (C) RT-PCR amplification, from total RNA (20 ng each lane) purified from rat skeletal muscle (lane 1), xyphoid (lane 2), chondrosarcoma (lane 3) and liver (lane 4). Gene-specific primers were designed based on the cDNA sequence of rat fast-twitch skeletal muscle TnI as described in Methods. -
FIG. 8 . SDS-PAGE of recombinant human TnI before (lane A) and after (lane B) purification. In both cases, approximately 1 μg of total protein was electrophoresed, followed by silver staining as described in Methods. Recombinant TnI migrates at a molecular weight of approximately 21,000 Da. -
FIG. 9 . Inhibition of capillary EC proliferation by rTnI. Percent inhibition was determined by comparing wells exposed to the angiogenic stimulus bFGF (A) and VEGF (B) with those exposed to stimulus and inhibitor. Each point represents the mean of duplicate control and inhibitor wells. This is a representative experiment of four different EC proliferation assays, each testing different TnI preparations. -
FIG. 10 . Inhibition of embryonic angiogenesis in vivo by rTnI. After a 48 h exposure to rTnI as described in Methods, avascular zones, free of capillaries and small vessels were observed using a binocular dissecting microscope at ×7-10 magnification. This zone was produced by approximately 380 pmoles of TnI (A). A normal chorioallantoic membrane (CAM) implanted with a methylcellulose disk containing buffer alone is shown in (B). -
FIG. 11 . Inhibition of FGF induced angiogenesis by systemic administration of TnI. TnI (50 mg/kg) was administered systemically every 12 hours to mice whose corneas had been implanted with pellets containing bFGF (40 ng/ml) onDay 1. After-six days of treatment, significant inhibition of FGF-induced neovascularization was observed in TnI-treated corneas (B) as compared to control corneas (A). -
FIG. 12 . (A) Derived amino acid sequence of recombinant human TnI (Hu) (SEQ ID NO:17) and its sequence comparison with recombinant rabbit TnI (Rb) (SEQ ID NO:10). Identical residues are shown by dashes. (B) Schematic representation of various recombinant TnI deletion fragments based on rabbit TnI and wild-type rabbit TnIw (SEQ ID NO:10). The troponin I inhibitory region is designated I′, and the sequences located on amino- and carboxy-terminal sides of this region are designated N′ and C′, respectively. TnI1-120, TnI1-94, TnI96-181, TnI122-181 contain the N′ and I′, N′, I′ and C′, and C′ regions, respectively. The number of amino acids at the beginning and end of each fragment is indicated. TnI98-114 containing amino acid residues 98-114 is a synthetic peptide representing the I region. - The present invention relates to therapeutic methods and compositions based on troponin subunits. The invention provides for treatment of neovascular disorders by, for example, inhibiting angiogenesis, comprising administration of a therapeutic compound of the invention. Such therapeutic compounds (termed herein “Therapeutics”) include: troponin C, I, and T subunits, fragments and homologs thereof (collectively “peptides of the invention”). The peptides of the invention are characterized by the property of inhibiting bovine endothelial cell (EC) proliferation in culture preferably with an IC50 of about 10 μM or less, more preferably with an IC50 of about 5 μM or less, most preferably with an IC50 of about 1 μM or less. In a preferred embodiment, a Therapeutic of the invention is administered to treat a cancerous condition, for example, to inhibit the growth or reduce the volume of a solid tumor, or to prevent progression from a pre-neoplastic or non-malignant state into a neoplastic or a malignant state or to inhibit metastases. In another specific embodiment, a Therapeutic of the invention is administered to treat an ocular disorder associated with neovascularization.
- In a preferred aspect, a Therapeutic of the invention is a peptide consisting of at least a fragment of troponin C, troponin I, troponin T, or combinations thereof which is effective to inhibit angiogenesis. More preferably, the Therapeutic is a peptide consisting of the inhibitory (I′) and carboxy terminal (C′) region (C′+I′) (SEQ ID NO:14) of troponin subunit I or a fragment thereof.
- In specific embodiments, the peptides of the invention are troponin C, troponin I and troponin T subunits, or fragments thereof of the fast twitch, slow twitch and cardiac isoforms from mammalian species, e.g., human, rabbit, rat, mouse, bovine, ovine and porcine.
- In other embodiments, the peptides of the invention are troponin C, troponin I and troponin T subunits, or fragments thereof from nonmuscle tissues, e.g., cartilage, preferably from mammalian species, e.g., human, rabbit, rat, mouse, bovine, ovine and porcine.
- Examples of the troponin subunits that can be utilized in accordance with the invention, include but are not limited to the subunits of troponin from human fast twitch skeletal muscle, the sequences of which are given below:
-
Fast Twitch Skeletal Muscle Troponin C (SEQ ID NO:1) 1 M T D Q Q A E A R S Y L S E E M I A E F 21 K A A F D M F D A D G G G D I S V K E L 41 G T V M R M L G Q T P T K E E L D A I I 61 E E V D E D G S G T I D F E E F L V M M 81 V R Q M K E D A K G K S E E E L A E C F 101 R I F D R N A D G Y I D P E E L A E I F 121 R A S G E H V T D E E I E S L M K D G D 141 K N N D G R I D F D E F L K M M E G V Q Fast Twitch Skeletal Muscle Troponin I (SEQ ID NO:2) 1 M G D E E K R N R A I T A R R Q H L K S 21 V M L Q I A A T E L E K E E S R R E A E 41 K Q N Y L A E H C P P L H I P G S M S E 61 V Q E L C K Q L H A K I D A A E E E K Y 81 D M E V R V Q K T S K E L E D M N Q K L 101 F D L R G K F K R P P L R R V R M S A D 121 A M L K A L L G S K H K V C M D L R A N 141 L K Q V K K E D T E K E R D L R D V G D 161 W R K N I E E K S G M E G R K K M F E S 181 E S Fast Skeletal Beta Troponin T (SEQ ID NO:3) 1 M S D E E V E Q V E E Q Y E E E E E A Q 21 E E E E V Q E D T A E E D A E E E K P R 41 P K L T A P K I P E G E K V D F D D I Q 61 K K R Q N K D L M E L Q A L I D S H F E 81 A R K K E E E E L V A L K E R I E K R R 101 A E R A E Q Q R I R A E K E R E R Q N R 121 L A E E K A R R E E E D A K R R A E D D 141 L K K K K A L S S M G A N Y S S Y L A K 161 A D Q K R G K K Q T A R E M K K K I L A 181 E R R K P L N I D H L G E D K L R D K A 201 K E L W E T L H Q L E I D K F E F G E K 221 L K R Q K Y D I T T L R S R I D Q A Q K 241 H S K K A G T P A K G K V G G R W K - In another embodiment, the invention encompasses peptides which are homologous to troponin C (SEQ ID NO:1) or fragments thereof, troponin I (SEQ ID NOS:2, 10, or 15) or fragments thereof, or troponin T (SEQ ID NO:3) or fragments thereof.
- In a particular embodiment, the peptides of the invention are fragments of troponin I (SEQ ID NOS:11-15) or homologous to fragments of troponin I (SEQ ID NOS:11-15).
- In a specific embodiment, a Therapeutic of the invention is combined with a therapeutically effective amount of another molecule which negatively regulates angiogenesis which may be, but is not limited to,
platelet factor 4, thrombospondin-1, tissue inhibitors of metalloproteases (TIMP1 and TIMP2) prolactin (16-Kd fragment), angiostatin (38-Kd fragment of plasminogen), bFGF soluble receptor, transforming growth factor β, interferon alfa, and placental proliferin-related protein. - Paradoxically, neovascularization gradually reduces a tumor's accessibility to chemotherapeutic drugs due to increased interstitial pressure within the tumor, which causes vascular compression and central necrosis. In vivo results have demonstrated that rodents receiving angiogenic therapy show increased delivery of chemotherapy to a tumor. Teicher et al., 1994, Int. J. Cancer 57:920-925. Thus, in one embodiment, the invention provides for a pharmaceutical composition of the present invention in combination with a chemotherapeutic agent.
- In another preferred aspect, a Therapeutic of the invention is combined with chemotherapeutic agents or radioactive isotope exposure.
- The invention is illustrated by way of examples infra which disclose, inter alia, the inhibition of capillary endothelial cell proliferation by troponin subunits C, I, and T and the means for determining inhibition of capillary endothelial cell migration and inhibition of neovascularization in vivo by troponin subunits.
- For clarity of disclosure, and not by way of limitation, the detailed description of the invention is divided into the subsections set forth below.
- The invention provides for pharmaceutical compositions comprising troponin subunits, fragments, and homologs thereof. In particular aspects, the subunits, fragments, or homologs are of fly, frog, mouse, rat, rabbit, pig, cow, dog, monkey, or human troponin subunits.
- In another embodiment, the invention encompasses peptides which are homologous to troponin C (SEQ ID NO:1) or fragments thereof. In one embodiment, the amino acid sequence of the peptide has at least 80% identity compared to the troponin C from which it is derived. In another embodiment, this identity is greater than 85%. In a more preferred embodiment, this identity is greater than 90%. In a most preferred embodiment, the amino acid sequence of the peptide has at least 95% identity with the troponin C or fragment thereof. Fragments are generally at least 10 amino acids, and in alternate embodiments at least 20, 30, 40, 50, 75, and 100 amino acids in length.
- In another embodiment, the invention encompasses a troponin submit subunit or fragment thereof encoded by a nucleic acid hybridizable to the complement of a nucleic acid encoding a troponin subunit, preferably troponin C, under low stringency, moderate stringency or high stringency conditions.
- In another embodiment, the invention encompasses peptides which are homologous to troponin I (SEQ ID NOS:2, 10 or 15) or fragments thereof. In one embodiment, the amino acid sequence of the peptide has at least 80% identity with the troponin I or fragment thereof. In another embodiment, this identity is greater than 85%. In a more preferred embodiment, this identity is greater than 90%. In a most preferred embodiment, the amino acid sequence of the peptide has at least 95% identity with the troponin I or fragment thereof. Fragments are generally at least 4 amino acids, and in alternate embodiments at least 8, 10, 20, 30, 40, 50, 75, and 100 amino acids in length.
- In another embodiment, the invention encompasses a troponin submit subunit or fragment thereof encoded by a nucleic acid hybridizable to the complement of a nucleic acid encoding a troponin subunit, preferably troponin I, under low stringency, moderate stringency or high stringency conditions.
- In another embodiment, the invention encompasses peptides which are homologous to troponin T (SEQ ID NO:3) or fragments thereof. In one embodiment, the amino acid sequence of the peptide has at least 80% identity with the troponin T or fragment thereof. In another embodiment, this identity is greater than 85%. In a more preferred embodiment, this identity is greater than 90%. In a most preferred embodiment, the amino acid sequence of the peptide has at least 95% identity with the troponin T or fragment thereof. Fragments are generally at least 10 amino acids, and in alternate embodiments at least 20, 30, 40, 50, 75, 100, 150, and 200 amino acids in length.
- In another embodiment, the invention encompasses a troponin submit subunit or fragment thereof encoded by a nucleic acid hybridizable to the complement of a nucleic acid encoding a troponin subunit, preferably troponin T, under low stringency, moderate stringency or high stringency conditions.
- In a preferred embodiment, the invention encompasses peptides which are homologous to the Inhibitory (I′) and carboxy terminus (C′) region (C′+I′) (SEQ ID NO: 14). In other embodiments, the invention encompasses peptides that are homologous to the C′+I′ region of human troponin I (huTnI) (SEQ ID NO:17) corresponding to amino acid residues of SEQ ID NO:17, including but not limited to residues: 94-123 (huTnI94-123), 104-133 (huTnI104-133), 114-143 (huTnI114-143), 129-153 (huTnI129-153), 134-173 (huTnI134-173), 144-182 (huTnI144-182), 93-112 (huTnI93-112), 98-117 (huTnI99-117), 103-122 (huTnI103-122), 108-127 (huTnI108-127), 113-132 (huTnI113-132), and carboxy terminus region (C′), 118-137 (huTnI118-137).
- Additional embodiments include 94-113 (huTnI.sub.94-113), 98-117 (huTnI98-117), 102-121 (huTnI102-121), 106-125 (huTnI106-125) 110-129 (huTnI110-129), and 114-133 (huTnI114-133). Still other embodiments include carboxy terminus region (C′) of human troponin I (huTnI), 116-123 (huTnI116-123), 118-125 (huTnI118-125), 120-127 (huTnI120-127) 122-129 (huTnI122-129), 124-131 (huTnI124-131), 126-133 (huTnI126-133), 128-135 (huTnI128-135), 130-137 (huTnI130-137), 132-139 (huTnI132-139), 134-141 (huTnI134-141), and 136-143 (huTnI136-143). Fragments are generally at least 4 amino acids, and in alternate embodiments at least 8, 10, 20, 30, 40, 50, and 75 amino acids in length. “Homologous,” as defined herein, refers to identity over an amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art or whose encoding nucleic acid is capable of hybridizing to a coding gene sequence, under high stringency, moderate stringency, or low stringency conditions.
- Specifically, by way of example, computer programs for determining homology may include but are not limited to TBLASTN, BLASTP, FASTA, TEASTA, and CLUSTALW (Pearson and Lipman, 1988, Proc. Natl. Acad. Sci. USA 85(8):2444-8; Altschul et al., 1990, J. Mol. Biol. 215(3):403-10; Thompson, et al., 1994, Nucleic Acids Res. 22(22):4673-80; Higgins, et al., 1996, Methods Enzymol 266:383-402; Altschul, et al., 1990, J. Mol. Biol. 215(3):403-10). Default parameters for each of these computer programs are well known and should be utilized.
- Specifically, Basic Local Alignment Search Tool (BLAST) (www.ncbi.nlm.nih.gov; It is to be understood that for determination of homology, the default parameters are set and utilized with the most recent BLAST program version available at this site.) (Altschul et al., 1990, J. of Molec. Biol., 215:403-410, “The BLAST Algorithm; Altschul et al., 1997, Nuc. Acids Res. 25:3389-3402) is a heuristic search algorithm tailored to searching for sequence similarity which ascribes significance using the statistical methods of Karlin and Altschul 1990, Proc. Natl. Acad. Sci. USA, 87:2264-68; 1993, Proc. Nat'l Acad. Sci. USA 90:5873-77. Five specific BLAST programs perform the following tasks: 1) The BLASTP program compares an amino acid query sequence against a protein sequence database; 2) The BLASTN program compares a nucleotide query sequence against a nucleotide sequence database; 3) The BLASTX program compares the six-frame conceptual translation products of a nucleotide query sequence (both strands) against a protein sequence database; 4) The TBLASTN program compares a protein query sequence against a nucleotide sequence database translated in all six reading frames (both strands); 5) The TBLASTX program compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database.
- Smith-Waterman (database: European Bioinformatics Institute wwwz.ebi.ac.uk/bic_sw/) (Smith-Waterman, 1981, J. of Molec. Biol., 147:195-197) is a mathematically rigorous algorithm for sequence alignments.
- FASTA (see Pearson et al., 1988, Proc. Nat'l Acad. Sci. USA, 85:2444-2448) is a heuristic approximation to the Smith-Waterman algorithm. For a general discussion of the procedure and benefits of the BLAST, Smith-Waterman and FASTA algorithms see Nicholas et al., 1998, “A Tutorial on Searching Sequence Databases and Sequence Scoring Methods” (www.psc.edu) and references cited therein.
- It is envisioned that troponin subunits and fragments can be made by altering troponin sequences by substitutions, additions or deletions that provide for functionally equivalent molecules capable of displaying one or more functional activities associated with a full-length wild-type troponin subunit. Such functional activities include but are not limited to inhibition of angiogenesis; inhibition of metastases; inhibition of tumor growth. These include, but are not limited to, troponin subunits, fragments, or homologs containing, as a primary amino acid sequence, all or part of the amino acid sequence of a troponin subunit including altered sequences in which functionally equivalent amino acid residues are substituted for residues within the sequence resulting in a silent change. For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity which acts as a functional equivalent, resulting in a silent alteration. Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs. For example, the nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine. The positively charged (basic) amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
- One embodiment of the invention provides for molecules consisting of or comprising a fragment of at least 4 (contiguous) amino acids of a troponin subunit which is capable of inhibiting endothelial cell proliferation as discussed above. In other embodiments, this molecule consists of at least 8, 10, 20 or 50 amino acids of the troponin subunit. In specific embodiments, such molecules consist of or comprise fragments of a troponin subunit that are at least 8, 10, 20, 30, 40, 50, 75, 100 and 150 amino acids in length, including but not limited to, C′+I′ (SEQ ID NO:14), huTnI94-123, huTnI104-133, huTnI114-143, huTnI129-153, huTnI134-173, huTnI144-182, huTnI93-112, huTnI98-117, huTnI103-122, huTnI108-127, huTnI113-132, and carboxy terminus region (C′) huTnI118-137.
- Additional embodiments include 94-113 (huTnI94-113) 98-117 (huTnI98-117), 102-121 (huTnI102-121), 106-125 (huTnI106-125), 110-129 (huTnI110-129), and 114-133 (huTnI114-133). Still other embodiments include carboxy terminus region (C′), 116-123 (huTnI116-123), 118-125 (huTnI118-125), 120-127 (huTnI120-127), 122-129 (huTnI122-129),124-131 (huTnI124-131), 126-133 (huTnI126-133), 128-135 (huTnI128-135), 130-137 (huTnI130-137), 132-139 (huTnI132-139), 134-141 (huTnI134-141), and 136-143 (huTnI136-143).
- In a preferred embodiment, the protein is a mammalian troponin subunit. In more preferred embodiments, it is a mammalian troponin C, I, or T subunit.
- The troponin subunits, fragments and homologs of the invention can be derived from tissue (see, for example,
Section 6, Examples 1 and 7; Ebashi et al., 1968, J. Biochem. 64:465; Yasui et al., 1968, J. Riol. Chem. 243:735; Hartshorne et al., 1968, Biochem. Biophys. Res. Commun. 31:647; Shaub et al., 1969, Biochem. J. 115:993; Greaser et al., 1971, J. Biol. Chem. 246:4226-4733; Brekke et al., 1976, J. Biol. Chem. 251:866-871; and Yates et al., 1983, J. Biol. Chem. 258:5770-5774) or produced by various methods known in the art, for example, recombinant techniques (see; for example,Section 6, Examples 1 and 7). - Manipulations of troponin subunits can occur at the gene or protein level. For example, a cloned troponin gene sequence coding for troponin subunits C, I, or T, can be modified by any of numerous strategies known in the art. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. The sequence can be cleaved at appropriate sites with restriction endonuclease(s), followed by further enzymatic modification if desired, isolated, and ligated in vitro. In the production of the gene encoding a fragment or homolog of a troponin subunit, care should be taken to ensure that the modified gene remains within the same translational reading frame as the troponin subunit gene, uninterrupted by translational stop signals, in the gene region where the desired troponin activity is encoded.
- In a specific embodiment, a nucleic acid which is hybridizable to the complement of a troponin nucleic acid (e.g., having a sequence as set forth in SEQ ID NOS:13-17), or to a nucleic acid encoding a troponin fragment or derivative under conditions of low stringency is provided. By way of example and not limitation, procedures using such conditions of low stringency are as follows (see also Shilo and Weinberg, 1981, Proc. Natl. Acad. Sci. U.S.A. 78, 6789-6792). Filters containing DNA are pretreated for 6 h at 40° C. in a solution containing 35% formamide, 5×SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.1% PVP, 0.1% Ficoll, 1% BSA, and 500 μg/ml denatured salmon sperm DNA. Hybridizations are carried out in the same solution with the following modifications: 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 μg/ml salmon sperm DNA, 10% (wt/vol) dextran sulfate, and 5-20×106 cpm 32P-labeled probe is used. Filters are incubated in hybridization mixture for 18-20 h at 40° C., and then washed for 1.5 h at 55° C. in a solution containing 2×SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS. The wash solution is replaced with fresh solution and incubated an additional 1.5 h at 60° C. Filters are blotted dry and exposed for autoradiography. If necessary, filters are washed for a third time at 65-68° C. and re-exposed to film. Other conditions of low stringency which may be used are well known in the art (e.g., as employed for cross-species hybridizations).
- In another specific embodiment, a nucleic acid which is hybridizable to a troponin nucleic acid under conditions of high stringency is provided. By way of example and not limitation, procedures using such conditions of high stringency are as follows. Prehybridization of filters containing DNA is carried out for 8 h to overnight at 65° C. in buffer composed of 6×SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 μg/ml denatured salmon sperm DNA. Filters are hybridized for 48 h at 65° C. in prehybridization mixture containing 100 μg/ml denatured salmon sperm DNA and 5-20×106 cpm of 32P-labeled probe. Washing of filters is done at 37° C. for 1 h in a solution containing 2×SSC, 0.01% PVP, 0.01% Ficoll, and 0.01% BSA. This is followed by a wash in 0.1×SSC at 50° C. for 45 min before autoradiography. Other conditions of high stringency which may be used are well known in the art.
- In another specific embodiment, a nucleic acid which is hybridizable to a troponin nucleic acid under conditions of moderate stringency is provided. Selection of appropriate conditions for such stringencies is well known in the art (see e.g., Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; see also, Ausubel et al., eds., in the Current Protocols in Molecular Biology series of laboratory technique manuals, © 1987-1997 Current Protocols, © 1994-1997 John Wiley and Sons, Inc.).
- Additionally, the troponin subunit encoding nucleic acid sequence can be mutated in vitro or in vivo, to create and/or destroy translation, initiation, and/or termination sequences, or to create variations in coding regions and/or form new restriction endonuclease sites or destroy preexisting ones, to facilitate further in vitro modification. Any technique for mutagenesis known in the art can be used, including, but not limited to, in vitro site-directed mutagenesis (Hutchinson et al., 1978, J. Biol. Chem. 253:6551), use of TAB® linkers (Pharmacia), etc.
- Manipulations of troponin subunit C, I, or T sequence may also be made at the protein level. Included within the scope of the invention are troponin subunit fragments or other fragments or homologs which are differentially modified during or after translation, e.g., by acetylation, phosphorylation, carboxylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to, specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBH4, acetylation, formylation, oxidation, reduction, etc.
- In addition, fragments and homologs of troponin subunits can be chemically synthesized. For example, a peptide corresponding to a portion of a troponin subunit which comprises the desired domain, or which mediates the desired activity in vitro, can be synthesized by use of a peptide synthesizer. Furthermore, if desired, nonclassical amino acids or chemical amino acid homologs can be introduced as a substitution or addition into the troponin subunit sequence. Non-classical amino acids include, but are not limited to, the D-isomers of the common amino acids, α-amino isobutyric acid, 4-aminobutyric acid, hydroxyproline, sarcosine, citrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β-alanine, designer amino acids such as β-methyl amino acids, C α-methyl amino acids, and Nα methyl amino acids.
- In a specific embodiment, the invention encompasses a chimeric, or fusion, protein comprising a troponin subunit or fragment thereof (consisting of at least a domain or motif of the troponin subunit that is responsible for inhibiting endothelial cell proliferation) joined at its amino or carboxy-terminus via a peptide bond to an amino acid sequence of a different protein. Such a chimeric product can be made by ligating the appropriate nucleic acid sequences encoding the desired amino acid sequences to each other by methods known in the art, in the proper coding frame, and expressing the chimeric product by methods commonly known in the art. Alternatively, such a chimeric product may be made by protein synthetic techniques, e.g., by use of a peptide synthesizer.
- In another embodiment, the invention encompasses combination of the troponin subunits, fragments, or homologs of the present invention to inhibit angiogenesis. Another embodiment provides for the combination of troponin subunits, fragments, or homologs with other angiogenesis inhibiting factors. Such angiogenesis inhibiting factors include, but are not limited to: angiostatic steroids, thrombospondin, platelet factor IV, transforming growth factor β, interferons, tumor necrosis factor α, bovine vitreous extract, protamine, tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), prolactin (16-kd fragment), angiostatin (38-kd fragment of plasminogen), bFGF soluble receptor, and placental proliferin-related protein. See, e.g., reviews by Folkman et al., 1995, N. Engl. J. Med. 333:1757-1763 and Klagsbrun et al., 1991, Annu. Rev. Physiol. 53:217-239.
- The functional activity and/or therapeutically effective dose of troponin subunits, fragments and homologs, can be assayed in vitro by various methods. These methods are based on the physiological processes involved in angiogenesis and while they are within the scope of the invention, they are not intended to limit the methods by which troponin subunits, fragments and homologs inhibiting angiogenesis are defined and/or a therapeutically effective dosage of the pharmaceutical composition is determined.
- For example, where one is assaying for the ability of troponin subunits, fragments, and homologs, to inhibit or interfere with the proliferation of capillary endothelial cells (EC) in vitro, various bioassays known in the art can be used, including, but not limited to, radioactive incorporation into nucleic acids, calorimetric assays and cell counting.
- Inhibition of endothelial cell proliferation may be measured by calorimetric determination of cellular acid phosphatase activity or electronic cell counting. These methods provide a quick and sensitive screen for determining the number of endothelial cells in culture after treatment with the troponin subunit, fragment, or homolog of the invention, and an angiogenesis stimulating factor such as aFGF. The calorimetric determination of cellular acid phosphatase activity is described by Connolly et al., 1986, J. Anal. Biochem. 152:136-140. According to this method, described in Example 9, capillary endothelial cells are treated with angiogenesis stimulating factors, such as aFGF, and a range of potential inhibitor concentrations. These samples are incubated to allow for growth, and then harvested, washed, lysed in a buffer containing a phosphatase substrate, and then incubated a second time. A basic solution is added to stop the reaction and color development is determined at 405λ. According to Connolly et al., a linear relationship is obtained between acid phosphatase activity and endothelial cell number up to 10,000 cells/sample. Standard curves for acid phosphatase activity are also generated from known cell numbers in order to confirm that the enzyme levels reflect the actual EC numbers. Percent inhibition is determined by comparing the cell number of samples exposed to stimulus with those exposed to both stimulus and inhibitor.
- Colorimetric assays to determine the effect of troponin subunits C, I, and T on endothelial cell proliferation demonstrate that all three troponin subunits interfere with bFGF-stimulated endothelial cell proliferation but have no detectable inhibitory effect on the growth of Balb/c 3T3 cells, a non-endothelial cell line. For an illustrative example, see
Section 6, Examples 3 and 8, infra. - The incorporation of radioactive thymidine by capillary endothelial cells represents another means by which to assay for the inhibition of endothelial cell proliferation by a potential angiogenesis inhibitor. According to this method, a predetermined number of capillary endothelial cells are grown in the presence of 3H-Thymidine stock, an angiogenesis stimulator such as for example, bFGF, and a range of concentrations of the angiogenesis inhibitor to be tested. Following incubation, the cells are harvested and the extent of thymidine incorporation is determined. See, e.g.,
Section 6, Example 3. - The ability of varying concentrations of troponin subunits, fragments or homologs to interfere with the process of capillary endothelial cell migration in response to an angiogenic stimulus can be assayed using the modified Boyden chamber technique. See, e.g.,
Section 6, Example 4, infra. - Another means by which to assay the functional activity of troponin subunits, fragments and homologs, involves examining the ability of the compounds to inhibit the directed migration of capillary endothelial cells which ultimately results in capillary tube formation. This ability may be assessed for example, using an assay in which capillary endothelial cells plated on collagen gels are challenged with the inhibitor, and determining whether capillary-like tube structures are formed by the cultured endothelial cells.
- Assays for the ability to inhibit angiogenesis in vivo include the chorioallantoic membrane assay and corneal pocket assays (see, e.g.,
Section 6, infra, Example 10, and Example 11, respectively). See also, Polverini et al., 1991, Methods Enzymol. 198:440-450. According to the corneal pocket assay, a tumor of choice is implanted into the cornea of the test animal in the form of a corneal pocket. The potential angiogenesis inhibitor is applied to the corneal pocket and the corneal pocket is routinely examined for neovascularization. See, e.g., Example 11 infra. - The therapeutically effective dosage for inhibition of angiogenesis in vivo, defined as inhibition of capillary endothelial cell proliferation, migration, and/or blood vessel ingrowth, may be extrapolated from in vitro inhibition assays using the compositions of the invention above or in combination with other angiogenesis inhibiting factors. The effective dosage is also dependent on the method and means of delivery. For example, in some applications, as in the treatment of psoriasis or diabetic retinopathy, the inhibitor is delivered in a topical-ophthalmic carrier. In other applications, as in the treatment of solid tumors, the inhibitor is delivered by means of a biodegradable, polymeric implant.
- The invention provides for compositions and methods for inhibition of angiogenesis. The invention further provides for compositions and methods for treatment or prevention of diseases or disorders associated with neovascularization by administration of a therapeutic compound of the invention. Such compounds (termed herein “Therapeutics”) include troponin subunits and fragments and homologs thereof (e.g., as described supra).
- Malignant and metastatic conditions which can be treated with the Therapeutic compounds of the present invention include, but are not limited to, the solid tumors listed in Table 1 (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J. B. Lippincott Co., Philadelphia) and blood-borne tumors such as leukemias.
-
TABLE 1 MALIGNANCIES AND RELATED DISORDERS Solid tumors sarcomas and carcinomas fibrosarcoma myxosarcoma liposarcoma chondrosarcoma osteogenic sarcoma chordoma angiosarcoma endotheliosarcoma lymphangiosarcoma lymphangioendotheliosarcoma synovioma mesothelioma Ewing's tumor leiomyosarcoma rhabdomyosarcoma colon carcinoma pancreatic cancer breast cancer ovarian cancer prostate cancer squamous cell carcinoma basal cell carcinoma adenocarcinoma sweat gland carcinoma sebaceous gland carcinoma papillary carcinoma papillary adenocarcinomas cystadenocarcinoma medullary carcinoma bronchogenic carcinoma renal cell carcinoma hepatoma bile duct carcinoma choriocarcinoma seminoma embryonal carcinoma Wilms' tumor cervical cancer testicular tumor lung carcinoma small cell lung carcinoma bladder carcinoma epithelial carcinoma glioma astrocytoma medulloblastoma craniopharyngioma ependymoma Kaposi's sarcoma pinealoma hemangioblastoma acoustic neuroma oligodendroglioma menangioma melanoma neuroblastoma retinoblastoma - Ocular disorders associated with neovascularization which can be treated with the Therapeutic compounds of the present invention include, but are not limited to:
- neovascular glaucoma
- diabetic retinopathy
- retinoblastoma
- retrolental fibroplasia
- uveitis
- retinopathy of prematurity
- macular degeneration
- corneal graft neovascularization
- as well as other eye inflammatory diseases, ocular tumors and diseases associated with choroidal or iris neovascularization. See, e.g., reviews by Waltman et al., 1978, Am. J. Ophthal. 85:704-710 and Gartner et al., 1978, Surv. Ophthal. 22:291-312.
- Other disorders which can be treated with the Therapeutic compounds of the present invention include, but are not limited to, hemangioma, arthritis, psoriasis, angiofibroma, atherosclerotic plaques, delayed wound healing, granulations, hemophilic joints, hypertrophic scars, nonunion fractures, Osler-Weber syndrome, pyogenic granuloma, scleroderma, trachoma, and vascular adhesions.
- The Therapeutics of the invention can be tested in vivo for the desired therapeutic or prophylactic activity as well as for determination of therapeutically effective dosage. For example, such compounds can be tested in suitable animal model systems prior to testing in humans, including, but not limited to, rats, mice, chicken, cows, monkeys, rabbits, etc. For in vivo testing, prior to administration to humans, any animal model system known in the art may be used.
- The invention provides methods of inhibition of angiogenesis and method of treatment (and prophylaxis) by administration to a subject an effective amount of a Therapeutic of the invention. In a preferred aspect, the Therapeutic is substantially purified as set forth in Examples 1 and 7. The subject is preferably an animal, including, but not limited to, animals such as cows, pigs, chickens, etc., and is more preferably a mammal, and most preferably a human.
- The invention also provides for methods of treatment and prevention by administration of an effective amount of a Therapeutic of the invention to an immunocompromised patient, for example, a patient having cancer or infected with human immunodeficiency virus (HIV). In particular, the invention may be used to treat or prevent secondary infections or diseases associated with HIV infection or cancers.
- The invention further provides methods of treatment and prevention by administration to a subject, an effective amount of a Therapeutic of the invention combined with a chemotherapeutic agent and/or radioactive isotope exposure.
- The invention also provides for methods of treatment and prevention of a Therapeutic of the invention for patients who have entered a remission in order to maintain a dormant state.
- Various delivery systems are known and can be used to administer a Therapeutic of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, receptor-mediated endocytosis (see, e.g., Wu and Wu, 1987, J. Biol. Chem. 262:4429-4432). Methods of introduction include, but are not limited to, topical, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, ophthalmic, and oral routes. The compounds may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. It is preferred that administration is localized, but it may be systemic. In addition, it may be desirable to introduce the pharmaceutical compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
- In a specific embodiment, it may be desirable to administer the pharmaceutical compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. In one embodiment, administration can be by direct injection at the site (or former site) of a malignant tumor or neoplastic or pre-neoplastic tissue.
- For topical application, the purified troponin subunit is combined with a carrier so that an effective dosage is delivered, based on the desired activity (i.e., ranging from an effective dosage, for example, of 1.0 μM to 1.0 mM to prevent localized angiogenesis, endothelial cell migration, and/or inhibition of capillary endothelial cell proliferation. In one embodiment, a topical troponin subunit, fragment or homolog is applied to the skin for treatment of diseases such as psoriasis. The carrier may in the form of, for example, and not by way of limitation, an ointment, cream, gel, paste, foam, aerosol, suppository, pad or gelled stick.
- A topical Therapeutic for treatment of some of the eye disorders discussed infra consists of an effective amount of troponin subunit, fragment, or homolog, in a opthalmologically acceptable excipient such as buffered saline, mineral oil, vegetable oils such as corn or arachis oil, petroleum jelly, Miglyol 182, alcohol solutions, or liposomes or liposome-like products. Any of these compositions may also include preservatives, antioxidants, antibiotics, immunosuppressants, and other biologically or pharmaceutically effective agents which do not exert a detrimental effect on the troponin subunit.
- For directed internal topical applications, for example for treatment of ulcers or hemorrhoids, the troponin subunit, fragment, or homolog composition may be in the form of tablets or capsules, which can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; or a glidant such as colloidal silicon dioxide. When the dosage unit form is a capsule, it can contain, in addition to material of the above type, a liquid carrier such as a fatty oil. In addition, dosage unit forms can contain various other materials which modify the physical form of the dosage unit, for example, coatings of sugar, shellac, or other enteric agents.
- Suppositories generally contain active ingredient in the range of 0.5% to 10% by weight; oral formulations preferably contain 10% to 95% active ingredient.
- In another embodiment, the Therapeutic can be delivered in a vesicle, in particular a liposome. See, Langer et al., 1990, Science 249:1527-1533; Treat et al., 1989, in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365; Lopez-Berestein, ibid., pp. 317-327.
- In yet another embodiment, the Therapeutic can be delivered in a controlled release system. In one embodiment, an infusion pump may be used to administer troponin subunit, such as for example, that used for delivering insulin or chemotherapy to specific organs or tumors (see Langer, supra; Sefton, CRC Crit. Ref. Biomed., 1987, Eng. 14:201; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574.
- In a preferred form, the troponin subunit, fragment, or homolog is administered in combination with a biodegradable, biocompatible polymeric implant which releases the troponin subunit, fragment, or homolog over a controlled period of time at a selected site. Examples of preferred polymeric materials include polyanhydrides, polyorthoesters, polyglycolic acid, polylactic acid, polyethylene vinyl acetate, and copolymers and blends thereof. See, Medical Applications of Controlled Release, Langer and Wise (eds.), 1974, CRC Pres., Boca Raton, Fla.; Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), 1984, Wiley, New York; Ranger and Peppas, 1983, J. Macromol. Sci. Rev. Macromol. Chem. 23:61; see also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105. In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, i.e., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, 1989, supra, vol. 2, pp. 115-138).
- Other controlled release systems are discussed in the review by Langer (1990, Science 249:1527-1533).
- The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of a Therapeutic, and a pharmaceutically acceptable carrier.
- The pharmaceutical compositions of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with free amino groups such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with free carboxyl groups such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.
- In a specific embodiment, the term “pharmaceutically acceptable” means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term “carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents such as acetates, citrates or phosphates. Antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; and agents for the adjustment of tonicity such as sodium chloride or dextrose are also envisioned. The parental preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
- These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides, microcrystalline cellulose, gum tragacanth or gelatin. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in “Remington's Pharmaceutical Sciences” by E. W. Martin. Such compositions will contain a therapeutically effective amount of the Therapeutic, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.
- In a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.
- The amount of the Therapeutic of the invention which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques. In addition, in vitro assays such as those discussed in section 5.2 may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. However, suitable dosage ranges for intravenous administration of full-length troponin subunits are generally about 20-500 micrograms of active compound per kilogram body weight. Suitable dosage ranges for intranasal administration of full-length troponin subunits are generally about 0.01 pg/kg body weight to 1 mg/kg body weight. Suitable dosage ranges for intravenous administration of troponin fragments are generally about 10 micrograms to 1 milligram of active compound per kilogram body weight, preferably about 150 milligrams per administration, more preferably about 120 milligrams per human. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test bioassays or systems.
- Administration of the doses recited above can be repeated. In a preferred embodiment, the doses recited above are administered 2 to 7 times per week. The duration of treatment depends upon the patient's clinical progress and responsiveness to therapy.
- The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
- Modifications and variations of the compositions of the present invention, and methods for use, will be obvious to those skilled in the art from the foregoing detailed description. Such modifications and variations are intended to fall within the scope of the appended claims.
- The following non-limiting examples demonstrate the discovery of troponin subunit inhibition of angiogenic stimulus induced endothelial cell proliferation, and means for determining the effective dosage of troponin subunit, fragment, or homolog to inhibit angiogenesis, as well as for identifying troponin subunit fragments and homologs (i.e., those fragments or homologs of troponin subunit capable of inhibiting angiogenesis. The troponin subunit used in the examples is purified as described infra.
- The procedures of Ebashi et al., 1968, J. Biochem. 64:465-477; Yasui et al., 1968, J. Biol. Chem. 243:735-742; Hartshorne et al., 1969, Biochim. Biophys. Acta, 175:30; Schaub et al., 1969, Biochem. J. 115:993-1004; Greaser et al., 1971, J. Biol. Chem. 246:4226-4233; and Greaser et al., 1973, J. Biol. Chem. 248:2125-2133 for purifying troponin can be used. Rabbit back and leg muscles are removed, cleaned of fat and connective tissue, and ground. The ground muscle (1 kg) is stirred for 5 min. in 2 liters of a solution containing 20 mM KCl, 1 mM KHCO3, 0.1 mM CaCl2, and 0.1 mM DTT.1 The suspension is filtered through cheesecloth, and the washing of the residue is repeated four times. Two liters of 95% ethanol are then added to the washed residue and the solution filtered after 10 min. The ethanol extraction is repeated twice. The residue is then washed 3 times with 2 liters of diethyl ether for 10 min. Finally the residue is allowed to dry at room temperature for 2 to 3 hours. 1The abbreviations used are: DDT, dithiothreitol; EGTA, ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetate; SDS, sodium dodecyl sulfate; SE-, sulfoethyl.
- The dried powder (from 1 kg of muscle) is extracted overnight at 22° with 2 liters of a solution containing 1 M KCl, 25 mM Tris (pH 8.0), 0.1 mM CaCl2, and 1 mM DTT. After filtration through cheesecloth, the residue is once more extracted with 1 liter of 1 M KCl.
- The extracts are combined and cooled to 4° C. Solid ammonium sulfate is added to produce approximately 40% saturation (230 g per liter). After 30 min. the solution is centrifuged and 125 g of ammonium sulfate is then added per liter of supernatant (60% saturation). After centrifugation the precipitate is dissolved in 500 ml of a solution containing 5 mM Tris (pH 7.5), 0.1 mM CaCl2, and 0.1 mM DTT and dialyzed against 15 liters of the same solution for 6 hours and against a fresh solution overnight.
- Solid KCl is added to a final concentration of 1 M and 1 M KCl solution is added to bring the volume to 1 liter. The pH is then adjusted to 4.6 by addition of HCl, and the tropomyosin precipitate is removed by centrifugation. The pH of the supernatant is adjusted to 7.0 with KOH, and 450 g of ammonium sulfate are added per liter (70% saturation). The precipitate is dissolved in a solution containing 5 mM Tris (pH 7.5, 0.1 mM CaCl2, and 0.1 mM DTT, and dialyzed overnight against the same solution. Solid KCl is added to bring its concentration to 1 M, the pH adjusted to 4.6, and the precipitate which forms is removed by centrifugation. The neutralized supernatant is dialyzed against 2 mM Tris (pH 7.5) until the Nessler reaction is negative. The final yield of troponin is usually 2.5 to 3.0 g per kg of fresh muscle.
- Bovine hearts are obtained approximately 30 min. after death and immediately cut open, rinsed of blood, and immersed in ice. The left ventricle is removed, trimmed of excess fat and connective tissue, and ground. All subsequent extraction and preparation steps are performed at 0-3° except where noted. The ground muscle (500 g) is homogenized in a Waring Blender for 1 min. in 2.5 liters of solution containing 0.09 M KH2PO4, 0.06 M K2HPO4, 0.3 M KCl, 5 mM 2-mercaptoethanol, pH 6.8. The homogenized muscle suspension is then stirred for 30 min. and centrifuged at 1000×g for 20 min. The precipitate is re-extracted for 30 min. and centrifuged. The residue is then washed with 2.5 liters of 5 mM 2-mercaptoethanol and centrifuged at 1000×g for 10 min., followed by two successive washings and centrifugations with 1.5 liters of 50 mM KCl, 5 mM Tris-HCl (pH 8.1), and 5 mM 2-mercaptoethanol. The residue is then washed and centrifuged twice with 1.5 liters of 50 mM Tris-HCl (pH 8.1), and 5 mM 2-mercaptoethanol. The volume of the residue is measured, and the residue is mixed with 0.5 volume of 3 M KCl, 50 mM Tris-HCl (pH 8.1), and 5 mM 2-mercaptoethanol. After a 16- to 20-hour extraction at 0°, the suspension is centrifuged at 15,000×g for 10 min. The sediment is discarded, and the supernatant is adjusted to pH 7.6 with 0.05 N HCl. The filamentous precipitate which forms upon pH adjustment is removed by filtering the extract through nylon gauze. The protein that precipitates between 30 and 50% ammonium sulfate saturation is collected, dissolved in a solution containing 1 M KCl, and 1 mM potassium phosphate (pH 6.8), and 5 mM 2-mercaptoethanol, and dialyzed against the same solution for 4 hours and against a fresh solution overnight. The protein solution is clarified by centrifugation at 105,000×g for 30 min. The troponin is then purified by chromatography on a hydroxylapatite column with the protein being eluted between 0.08 and 0.10 M phosphate. Greaser et al., 1972 Cold Spring Harbor Symp. Quant. Biol. 37:235-244. Rabbit cardiac troponin is prepared in a similar manner using a pooled batch of hearts which has been stored at −20° C. prior to extraction.
- The troponin subunits are separated by DEAE-Sephadex chromatography in 6 M urea. Bovine cardiac tropomyosin is prepared from the 50% ammonium sulfate saturation supernatant from the troponin extraction scheme (see above). Ammonium sulfate is added to 65% saturation, and the precipitate is dissolved in and dialyzed versus 1 M KCl, 1 mM potassium phosphate (pH 7.0), and 5 mM 2-mercaptoethanol. The protein is then purified by hydroxylapatite chromatography.
- Protein concentrations are determined by the biuret method of Gornall et al. using bovine serum albumin as a standard. Gornall et al., 1949, J. Biol. Chem., 177:751-766.
- A sequence of SP-Sephadex and DEAE-Sephadex chromatography gives complete separation of the three cardiac troponin components.
- DNA encoding various troponin subunits and isoforms are known in the art. See, e.g., Wu et al., 1994, DNA Cell. Biol. 13:217-233; Schreier et al., 1990, J. Biol. Chem. 265:21247-21253; and Gahlmann et al., 1990, J. Biol. Chem. 265:12520-12528.
- To express a troponin subunit, DNA encoding the subunit is subcloned into a high copy number expression plasmid, such as KP3998, using recombinant techniques known in the art.
- To express the cloned cDNA, E. coli transformed with the insert-containing pKP1500 vector is grown overnight at 37° C., then inoculated into 4 liters of Luria-Bertani broth (LB) medium and grown at 42° C. until mid-log phase. Isopropyl-1-thio-β-D-gal-actopyranoside is then added to 0.5 mM, and the culture is allowed to grow at 42° C. overnight. Purification of expressed troponin subunit, fragment, or homolog may be adapted from published procedures (Reinach et al., 1988, J. Biol. Chem. 250:4628-4633 and Xu et al., 1988, J. Biol. Chem. 263:13962-13969). The cells are harvested by centrifugation and suspended in 20 ml of 20 mM Tris, 20% sucrose, 1 mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride, 1 mg/ml lysozyme, pH 7.5. After incubation on ice for 30 min., 80 ml of 20 mM Tris, 1 mM EDTA, 0.2 mM phenylmethylsulfonyl fluoride, 0.5 mm DTT is added and the cells broken in a French press (SLM Instruments). The cell debris is pelleted; the supernatant is made 35% in saturated (NH4)2SO4 and stirred on ice for 30 min. After sedimentation, the supernatant is made 50 mM in NaCl, 5 mM in CaCl2, 1 mM in MgCl2, and 1 mM in DTT and then loaded onto a 1.5×25-cm phenyl-Sepharose (Pharmacia LKB Biotechnology Inc.) column. The column is washed first with 50 mM Tris, 50 mM NaCl, 5 mM CaCl2, 1 mM MgCl2, 1 mM DTT, pH 7.5, then with 50 mM Tris, 1 mM NaCl, 0.1 mM CaCl2, 1 mM DTT, pH 7.5, until no more protein is eluted. The crude troponin subunit is then eluted with 50 mM Tris, 1 mM EDTA, 1 mM DTT, pH 7.5. Fractions that contain troponin subunit, fragment, or homolog are pooled, dialyzed against 25 mM Tris, 6 M urea (United States Biochemical Corp.), 1 mM MgCl2, 1 mM DTT, pH 8.0, and loaded onto a 1.5×25-cm DE52 (Whatman) column. The column is eluted with a 0-0.6 M NaCl linear gradient. Troponin subunit, fragment, or homolog which elutes from the column is dialyzed against 0.1 mM NH4HCO3, 1 mM β-mercaptoethanol, lyophilized, and stored. Purity is assessed by SDS-polyacrylamide gel electrophoresis and UV spectrophotometry. Typical yields of 6 mg of purified recombinant troponin subunit, fragment, or homolog/liter of bacterial culture are expected.
- The lyophilized recombinant protein is resuspended in a take up buffer consisting of 6M urea, 20 mM Hepes (pH 7.5), 0.5M NaCl, 2 mM EDTA, and 5 mM DTT. The mixture is nutated at room temperature for 1 hour. The solution is then dialyzed at 4° C. for six hours with 1 exchange against a dialysis buffer consisting of 0.5M NaCl, 20 mM Hepes (pH 7.5), and 0.5 mM DTT.
- Protein concentration is determined for each subunit at 280λ. The extension coefficient of Troponin I is 0.40 and Troponin T is 0.50.
- The lyophilized recombinant protein is resuspended in a take up buffer consisting of 0.1 M NaCl, 20 mM Hepes (pH 7.5), 2 mM EDTA, and 5 mM DTT. This solution is dialyzed for 6 hours at 4° C. with one exchange against a dialysis buffer of 0.1 M NaCl, 20 mM Hepes (pH 7.5), and 0.5 mM DTT.
- Protein concentration is determined by measuring absorbance at 280λ. The extension coefficient for troponin C is 0.18.
- Protein concentrations having the same reconstitution molar ratios of troponin subunits C, I, and T are maintained for all various combinations. These concentrations of the respective proteins are combined in a reconstitution buffer consisting of 0.1 M NaCl, 0.1 M CaCl2, 5 mM DTT, 5 mM Hepes (pH 7.5). Dialysis is for 20-24 hours at 4° C. with three exchanges over a dialysis buffer consisting of 0.1 M NaCl, 0.1 m CaCl2, 0.5 mM DTT, and 5 mM Hepes (pH 7.5).
- Protein concentration is approximated by measuring absorption at 278λ. The troponin trimer has an extension coefficient of 0.45 at 278λ.
- The inhibitory effect of troponin subunit, fragment, or homolog on the proliferation of bFGF-stimulated EC can be measured according to the following procedure.
- On day one, 5,000 bovine capillary endothelial cells in DMEM/10% CS/1% GPS are plated onto each well of a 96-well pregelatinized tissue culture plate. On day two, the cell media is changed to DMEM, 2% CS, 1% GPS, 0.5% BSA (complete medium), supplemented with 10 μl of 1 mg/ml “cold” thymidine per 50 ml of medium. On day three, test samples in complete medium are added in duplicate. Additionally, beta Fibroblast Growth Factor (bFGF) is added to each well except for the appropriate controls, to a final concentration of 0.2 ng/well. On day four, 5 up of 1:13 diluted 3H-Thymidine stock is added to each well and the plate is incubated for 5-6 hours. Following incubation, the medium is aspirated, and the remainder is rinsed once with PBS, then twice for 5 minutes each with methanol followed by two rinses each for 10 minutes with 5% TCA. The cells are then rinsed with water three times, dried to the plate, and 100 μl of 0.3 N NaOH is added to each well. The contents of the well are then transferred to the scintillation counter vials and 3 mls of Ecolume added to each vial. Samples are then counted on the scintillation counter.
- DNA synthesis in bFGF-stimulated 3T3 cells provides a control with which to evaluate results obtained for bFGF stimulated endothelial cell proliferation. DNA synthesis in the 3T3 cells can be determined according to the following method.
- BALB/c 3T3 cells are trypsinized and resuspended at a concentration of 5×104 cells/ml. Aliquots of 200 μl are plated into 0.3 cm2 microtiter wells (Microtest II tissue Culture Plates, Falcon). After reaching confluence, in a period of 2 to 3 days, the cells are further incubated for a minimum of 5 days in order to deplete the media of growth promoting factors. These growth conditions yield confluent monolayers of non-dividing BALB/c 3T3 cells. Test samples are dissolved in 50 μl of 0.15 M NaCl and added to microtiter wells, along with [3H]TdR. After an incubation of at least 24 hours, the media is removed and the cells are washed in PBS. Fixation of the cells and removal of unincorporated [3H]TdR is accomplished by the following successive steps; addition of methanol twice for periods of 5 minutes, 4 washes with H2O, addition of cold 5% TCA twice for periods of 10 minutes, and 4 washes with H2O. DNA synthesis is measured either by liquid scintillation counting or by autoradiography using a modification of the method described by Haudenschild et al., 1976, M. Exp. Cell Res. 98:175. For scintillation counting, cells are lysed in 150 μl of 0.3 N NaOH and counted in 5 ml of Insta-Gel liquid scintillation cocktail (Packard) using a Packard Tri-Carb liquid scintillation counter. Alternatively, autoradiography may be used to quantitate DNA synthesis by punching out the bottoms of the microtiter wells and mounting them on glass slides with silastic glue. The slides are dipped in a 1 g/ml solution of NTB2 nuclear track emulsion (Kodak) and exposed for 3-4 days. The emulsion is developed with Microdol-X solution (Kodak) for 10 minutes, rinsed with distilled H2O, and fixed with Rapid Fixer (Kodak) for three minutes. The autoradiographs are stained with a modified Giemsa stain. At least 1000 nuclei are counted in each well and DNA synthesis, expressed as the percentage of nuclei labeled. Cell division is measured by counting the number of cells in microtiter wells with the aid of a grid after 40-48 hour incubations with test samples.
- A quick and sensitive screen for inhibition of EC proliferation in response to treatment with a troponin subunit, homolog, or derivative of the invention involves incubating the cells in the presence of varying concentrations of the inhibitor and determining the number of endothelial cells in culture based on the colorimetric determination of cellular acid phosphatase activity, described by Connolly, et al., 1986, J. Anal. Biochem. 152:136-140.
- The effect of troponin on the proliferation of capillary endothelial cells (EC) was measured in an assay which measures the ability of this protein to interfere with stimulation of endothelial cell proliferation by a known angiogenesis factor (bFGF).
- Capillary endothelial cells and Balb/c 3T3 cells were separately plated (2×103/0.2 ml) onto gelatin-coated 96-well tissue culture dishes on
day 1. Onday 2, cells were refed with Dulbecco's modified Eagle's medium (Gibco) with 5% calf serum (Hyclone) (DMEM/5) and bFGF (10 ng/ml) (FGF Co.) and increasing concentrations of one or more troponin subunits. These substances were added simultaneously in volumes that did not exceed 10% of the final volume. Wells containing phosphate buffered saline (PBS) (Gibco) alone and PBS+bFGF were included as controls. Onday 5, media was removed and cells were washed with PBS and lysed in 100 μl of buffer containing 0.1 M sodium acetate (pH 5.5), 0.1% Triton X-100™ and 100 mM p-nitrophenyl phosphate (Sigma 104 phosphatase substrate). After incubation for 2 hours at 37° C., the reaction was stopped with the addition of 10 μl of 1 N NAOH. Color development was determined at 405 nm using a rapid microplate reader (Bio-Tek). - Percent inhibition was determined by comparing the cell number of wells exposed to stimulus with those exposed to stimulus and troponin subunits.
- All three troponin subunits were found to inhibit bFGF-stimulated EC proliferation, as measured by the colorimetric assay.
- Troponin C inhibited bFGF-stimulated endothelial cell proliferation in a dose-dependent manner in all concentrations tested (
FIG. 1 ). Percent inhibition of bovine endothelial cell proliferation (“BCE”) was 54%, 86%, 83%, and 100% at concentrations of 280 nM, 1.4 μM, 2.8 μM and 5.6 μM, respectively. An inhibition of 100% was observed at a concentration of 20 μg/well (5.6 μM). IC50 represents the concentration at which 50% inhibition of bFGF growth factor-induced stimulation was observed. The IC50 of troponin C was determined to be 278 nM. - Troponin I inhibited bFGF-stimulated BCE proliferation at concentrations of 1 and 5 μg/well, but inhibition was not observed in the sample tested at 10 μg/well (
FIG. 2 ). The percent inhibition of BCE was 33% and 46% at concentrations of 240 nM and 1.2 μM, respectively. The IC50 of troponin I was determined to be 1.14 μM. - Troponin T inhibited bFGF-stimulated EC proliferation at concentrations of 10 and 20 μg/well, but not at concentrations of 1 and 5 μg/well (
FIG. 3 ). BCE proliferation was inhibited 23% and 62% at 1.6 μM and 3.3 μM, respectively. The IC50 of troponin T was determined to be 2.14 μM. - The combination of troponin subunits C and I inhibited EC at all concentrations tested (
FIG. 4 ). The percent inhibition of proliferation of BCE was 52%, 54% 73% and 47% at 130 nM, 645 nM, 1.3 μM and 2.6 μM, respectively. The IC50 of this combination was determined to be 110 nM. - The combination of troponin subunits C, I and T was observed to inhibit bFGF-stimulated BCE proliferation by 16% at a concentration of 360 nM (5 μg/well,
FIG. 5 ). - The troponin samples tested had no detectable inhibitory effect on the growth of Balb/c 3T3 cells, a non-endothelial cell type.
- Determination of the ability of the troponin Subunit, fragment, or homolog to inhibit the angiogenic process of capillary EC migration in response to an angiogenic stimulus, can be determined using a modification of the Boyden chamber technique is used to study the effect of troponin subunit, fragment, or homolog on capillary EC migration. Falk et al., 1980, J. Immunol. 118:239-247 (1980). A blind-well Boyden chamber, consists of two wells (upper and lower) separated by a porous membrane. J. Exp. Med. 115:453-456 (1962). A known concentration of growth factor is placed in the lower wells and a predetermined number of cells and troponin subunit, fragment, or homolog is placed in the upper wells. Cells attach to the upper surface of the membrane, migrate through and attach to the lower membrane surface. The membrane can then be fixed and stained for counting, using the method of Glaser et al., 1980, Nature 288:483-484.
- Migration is measured using blind well chambers (Neuroprobe, no. 025-187) and polycarbonate membranes with 8 micron pores (Nucleopore) precoated with fibronectin (6.67 μg/ml in PBS) (human, Cooper). Basic FGF (Takeda Co.) diluted in DMEM with 1% calf serum (DMEM/1) is added to the lower well at a concentration of 10 ng/ml. The upper wells receive 5×105 capillary EC/ml and increasing concentrations of purified troponin subunit, fragment or homolog is used within 24 hours of purification. Control wells receive DMEM/1, either with or without bFGF. The migration chambers are incubated at 37° C. in 10% CO2 for 4 hours. The cells on the upper surface of the membrane are then wiped off by drawing the membrane over a wiper blade (Neuroprobe). The cells which have migrated through the membrane onto the lower surface are fixed in 2% glutaraldehyde followed by methanol (4° C.) and stained with hematoxylin. Migration is quantified by counting the number of cells on the lower surface in 16 oil immersion fields and comparing this number with that obtained for the control.
- The chick chorioallantoic membrane assay (CAM), may be used to determine whether troponin subunit, fragment or homolog is capable of inhibiting neovascularization in vivo. Taylor and Folkman, 1982, Nature (London) 297:307-312. The effect of troponin subunit, fragment or homolog on growing embryonic vessels is studied using chick embryos in which capillaries appear in the yolk sac at 48 h and grow rapidly over the next 6-8 days.
- Three day post fertilization chick embryos are removed from their shells and placed in plastic petri dishes (1005, Falcon). The specimens are maintained in humidified 5% CO2 at 37° C. On
day 6 of development, samples of purified troponin subunit, fragment or homolog are mixed in methylcellulose disks and applied to the surfaces of the growing CAMs above the dense subectodermal plexus. Control specimens in which CAMs are implanted with empty methylcellulose disks are also prepared. The CAMs are injected intravascularly with India ink/Liposyn to more clearly delineate CAM vascularity. Taylor et al., 1982, Nature 297:307-312. - Following a 48 hour exposure of the CAMs to the troponin subunit, fragment, or homolog, the area around the implant is observed and evaluated. Test specimens having avascular zones completely free of India-ink filled capillaries surrounding the test implant indicate the presence of an inhibitor of embryonic neovascularization. In contrast, the control specimens show neovascularization in close proximity or in contact with the methylcellulose disks.
- Histological mesodermal studies are performed on the CAMs of test and control specimens. The specimens are embedded in JB-4 plastic (Polysciences) at 4° C. and 3 μm sections are cut using a Reichert 2050 microtome. Sections are stained with toluidine blue and micrographs are taken on a Zeiss photomicroscope using Kodak™ x100 and a green filter.
- Male NZW rabbits weighing 4-5 lbs. are anesthetized with intravenous pentobarbital (25 mg/kg) and 2% xylocaine solution is applied to the cornea. The eye is proptosed and rinsed intermittently with Ringer's solution to prevent drying. The adult rabbit cornea has a diameter of approximately 12 mm. An intracorneal pocket is made by an incision approximately 0.15 mm deep and 1.5 mm long in the center of the cornea with a No. 11 scalpel blade, using aseptic technique. A 5 mm-long pocket is formed within the corneal stroma by inserting a 1.5 mm wide, malleable iris spatula. In the majority of animals, the end of the corneal pocket is extended to within 1 mm of the corneal-scleral junction. In a smaller series of 22 rabbits implanted with tumor alone, pockets are placed at greater distances—2-6 mm from the corneal-scleral junction by starting the incision away from the center.
- In the first assay, polymer pellets of ethylene vinyl acetate (EVAc) copolymer are impregnated with test substance and surgically implanted in a pocket in the rabbit cornea approximately 1 mm from the limbus. When this assay system is being used to test for angiogenesis inhibitors, either a piece of V2 carcinoma or some other angiogenic stimulant is implanted distal to the polymer, 2 mm from the limbus. On the opposite eye of each rabbit, control polymer pellets that are empty are implanted next to an angiogenic stimulant in the same way. In these control corneas, capillary blood vessels start growing towards the tumor implant in 5-6 days, eventually sweeping over the blank polymer. In test corneas, the directional growth of new capillaries from the limbal blood vessels towards the tumor occurs at a reduced rate and is often inhibited such that an avascular region around the polymer is observed (
FIG. 1 ). This assay is quantitated by measurement of the maximum vessel lengths with a stereoscopic microscope. - Troponin I was purified from bovine veal scapulae using a modification of a protocol previously described by us (Moses, et al., 1990, Science 2488, 1408-1410). Briefly, veal scapulae were vacuum frozen immediately after slaughter and stored at −20° C. until used. Cartilage was scraped first with a periosteal elevator (Arista) and then with a scalpel blade (No. 10, Bard-Parker) until clean of all muscle and connective tissue. Cartilage slices were extracted in 2 M NaCl, precipitated with HCl and ammonium sulfate (25-20%), and fractionated using a series of chromatography steps: gel filtration on A-1.5m Sepharose (Bio-Rad) in the presence of 4M guanidine-HCl, ion exchange on a Bio-Rex 70 (Bio-Rad) cation exchange column, gel filtration on a Sephadex G-75 (superfine) (Pharmacia) column, reversed-phase high-performance liquid chromatography (HPLC) on a Hi-Pore 304 column (Bio-Rad) and gel filtration on a Progel-TSK G3000SWXL column (3.0 cm×7.8 mm) (Supelco). Fractions obtained from each column step were tested for their ability to inhibit capillary endothelial cell (EC) proliferation which was stimulated by basic Fibroblast Growth Factor (bFGF) as described below. Fractions containing inhibitory activity were pooled and concentrated in a Savant Speed Vac concentrator for amino acid and sequence analysis. Unless otherwise stated, all reagents were obtained from Sigma.
- Proteins were each reduced, S-carboxyamidomethylated and subjected to digestion with trypsin. The resulting peptide mixtures were fractionated by narrow bore high performance liquid chromatography using a Zorbax C18 1.0 mm by 150 mm reverse-phase column on a Hewlett-Packard 1090 HPLC with a 1040 diode array detector. Optimum fractions were chosen based on differential UV absorbance at 205, 277 nm and 292 nm, peak symmetry and resolution (Lane, et al., 1991, J. Prot; Chem. 10, 151-160). These fractions were then further screened for length and homogeneity by matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF/MS) on a Thermo Bioanalysis Lasermat 2000 (Hemel, England). Tryptic peptide sequences were determined by electrospray ionization/tandem mass spectrometry on a Finnigan TSQ7000 (San Jose, Calif.) triple quadrupole mass spectrometer as described in Nash et al. (Nash, et al., 1996, Curr; Biol. 6, 968-980). Alternatively, peptides were submitted to automated Edman degradation on a PE/ABD 477A (Foster City, Calif.) protein sequencer.
- Human intercostal cartilage tissue was obtained according to bioethical guidelines pertaining to discarded clinical material. The cDNA encoding a fragment of human fast-twitch skeletal muscle troponin I was amplified by standard reverse transcriptase polymerase chain reaction (RT-PCR) from the total RNA isolated from a core sample of human cartilage using primers based on the nucleotide sequence of human fast-twitch skeletal muscle TnI (Zhu, et al., 1994, Biochim. Biophys. Acta 1217, 338-340):
forward primer 5′-GCTCTGCAAACAGCTGCACGCCAAG-3′ (SEQ ID NO:4) andreverse primer 5,-GCCCAGCAGGGCCTTGAGCATGGCA-3′ (SEQ ID NO:5) which was cloned into PCR2.1 (Invitrogen) and sequenced in both directions. The cDNA encoding the full-length open reading frame (ORF) of human fast-twitch skeletal muscle troponin I was cloned from human skeletal muscle mRNA with Pfu polymerase (Stratagene) under standard PCR conditions, using forward primer (5′-CTCACCATGGGAGATGAGGAGAAGC-3′) (SEQ ID NO:6) and the reverse primer (5′-GCCTCGAGTGGCCTAGGACTCGGAC-3′) (SEQ ID NO:7). The PCR product was cloned into the expression vector Pet24d (Novagen) using 5′-Ncol and 3′-Xhol sites and sequenced as above. - Tissue expression of TnI was analyzed by RT-PCR as described above. Total RNA (400 ng/sample) was isolated from rat skeletal muscle, liver (Clontech), xyphoid and Swarm rat chondrosarcoma. The design of the forward (5′-GAACACTGCCCGCCTCTGCACATC-3′) (SEQ ID NO:8) and reverse (5′-GAGCCCAGCAGCGCCTTCAGCATG-3′) (SEQ ID NO:9) primers was based on the nucleotide sequence of rat fast-twitch skeletal muscle TnI.
- Recombinant(r) human TnI was expressed according to standard protocols (Sambrook, et al., 1989, Molecular Cloning: A laboratory manual. (Cold Spring Harbor Press, New York, N.Y.)). After 5 hrs of expression, bacteria were harvested by centrifugation. Following centrifugation at 12,000×g for 15 min, the pellet was resuspended in 1.0 ml of Buffer A (15 mM Tris-HCl, 0.1 mM EDTA, pH 7.0). The cells were disrupted by sonication. The inclusion bodies were isolated by centrifugation at 12,000×g once for 15 min in Buffer A, followed by centrifugation once at 11,000×g once for 15 min in Buffer A.
- The washed pellet was dissolved in 6 M urea, 0.5 M NaCl, 5 mM HEPES, 2 mM EDTA, 5 mM DTT (pH 7.5), and nutated in the above buffer for 6-8 hours at 4° C. The sample was then dialyzed against 0.5 M NaCl, 5 mM HEPES, 5 mM DTT (pH 7.5) and concentrated using an Amicon concentrator (YM-10, MWCO 10,000 Da) prior to application to a Progel-TSK G3000SWXL column (30 cm×7.8 mm). The sample was eluted using the above buffer (0.5 M NaCl, 5 mM HEPES, 5 mM DTT, pH 7.5). Some of the inhibitory preparations were further fractionated on a Q-Sepharose HP column (Pharmacia Biotech) and tested as described below with no difference in biological activity. Purified rTnI was dialyzed against phosphate buffered saline (PBS) containing 0.5 mM DTT prior to testing. Protein concentration was determined by scanning densitometric comparison (IS-1000 Digital Imaging System, Version 2.00, Alpha Innotech Corp.) with known protein standards (Novex) coelectrophoresed on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) followed by staining with Coomassie Blue.
- Immunoblotting was conducted on samples of native TnI (purified from cartilage as described above), recombinant TnI (purified as described above) and bovine chondrocyte lysates prepared as described below according to standard protocols. Cultures of primary bovine scapular chondrocytes were established and maintained as previously described by us (Moses, et al., 1990, J. Cell. Biol. 119, 474-481). Cells were rinsed with PBS and to each 10 cm culture dish was added 1 ml of boiling 2×-concentrated electrophoresis sample buffer (250 mM Tris-HCl, pH 6.8, 4% SDS, 10% glycerol, 0.006% bromophenol blue and 2% B-mercaptoethanol). Cells were scraped from the dishes using a disposable cell scraper (Costar), transferred to a microcentrifuge tube and boiled for an additional 5 min. Following several passages though a 26 gauge needle (Becton Dickinson), the sample was clarified by centrifugation (2000×g), diluted to 0.1% SDS, and the protein concentration determined using a DO Protein Assay (BioRad). All samples were separated by polyacrylamide gel electrophoresis on a 4/12% acrylamide mini-gel according to Laemmli (Laemmli, 1970, Nature 227, 680-685). Proteins were then transferred to nitrocellulose (Hybond-ECL, Amersham) using a Transblot apparatus (Biorad),incubated with a monoclonal antibody to rabbit skeletal muscle TnI (Advanced Immunochemical Inc.) and developed using the ECL western blotting system according to the manufacturer's protocol (Amersham).
- An in vitro assay which measures the inhibition of basic fibroblast growth factor (bFGF)-stimulated proliferation of capillary endothelial cells (EC) was used to monitor purification (Moses, et al., 1990, Science 2488, 1408-1410; Moses, et al., 1990, J. Cell. Biol. 119, 474-481; Connolly, et al., 1986, Anal. Biochem. 152, 136-140). All cartilage-derived fractions obtained from a series of chromatography steps described below were screened for this inhibitory bioactivity. Inhibitory activity eluted at an approximate molecular weight of 25,000 Da from the A-1.5 m size exclusion column, at approximately 0.2M NaCl from the Biorex 70 cation exchange column, at approximately 23,000 Da from the Sephadex G-75 gel filtration column, at an acetonitrile concentration of approximately 38.5%, and at an approximate Mr of 22,000 Da from the Progel-TSK G3000SWXL column. Inhibitory fractions obtained from the final chromatography step were subjected to tryptic digestion and the resultant peptides were sequenced by microcapillary LC-ESI tandem mass spectrometry or automated Edman degradation. The sequences of three peptide fragments(LQIAATELEK, (SEQ ID NO:18; IDVAEEEKYDMEVK, (SEQ ID NO:19); AND LFDLR, (SEQ ID NO:20)) were obtained and were identified as fragments of troponin I (
FIG. 6 ). - Since there had been no previous reports in the literature that cartilage cells, the chondrocytes, contain TnI, the cDNA encoding human cartilage TnI was cloned using a standard PCR strategy (Wu and Moses, 1996, Gene 18, 243-246) (
FIG. 7A ). Sequencing of the PCR product revealed its identity to human fast skeletal muscle TnI (FIG. 7B ) (SEQ ID NO:16). TnI expression levels of rat xiphoid cartilage, Swarm rat chondrosarcoma and liver, were also determined by RT-PCR and were significantly lower than that of rat skeletal muscle, with the expression level in liver appearing to be slightly lower than that of cartilage or chondrosarcoma (FIG. 7C ). - In order to obtain sufficient amounts of TnI to investigate its potential as an antiangiogenic factor, a cDNA encoding full length human fast skeletal muscle troponin I was cloned into expression vector pET-24d and transformed into E. coli BL21(DE3) p LysS strain. The expression level of recombinant human skeletal muscle troponin I was approximately 30-40% of total cellular protein. Following purification, recombinant TnI migrated as a single band, at approximately 21 kDa on SDS-PAGE (
FIG. 8 ). - Capillary EC, isolated from bovine adrenal cortex (Folkman, et al., 1979, Proc. Natl. Acad. Sci. USA 76, 5217-5221) were obtained from Children's Hospital (Boston, Mass.). These cells were demonstrated to be endothelial by staining with antisera to von Willebrand factor and by their uptake of fluoresceinated, acetylated low density lipoprotein. Cells were maintained in culture in DME (Dulbecco's Modified Eagle's Medium, Gibco Laboratories) with 10% calf serum (Hyclone) (DME/10) supplemented with 3 ng/ml bFGF or Vascular Endothelial Growth Factor (VEGF) in preparation for these assays.
- BALB/c mouse 3T3 cells were maintained in DME/10, L-glutamine (292 μg/ml) as previously described (Klagsbrun, et al., 1977, Exp. Cell Res. 105, 99-108). Bovine aortic smooth muscle cells (SMC), isolated by explant from the medial layer of bovine aortas, were obtained from Children's Hospital (Boston, Mass.). These cells were cultured in DME/10 on uncoated tissue culture plastic as previously described (D'Amore and Smith, 1993,
Growth Factors 8, 61-75). - Briefly, capillary EC (2,000 cells per well) were plated on gelatinized 96-Well culture plates in DMEM supplemented with 5% (v/v) calf serum and incubated for 24 hours. On
day 2, cells were treated with bFGF (Scios Nova; 1 ng/ml) and challenged with the test fractions and/or with purified TnI. For experiments in which VEGF was used as the mitogen, 800 cells per well were plated and allowed to incubate for 3 hours before VEGF (Biomedical Technologies Incorporated; 30 ng/ml) and TnI was added. Control wells contained cells alone and cells stimulated with bFGF or VEGF. Onday 5, growth medium was removed from the plates; cells were lysed in buffer containing the detergent Triton x-100 and the phosphatase substrate p-nitrophenyl phosphate. After incubation for 2 h at 37° C., NaOH was added to terminate the reaction. Color development was determined using a rapid multiwell plate reader (Dynatech MR 5000) (Moses, et al., 1990, Science 2488, 1408-1410; Moses, et al., 1990, J. Cell. Biol. 119, 474-481; Connolly, et al., 1986, Anal. Biochem. 152, 136-140). EC inhibitory activity was verified by electronic cell counting assays as previously described by us (Moses, et al., 1990, Science 2488, 1408-1410; Moses, et al., 1990, J. Cell. Biol. 119, 474-481). Tritiated thymidine incorporation assays were conducted according to the method of Shing (Shing, 1990, in Methods in Enzymology, eds. Barnes, D., Mather, J. P. and Sato, G. H. (Academic Press, New York), pp. 91-95). - Purified rTnI was tested for its ability to inhibit bFGF and VEGF-stimulated capillary EC and was found to inhibit EC proliferation in a dose-dependent and saturable manner with an IC50 (the inhibitory concentration at which one observes 50% suppression of proliferation) of approximately 65 nM when bFGF was used as the mitogen (
FIG. 9A ) and approximately 1.5 nM when VEGF was used (FIG. 9B ). Native TnI inhibited capillary EC proliferation in an equipotent manner. Tritiated thymidine assays demonstrated that recombinant TnI inhibited capillary EC DNA synthesis in a dose-dependent and saturable manner with an IC50 of approximately 240 nM. This suppression of proliferation appears to be unique to endothelial cells given the fact that TnI did not suppress the growth of any of the non-endothelial cells tested including bovine aortic smooth muscle cells and Balb/c 3T3 cells even when tested at doses which were over 5× higher than that required to obtain an IC50 value for capillary EC. - To determine whether the proliferation of bovine aortic SMC and Balb c/3T3 cells was inhibited by TnI, the following assays were conducted. SMC were plated into multiwell dishes (2.1 cm2/well) at a density of 10,000 cells/well. After allowing the cells to attach overnight, fresh media was applied containing either 3 ng/ml PDGF-BB alone or in combination with increasing concentrations of purified TnI. Following incubation for 72 hrs at 37° C. in 10% CO2, the cells were rinsed in PBS, detached by trypsinization and counted electronically. The effect of TnI on quiescent BALB/c mouse 3T3 cells was assessed by measuring the incorporation of tritiated thymidine into DNA in 96-well plates as previously described (Shing, 1990, in Methods in Enzymology, eds. Barnes, D., Mather, J. P. and Sato, G. H. (Academic Press, New York), pp. 91-95).
- All procedures were carried out in a laminar flow hood under sterile conditions. The eggs were stored in a Favorite Egg Incubator (Leahy) at 37° C. and 65% relative humidity. On
day 3 of development, fertilized White Leghorn eggs (SPAFAS) were cracked and the embryos removed from their shells and placed in plastic petri dishes. Onday 6, test substances including native rabbit TnI (Greaser and Gergely, 1971, J. Biol. Chem. 246, 4226-4233) and recombinant human TnI and appropriate buffer controls were mixed in methylcellulose, disks and applied to the surfaces of the growing CAMs above the dense subectodermal plexus. Forty-eight hours following implantation of the plastic disc, the eggs were examined for vascular reactions under a dissecting scope (60×) and photographed (Moses, et al., 1990, Science 2488, 1408-1410; Moses, et al., 1990, J. Cell. Biol. 119, 474-481). - The CAM assay was used to determine whether rTnI was an inhibitor of angiogenesis in vivo. The results shown in
FIG. 10 demonstrate the significant inhibition of embryonic neovascularization as evidenced by the large avascular zone caused by 130 picomoles of rTnI. This effect was observed in 66% of the eggs tested at this dose and 100% of the eggs tested at a dose of approximately 380 picomoles. This observation was reproduced in three separate sets of CAM assays using three different TnI preparations. Over 125 CAMs were tested in this series of experiments. - Inhibition of angiogenesis in vivo was also demonstrated using the mouse corneal pocket assay (Chen, et al., 1995, Cancer. Res. 55, 4230-4233; O'Reilly, et al., 1996, Nat. Med. 2, 689-692). Briefly, pellets composed of bFGF (40 ng/ml), sucrose octasulfate and Hydron were implanted into corneal micropockets of six C57BL/6 mice as previously described (U.S. Pat. No. 5,837,680 to Moses et al.). Troponin I (50 mg/kg) was administered systemically every 12 hours by subcutaneous injection. On the sixth day of treatment, corneal angiogenesis was evaluated using slit lamp microscopy and photographed.
- In another in vivo assay, the mouse corneal pocket assay, systemic administration of rTnI significantly inhibited bFG F-induced angiogenesis (
FIG. 11B ) when compared to corneas of control mice which received vehicle alone (FIG. 11A ). - Taken together, the in vivo studies described in
Section 6, Examples 10 and 11 show rTnI to be a potent inhibitor of neovascularization when compared to other inhibitors tested in these same assays (Moses, et al., 1995, in International Review of Cytology, 161, 1-48). - Murine melanoma B16-BL6 were cultured in RPMI 1640 (Gibco) supplemented with 10% (v/v) fetal calf serum (Hyclone), L-glutamine and NaHCO3. Cells were washed with EBSS (Gibco) and trypsinized for 3 to 5 mm with 0.25% TRL/0.2% EDTA to which culture buffer was added for washing. This preparation was then centrifuged for 10 mm at 1000 rpm, the cell pellet resuspended in fresh culture media, cell number determined using a coulter counter and cell viability determined with trypan blue (100% viability). The cell suspension was adjusted to 2.5×105 cells/ml for implantation. B16-BL6 cells (5×105/0.2 ml) were injected into the tail veins of C57BL/6 mice (approximately 6-7 weeks old). One day following tumor cell inoculation, mice were treated with rTnI systemically, twice per week, with a dose of either 1 mg/kg (n=10) or 20 mg/kg (n=10) or vehicle (150 mM NaCl, 20 mM citrate, pH3) over, a 28 day period. On day 30, animals were sacrificed, the number of lung surface metastases counted and the lungs weighed.
- Recombinant TnI was tested for its ability to inhibit lung metastasis in vivo caused by a very aggressive variant of the B16 melanoma cell line, B16-BL6 (Saiki, et al., 1989 Cancer Res. 49, 3815-3822). Recombinant TnI, administered systemically, inhibited lung metastases by 52% (p<0.04 one tailed t-test) at a dose of 1 mg/kg when given only twice weekly (n=10), and by 64% (p<0.02; one tailed t-test) at a dose of 20 mg/kg twice weekly (n=10), [lung metastasis control (68.6+/−7.5 SEM) (n=10); 1 mg/kg (32.8+1-4.8 SEM); 20 mg/kg (25.0+/−7.5 SEM)] with no observed toxicity (i.e., no weight or appetite loss, etc.). Lung weights were comparable in control and treated groups.
- As shown by the data, TnI inhibited lung metastasis.
- Recombinant peptides corresponding to fragments of rabbit (rb) TnI (SEQ ID NO:10) (
FIG. 12 ) were tested for ability to inhibit bFGF-stimulated capillary EC as described above inSection 6, Examples 2 and 8. The rbTnI fragments (SEQ ID NOS:11-15) were prepared according to Jha et al., 1996, Biochemistry 35(34):11026-11035. As shown in Table 2, various concentrations of peptides corresponding to the amino-terminal (N′) region (aa 1-94) (SEQ ID NO:11); the N′ and inhibitory (I′) region (aa 1-120) (SEQ ID NO:12); the I′ region (aa 98-114) (SEQ ID NO:13); the carboxy terminus (C′) and I′ region (C′+I′) (aa 96-181) (SEQ ID NO:14); the C′ region (aa 122-181) (SEQ ID NO:15); and mixtures of the C′+I′ (SEQ ID NO:14) plus the N′ (SEQ ID NO:11) fragments and the N′+I′ (SEQ ID NO:12) plus the C′ (SEQ ID NO:15) fragments of TnI were tested for inhibition of EC proliferation. - As shown in Table 2, the C′+I′ fragment (SEQ ID NO:14) significantly inhibited EC proliferation. The percent inhibition of EC was 54% and 48% at concentrations of 0.1 μg/well and 0.3 μg/well, respectively. The IC50 was determined to be 0.1 to 0.2 μg/well (0.05 μM to 0.1 μM). Furthermore, the N′+I′ (SEQ ID NO:12) fragment interfered with the inhibitory activity of the C′ (SEQ ID NO:15) fragment and the N′ (SEQ ID NO:11) fragment interfered with the inhibitory activity of the C′+I′ (SEQ ID NO:14) fragment.
- As shown in
Section 6, Example 3, supra, full-length TnI inhibited EC proliferation approximately 46% at a concentration of 5 μg/well (1.2 μM). Thus, the C′+I′ fragment had 25 to 50-fold EC inhibitory activity compared to the full-length TnI. - These results demonstrate that fragments of troponin subunits, particularly the C′+I′ fragment (SEQ ID NO:14), inhibited EC proliferation in an assay that was developed to mimic the process of neovascularization. Thus, troponin subunit fragments inhibit angiogenesis.
-
TABLE 2 SEQ Approx. ID Amino Assay Assay Assay IC50 Approx. NO: Regiona Fragment Acids μg/well μg/ml MW nM % Ib μg/well IC50 μM 11 1-94 N′ 94 0.01 0.05 10,906 5 −12 >0.3 >0.1 0.025 0.125 11 6 0.1 0.5 46 31 0.3 1.5 138 28 12 1-120 N′ + I′ 120 0.01 0.05 13,923 4 6 >>0.3 >>0.1 0.025 0.025 9 0 0.1 0.5 36 12 0.3 1.5 108 17 13 98-114 I′ 17 4 20 1,972 10140 −12 >>40 >>100 10 50 25350 −25 20 100 50700 −6 40 200 101401 −34 14 96-181 C′ + I′ 86 0.01 0.05 9,978 5 25 0.1 to 0.05 to 0.025 0.125 13 28 0.2 0.1 0.1 0.5 50 54 0.3 1.5 150 48 15 122-181 C′ 60 0.01 0.05 6,961 7 −1 >0.3 >0.2 0.025 0.125 18 −6 0.1 0.5 72 20 0.3 1.5 215 23 14, 11 96-181 + 1-94 (C′ + I′) + N′ 180 0.01 0.05 20,884 7 17 >0.3 >0.2 0.025 0.125 18 20 0.1 0.5 72 27 0.3 1.5 215 28 12, 15 1-120 + 122-181 (N′ + I′) + C′ 180 0.01 0.05 20,884 7 −7 >>0.3 >>0.2 0.025 0.125 18 −1 0.1 0.5 72 −6 0.3 1.5 215 −1 94-113 C′ + I′ 20 20 100 2,500 40000 0 >>20 >>40 98-117 C′ + I′ 20 20 100 2,500 40000 1 >>20 >>40 102-121 C′ + I′ 20 20 100 2,500 40000 0 >>20 >>40 106-125 C′ + I′ 20 20 100 2,500 40000 0 >>20 >>40 110-129 C′ + I′ 20 20 100 2,500 40000 0 >>20 >>40 114-133 C′ + I′ 20 20 100 2,500 40000 0 >>20 >>40 118-137 C′ 20 20 100 2,500 40000 37 40 80 40 200 2,500 50 116-123 C′ 8 50 250 900 80000 9 >>50 >>278 118-125 C′ 8 50 250 900 278000 0 >>50 >>278 120-127 C′ 8 50 250 900 278000 10 >>50 >>278 122-129 C′ 8 50 250 900 278000 23 >>50 >>278 124-131 C′ 8 50 250 900 278000 16 >>50 >>278 126-133 C′ 8 50 250 900 278000 11 >>50 >>278 128-135 C′ 8 50 250 900 278000 29 150 834 130-137 C′ 8 50 250 900 278000 50 50 278 132-139 C′ 8 50 250 900 278000 43 75 417 134-141 C′ 8 50 250 900 278000 30 150 834 136-143 C′ 8 50 250 900 278000 0 >>50 >>278 aSEQ ID NO: 2 amino acid numbers bPercent Inhibition
Claims (3)
1. An isolated peptide consisting of a region of troponin subunit I having amino acid sequences selected from the group consisting of 94-123 (huTnI94-123), 104-133 (huTnI104-133), 114-143 (huTnI114-143), 129-153 (huTnI129-153), 134-173 (huTnI134-173), 144-182 (huTnI144-182), 93-112 (huTnI93-112), 98-117 (huTnI98-117), 103-122 (huTnI103-122), 108-127 (huTnI108-127), 113-132 (huTnI113-132), 118-137 (huTnI118-137), 94-113 (huTnI94-113), 98-117 (huTnI98-117), 102-121 (huTnI102-121), 106-125 (huTnI106-125), 110-129 (huTnI110-129), 114-133 (huTnI114-133), 116-123 (huTnI116-123), 118-125 (huTnI118-125), 120-127 (huTnI120-127), 122-129 (huTnI122-129), 124-131 (huTnI124-131), 126-133 (huTnI126-133), 128-135 (huTnI128-135), 130-137 (huTnI130-137), 132-139 (huTnI132-139), 134-141 (huTnI134-141), 136-143 (huTnI136-143), and 114-133 (huTnI114-133), of troponin subunit I (SEQ ID NO:17).
2. A pharmaceutical composition for inhibiting angiogenesis associated with a disease or disorder in a mammal which comprises an effective amount of a peptide which is at least 80% homologous with amino acid sequences selected from the group consisting of 94-123 (huTnI94-123), 104-133 (huTnI104-133), 114-143 (huTnI114-143), 129-153 (huTnI129-153), 134-173 (huTnI134-173), 144-182 (huTnI144-182), 93-112 (huTnI93-112), 98-117 (huTnI98-117), 103-122 (huTnI103-122), 108-127 (huTnI108-127), 113-132 (huTnI113-132), 118-137 (huTnI118-137), 94-113 (huTnI94-113), 98-117 (huTnI98-117), 102-121 (huTnI102-121), 106-125 (huTnI106-125), 110-129 (huTnI110-129), 114-133 (huTnI114-133), 116-123 (huTnI116-123), 118-125 (huTnI118-125), 120-127 (huTnI120-127), 122-129 (huTnI122-129), 124-131 (huTnI124-131), 126-133 (huTnI126-133), 128-135 (huTnI128-135), 130-137 (huTnI130-137), 132-139 (huTnI132-139), 134-141 (huTnI134-141), 136-143 (huTnI136-143), and 114-133 (huTnI114-133), of troponin subunit I (SEQ ID NO:17).
3. A method of inhibiting angiogenesis associated with a disease or disorder in a mammal, comprising administering an effective amount of a peptide which is at least 80% homologous with amino acid sequences selected from the group consisting of 94-123 (huTnI94-123), 104-133 (huTnI104-133), 114-143 (huTnI114-143), 129-153 (huTnI129-153), 134-173 (huTnI134-173), 144-182 (huTnI144-182), 93-112 (huTnI93-112), 98-117 (huTnI98-117), 103-122 (huTnI103-122), 108-127 (huTnI108-127), 113-132 (huTnI113-132), 118-137 (huTnI118-137), 94-113 (huTnI94-113), 98-117 (huTnI98-117), 102-121 (huTnI102-121), 106-125 (huTnI106-125), 110-129 (huTnI110-129), 114-133 (huTnI114-133), 116-123 (huTnI116-123), 118-125 (huTnI118-125), 120-127 (huTnI120-127), 122-129 (huTnI122-129), 124-131 (huTnI124-131), 126-133 (huTnI126-133), 128-135 (huTnI128-135), 130-137 (huTnI130-137), 132-139 (huTnI132-139), 134-141 (huTnI134-141), 136-143 (huTnI136-143), and 114-133 (huTnI114-133), of troponin subunit I (SEQ ID NO:17).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/254,651 US20090156491A1 (en) | 1996-02-16 | 2008-10-20 | Methods of inhibiting angiogenesis with fragments and homologs of troponin subunit i |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/602,941 US5837680A (en) | 1996-02-16 | 1996-02-16 | Pharmaceutical compositions comprising troponin subunits, fragments and analogs thereof and methods of their use to inhibit angiogenesis |
US08/961,264 US6025331A (en) | 1996-02-16 | 1997-10-30 | Pharmaceutical compositions comprising troponin subunits, fragments and analogs thereof and methods of their use to inhibit angiogenesis |
US26827499A | 1999-03-15 | 1999-03-15 | |
US9442099A | 1999-11-17 | 1999-11-17 | |
US10/176,416 US7078385B2 (en) | 1996-02-16 | 2002-06-18 | Methods of inhibiting angiogenesis with fragments and homologs of troponin subunit I |
US11/327,174 US7452866B2 (en) | 1996-02-16 | 2006-01-05 | Methods of inhibiting angiogenesis with fragments and homologs of troponin subunit 1 |
US12/254,651 US20090156491A1 (en) | 1996-02-16 | 2008-10-20 | Methods of inhibiting angiogenesis with fragments and homologs of troponin subunit i |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/327,174 Continuation US7452866B2 (en) | 1996-02-16 | 2006-01-05 | Methods of inhibiting angiogenesis with fragments and homologs of troponin subunit 1 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090156491A1 true US20090156491A1 (en) | 2009-06-18 |
Family
ID=40754051
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/612,342 Expired - Fee Related US6586401B1 (en) | 1996-02-16 | 2000-07-06 | Troponin subunit I fragment and homologs thereof |
US11/327,174 Expired - Fee Related US7452866B2 (en) | 1996-02-16 | 2006-01-05 | Methods of inhibiting angiogenesis with fragments and homologs of troponin subunit 1 |
US12/254,651 Abandoned US20090156491A1 (en) | 1996-02-16 | 2008-10-20 | Methods of inhibiting angiogenesis with fragments and homologs of troponin subunit i |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/612,342 Expired - Fee Related US6586401B1 (en) | 1996-02-16 | 2000-07-06 | Troponin subunit I fragment and homologs thereof |
US11/327,174 Expired - Fee Related US7452866B2 (en) | 1996-02-16 | 2006-01-05 | Methods of inhibiting angiogenesis with fragments and homologs of troponin subunit 1 |
Country Status (1)
Country | Link |
---|---|
US (3) | US6586401B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10139151B2 (en) | 2012-12-03 | 2018-11-27 | Whirlpool Corporation | Refrigerator with ice mold chilled by air exchange cooled by fluid from freezer |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030119747A1 (en) * | 2001-11-01 | 2003-06-26 | Lanser Marc E. | Methods of using pharmaceutical compositions comprising troponin subunits and homologs thereof before, during, or after surgical resection or radiologic ablation of a solid tumor |
JP4565193B2 (en) | 2003-04-23 | 2010-10-20 | バレリタス, インコーポレイテッド | Hydraulically operated pump for long duration pharmaceutical administration |
WO2006014425A1 (en) | 2004-07-02 | 2006-02-09 | Biovalve Technologies, Inc. | Methods and devices for delivering glp-1 and uses thereof |
US8697139B2 (en) | 2004-09-21 | 2014-04-15 | Frank M. Phillips | Method of intervertebral disc treatment using articular chondrocyte cells |
SG173319A1 (en) | 2006-03-30 | 2011-08-29 | Valeritas Inc | Multi-cartridge fluid delivery device |
WO2019222856A1 (en) | 2018-05-24 | 2019-11-28 | Nureva Inc. | Method, apparatus and computer-readable media to manage semi-constant (persistent) sound sources in microphone pickup/focus zones |
AU2019275406A1 (en) | 2018-05-24 | 2020-07-16 | Celanese Eva Performance Polymers Llc | Implantable device for sustained release of a macromolecular drug compound |
MX2020012459A (en) | 2018-05-24 | 2021-04-28 | Celanese Eva Performance Polymers Llc | Implantable device for sustained release of a macromolecular drug compound. |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5583200A (en) * | 1993-02-23 | 1996-12-10 | Pasteur Sanofi Diagnostics | Stabilized composition of troponin for immunoassays and process for stabilizing troponin for immunoassays |
US5837680A (en) * | 1996-02-16 | 1998-11-17 | Children's Medical Center Corporation | Pharmaceutical compositions comprising troponin subunits, fragments and analogs thereof and methods of their use to inhibit angiogenesis |
-
2000
- 2000-07-06 US US09/612,342 patent/US6586401B1/en not_active Expired - Fee Related
-
2006
- 2006-01-05 US US11/327,174 patent/US7452866B2/en not_active Expired - Fee Related
-
2008
- 2008-10-20 US US12/254,651 patent/US20090156491A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5583200A (en) * | 1993-02-23 | 1996-12-10 | Pasteur Sanofi Diagnostics | Stabilized composition of troponin for immunoassays and process for stabilizing troponin for immunoassays |
US5837680A (en) * | 1996-02-16 | 1998-11-17 | Children's Medical Center Corporation | Pharmaceutical compositions comprising troponin subunits, fragments and analogs thereof and methods of their use to inhibit angiogenesis |
US6025331A (en) * | 1996-02-16 | 2000-02-15 | Children's Medical Center Corporation | Pharmaceutical compositions comprising troponin subunits, fragments and analogs thereof and methods of their use to inhibit angiogenesis |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10139151B2 (en) | 2012-12-03 | 2018-11-27 | Whirlpool Corporation | Refrigerator with ice mold chilled by air exchange cooled by fluid from freezer |
US10859303B2 (en) | 2012-12-03 | 2020-12-08 | Whirlpool Corporation | Refrigerator with ice mold chilled by air exchange cooled by fluid from freezer |
Also Published As
Publication number | Publication date |
---|---|
US7452866B2 (en) | 2008-11-18 |
US20060211614A1 (en) | 2006-09-21 |
US6586401B1 (en) | 2003-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6465431B1 (en) | Pharmaceutical compositions comprising troponin subunits, fragments and homologs thereof and methods of their use to inhibit angiogenesis | |
US6403558B1 (en) | Pharmaceutical compositions comprising troponin subunits, fragments and analogs thereof and methods of their use to inhibit angiogenesis | |
US7452866B2 (en) | Methods of inhibiting angiogenesis with fragments and homologs of troponin subunit 1 | |
AU652744B2 (en) | Method and compositions for inhibiting angiogenesis | |
US20080051345A1 (en) | Pharmaceutical compositions comprising fragments and homologs of troponin subunits | |
CA2353521A1 (en) | Proteins that bind angiogenesis-inhibiting proteins, compositions and methods of use thereof | |
JP2012080885A (en) | Reagents and methods for smooth muscle therapies | |
JP2001512319A (en) | Compositions and methods for modulating NF-κB activation in cells | |
Shin et al. | Recombinant kringle 1-3 of plasminogen inhibits rabbit corneal angiogenesis induced by angiogenin | |
JP3725473B2 (en) | Novel angiogenesis inhibitor | |
AU774596B2 (en) | Pharmaceutical compositions comprising troponin subunits, fragments and homologs thereof and methods of their use to inhibit angiogenesis | |
JP2002526418A (en) | Compositions and methods for inhibiting angiogenesis | |
US20030119747A1 (en) | Methods of using pharmaceutical compositions comprising troponin subunits and homologs thereof before, during, or after surgical resection or radiologic ablation of a solid tumor | |
CN109593123A (en) | A kind of polypeptide and its application derived from RPS23RG1 | |
KR100481206B1 (en) | A novel angiogenesis inhibitor | |
US6355774B1 (en) | Isolated p27 protein | |
WO2005079832A1 (en) | Use of hcnp peptides for the modulation of cardio-vascular physiology and diuresis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |