US20090132309A1 - Generation of a three-dimensional virtual reality environment from a business process model - Google Patents

Generation of a three-dimensional virtual reality environment from a business process model Download PDF

Info

Publication number
US20090132309A1
US20090132309A1 US11/943,734 US94373407A US2009132309A1 US 20090132309 A1 US20090132309 A1 US 20090132309A1 US 94373407 A US94373407 A US 94373407A US 2009132309 A1 US2009132309 A1 US 2009132309A1
Authority
US
United States
Prior art keywords
virtual
business process
process model
activities
plurality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/943,734
Inventor
Mike A. MARIN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US11/943,734 priority Critical patent/US20090132309A1/en
Assigned to INTERNATIONAL BUSINESS MACHINES CORPORATION reassignment INTERNATIONAL BUSINESS MACHINES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARIN, MIKE A.
Publication of US20090132309A1 publication Critical patent/US20090132309A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation, e.g. computer aided management of electronic mail or groupware; Time management, e.g. calendars, reminders, meetings or time accounting
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
    • G06Q10/063Operations research or analysis
    • G06Q10/0633Workflow analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce, e.g. shopping or e-commerce
    • G06Q30/01Customer relationship, e.g. warranty
    • G06Q30/018Business or product certification or verification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06QDATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/02Banking, e.g. interest calculation, credit approval, mortgages, home banking or on-line banking
    • G06Q40/025Credit processing or loan processing, e.g. risk analysis for mortgages

Abstract

A method and computer program product for generating a three-dimensional virtual reality environment from a business process model in a computer system are provided. The method includes analyzing a business process model to identify a plurality of activities and at least one transition criterion between the plurality of activities, where the business process model is unbounded to a physical implementation. The method also includes transforming the business process model into a three-dimensional virtual reality environment with virtual physical constraints, including a plurality of virtual rooms representing the plurality of activities and one or more virtual access points to the virtual rooms representing the at least one transition criterion. The method further includes outputting the three-dimensional virtual reality environment.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to computer-based generation of a three-dimensional virtual reality environment, and particularly to generating a three-dimensional virtual reality environment from a business process model.
  • 2. Description of Background
  • Business processes can be modeled using several techniques, including formal techniques like Business Process Management Notation (BPMN) or activity diagrams in Unified Modeling Language (UML), and informal techniques using graphical drawing programs. Business processes are typically represented using nodes and arcs connecting the nodes. In most cases, nodes represent activities of the business process and arcs represent transitions used to describe the flow of the process by linking the activities in the order they should be executed. However, in some cases arcs are used to represent work that needs to be done, and nodes provide the order in which the work needs to be done to accomplish the business process. The business process model may require human participation for some of its activities to be completed, or may not require any human participation because the activities are fully automated by either computer applications or other types of machines. In most cases, a combination of automatic and human activities is used. Other business process modeling concepts like condition nodes and events can always be mapped to activities and arcs, so for the purpose of this application only activities and arcs will be used.
  • Virtual Reality (VR) describes a computer technology that allows humans to interact with a computer via a simulated environment. Most VR environments provide sensorial information such as sounds and visual experiences via computer interfaces (e.g., speakers, headphones, computer screen, stereoscopic technology, etc.), typically in three dimensions (3-D). VR environments are interactive through a variety of inputs, such as a keyboard, mouse, or glove.
  • Business processes are often difficult for humans to visualize, particularly when the business processes do not map directly to a physical implementation, such as a production line. Using a 3-D VR environment to visualize a business process that is unbounded to a physical implementation would be beneficial to simplify validation, simulation, execution, and monitoring of the business process. Accordingly, there is a need in the art for a method to generate a 3-D VR environment from a business process model.
  • SUMMARY OF THE INVENTION
  • The shortcomings of the prior art are overcome and additional advantages are provided through the provision of a method for generating a three-dimensional virtual reality environment from a business process model in a computer system. The method includes analyzing a business process model to identify a plurality of activities and at least one transition criterion between the plurality of activities, where the business process model is unbounded to a physical implementation. The method also includes transforming the business process model into a three-dimensional virtual reality environment with virtual physical constraints, including a plurality of virtual rooms representing the plurality of activities and one or more virtual access points to the virtual rooms representing the at least one transition criterion. The method further includes outputting the three-dimensional virtual reality environment.
  • A computer program product corresponding to the above-summarized method is also described and claimed herein.
  • Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention. For a better understanding of the invention with advantages and features, refer to the description and to the drawings.
  • TECHNICAL EFFECT
  • As a result of the summarized invention, technically we have achieved a solution which generates a three-dimensional virtual reality environment from a business process model.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
  • FIG. 1 depicts an example of a computer system for generating a 3-D VR environment from a business process model;
  • FIG. 2 depicts an example of a 2-D business process model transformed into a 3-D VR environment; and
  • FIG. 3 depicts a process for generating a 3-D VR environment from a business process model in accordance with exemplary embodiments.
  • The detailed description explains the preferred embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Exemplary embodiments, as shown and described by the various figures and the accompanying text, provide a method and computer program product for generating a three-dimensional (3-D) virtual reality (VR) environment from a business process model. VR technology can be used to validate, simulate, execute, and monitor a business process. A variety of VR environments may be generated from a business process model. In these VR environments an activity can be represented by a virtual room, and transitions between activities can be represented by virtual corridors, virtual doors, or virtual windows connecting the virtual rooms. A transformation algorithm can be used to generate the 3-D VR environment from a graph representing the business process model. The graph can be a BPMN graph, an UML activity diagram, or any other business process model graph. The graph can include multiple nodes connected by one or more arcs. In the case that nodes represent activities, then those nodes are represented as virtual rooms, and the arcs connecting the nodes are represented as virtual corridors, virtual doors, or virtual windows connecting the virtual rooms. In the case in which arcs represent activities, then the arcs become virtual rooms and the nodes become the virtual corridors, virtual doors, or virtual windows connecting the rooms. In exemplary embodiments, the virtual corridors provide a virtual pathway to connect virtual rooms, while the virtual doors serve as virtual access barriers in response to satisfying one or more transition criterion to enter or exit a virtual room. The virtual windows can also serve as virtual access barriers in response to satisfying one or more transition criterion to enter or exit a virtual room via the virtual windows.
  • A mapping algorithm can be used to transform a 2-D business process model to a 3-D VR environment. Activities become virtual rooms, independent of their representation as nodes or arcs. Transitions become virtual access points to the virtual rooms, independent of their representation as arcs or nodes. Virtual access points can be embodied as virtual corridors, virtual doors, or virtual windows connecting the virtual rooms, while maintaining the activity and transition criteria constraints of the 2-D business process model. Thus, the 3-D VR environment establishes virtual physical constraints on movement in a virtual world from the physically unbounded 2-D business process model.
  • A user can annotate the 2-D business process model to describe some of the VR characteristics of the activities and transitions. For example, the user may designate a particular transition to generate a virtual corridor, and some other transition to be a virtual door. In addition, the way a process starts or finish may be designated using other VR objects. For example, a trash bin can be used to represent rejecting an application (e.g., in a loan approval process).
  • Executing a business process as used herein is a generic term that has two meanings. It can refer to a particular instantiation of a business process, for example, in a loan approval process, referring to loan application number 132785. However, it can also refer to all the executing instances of the business process, for example, all loan applications. The present invention is applicable to both meanings. In the VR environment a process instance may be represented by an object. The object can be a piece of paper, a person, or any other suitable object to represent a single process instance. Further details regarding generation of a 3-D VR environment from a business process model are provided herein.
  • Turning now to the drawings, it will be seen that in FIG. 1 there is a block diagram of a system 100 for generating a 3-D VR environment from a business process model that is implemented in accordance with exemplary embodiments. The system 100 of FIG. 1 includes a host system 102 in communication with a user interface 104 and a data storage device 106. The host system 102 may be any type of computer system known in the art. For example, the host system 102 can be a desktop computer, a laptop computer, a general-purpose computer, a mainframe computer, or an embedded computer (e.g., a computer within a wireless device). In exemplary embodiments, the host system 102 executes computer readable program code. While only a single host system 102 is shown in FIG. 1, it will be understood that multiple host systems can be implemented, each in communication with one another via direct coupling or via one or more networks. For example, multiple host systems 102 may be interconnected through a distributed network architecture. The single host system 102 may also represent a server in a client-server architecture.
  • In exemplary embodiments, the host system 102 includes at least one processing circuit (e.g., CPU 108) and volatile memory (e.g., RAM 110). The CPU 108 may be any processing circuit technology known in the art, including for example, a microprocessor, a microcontroller, an application specific integrated circuit (ASIC), a programmable logic device (PLD), a digital signal processor (DSP), or a multi-core/chip module (MCM). The RAM 110 represents any volatile memory or register technology that does not retain its contents through a power/depower cycle, which can be used for holding dynamically loaded application programs and data structures. The RAM 110 may comprise multiple memory banks partitioned for different purposes, such as data cache, program instruction cache, and temporary storage for various data structures and executable instructions. It will be understood that the host system 102 also includes other computer system resources known in the art, and not depicted, such as one of more power supplies, clocks, interfacing circuitry, communication links, and peripheral components or subsystems.
  • The user interface 104 includes a combination of input and output devices for interfacing with the host system 102. For example, user interface 104 inputs can include a keyboard, a keypad, a touch sensitive screen for inputting alphanumerical information, a VR glove, a motion-sensing device, a camera, a microphone, or any other device capable of producing input to the host system 102. Similarly, the user interface 104 outputs can include a monitor, a terminal, a liquid crystal display (LCD), stereoscopic technology, speakers, headphones, or any other device capable of outputting visual and/or audio information from the host system 102.
  • The data storage device 106 refers to any type of storage and may comprise a secondary storage element, e.g., hard disk drive, tape, or a storage subsystem that is internal or external to the host system 102. In alternate exemplary embodiments, the data storage device 106 includes one or more solid-state devices, such as ROM, PROM, EPROM, EEPROM, flash memory, NOVRAM or any other electric, magnetic, optical or combination memory device capable of storing data (i.e., a storage medium), some of which represent executable instructions for the CPU 108. It will be understood that the data storage device 106 shown in FIG. 1 is provided for purposes of simplification and ease of explanation and is not to be construed as limiting in scope. To the contrary, there may be multiple data storage devices 106 utilized by the host system 102.
  • In exemplary embodiments, the host system 102 executes a business process model transformation tool (BPMTT) 112. The host system 102 may also execute other applications, operating systems, and the like. The BPMTT 112 accesses the data storage device 106 to analyze a 2-D business process model 114. The 2-D business process model 114 may include multiple nodes interconnected by arcs to model a business process that is unbounded to a physical implementation. The BPMTT 112 analyzes activities and transitions in the 2-D business process model 114 and transforms each activity and transition into virtual physical structures in a 3-D VR environment 116. The 3-D VR environment 116 is stored on the data storage device 106, and can be output to the user interface 104. In alternate exemplary embodiments, the 3-D VR environment 116 is not stored on the data storage device 106, but directly executed on the host system 102.
  • A graphical example of generating a 3-D VR environment from a 2-D business process model is depicted in FIG. 2. Graphical 2-D business process model 200 represents a process for loan application processing, which is not limited to a particular physical implementation. The graphical 2-D business process model 200 includes a process start node 202, e.g., an e-mail request initiating the process. An arc 204 transitions unconditionally to a review application for completeness node 206. Upon completion of the activity in the review application for completeness node 206, an arc 208 transitions unconditionally to a check credit report node 210. The activity in the check credit report node 210 can result in multiple outcomes. If the credit report is bad, a bad credit arc 212 transitions to a management review node 214. If the credit report is good, a good credit arc 216 may transition to an approval decision node 218. Alternatively, the check credit report node 210 can transition via a good and pre-approved customer arc 220 to a create account node 222, bypassing the approval decision node 218. Returning to the management review node 214, a rejection arc 224 transitions to a termination node 226. If the management review is successful in the management review node 214, an OK arc 228 transitions to the approval decision node 218. At the approval decision node 218, a rejection arc 230 transitions to the termination node 226. Conversely, if the approval occurs, then the approval decision node 218 transitions via an approve arc 232 to the create account node 222. The create account node 222 transitions unconditionally via arc 234 to a process finish node 236, which may generate a confirmation e-mail.
  • In an exemplary embodiment, the graphical 2-D business process model 200 represents a graphical version of the 2-D business process model 114 of FIG. 1 upon which the BPMTT 112 may perform a transformation to the 3-D VR environment 116. A top view of a resulting graphical 3-D VR environment 250 is depicted in FIG. 2, as generated from the graphical 2-D business process model 200 using the BPMTT 112 of FIG. 1. In an exemplary embodiment, the BPMTT 112 converts each node and arc element in the graphical 2-D business process model 200 into virtual rooms and virtual access points to the virtual rooms in the graphical 3-D VR environment 250. For example, the process start node 202 and arc 204 transitioning unconditionally to the review application for completeness node 206 are condensed into a virtual start process door 252 to enter a review application for completeness virtual room 254. A user maneuvering through the graphical 3-D VR environment 250 is constrained by virtual walls 253, acting as virtual physical constraints, and must therefore satisfy any transition criteria to advance through a virtual access point into or out of a virtual room.
  • Once activity in the review application for completeness virtual room 254 is complete, the user can advance through a virtual door 256 to a check credit report virtual room 258, which maps to the arc 208 transitioning unconditionally to the check credit report node 210. Similarly, the bad credit arc 212 transitioning to the management review node 214 maps to a bad credit virtual door 260 providing access to a management review virtual room 262. The good credit arc 216 transitioning to the approval decision node 218 maps to a good credit virtual door 264 connecting via a virtual corridor 266 to an approval decision virtual room 268. The virtual corridor 266 may be used as a buffer area to increase separation between virtual rooms and support complex pathways as additional virtual rooms are added. The good and pre-approved customer arc 220 transitioning to the create account node 222 maps to a good and pre-approved customer virtual door 270 for accessing a create account virtual room 272.
  • Returning to the management review virtual room 262, rejection arc 224 transitioning to the termination node 226 can be represented as a virtual reject bin 274. The OK arc 228 transitioning to the approval decision node 218 maps to an OK virtual door 276 connecting via a virtual corridor 278 to the approval decision virtual room 268. The rejection arc 230 transitioning to the termination node 226 maps to a virtual reject bin 280 in the approval decision virtual room 268. Upon approval, the approve arc 232 transitioning to the create account node 222 maps to an approve virtual door 282 connecting via a virtual corridor 284 to the create account virtual room 272. The create account node 222 transitioning unconditionally via the arc 234 to the process finish node 236 maps to a process finish virtual door 286 to exit the create account virtual room 272. Although no virtual windows are depicted in the graphical 3-D VR environment 250, virtual windows can be added or the BPMTT 112 configured to convert one or more of the virtual access points to a virtual window.
  • A generated 3-D VR environment, such as the 3-D VR environment 116 of FIG. 1, can be used in several ways, such as business process validation, simulation, execution, and monitoring. In business process validation, a user can navigate (walk, fly, etc.) the 3-D VR environment visiting the different activities (virtual rooms) and looking at VR representations of the type of work that must be done at that activity. By navigating the 3-D VR environment, the user may discover how easy or hard it will be to execute the business process. The user can apply this knowledge to redesign the business process model.
  • In business process simulation, the user can see a simulation of the business process executing by having virtual humans or machines in each virtual room simulating the work needs to be completed in that activity. The user observing the simulation can observe the simulation from a distance or navigate the generated 3-D VR environment while the simulation is executing to see how the business process will be performed. The user can apply this knowledge to redesign the business process model.
  • Although a business process does not need to be executed in a 3-D VR environment to tale advantage of the present invention, users may enter the 3-D VR environment to execute the business process, or assign a particular virtual room to perform work for an activity of the business process. There are several VR interaction and collaboration technologies known in the art that can be used to complete the work for an activity in a virtual room. Some virtual rooms may include more than one user participating in the activity. Any VR work and collaboration techniques known in the art can be used to allow users to do their work for the specific activity in each virtual room.
  • While a business process is being executed (in a 3-D VR environment or otherwise) a VR environment representing the business process can be updated to show the current state of the business process. This allows a user to observe in real time or near real time the progress of the business process. This is similar to simulating a business process in a VR environment; however, the presented data comes from real activities instead of simulated activities.
  • Any VR technique used to represent data, manipulate data, and interact with a 3-D VR environment known in the art can be used in conjunction with the present invention. In the cases in which the business process does not contain any human activities, and so, no human collaboration is required in the 3-D VR environment, business process validation, simulation, and monitoring may still be performed.
  • Turning now to FIG. 3, a process 300 for generating a 3-D VR environment from a business process model will now be described in accordance with exemplary embodiments, and in reference to the system 100 of FIG. 1. A user can initiate the BPMTT 112 to perform the process 300 on the host system 102 via the user interface 104 of FIG. 1. At block 302, the BPMTT 112 analyzes the 2-D business process model 114 to identify multiple activities and at least one transition criterion between the activities, where the 2-D business process model 114 is unbounded to a physical implementation. The 2-D business process model 114 can be constructed of graphical elements, such as nodes and arcs, as depicted in the graphical 2-D business process model 200 of FIG. 2. The activities in the 2-D business process model 114 may be represented as nodes, while the one or more transition criteria are represented as arcs, or vice versa.
  • At block 304, the BPMTT 112 transforms the 2-D business process model 114 into the 3-D VR environment 116 with virtual physical constraints, including multiple virtual rooms to representing the activities and one or more virtual access points to the virtual rooms representing the transition criteria. The virtual access points can include one or more virtual corridors, virtual doors, or virtual windows. For example, the transformation can be as depicted graphically in FIG. 2 to generate the graphical 3-D VR environment 250, of which a top view is depicted.
  • At block 306, the BPMTT 112 outputs the 3-D VR environment 116. The output may be to the data storage device 106 and/or to the user interface 104, enabling a user to interact with the 3-D VR environment 116.
  • The transformation of a business process model into one or more 3-D VR environments by using virtual rooms for activities in which one or more users may interact to accomplish a task, and virtual corridors, virtual doors, or virtual windows for transitions connecting the activities can make it is easier for a user to understand, validate, simulate, execute, and monitor the business process. In addition, it is easier for the user to describe the business process to other users by navigating (e.g., walking or flying) through the 3-D VR environment. While other conversion tools may convert a 2-D physical model by simply adding a third dimension (e.g., a production line in a factory building), the present invention generates a 3-D VR environment from a 2-D business process model that is not physically constrained to a particular location (e.g., new account creation). Thus, a more concrete and tangible appearance is given to a business process that is otherwise unconstrained by physical boundaries.
  • The capabilities of the present invention can be implemented in software, firmware, hardware or some combination thereof.
  • As one example, one or more aspects of the present invention can be included in an article of manufacture (e.g., one or more computer program products) having, for instance, computer usable media. The media has embodied therein, for instance, computer readable program code means for providing and facilitating the capabilities of the present invention. The article of manufacture can be included as a part of a computer system or sold separately.
  • Additionally, at least one program storage device readable by a machine, tangibly embodying at least one program of instructions executable by the machine to perform the capabilities of the present invention can be provided.
  • The flow diagrams depicted herein are just examples. There may be many variations to these diagrams or the steps (or operations) described therein without departing from the spirit of the invention. For instance, the steps may be performed in a differing order, or steps may be added, deleted or modified. All of these variations are considered a part of the claimed invention.
  • While the preferred embodiment to the invention has been described, it will be understood that those skilled in the art, both now and in the future, may make various improvements and enhancements which fall within the scope of the claims which follow. These claims should be construed to maintain the proper protection for the invention first described.

Claims (6)

1. A method for generating a three-dimensional virtual reality environment from a business process model in a computer system, the method comprising:
analyzing a business process model to identify a plurality of activities and at least one transition criterion between the plurality of activities, wherein the business process model is unbounded to a physical implementation;
transforming the business process model into a three-dimensional virtual reality environment with virtual physical constraints, including a plurality of virtual rooms representing the plurality of activities and one or more virtual access points to the virtual rooms representing the at least one transition criterion; and
outputting the three-dimensional virtual reality environment.
2. The method of claim 1 wherein the one or more virtual access points include one or more of: a virtual corridor, a virtual door, and a virtual window.
3. The method of claim 2 wherein the virtual corridor provides a virtual pathway to connect two or more of the virtual rooms, and the virtual door or the virtual window provides a virtual access barrier to enter or exit one or more of the virtual rooms in response to the at least one transition criterion.
4. The method of claim 1 wherein the business process model is a two-dimensional business process model including a plurality of nodes connected by at least one arc, the nodes representing the activities and the at least one arc representing the at least one transition criterion.
5. The method of claim 1 wherein the business process model is a two-dimensional business process model including a plurality of arcs connected to at least one node, the arcs representing the activities and the at least one node representing the at least one transition criterion.
6. A computer program product for generating a three-dimensional virtual reality environment from a business process model, the computer program product comprising:
a storage medium readable by a processing circuit and storing instructions for execution by the processing circuit for implementing a method, the method comprising:
analyzing a business process model to identify a plurality of activities and at least one transition criterion between the plurality of activities, wherein the business process model is unbounded to a physical implementation;
transforming the business process model into a three-dimensional virtual reality environment with virtual physical constraints, including a plurality of virtual rooms representing the plurality of activities and one or more virtual access points to the virtual rooms representing the at least one transition criterion; and
outputting the three-dimensional virtual reality environment.
US11/943,734 2007-11-21 2007-11-21 Generation of a three-dimensional virtual reality environment from a business process model Abandoned US20090132309A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/943,734 US20090132309A1 (en) 2007-11-21 2007-11-21 Generation of a three-dimensional virtual reality environment from a business process model

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/943,734 US20090132309A1 (en) 2007-11-21 2007-11-21 Generation of a three-dimensional virtual reality environment from a business process model
US13/350,992 US9886682B2 (en) 2007-11-21 2012-01-16 Generation of a three-dimensional virtual reality environment from a business process model

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/350,992 Continuation US9886682B2 (en) 2007-11-21 2012-01-16 Generation of a three-dimensional virtual reality environment from a business process model

Publications (1)

Publication Number Publication Date
US20090132309A1 true US20090132309A1 (en) 2009-05-21

Family

ID=40642907

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/943,734 Abandoned US20090132309A1 (en) 2007-11-21 2007-11-21 Generation of a three-dimensional virtual reality environment from a business process model
US13/350,992 Active 2029-12-19 US9886682B2 (en) 2007-11-21 2012-01-16 Generation of a three-dimensional virtual reality environment from a business process model

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/350,992 Active 2029-12-19 US9886682B2 (en) 2007-11-21 2012-01-16 Generation of a three-dimensional virtual reality environment from a business process model

Country Status (1)

Country Link
US (2) US20090132309A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100070952A1 (en) * 2008-06-24 2010-03-18 Tata Consultancy Services Ltd. Automation in IT Services and IT Enabled Services
US20140039856A1 (en) * 2012-07-31 2014-02-06 Lanner Group Limited Computer-readable storage medium comprising instructions for a process model, and method of use
US8749554B2 (en) 2011-10-28 2014-06-10 International Business Machines Corporation Visualization of virtual image relationships and attributes
US20150237181A1 (en) * 2014-02-20 2015-08-20 Naseem Karimbaksh KHAN Glove with user-interactable electronic components
US10055887B1 (en) 2015-02-19 2018-08-21 Google Llc Virtual/augmented reality transition system and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10395223B2 (en) 2012-03-07 2019-08-27 Early Warning Services, Llc System and method for transferring funds
US10318936B2 (en) 2012-03-07 2019-06-11 Early Warning Services, Llc System and method for transferring funds
US9691056B2 (en) 2012-03-07 2017-06-27 Clearxchange, Llc System and method for transferring funds
US10395247B2 (en) 2012-03-07 2019-08-27 Early Warning Services, Llc Systems and methods for facilitating a secure transaction at a non-financial institution system
US10222953B2 (en) * 2014-04-30 2019-03-05 Disney Enterprises, Inc. Systems and methods for editing virtual content of a virtual space
US10438175B2 (en) 2015-07-21 2019-10-08 Early Warning Services, Llc Secure real-time payment transactions

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608850A (en) * 1994-04-14 1997-03-04 Xerox Corporation Transporting a display object coupled to a viewpoint within or between navigable workspaces
US5826266A (en) * 1994-11-08 1998-10-20 Sony Corporation Cyberspace system for accessing virtual reality objects
US5900879A (en) * 1997-04-28 1999-05-04 International Business Machines Corporation Three-dimensional workspace interactive display having browsing viewpoints for navigation and work viewpoints for user-object interactive non-navigational work functions with automatic switching to browsing viewpoints upon completion of work functions
US6023270A (en) * 1997-11-17 2000-02-08 International Business Machines Corporation Delivery of objects in a virtual world using a descriptive container
US6154723A (en) * 1996-12-06 2000-11-28 The Board Of Trustees Of The University Of Illinois Virtual reality 3D interface system for data creation, viewing and editing
US6226001B1 (en) * 1997-03-07 2001-05-01 International Business Machines Corporation Viewer interactive object with multiple selectable face views in virtual three-dimensional workplace
US20010019337A1 (en) * 2000-03-03 2001-09-06 Jong Min Kim System for providing clients with a three dimensional virtual reality
US6289299B1 (en) * 1999-02-17 2001-09-11 Westinghouse Savannah River Company Systems and methods for interactive virtual reality process control and simulation
US20020085041A1 (en) * 1997-01-24 2002-07-04 Masayuki Ishikawa Method and apparatus for editing data used in creating a three-dimensional virtual reality environment
US20030207237A1 (en) * 2000-07-11 2003-11-06 Abraham Glezerman Agent for guiding children in a virtual learning environment
US20030215779A1 (en) * 2002-05-08 2003-11-20 Anne Dupont Telecommunications virtual simulator
US20040204970A1 (en) * 1998-03-20 2004-10-14 International Business Machines Corporation System and method for business process space definition
US20050021472A1 (en) * 2003-07-25 2005-01-27 David Gettman Transactions in virtual property
US20050088529A1 (en) * 2003-10-23 2005-04-28 Geng Z. J. System and a method for three-dimensional imaging systems
US20050240605A1 (en) * 1997-03-25 2005-10-27 Mci, Inc. Method, system and program product that utilize a hierarchical conceptual framework to model an environment containing a collection of items
US20060105825A1 (en) * 2003-04-24 2006-05-18 Findlay Anthony J Game for educating users regarding medical conditions
US7149668B2 (en) * 2001-09-12 2006-12-12 Siemens Aktiengesellschaft Visualization of workpieces during simulation of milling processes
US20060281065A1 (en) * 2005-06-14 2006-12-14 Margiotta Vince S Methods and systems for coordinating business processes into a competitive environment for training
US20070238079A1 (en) * 2006-04-06 2007-10-11 Big Brainz, Inc. Strategic enforcement of long-term memory
US20080281912A1 (en) * 2007-05-10 2008-11-13 Dillenberger Donna N Management of enterprise systems and applications using three-dimensional visualization technology
US20090083052A1 (en) * 2007-09-26 2009-03-26 Bokor Brian R Virtual Business Object Business Processes in a Virtual Environment
US7570261B1 (en) * 2003-03-06 2009-08-04 Xdyne, Inc. Apparatus and method for creating a virtual three-dimensional environment, and method of generating revenue therefrom

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905499A (en) * 1995-07-05 1999-05-18 Fakespace, Inc. Method and system for high performance computer-generated virtual environments
US5958012A (en) * 1996-07-18 1999-09-28 Computer Associates International, Inc. Network management system using virtual reality techniques to display and simulate navigation to network components
US6119229A (en) * 1997-04-11 2000-09-12 The Brodia Group Virtual property system
US20070150330A1 (en) * 1999-12-30 2007-06-28 Mcgoveran David O Rules-based method and system for managing emergent and dynamic processes
JP4154476B2 (en) 2001-11-28 2008-09-24 独立行政法人産業技術総合研究所 Integrated shape model generation method and computer program
US20060111931A1 (en) * 2003-01-09 2006-05-25 General Electric Company Method for the use of and interaction with business system transfer functions
US7680694B2 (en) * 2004-03-11 2010-03-16 American Express Travel Related Services Company, Inc. Method and apparatus for a user to shop online in a three dimensional virtual reality setting
US7904348B2 (en) * 2004-05-05 2011-03-08 Eplus Systems, Inc. System and method for eCatalog supplier portal
US20060178218A1 (en) * 2005-02-04 2006-08-10 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Virtual world escrow user interface
US8375372B2 (en) * 2005-02-23 2013-02-12 International Business Machines Corporation Business process execution language program simulation
US8538786B2 (en) * 2006-06-07 2013-09-17 International Business Machines Corporation Method, system and program product for generating an implementation of a business rule including a volatile portion
US7752027B2 (en) * 2006-08-29 2010-07-06 Norwich University Applied Research Institutes Methods and apparatus for simulating a distributed business process
US9606772B2 (en) * 2006-11-21 2017-03-28 International Business Machines Corporation Business process diagram data collection
US8266050B2 (en) * 2007-01-30 2012-09-11 Bank Of America Corporation System and method for processing loans
US8531447B2 (en) * 2008-04-03 2013-09-10 Cisco Technology, Inc. Reactive virtual environment
US8606657B2 (en) * 2009-01-21 2013-12-10 Edgenet, Inc. Augmented reality method and system for designing environments and buying/selling goods

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608850A (en) * 1994-04-14 1997-03-04 Xerox Corporation Transporting a display object coupled to a viewpoint within or between navigable workspaces
US5826266A (en) * 1994-11-08 1998-10-20 Sony Corporation Cyberspace system for accessing virtual reality objects
US6154723A (en) * 1996-12-06 2000-11-28 The Board Of Trustees Of The University Of Illinois Virtual reality 3D interface system for data creation, viewing and editing
US6466239B2 (en) * 1997-01-24 2002-10-15 Sony Corporation Method and apparatus for editing data used in creating a three-dimensional virtual reality environment
US20020085041A1 (en) * 1997-01-24 2002-07-04 Masayuki Ishikawa Method and apparatus for editing data used in creating a three-dimensional virtual reality environment
US6226001B1 (en) * 1997-03-07 2001-05-01 International Business Machines Corporation Viewer interactive object with multiple selectable face views in virtual three-dimensional workplace
US20050240605A1 (en) * 1997-03-25 2005-10-27 Mci, Inc. Method, system and program product that utilize a hierarchical conceptual framework to model an environment containing a collection of items
US5900879A (en) * 1997-04-28 1999-05-04 International Business Machines Corporation Three-dimensional workspace interactive display having browsing viewpoints for navigation and work viewpoints for user-object interactive non-navigational work functions with automatic switching to browsing viewpoints upon completion of work functions
US6023270A (en) * 1997-11-17 2000-02-08 International Business Machines Corporation Delivery of objects in a virtual world using a descriptive container
US20040204970A1 (en) * 1998-03-20 2004-10-14 International Business Machines Corporation System and method for business process space definition
US6289299B1 (en) * 1999-02-17 2001-09-11 Westinghouse Savannah River Company Systems and methods for interactive virtual reality process control and simulation
US20010019337A1 (en) * 2000-03-03 2001-09-06 Jong Min Kim System for providing clients with a three dimensional virtual reality
US20030207237A1 (en) * 2000-07-11 2003-11-06 Abraham Glezerman Agent for guiding children in a virtual learning environment
US7149668B2 (en) * 2001-09-12 2006-12-12 Siemens Aktiengesellschaft Visualization of workpieces during simulation of milling processes
US6976846B2 (en) * 2002-05-08 2005-12-20 Accenture Global Services Gmbh Telecommunications virtual simulator
US20030215779A1 (en) * 2002-05-08 2003-11-20 Anne Dupont Telecommunications virtual simulator
US7570261B1 (en) * 2003-03-06 2009-08-04 Xdyne, Inc. Apparatus and method for creating a virtual three-dimensional environment, and method of generating revenue therefrom
US20060105825A1 (en) * 2003-04-24 2006-05-18 Findlay Anthony J Game for educating users regarding medical conditions
US20050021472A1 (en) * 2003-07-25 2005-01-27 David Gettman Transactions in virtual property
US20050088529A1 (en) * 2003-10-23 2005-04-28 Geng Z. J. System and a method for three-dimensional imaging systems
US20060281065A1 (en) * 2005-06-14 2006-12-14 Margiotta Vince S Methods and systems for coordinating business processes into a competitive environment for training
US20070238079A1 (en) * 2006-04-06 2007-10-11 Big Brainz, Inc. Strategic enforcement of long-term memory
US20080281912A1 (en) * 2007-05-10 2008-11-13 Dillenberger Donna N Management of enterprise systems and applications using three-dimensional visualization technology
US20090083052A1 (en) * 2007-09-26 2009-03-26 Bokor Brian R Virtual Business Object Business Processes in a Virtual Environment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100070952A1 (en) * 2008-06-24 2010-03-18 Tata Consultancy Services Ltd. Automation in IT Services and IT Enabled Services
US9383991B2 (en) * 2008-06-24 2016-07-05 Tata Consultancy Services Ltd. Automation in IT services and IT enabled services
US8749554B2 (en) 2011-10-28 2014-06-10 International Business Machines Corporation Visualization of virtual image relationships and attributes
US8754892B2 (en) * 2011-10-28 2014-06-17 International Business Machines Corporation Visualization of virtual image relationships and attributes
US20140039856A1 (en) * 2012-07-31 2014-02-06 Lanner Group Limited Computer-readable storage medium comprising instructions for a process model, and method of use
US20150237181A1 (en) * 2014-02-20 2015-08-20 Naseem Karimbaksh KHAN Glove with user-interactable electronic components
US9344537B2 (en) * 2014-02-20 2016-05-17 Naseem Karimbaksh KHAN Glove with user-interactable electronic components
US10055887B1 (en) 2015-02-19 2018-08-21 Google Llc Virtual/augmented reality transition system and method

Also Published As

Publication number Publication date
US9886682B2 (en) 2018-02-06
US20120116953A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
He et al. A state-of-the-art survey of cloud manufacturing
Seth et al. Virtual reality for assembly methods prototyping: a review
Rajkumar et al. Cyber-physical systems: the next computing revolution
Putnik et al. Scalability in manufacturing systems design and operation: State-of-the-art and future developments roadmap
Choi et al. Virtual reality applications in manufacturing industries: Past research, present findings, and future directions
Ramos et al. Model-based systems engineering: An emerging approach for modern systems
US9383900B2 (en) Enabling real-time operational environment conformity to an enterprise model
US20080114779A1 (en) System and method for optimizing project subdivision using data and requirements focuses subject to multidimensional constraints
Bouchet et al. ICARE software components for rapidly developing multimodal interfaces
Seth et al. SHARP: a system for haptic assembly and realistic prototyping
EP2096590A1 (en) Enhanced process query framework
BRPI0710005A2 (en) Business process metamodel
TW200919310A (en) Software factory specification and execution model
US20110134204A1 (en) System and methods for facilitating collaboration of a group
Joseph Mastering ROS for robotics programming
Hunt Guide to the Unified Process featuring UML, Java and Design Patterns
Vasconcelos et al. Information system architecture metrics: an enterprise engineering evaluation approach
Noël et al. The PPO design model with respect to digital enterprise technologies among product life cycle
Guzzoni et al. Active, A Platform for Building Intelligent Operating Rooms
Raspotnig et al. Comparing risk identification techniques for safety and security requirements
Parashar et al. Cloud paradigms and practices for computational and data-enabled science and engineering
US20080271008A1 (en) System and method for dynamic discovery and definition of mappings of parameters used by service oriented architecture services at runtime
Shaffer et al. Virtue: Performance visualization of parallel and distributed applications
Pirvu et al. Engineering insights from an anthropocentric cyber-physical system: A case study for an assembly station
Duke Reasoning about gestural interaction

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MARIN, MIKE A.;REEL/FRAME:020144/0808

Effective date: 20071116

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION