US20090130658A1 - Arrangement for integrated and automated dna or protein analysis in a single-use cartridge, method for producing such a cartridge and operating method for dna or protein analysis using such a cartridge - Google Patents
Arrangement for integrated and automated dna or protein analysis in a single-use cartridge, method for producing such a cartridge and operating method for dna or protein analysis using such a cartridge Download PDFInfo
- Publication number
- US20090130658A1 US20090130658A1 US11/665,380 US66538005A US2009130658A1 US 20090130658 A1 US20090130658 A1 US 20090130658A1 US 66538005 A US66538005 A US 66538005A US 2009130658 A1 US2009130658 A1 US 2009130658A1
- Authority
- US
- United States
- Prior art keywords
- arrangement
- cartridge
- reagents
- dna
- pcr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 25
- 102000004169 proteins and genes Human genes 0.000 title claims abstract description 18
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 18
- 238000011017 operating method Methods 0.000 title claims description 11
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 78
- 238000001746 injection moulding Methods 0.000 claims abstract description 3
- 238000001514 detection method Methods 0.000 claims description 38
- 239000000523 sample Substances 0.000 claims description 33
- 239000011324 bead Substances 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 32
- 238000002965 ELISA Methods 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 26
- 210000004369 blood Anatomy 0.000 claims description 22
- 239000008280 blood Substances 0.000 claims description 22
- 102000004190 Enzymes Human genes 0.000 claims description 18
- 108090000790 Enzymes Proteins 0.000 claims description 18
- 230000009089 cytolysis Effects 0.000 claims description 18
- 239000002699 waste material Substances 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 17
- 239000000126 substance Substances 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 12
- 238000002848 electrochemical method Methods 0.000 claims description 10
- 238000009396 hybridization Methods 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 7
- 239000000872 buffer Substances 0.000 claims description 6
- 238000013022 venting Methods 0.000 claims description 6
- 230000004568 DNA-binding Effects 0.000 claims description 5
- 238000012286 ELISA Assay Methods 0.000 claims description 5
- 238000003556 assay Methods 0.000 claims description 5
- 230000027455 binding Effects 0.000 claims description 5
- 229910000510 noble metal Inorganic materials 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000002372 labelling Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 239000000654 additive Substances 0.000 claims description 3
- 239000007853 buffer solution Substances 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000000691 measurement method Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 239000012188 paraffin wax Substances 0.000 claims description 3
- 239000010408 film Substances 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 238000011010 flushing procedure Methods 0.000 claims 4
- 238000007865 diluting Methods 0.000 claims 2
- 230000003100 immobilizing effect Effects 0.000 claims 2
- 239000012528 membrane Substances 0.000 claims 2
- 238000007789 sealing Methods 0.000 claims 2
- 238000001035 drying Methods 0.000 claims 1
- 229920000642 polymer Polymers 0.000 claims 1
- 230000009870 specific binding Effects 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 3
- 238000009776 industrial production Methods 0.000 abstract 1
- 238000003752 polymerase chain reaction Methods 0.000 description 38
- 210000004027 cell Anatomy 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 238000000835 electrochemical detection Methods 0.000 description 3
- 210000000265 leukocyte Anatomy 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 1
- 239000012807 PCR reagent Substances 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 238000011511 automated evaluation Methods 0.000 description 1
- 238000012742 biochemical analysis Methods 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 238000004159 blood analysis Methods 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502723—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by venting arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/11—Automated chemical analysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/2575—Volumetric liquid transfer
Definitions
- Embodiments of the invention generally relate to an arrangement for integrated and automated DNA or protein analysis in a single-use cartridge.
- a flat card in check card format is described as a cartridge.
- embodiments of the invention generally relate to the production of such a cartridge.
- embodiments of the invention also generally relate to an operating method for DNA or protein analysis using such a cartridge.
- a PCR Polymerase Chain Reaction
- amplification selective DNA multiplication
- thermocycler a PCR device which is suitable for quantitative PCR
- electro-phoresis apparatus a hybridization stage
- optical reader so-called Eppendorf tubes
- pipetting devices a refrigerated container for reagents
- At least one embodiment of the invention is directed to the implementation of an inexpensive, simply manageable, complete DNA or protein analysis process in a miniaturized cartridge.
- the following improvements compared to the laboratory method should be implemented:
- At least one embodiment of the invention is in particular based on WO 02/072262 A1 and the further state of the art mentioned there. Therein is described an analytical device with reagents stable at room temperature, dry-stored in fluid channels, which are brought into solution through the introduction of water shortly before their use as intended. At least one embodiment of the invention is further based on the unpublished DE 10 2004 021780 A1 and the unpublished DE 10 2004 021822 A1. In addition, the specific use of electrically readable detection modules is also known.
- an object of at least one embodiment of the invention is such a single-use cartridge with a system of microchannels and/or microcavities for a predefined process sequence after sample uptake, wherein the cartridge has structures to accommodate the dry reagents and devices for the implementation both of the cell disintegration on the one hand and of the PCR on the other, but also of the electrochemical detection, are allocated to these structures.
- the channels therein have different, problem-adapted structures.
- the disintegration channel advantageously has stepped cross-sections for optimal wetting with the dry reagent, while the PCR chamber and the Elisa reagent channels have pot-shaped depressions.
- the reagents and additives are already introduced as dry substances into depressions of the cartridge channels during production.
- the depressions are located at predefined intervals along the reagent channel.
- the intervals can be equidistant or particularly advantageously can be arranged in variable spacing patterns.
- the depressions can advantageously be filled with variable quantities of dry reagent. Through the combination of different amounts of dry reagent and spacing patterns of the depressions, the desired concentration profiles of the finished reagent solutions can be established.
- the magnetic beads are dispensed into the lysis channel as a suspension. On evaporation of the solvent, it is observed that the beads are drawn back into the edge region of the lysis channel and an even distribution does not result from this. Through stepped structuring of the lysis channel cross section, the magnetic beads distribute themselves across the steps and an even distribution is achieved.
- substrates with DNA-binding properties in particular the DNA-binding magnetic beads
- the lysis reagents and the magnetic beads can be contained together in a single dry matrix.
- the reagents for an ELISA assay are also present in the card.
- two reagents are needed, i.e. a labeling enzyme as the first reagent and an enzyme substrate as the second reagent.
- a detection module for the electrical detection of the hybridization processes is arranged in the cartridge.
- the detection module advantageously consists of a noble metal/plastic composite or a semiconductor-processed silicon chip with noble metal electrodes.
- Especially suitable for electric detection here are electrochemical, magnetic or piezoelectric measurement procedures.
- an input port for a whole blood sample is present in the cartridge according to at least one embodiment of the invention.
- device(s) for the addition of water are present, for example inlet ports for connection to an external water supply or an integrated water reservoir.
- dry buffer substances have defined ionic strength after the addition of water.
- device(s) for mixing of a whole blood sample with water or a buffer solution are advantageously present.
- device(s) for passing blood or blood/water mixtures or blood/buffer mixtures through the micro-channel or microcavity coated with lysis/bead/reagent are present.
- PCR for the PCR to be performed in the cartridge according to at least one embodiment of the invention during use specifically for DNA analysis, device(s) for generation of a magnetic field for immobilization of the DNA/magnetic bead complex in a PCR cavity are present.
- the PCR cavity must be capable of being suitably sealed and device(s) for thermocycling must be present.
- the cartridge it is essential that device(s) for storage of used sample material and used reagents be present, which constitute waste reservoirs.
- the device(s) must be suitable for the germproof, cell-free and particle-free venting of at least one waste reservoir.
- device(s) for the immobilization of the cartridge must be present.
- FIG. 1 shows a cartridge with an overview of individual microchannel/microcavity systems with the relevant function designations
- FIG. 2 shows a top view of a cell disintegration channel
- FIG. 3 shows the cross section through the cell disintegration channel according to FIG. 5 .
- FIG. 4 shows two alternatives for the throughflow channel cross section, shown enlarged
- FIG. 5 shows the top view of the PCR chamber in FIG. 1 .
- FIGS. 6 and 7 show the cross section through the PCR chamber according to FIG. 5 .
- FIG. 8 shows the top view of an ELISA reagent channel in FIG. 1 .
- FIGS. 9 and 10 show the cross section of the ELISA reagent channel according to FIG. 8 and
- FIGS. 11 to 23 show the top view of the cartridge according to FIG. 1 in various process states during an automated evaluation.
- FIGS. 1 to 10 are described together, and FIG. 11 to are described together.
- FIG. 1 shows a cartridge 100 for an ELISA (“Enzyme Linked Immuno Sorbent ASSAY”) test with a front view of the micro-channel or microcavity system present therein, wherein for clarity the relevant function designations are also shown.
- the cartridge 100 consists of a plastic base 101 with fluidic structures incorporated therein, which are covered by a plastic film. The structures are further described below on the basis of FIGS. 2 to 10 .
- This is connected to a channel area 110 for the cell disintegration of the sample and moreover specifically for a DNA analysis an area 120 for a PCR (Polymerase Chain Reaction) for selective DNA multiplication (amplification) in order to increase the concentration of the DNA to be detected sufficiently for it to be detectable in a third stage.
- the actual PCR chamber is sealable by valves 122 and 122 ′. The detection of the samples thus prepared, in particular according to the ELISA method, then takes place in the area 130 .
- water ports 103 to 103 ′′′ are also visible in FIG. 1 .
- water ports 103 to 103 ′′′ are also visible in FIG. 1 .
- venting ports 104 to 104 ′′′ are present.
- the cartridge 100 has in particular an input port 102 for a whole blood sample.
- at least one device for the introduction of water is present.
- An inlet port for connection to an external water source can be present, or the feed port can be connected to an integrated water reservoir.
- the microchannels or microcavities 101 to 131 are filled with dry buffer substances which ensure a defined ionic strength after the introduction of water.
- at least one device for mixing of whole blood samples and water or the buffer solution and/or at least one device for passing a flow of blood or blood-water or blood buffer mixture through a micro-channel coated with a lysis bead reagent or the microcavity are present.
- wide regions 106 , 107 , 108 and 109 are provided as reservoirs to accommodate waste. Apart from this, a region with channels 131 or 131 ′ to accommodate different ELISA reagents is present.
- reference symbols 101 again indicate the cartridge base.
- the base contains a throughflow channel 111 shaped in a particular way especially for cell disintegration (“lysis”) with step-shaped depressions 112 formed by the side edges to accommodate reagents.
- the depressions 112 have several steps with step heights from 10 to 500 ⁇ m and have an extent of ca. 1 mm and a depth of about 100 ⁇ m.
- FIGS. 5 to 7 show the structure of a PCR chamber 120 in the cartridge base 101 with a flow channel 111 .
- the valve arrangement for closure of the PCR chamber during use as intended is not shown here. It is essential that circular cylindrical depressions 124 and 124 ′ are present in the PCR chamber 120 to accommodate specific reagents 127 and 127 ′, which are needed in the implementation of the PCR.
- FIG. 7 it is also shown that a dry, storable PCR reagent 127 or 127 ′, storable at room temperature, is firstly covered with a paraffin wax layer 128 or 128 ′.
- FIGS. 8 to 10 show the design and the structure of the ELISA reagent channels 131 and 131 ′ of FIG. 1 .
- Dish-shaped depressions 132 to 132 6′ respectively are present, which are suitable to accommodate pre-dispensed and pre-apportioned quantities of reagents for the ELISA process according to FIG. 9 .
- This has already been described in detail in WO 02/072262 A1, mentioned at the outset as state of the art, to which in the present connection reference is also expressly made (“Incorporation by Reference”).
- the circular cylindrical depressions 132 to 132 6′ are shown filled with dry reagents 133 to 133 6′ .
- a first reagent embodies a labeling enzyme and a second reagent an enzyme substrate, such as is known to be needed in the hybridization of the sample, also prepared by a PCR if necessary, with specific capture probes.
- a detection zone 130 shown only schematically, different sensors for detection of biochemical reactions can be located in a module of a noble metal/plastic composite. Especially during electrochemical measurements with semiconductor-processed chips, i.e. in particular silicon-based sensors, the signals can be detected electrically and immediately further processed. Apart from the electrochemical measurement methods, magnetic and/or piezo-electric measurement methods with corresponding sensors are also possible.
- FIGS. 11 to 23 the cartridge 100 according to FIG. 1 is shown in top view, the zone of the cartridge 100 active in the analytical process being marked in each: for this the cartridge 100 is inserted into an analytical device, which is not shown in detail in the diagrams and is not an object of the present patent application.
- the evaluation is now illustrated on the basis of eleven concrete component process steps a) to m), after the cartridge has been inserted into an evaluation device with at least one device for accommodating the cartridge, and the evaluation device with the cartridge immobilized therein has been activated.
- the following component steps are involved:
- the signals arising can be read electrically and evaluated using a processor in accordance with a preset program.
- the cartridge described in detail with channels and cavities in FIG. 1 is produced from a polymeric material, such as for example polycarbonate, for example by injection molding technology.
- a polymeric material such as for example polycarbonate
- the card base 101 with structures open upwards is first produced, and the reagents are spotted into the initially open channels or cavities and then dried.
- the detection module is introduced in a suitable manner, in particular glued, into the cartridge.
- the channels and the cavities are fitted for example with an elastic film as the upper covering and is thus sealed for use as directed.
- the specific measurement method is illustrated on the basis of FIGS. 11 to 23 for one specific case of DNA analysis of a sample of whole blood.
- the use of the cartridge described is envisaged for DNA analysis on the one hand and/or protein analysis on the other, wherein, as already mentioned above, an appropriate reading device and corresponding evaluation algorithm are utilized.
- an appropriate reading device and corresponding evaluation algorithm are utilized.
- operating methods follow from this, which for the first time render the cartridge described on the basis of the examples suitable in practice for decentralized use in the context of a medical “Point of Care” application.
- electrochemical measurements firstly the rinsing of the detection chamber with an antibody solution bearing an enzyme label (ELISA reagent 1) takes place. Then the rinsing of the detection chamber with enzyme substrate (ELISA reagent 2) takes place.
- the electrochemical measurements are performed in a manner in itself known at predefinable, different temperatures and variable flow rates of the enzyme-substrate solution.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Clinical Laboratory Science (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
A cartridge (card) having a system of microchannels and/or microcavities is used for automated DNA or protein analysis. In at least one embodiment, the microchannels or microcavities include geometrical structures for receiving dry reagents. For the purpose of industrial production, the cartridge is produced from a flat card support, e.g., by injection moulding. The reagents are spotted into the open channels, dried and then the channels are sealed by way of a film. A finished cartridge can thus be provided with a test sample and the fully automated measuring sequence can be initiated by inserting said cartridge into a read-out device.
Description
- This application is the national phase under 35 U.S.C. § 371 of PCT International Application No. PCT/EP2005/055303 which has an International filing date of Oct. 17, 2005, which designated the United States of America and which claims priority on German Patent Application number 10 2004 050 576.4 filed Oct. 15, 2004, the entire contents of which are hereby incorporated herein by reference.
- Embodiments of the invention generally relate to an arrangement for integrated and automated DNA or protein analysis in a single-use cartridge. Herein, a flat card in check card format is described as a cartridge. In addition, embodiments of the invention generally relate to the production of such a cartridge. Finally, embodiments of the invention also generally relate to an operating method for DNA or protein analysis using such a cartridge.
- For nucleic acid analysis, for example for the analysis of white blood cells from whole blood with the aim of answering human genome questions, firstly, in a first stage as the sample preparation step, the cells must be broken up and then the DNA thus liberated must be isolated. In a second stage, a PCR (Polymerase Chain Reaction) for selective DNA multiplication (amplification) is performed in order to increase the concentration of the DNA to be detected sufficiently for it to be detectable in a third stage.
- In the laboratory, the latter component processes are carried out separately according to the known state of the art. The three stages mentioned above each include several working steps and are carried out independently of one another with different equipment. The individual work steps are largely performed manually.
- The implementation of these steps is dependent on the presence of laboratory equipment—such as a cell disintegration apparatus, a PCR device (so-called thermocycler), possibly a PCR device which is suitable for quantitative PCR, an electro-phoresis apparatus, a hybridization stage, an optical reader, so-called Eppendorf tubes, several pipetting devices and a refrigerated container for reagents, and must be carried out by trained personnel with observation of safety procedures with regard to infection risk, waste disposal or the like. In particular, several volumetric, i.e. accurate, dispensings (pipettings) of reagent solutions must be performed. Such work steps are time-consuming and cost-intensive.
- From the state of the art, devices for biochemical analysis are known which according to WO 02/073153 A1 make use in particular of silicon-based measurement modules, which can be integrated into a chip card. Moreover, according to WO 02/072262 A1, the reagents used for the analysis are already integrated into the analysis module in dry-stored form.
- At least one embodiment of the invention is directed to the implementation of an inexpensive, simply manageable, complete DNA or protein analysis process in a miniaturized cartridge. In particular in at least one embodiment, the following improvements compared to the laboratory method should be implemented:
-
- complete integration of all substances (possibly except for water) in a closed, single-use cartridge;
- preparation of the reagents in a form stable on storage at room temperature;
- automatic implementation of all processes in the cartridge;
- no manual working steps, apart from injection of the sample to be analyzed, e.g. blood;
- no direct contact with substances hazardous to health (blood and reagent wastes remain in the cartridge);
- cartridge geometry allows efficient and rapid thermocycling;
- all detection processes should operate electrically and be easy to read;
- the cartridge used is small and inexpensive to produce.
- At least one embodiment of the invention is in particular based on WO 02/072262 A1 and the further state of the art mentioned there. Therein is described an analytical device with reagents stable at room temperature, dry-stored in fluid channels, which are brought into solution through the introduction of water shortly before their use as intended. At least one embodiment of the invention is further based on the unpublished DE 10 2004 021780 A1 and the unpublished DE 10 2004 021822 A1. In addition, the specific use of electrically readable detection modules is also known.
- In contrast to this, an object of at least one embodiment of the invention is such a single-use cartridge with a system of microchannels and/or microcavities for a predefined process sequence after sample uptake, wherein the cartridge has structures to accommodate the dry reagents and devices for the implementation both of the cell disintegration on the one hand and of the PCR on the other, but also of the electrochemical detection, are allocated to these structures. In particular, the channels therein have different, problem-adapted structures. Specifically, the disintegration channel advantageously has stepped cross-sections for optimal wetting with the dry reagent, while the PCR chamber and the Elisa reagent channels have pot-shaped depressions.
- It can thus be achieved that the introduction and preparation of the sample, the DNA amplification and the actual detection of the DNA is possible in the course of one process.
- By way of the system of geometric structures in the micro-channels or microcavities to accommodate dry reagents according to at least one embodiment of the invention, suitable conditions are obtained for DNA analysis on the one hand and protein analysis on the other. In at least one embodiment, the following features and measures are essential:
-
- the reagents introduced into the microchannel or into the microcavity are dryable substances with negligible vapor pressure. As the substances are stable at room temperature, their properties for cell disintegration and/or PCR and/or detection are retained. In addition, mixtures of the substances with additives can form thin films, and the mixtures can be water-tightly covered with thin layers of paraffin wax.
- In at least one embodiment of the invention, the reagents and additives are already introduced as dry substances into depressions of the cartridge channels during production. The following advantages result from this:
-
- simple and precise application of the reagents during the production of the cartridge;
- protection of the reagents during the filling of the reagent channels, i.e. the reagents are not washed away during a so-called water flow, but are retained during the filling of the whole channel. Only after the filling of the channel do the reagent spots dissolve by diffusion processes and a homogeneous solution is produced.
- In a further example embodiment, the depressions are located at predefined intervals along the reagent channel. Here, the intervals can be equidistant or particularly advantageously can be arranged in variable spacing patterns.
- The depressions can advantageously be filled with variable quantities of dry reagent. Through the combination of different amounts of dry reagent and spacing patterns of the depressions, the desired concentration profiles of the finished reagent solutions can be established.
- For certain functions, such as for example cell disintegration in the presence of magnetic beads and lysis reagents, an even distribution of the insoluble components, i.e. the beads, in the dry reagent is necessary. For this, the magnetic beads are dispensed into the lysis channel as a suspension. On evaporation of the solvent, it is observed that the beads are drawn back into the edge region of the lysis channel and an even distribution does not result from this. Through stepped structuring of the lysis channel cross section, the magnetic beads distribute themselves across the steps and an even distribution is achieved.
- In order that a cell disintegration, a PCR and a so-called DNA/protein ELISA test can equally be performed with the cartridge according to the invention, it is advantageous that substrates with DNA-binding properties, in particular the DNA-binding magnetic beads, be present in the microchannels or microcavities. Here, the lysis reagents and the magnetic beads can be contained together in a single dry matrix. Further, the reagents for an ELISA assay are also present in the card. In particular, for the ELISA assay two reagents are needed, i.e. a labeling enzyme as the first reagent and an enzyme substrate as the second reagent.
- In particular, a detection module for the electrical detection of the hybridization processes is arranged in the cartridge. The detection module advantageously consists of a noble metal/plastic composite or a semiconductor-processed silicon chip with noble metal electrodes. Especially suitable for electric detection here are electrochemical, magnetic or piezoelectric measurement procedures.
- For the application of at least one embodiment of the invention, in particular an input port for a whole blood sample is present in the cartridge according to at least one embodiment of the invention. Moreover, device(s) for the addition of water are present, for example inlet ports for connection to an external water supply or an integrated water reservoir. In the microchannels or microcavities, dry buffer substances have defined ionic strength after the addition of water.
- In the application of at least one embodiment of the invention for the analysis of white blood cells from whole blood, device(s) for mixing of a whole blood sample with water or a buffer solution are advantageously present. At the same time, device(s) for passing blood or blood/water mixtures or blood/buffer mixtures through the micro-channel or microcavity coated with lysis/bead/reagent are present.
- Further, for the PCR to be performed in the cartridge according to at least one embodiment of the invention during use specifically for DNA analysis, device(s) for generation of a magnetic field for immobilization of the DNA/magnetic bead complex in a PCR cavity are present. For this purpose, the PCR cavity must be capable of being suitably sealed and device(s) for thermocycling must be present.
- Finally, in the cartridge according to at least one embodiment of the invention, it is essential that device(s) for storage of used sample material and used reagents be present, which constitute waste reservoirs. At the same time, the device(s) must be suitable for the germproof, cell-free and particle-free venting of at least one waste reservoir. Finally, for the reading of the cartridge in a reader device, which is not an object of at least one embodiment of the invention, device(s) for the immobilization of the cartridge must be present.
- Further details and advantages of embodiments of the invention follow from the following descriptions of the diagrams of practical examples on the basis of the drawings in combination with the patent claims. In diagrammatic form, respectively:
-
FIG. 1 shows a cartridge with an overview of individual microchannel/microcavity systems with the relevant function designations, -
FIG. 2 shows a top view of a cell disintegration channel, -
FIG. 3 shows the cross section through the cell disintegration channel according toFIG. 5 , -
FIG. 4 shows two alternatives for the throughflow channel cross section, shown enlarged, -
FIG. 5 shows the top view of the PCR chamber inFIG. 1 , -
FIGS. 6 and 7 show the cross section through the PCR chamber according toFIG. 5 , -
FIG. 8 shows the top view of an ELISA reagent channel inFIG. 1 , -
FIGS. 9 and 10 show the cross section of the ELISA reagent channel according toFIG. 8 and -
FIGS. 11 to 23 show the top view of the cartridge according toFIG. 1 in various process states during an automated evaluation. - In the figures, the same or similarly operating components have the same reference symbols. In particular,
FIGS. 1 to 10 are described together, andFIG. 11 to are described together. -
FIG. 1 shows acartridge 100 for an ELISA (“Enzyme Linked Immuno Sorbent ASSAY”) test with a front view of the micro-channel or microcavity system present therein, wherein for clarity the relevant function designations are also shown. In detail, thecartridge 100 consists of aplastic base 101 with fluidic structures incorporated therein, which are covered by a plastic film. The structures are further described below on the basis ofFIGS. 2 to 10 . - In the top view according to
FIG. 1 , there can be seen asample port 102 with adispensing section 105 connected thereto, through which liquid samples in particular for nucleic acid analysis, for example for the analysis of white blood cells from whole blood, for answering human genome questions can be introduced in a defined manner. This is connected to achannel area 110 for the cell disintegration of the sample and moreover specifically for a DNA analysis anarea 120 for a PCR (Polymerase Chain Reaction) for selective DNA multiplication (amplification) in order to increase the concentration of the DNA to be detected sufficiently for it to be detectable in a third stage. The actual PCR chamber is sealable by 122 and 122′. The detection of the samples thus prepared, in particular according to the ELISA method, then takes place in thevalves area 130. - Also visible in
FIG. 1 arewater ports 103 to 103′″. Through these, water can be introduced into thecartridge 100 as a transport agent and solvent during the preparation of a sample. Further, ventingports 104 to 104′″ are present. - As mentioned, the
cartridge 100 has in particular aninput port 102 for a whole blood sample. In addition, at least one device for the introduction of water is present. An inlet port for connection to an external water source can be present, or the feed port can be connected to an integrated water reservoir. - In the normal case, the microchannels or
microcavities 101 to 131 are filled with dry buffer substances which ensure a defined ionic strength after the introduction of water. For blood analysis, at least one device for mixing of whole blood samples and water or the buffer solution and/or at least one device for passing a flow of blood or blood-water or blood buffer mixture through a micro-channel coated with a lysis bead reagent or the microcavity are present. - In the channel system,
106, 107, 108 and 109 are provided as reservoirs to accommodate waste. Apart from this, a region withwide regions 131 or 131′ to accommodate different ELISA reagents is present.channels - In each of
FIGS. 2 to 4 ,reference symbols 101 again indicate the cartridge base. The base contains athroughflow channel 111 shaped in a particular way especially for cell disintegration (“lysis”) with step-shapeddepressions 112 formed by the side edges to accommodate reagents. Here thedepressions 112 have several steps with step heights from 10 to 500 μm and have an extent of ca. 1 mm and a depth of about 100 μm. - Specifically in the presentation according to
FIG. 4 a, there arises the alternative option, with a throughflow channel with no additional depressions, of providing for the accommodation of the lysis reagents only in theregion 113 of the edges of thethroughflow channel 111. On the other hand, inFIG. 4 b, such reagents, which in particular also contain magnetic beads for the binding of the DNA liberated, are evenly distributed between thesteps 112 across thethroughflow channel 111. Magnetic beads have DNA- and protein-binding properties, if they have been appropriately pretreated. They can be coated with DNA-binding properties and if necessary also with antibodies. For the introduction of dry substances as a matrix with lysis reagent and magnetic beads, reference is in particular made to the applicant's prior DE 10 2004 021780 A1 and prior DE 10 2004 021822. -
FIGS. 5 to 7 show the structure of aPCR chamber 120 in thecartridge base 101 with aflow channel 111. The valve arrangement for closure of the PCR chamber during use as intended is not shown here. It is essential that circular 124 and 124′ are present in thecylindrical depressions PCR chamber 120 to accommodate 127 and 127′, which are needed in the implementation of the PCR. Specifically inspecific reagents FIG. 7 , it is also shown that a dry, 127 or 127′, storable at room temperature, is firstly covered with astorable PCR reagent 128 or 128′.paraffin wax layer - The correct implementation of the PCR with valve-controlled thermocycling within a cartridge is described in detail in the applicant's parallel applications DE 10 2004 050576.4 and DE 10 2004 050510.1 with the same application priority, to which in the present connection reference is expressly made (“Incorporation by Reference”). In particular, the use of magnetic beads for DNA binding and concentration of the magnetic beads with the DNA in the
PCR chamber 120 by way of controllable magnetic fields is described therein, concerning which no more detailed description will be given here. -
FIGS. 8 to 10 show the design and the structure of the 131 and 131′ ofELISA reagent channels FIG. 1 . Dish-shapeddepressions 132 to 132 6′ respectively are present, which are suitable to accommodate pre-dispensed and pre-apportioned quantities of reagents for the ELISA process according toFIG. 9 . This has already been described in detail in WO 02/072262 A1, mentioned at the outset as state of the art, to which in the present connection reference is also expressly made (“Incorporation by Reference”). InFIG. 10 , the circularcylindrical depressions 132 to 132 6′ are shown filled withdry reagents 133 to 133 6′. Here a first reagent embodies a labeling enzyme and a second reagent an enzyme substrate, such as is known to be needed in the hybridization of the sample, also prepared by a PCR if necessary, with specific capture probes. In thedetection zone 130, shown only schematically, different sensors for detection of biochemical reactions can be located in a module of a noble metal/plastic composite. Especially during electrochemical measurements with semiconductor-processed chips, i.e. in particular silicon-based sensors, the signals can be detected electrically and immediately further processed. Apart from the electrochemical measurement methods, magnetic and/or piezo-electric measurement methods with corresponding sensors are also possible. - In each of
FIGS. 11 to 23 , thecartridge 100 according toFIG. 1 is shown in top view, the zone of thecartridge 100 active in the analytical process being marked in each: for this thecartridge 100 is inserted into an analytical device, which is not shown in detail in the diagrams and is not an object of the present patent application. - The evaluation is now illustrated on the basis of eleven concrete component process steps a) to m), after the cartridge has been inserted into an evaluation device with at least one device for accommodating the cartridge, and the evaluation device with the cartridge immobilized therein has been activated. In detail, with reference to
FIG. 1 , the following component steps are involved: - a) Ca. 10 μl of blood are introduced as the measurement sample. 1 μl is automatically dispensed via the dispensing
capillary 105. - b) The excess blood is washed into the cavity 106 (waste 1).
- c) Next, 1 μl of blood sample is diluted with water and transferred to the
cell disintegration channel 110. There the cell disintegration (lysis) of the blood cells and the binding of the liberated DNA to the magnetic beads take place. - d) Next, the magnetic beads are transferred to the PCR chamber and collected there. A washing process takes place, the wash solution being collected in the cavity 107 (waste 2).
- e) The washing process is now concluded.
- f) Next, the
122 and 122′ are closed and the PCR is performed.PCR chamber valves - g) During the PCR, the
ELISA reagent channel 131 which contains the enzyme substrate is simultaneously filled with water. - h) Simultaneously during the PCR reaction, the
ELISA reagent channel 131′ which contains the label enzyme is filled with water. - i) After the PCR, the
122 and 122′ are opened and the PCR product is passed via thePCR chamber valves detection module 130 where the hybridization with the specific capture probes takes place (into waste 3, channel 108). - j) The enzyme substrate channel is vented into the waste channel 108 (waste 3).
- k) The label enzyme is vented into the waste channel 108 (waste 3).
- l) The label enzyme solution flows via the
detection module 130 for the labeling into the waste zone 109 (waste 4). - m) The enzyme substrate solution flows via the
detection module 130 for the enzymatic-electrochemical detection of the hybridization into the waste zone 109 (waste 4). - Thereby the analytical process is concluded. In particular in the case of electrochemical detection, the signals arising can be read electrically and evaluated using a processor in accordance with a preset program.
- The cartridge described in detail with channels and cavities in
FIG. 1 is produced from a polymeric material, such as for example polycarbonate, for example by injection molding technology. During this, thecard base 101 with structures open upwards is first produced, and the reagents are spotted into the initially open channels or cavities and then dried. The detection module is introduced in a suitable manner, in particular glued, into the cartridge. In conclusion, the channels and the cavities are fitted for example with an elastic film as the upper covering and is thus sealed for use as directed. - It is also possible to apply certain special fittings, for example as sealing materials and/or venting materials onto the
open card base 101 before the closing and finishing of the cartridge on the cover side. - The specific measurement method is illustrated on the basis of
FIGS. 11 to 23 for one specific case of DNA analysis of a sample of whole blood. In general, the use of the cartridge described is envisaged for DNA analysis on the one hand and/or protein analysis on the other, wherein, as already mentioned above, an appropriate reading device and corresponding evaluation algorithm are utilized. Defined operating methods follow from this, which for the first time render the cartridge described on the basis of the examples suitable in practice for decentralized use in the context of a medical “Point of Care” application. - In conclusion, specifically for DNA analysis, the integrated operating method for the cartridge described in detail above is once again summarized as a combination or in the sequence of the individual component steps:
-
- introduction of the sample into the cartridge
- insertion of the cartridge into the reading device
- starting of the completely automatic assay
- sample dispensing via dispensing section
- washing of the dispensing section
- dilution of the sample and introduction into lysis channel
- residence in the lysis channel
- collection of the DNA-bead complex by bead collectors in the PCR chamber
- washing of the DNA-bead complex with water
- closure of the PCR chamber
- implementation of the PCR
- during the PCR: filling of both ELISA reagent channels with water
- opening of the PCR chamber
- transport of the PCR product into detection chamber
- hybridization in the detection chamber
- venting of both ELISA reagent channels
- filling and rinsing of the detection chamber with ELISA reagent 1
- filling and rinsing of the detection chamber with ELISA reagent 2
- implementation of the electrochemical measurements.
- In the electrochemical measurements, firstly the rinsing of the detection chamber with an antibody solution bearing an enzyme label (ELISA reagent 1) takes place. Then the rinsing of the detection chamber with enzyme substrate (ELISA reagent 2) takes place. The electrochemical measurements are performed in a manner in itself known at predefinable, different temperatures and variable flow rates of the enzyme-substrate solution.
- For the protein analysis, corresponding procedures are used, but in this case the PCR is not used.
- Example embodiments being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Claims (48)
1. An arrangement for the integrated and automated DNA or protein analysis of a measurement sample in a single-use cartridge filled with dried reagents, the arrangement comprising:
a system of at least one of microchannels and microcavities for microfluidic process technology, present in the cartridge,
the at least one of microchannels and microcavities including predefined geometric structures to accommodate reagents, wherein
the reagents are stored ready in a storage-stable form at defined sites in the at least one of microchannels and microcavities of the cartridge; and
means for making the dry-stored reagents available for the relevant component process in suitable form.
2. The arrangement as claimed in claim 1 , wherein the structures include depressions to accommodate the dry, storage-stable reagents.
3. The arrangement as claimed in claim 2 , wherein the depressions include at least one step with step heights of 10 to 500 μm.
4. The arrangement as claimed in claim 2 , wherein the depressions have a length of ca. 1 mm and a depth of about 100 μm.
5. The arrangement as claimed in claim 3 , wherein the depressions are cylindrical, and wherein the length represents the diameter.
6. The arrangement as claimed in claim 1 , wherein the reagents introduced into the at least one of micro-channels and microcavities include the following properties:
they are dryable substances with negligible vapor pressure, which are stable at room temperature, so that the properties remain unchanged for one cell disintegration or one PCR or for the detection of biochemical quantities.
7. The arrangement as claimed in claim 1 , wherein that mixtures of the particular substance with additives form thin films which adhere to the walls.
8. The arrangement as claimed in claim 7 , wherein the substances or mixtures introduced into parts of the at least one of micro-channels and microcavities are watertightly covered with thin paraffin wax layers.
9. The arrangement as claimed in claim 1 , wherein the substances introduced into parts of the at least one of microchannels and microcavities include at least one of -DNA- and protein-binding properties.
10. The arrangement as claimed in claim 1 , wherein the substances introduced into parts of the at least one of microchannels and microcavities are magnetic beads with specific binding properties.
11. The arrangement as claimed in claim 10 , wherein the magnetic beads are coated with antibodies.
12. The arrangement as claimed in claim 10 , wherein the magnetic beads are coated with DNA-binding substances.
13. The arrangement as claimed in claim 1 , wherein lysis reagents and magnetic beads are simultaneously present, and wherein the lysis reagents and the magnetic beads are contained in a single dry matrix.
14. The arrangement as claimed in claim 1 , wherein a so-called DNA ELISA assay or protein ELISA assay is performable, and wherein a label enzyme and an enzyme substrate are present as reagents for the ELISA assay.
15. The arrangement as claimed in claim 1 , wherein a detection module for the electrical detection of the hybridization processes is present.
16. The arrangement as claimed in claim 15 , wherein the detection module consists of a noble metal/plastic composite.
17. The arrangement as claimed in claim 15 , wherein the detection module consists of a semiconductor-processed silicon chip with noble metal electrodes.
18. The arrangement as claimed in claim 15 , wherein at least one of electrochemical, magnetic and piezoelectric measurement methods are used by the module for the electrical detection.
19. The arrangement as claimed in claim 1 , wherein the cartridge includes an input port for a whole blood sample.
20. The arrangement as claimed in claim 1 , further comprising means for the introduction of water.
21. The arrangement as claimed in claim 20 , further comprising an inlet port for connection to an external water source.
22. The arrangement as claimed in claim 21 , wherein the inlet port is connected to an integrated water reservoir.
23. The arrangement as claimed in claim 1 , wherein the at least one of microchannels and microcavities are filled with dry buffer substances of defined ionic strength after addition of water.
24. The arrangement as claimed in claim 1 , further comprising means for the mixing of whole blood samples and water or the buffer solution.
25. The arrangement as claimed in claim 1 , further comprising means for passing at least one of blood, blood-water and blood-buffer mixture through the at least one of the microchannel and microcavity coated with lysis bead reagent.
26. The arrangement as claimed claim 1 , further comprising means for generating a magnetic field for the purpose of immobilizing at least one of the DNA/magnetic bead and protein/magnetic bead complex.
27. The arrangement as claimed in claim 1 , further comprising means for generating a magnetic field for the purpose of immobilizing the DNA/magnetic bead complex in a PCR cavity.
28. The arrangement as claimed in claim 21 , claim 1 , further comprising means for closure of the PCR cavity.
29. The arrangement as claimed in claim 1 , further comprising means for the thermocycling of the sample are present.
30. The arrangement as claimed in claim 1 , further comprising, in the cartridge, means for the storage of at least one of used sample material and used reagent.
31. The arrangement as claimed in claim 30 , wherein the means for the storage of at least one of used sample material and used reagents constitute waste reservoirs.
32. The arrangement as claimed in claim 1 , further comprising means for at least one of the germproof, particle- and cell-free venting of the waste reservoirs.
33. The arrangement as claimed in claim 1 , further comprising means for the immobilization of the cartridge in a reading device.
34. A method for the production of a cartridge comprising:
making from polymer, a cartridge base with at least one of channels and cavities;
spotting reagents into open channels and drying the reagents there; and
closing the at least one of channels and cavities with a film.
35. A production method as claimed in claim 34 , wherein the card base is produced by injection molding technology.
36. The production method as claimed in claim 34 , wherein special materials are applied onto the card body.
37. The production method as claimed in claim 34 , wherein, before the sealing of the card body, a detection module with measurement devices is introduced.
38. An operating method for DNA analysis in an arrangement as claimed in claim 1 , the method comprising:
introducing the sample into the cartridge;
inserting the cartridge into the reading device; and
starting a fully automatic assay.
39. The operating method as claimed in claim 38 , comprising the following steps during operation of the fully automatic assay:
sample dispensing via a dispensing section;
washing the dispensing section;
diluting the measurement sample and introducing it into the lysis channel;
having a cell disintegration take place by residence in the lysis channel;
carrying the DNA-bead complex formed into the PCR chamber by a liquid flow and holding it in the PCR chamber via a bead collector;
washing of the DNA-bead complex with water;
closing the PCR chamber is closed;
performing the PCR;
transporting, after completion of the PCR, the PCR product into the detection chamber;
having hybridization processes, with specific capture probes, take place in the detection chamber;
flushing the detection chamber with labeling enzyme;
flushing the detection chamber with enzyme substrate;
performing the electrochemical measurement; and
performing the electrochemical measurements at various temperatures and various flow rates of the enzyme-substrate solution.
40. The operating method as claimed in claim 39 , wherein, during the PCR, the ELISA reagent channels are filled with water.
41. The operating method as claimed in claim 39 , wherein, after the hybridization, both ELISA channels are vented, that next the detection chamber is firstly flushed gas bubble-free with the first ELISA reagent and then flushed gas bubble-free with the second ELISA reagent, and that the electrochemical measurement is then performed.
42. The operating method for protein analysis in an arrangement as claimed in claim 1 , the method comprising:
introducing the sample into the cartridge;
inserting the cartridge into the reading device; and
starting the fully automatic assay.
43. The operating method as claimed in claim 42 , with the following steps during operation of the fully automatic assay:
sample dispensing via a dispensing section;
washing the dispensing section;
diluting the measurement sample and transporting it into the detection chamber by a liquid flow;
having binding processes between the proteins of the measurement sample and specific capture antibodies or capture proteins take place in the detection chamber;
flushing the detection chamber with an antibody solution bearing an enzyme label (ELISA reagent 1);
flushing the detection chamber with enzyme substrate (ELISA reagent 2); and
performing the electrochemical measurements.
44. The operating method as claimed in claim 43 , wherein, after the hybridization, both ELISA channels are vented, that next the detection chamber is firstly flushed gas bubble-free with the first ELISA reagent and then flushed gas bubble-free with the second ELISA reagent, and that the electrochemical measurement is then performed.
45. The arrangement as claimed in claim 1 , wherein the dry-stored reagents are made available for the relevant component process as a liquid reagent.
46. The arrangement as claimed in claim 20 , wherein the means for the introduction of water includes an inlet port.
47. The arrangement as claimed in claim 1 , further comprising an inlet port for the introduction of water.
48. The production method as claimed in claim 36 , wherein special materials include at least one of sealing membranes and venting membranes.
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102004050576 | 2004-10-15 | ||
| DE102004050576.4 | 2004-10-15 | ||
| PCT/EP2005/055303 WO2006042838A1 (en) | 2004-10-15 | 2005-10-17 | Arrangement for integrated and automated dna or protein analysis in a single-use cartridge, method for producing such a cartridge and operating method for dna or protein analysis using such a cartridge |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20090130658A1 true US20090130658A1 (en) | 2009-05-21 |
Family
ID=35432485
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/665,331 Active 2027-01-16 US7851227B2 (en) | 2004-10-15 | 2005-10-17 | Method for carrying out an electrochemical measurement on a liquid measuring sample in a measuring chamber that can be accessed by lines, and corresponding arrangement |
| US11/665,380 Abandoned US20090130658A1 (en) | 2004-10-15 | 2005-10-17 | Arrangement for integrated and automated dna or protein analysis in a single-use cartridge, method for producing such a cartridge and operating method for dna or protein analysis using such a cartridge |
Family Applications Before (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US11/665,331 Active 2027-01-16 US7851227B2 (en) | 2004-10-15 | 2005-10-17 | Method for carrying out an electrochemical measurement on a liquid measuring sample in a measuring chamber that can be accessed by lines, and corresponding arrangement |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US7851227B2 (en) |
| EP (2) | EP1807208B1 (en) |
| JP (1) | JP4546534B2 (en) |
| CN (2) | CN101039751B (en) |
| WO (2) | WO2006042734A1 (en) |
Cited By (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090021728A1 (en) * | 2007-06-21 | 2009-01-22 | Gen-Probe Incorporated | Multi-Channel Optical Measurement Instrument |
| US20090298059A1 (en) * | 2005-05-25 | 2009-12-03 | Walter Gumbrecht | System for the Integrated and Automated Analysis of DNA or Protein and Method for Operating Said Type of System |
| US20100104479A1 (en) * | 2008-10-24 | 2010-04-29 | Honeywell International Inc. | Surface preparation for a microfluidic channel |
| WO2011050036A1 (en) * | 2009-10-21 | 2011-04-28 | Microfluidic Systems, Inc. | Integrated sample preparation and amplification for nucleic acid detection from biological samples |
| US20110190146A1 (en) * | 2008-04-28 | 2011-08-04 | President And Fellows Of Harvard College | Microfluidic device for storage and well-defined arrangement of droplets |
| WO2013053855A1 (en) | 2011-10-11 | 2013-04-18 | Qiagen Gmbh | Sample processing method and sample processing cartridge |
| US8718948B2 (en) | 2011-02-24 | 2014-05-06 | Gen-Probe Incorporated | Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector |
| US20140342381A1 (en) * | 2008-08-11 | 2014-11-20 | Banyan Biomarkers, Inc. | Devices and methods for biomarker detection process and assay of neurological condition |
| US8895293B2 (en) | 2012-01-20 | 2014-11-25 | Ortho-Clinical Diagnostics, Inc. | Assay device having uniform flow around corners |
| US8961764B2 (en) | 2010-10-15 | 2015-02-24 | Lockheed Martin Corporation | Micro fluidic optic design |
| US9067207B2 (en) | 2009-06-04 | 2015-06-30 | University Of Virginia Patent Foundation | Optical approach for microfluidic DNA electrophoresis detection |
| US9075042B2 (en) | 2012-05-15 | 2015-07-07 | Wellstat Diagnostics, Llc | Diagnostic systems and cartridges |
| US9213043B2 (en) | 2012-05-15 | 2015-12-15 | Wellstat Diagnostics, Llc | Clinical diagnostic system including instrument and cartridge |
| US9322054B2 (en) | 2012-02-22 | 2016-04-26 | Lockheed Martin Corporation | Microfluidic cartridge |
| US9625465B2 (en) | 2012-05-15 | 2017-04-18 | Defined Diagnostics, Llc | Clinical diagnostic systems |
| US9919313B2 (en) | 2010-09-07 | 2018-03-20 | Lumiradx Uk Ltd. | Assay device and reader |
| US10744502B2 (en) | 2016-10-07 | 2020-08-18 | Boehringer Ingelheim Vetmedica Gmbh | Analysis device and method for testing a sample |
| US10816563B2 (en) | 2005-05-25 | 2020-10-27 | Boehringer Ingelheim Vetmedica Gmbh | System for operating a system for the integrated and automated analysis of DNA or protein |
| US10953403B2 (en) | 2016-10-07 | 2021-03-23 | Boehringer Ingelheim Vetmedica Gmbh | Method and analysis system for testing a sample |
| US11000847B2 (en) | 2016-06-30 | 2021-05-11 | Lumiradx Uk Ltd. | Fluid control |
| US11994522B2 (en) | 2008-08-11 | 2024-05-28 | Banyan Biomarkers, Inc. | Biomarker detection process and assay of neurological condition |
| US12077601B2 (en) | 2016-10-28 | 2024-09-03 | Banyan Biomarkers, Inc. | Antibodies to ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) and related methods |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008128907A (en) * | 2006-11-22 | 2008-06-05 | Fujifilm Corp | Microchannel chip |
| CN101688875B (en) * | 2007-05-02 | 2014-07-23 | 西门子医疗保健诊断公司 | Method for measuring amount of analyte in bilfluid in microfluidic device |
| EP2087934A1 (en) | 2008-02-07 | 2009-08-12 | Qiagen GmbH | Method and device for processing a sample automatically |
| RU2380418C1 (en) * | 2008-10-01 | 2010-01-27 | Учреждение Российской академии наук Институт молекулярной биологии им. В.А. Энгельгардта РАН | Replaceable microfluid module for automated recovery and purification of nucleic acids from biological samples and method for recovery and purification nucleic acids with using thereof |
| JP5242465B2 (en) * | 2009-03-18 | 2013-07-24 | 株式会社東芝 | Sample detection device |
| US20120040445A1 (en) * | 2009-04-15 | 2012-02-16 | Koninklijke Philips Electronics N.V. | Gas-free fluid chamber |
| DE102009019650A1 (en) * | 2009-04-30 | 2010-11-04 | Siemens Aktiengesellschaft | Cartridge and operating procedure for reagents of a biosensor system |
| EP2440658B1 (en) | 2009-06-12 | 2014-10-08 | Micronics, Inc. | Rehydratable matrices for dry storage of taq polymerase in a microfluidic device |
| CN102803507B (en) | 2009-06-12 | 2016-05-25 | 精密公司 | The composition and the method that store in the dehydration of plate reactant for microfluidic device |
| US8435454B2 (en) * | 2009-07-09 | 2013-05-07 | Siemens Medical Solutions Usa, Inc. | Modular system for radiosynthesis with multi-run capabilities and reduced risk of radiation exposure |
| US8273300B2 (en) * | 2009-07-09 | 2012-09-25 | Siemens Medical Solutions Usa, Inc. | Modular system for radiosynthesis with multi-run capabilities and reduced risk of radiation exposure |
| JP5807542B2 (en) | 2011-12-22 | 2015-11-10 | 株式会社島津製作所 | Chip device for manipulating target components and method using the same |
| WO2013096801A1 (en) | 2011-12-23 | 2013-06-27 | Abbott Point Of Care Inc | Reader devices for optical and electrochemical test devices |
| WO2013096822A2 (en) | 2011-12-23 | 2013-06-27 | Abbott Point Of Care Inc | Integrated test device for optical and electrochemical assays |
| CN104081210B (en) * | 2011-12-23 | 2018-11-30 | 雅培医护站股份有限公司 | Optical detecting device with the actuating of pneumatic type sample |
| DE102012205171B3 (en) | 2012-03-29 | 2013-09-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Integrated disposable chip cartridge system for mobile multi-parameter analysis of chemical and / or biological substances |
| DE102012107651A1 (en) * | 2012-08-21 | 2014-02-27 | Astrium Gmbh | Method for carrying out a biochemical analysis, in particular in space |
| GB201216454D0 (en) * | 2012-09-14 | 2012-10-31 | Carclo Technical Plastics Ltd | Sample metering device |
| DK2821138T4 (en) * | 2013-07-05 | 2022-05-16 | Thinxxs Microtechnology Gmbh | FLOATING CELL WITH INTEGRATED DRY MATERIAL |
| US10233491B2 (en) * | 2015-06-19 | 2019-03-19 | IntegenX, Inc. | Valved cartridge and system |
| GB201704747D0 (en) * | 2017-01-05 | 2017-05-10 | Illumina Inc | Reagent mixing system and methods |
| CN109536374A (en) * | 2018-11-27 | 2019-03-29 | 南京先进激光技术研究院 | It is a kind of with avoid bubble generate structure reagent reaction tube |
Citations (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5849247A (en) * | 1994-11-07 | 1998-12-15 | Merck S.A. | Automatic apparatus for immunological assay |
| US6007690A (en) * | 1996-07-30 | 1999-12-28 | Aclara Biosciences, Inc. | Integrated microfluidic devices |
| US6126804A (en) * | 1997-09-23 | 2000-10-03 | The Regents Of The University Of California | Integrated polymerase chain reaction/electrophoresis instrument |
| US20010024788A1 (en) * | 2000-03-16 | 2001-09-27 | Kabushiki Kaisha Toshiba | Method for producing nucleic acid strand immobilized carrier |
| WO2002073153A2 (en) * | 2001-03-09 | 2002-09-19 | Siemens Aktiengesellschaft | Module for an analysis device, applicator as an exchange part of the analysis device and analysis device associated therewith |
| WO2002072262A1 (en) * | 2001-03-09 | 2002-09-19 | Siemens Aktiengesellschaft | Analysis device |
| US20030124623A1 (en) * | 2001-12-05 | 2003-07-03 | Paul Yager | Microfluidic device and surface decoration process for solid phase affinity binding assays |
| US20040132218A1 (en) * | 2003-01-08 | 2004-07-08 | Ho Winston Z. | Self-contained microfluidic biochip and apparatus |
| US20050208539A1 (en) * | 2003-12-31 | 2005-09-22 | Vann Charles S | Quantitative amplification and detection of small numbers of target polynucleotides |
| US20070219366A1 (en) * | 2004-04-30 | 2007-09-20 | Walter Gumbrecht | Method and Assembly for Dna Isolation With Dry Reagents |
| US20070265439A1 (en) * | 2004-10-15 | 2007-11-15 | Walter Gumbrecht | Method for Controlling Valves During the Thermocyclisation of a Substance for the Purpose of Polymer Chain Reaction (Pcr) and Associated Arrangement |
| US20080241890A1 (en) * | 2004-04-30 | 2008-10-02 | Siemens Aktiengesellschaft | Pcr Process And Arrangement For Dna Amplification Using Dry Reagents |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4486097A (en) * | 1981-09-09 | 1984-12-04 | E. I. Du Pont De Nemours & Company, Inc. | Flow analysis |
| US4963498A (en) | 1985-08-05 | 1990-10-16 | Biotrack | Capillary flow device |
| US5482862A (en) * | 1991-04-04 | 1996-01-09 | The Dow Chemical Company | Methods for the on-line analysis of fluid streams |
| JPH0777305A (en) * | 1993-09-08 | 1995-03-20 | Tokyo Gas Co Ltd | Nitrogen oxide low generation burner system |
| CA2146177C (en) * | 1995-04-03 | 2000-09-05 | Adrian P. Wade | Intelligent flow analysis network |
| TW517154B (en) * | 1999-08-11 | 2003-01-11 | Asahi Chemical Ind | Analyzing cartridge and liquid feed control device |
| DE10140565B4 (en) * | 2001-08-18 | 2006-06-29 | Roche Diagnostics Gmbh | Device for gas or liquid separation from microfluidic flow systems |
-
2005
- 2005-10-17 CN CN2005800352245A patent/CN101039751B/en not_active Expired - Fee Related
- 2005-10-17 EP EP05801513A patent/EP1807208B1/en not_active Ceased
- 2005-10-17 WO PCT/EP2005/011156 patent/WO2006042734A1/en active Application Filing
- 2005-10-17 WO PCT/EP2005/055303 patent/WO2006042838A1/en active Application Filing
- 2005-10-17 CN CNB2005800352122A patent/CN100534619C/en not_active Expired - Fee Related
- 2005-10-17 US US11/665,331 patent/US7851227B2/en active Active
- 2005-10-17 EP EP05803183.2A patent/EP1796838B1/en not_active Ceased
- 2005-10-17 JP JP2007536193A patent/JP4546534B2/en not_active Expired - Fee Related
- 2005-10-17 US US11/665,380 patent/US20090130658A1/en not_active Abandoned
Patent Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5849247A (en) * | 1994-11-07 | 1998-12-15 | Merck S.A. | Automatic apparatus for immunological assay |
| US6007690A (en) * | 1996-07-30 | 1999-12-28 | Aclara Biosciences, Inc. | Integrated microfluidic devices |
| US6126804A (en) * | 1997-09-23 | 2000-10-03 | The Regents Of The University Of California | Integrated polymerase chain reaction/electrophoresis instrument |
| US20010024788A1 (en) * | 2000-03-16 | 2001-09-27 | Kabushiki Kaisha Toshiba | Method for producing nucleic acid strand immobilized carrier |
| US20050031490A1 (en) * | 2001-03-09 | 2005-02-10 | Walter Gumbrecht | Module for an analysis device, applicator as an exchange part of the analysis device and analysis device associated therewith |
| WO2002073153A2 (en) * | 2001-03-09 | 2002-09-19 | Siemens Aktiengesellschaft | Module for an analysis device, applicator as an exchange part of the analysis device and analysis device associated therewith |
| WO2002072262A1 (en) * | 2001-03-09 | 2002-09-19 | Siemens Aktiengesellschaft | Analysis device |
| US20030124623A1 (en) * | 2001-12-05 | 2003-07-03 | Paul Yager | Microfluidic device and surface decoration process for solid phase affinity binding assays |
| US20040132218A1 (en) * | 2003-01-08 | 2004-07-08 | Ho Winston Z. | Self-contained microfluidic biochip and apparatus |
| US20050208539A1 (en) * | 2003-12-31 | 2005-09-22 | Vann Charles S | Quantitative amplification and detection of small numbers of target polynucleotides |
| US20070219366A1 (en) * | 2004-04-30 | 2007-09-20 | Walter Gumbrecht | Method and Assembly for Dna Isolation With Dry Reagents |
| US20080241890A1 (en) * | 2004-04-30 | 2008-10-02 | Siemens Aktiengesellschaft | Pcr Process And Arrangement For Dna Amplification Using Dry Reagents |
| US20070265439A1 (en) * | 2004-10-15 | 2007-11-15 | Walter Gumbrecht | Method for Controlling Valves During the Thermocyclisation of a Substance for the Purpose of Polymer Chain Reaction (Pcr) and Associated Arrangement |
Cited By (45)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10184946B2 (en) | 2005-05-25 | 2019-01-22 | Boehringer Ingelheim Vetmedica Gmbh | Method for operating a system for the integrated and automated analysis of DNA or protein |
| US20090298059A1 (en) * | 2005-05-25 | 2009-12-03 | Walter Gumbrecht | System for the Integrated and Automated Analysis of DNA or Protein and Method for Operating Said Type of System |
| US9110044B2 (en) | 2005-05-25 | 2015-08-18 | Boehringer Ingelheim Vetmedica Gmbh | System for the integrated and automated analysis of DNA or protein and method for operating said type of system |
| US10073107B2 (en) | 2005-05-25 | 2018-09-11 | Boehringer Ingelheim Vetmedica Gmbh | System for operating a system for the integrated and automated analysis of DNA or protein |
| US10816563B2 (en) | 2005-05-25 | 2020-10-27 | Boehringer Ingelheim Vetmedica Gmbh | System for operating a system for the integrated and automated analysis of DNA or protein |
| US20090021728A1 (en) * | 2007-06-21 | 2009-01-22 | Gen-Probe Incorporated | Multi-Channel Optical Measurement Instrument |
| US9458451B2 (en) | 2007-06-21 | 2016-10-04 | Gen-Probe Incorporated | Multi-channel optical measurement instrument |
| US10086342B2 (en) | 2007-06-21 | 2018-10-02 | Gen-Probe Incorporated | Multi-channel optical measurement instrument |
| US20110190146A1 (en) * | 2008-04-28 | 2011-08-04 | President And Fellows Of Harvard College | Microfluidic device for storage and well-defined arrangement of droplets |
| US10828641B2 (en) | 2008-04-28 | 2020-11-10 | President And Fellows Of Harvard College | Microfluidic device for storage and well-defined arrangement of droplets |
| US11498072B2 (en) | 2008-04-28 | 2022-11-15 | President And Fellows Of Harvard College | Microfluidic device for storage and well-defined arrangement of droplets |
| US9664619B2 (en) | 2008-04-28 | 2017-05-30 | President And Fellows Of Harvard College | Microfluidic device for storage and well-defined arrangement of droplets |
| US20140342381A1 (en) * | 2008-08-11 | 2014-11-20 | Banyan Biomarkers, Inc. | Devices and methods for biomarker detection process and assay of neurological condition |
| US11994522B2 (en) | 2008-08-11 | 2024-05-28 | Banyan Biomarkers, Inc. | Biomarker detection process and assay of neurological condition |
| US9034277B2 (en) * | 2008-10-24 | 2015-05-19 | Honeywell International Inc. | Surface preparation for a microfluidic channel |
| US20100104479A1 (en) * | 2008-10-24 | 2010-04-29 | Honeywell International Inc. | Surface preparation for a microfluidic channel |
| US9649631B2 (en) | 2009-06-04 | 2017-05-16 | Leidos Innovations Technology, Inc. | Multiple-sample microfluidic chip for DNA analysis |
| US9067207B2 (en) | 2009-06-04 | 2015-06-30 | University Of Virginia Patent Foundation | Optical approach for microfluidic DNA electrophoresis detection |
| US9656261B2 (en) | 2009-06-04 | 2017-05-23 | Leidos Innovations Technology, Inc. | DNA analyzer |
| WO2011050036A1 (en) * | 2009-10-21 | 2011-04-28 | Microfluidic Systems, Inc. | Integrated sample preparation and amplification for nucleic acid detection from biological samples |
| US9919313B2 (en) | 2010-09-07 | 2018-03-20 | Lumiradx Uk Ltd. | Assay device and reader |
| US10376881B2 (en) | 2010-09-07 | 2019-08-13 | Lumiradx Uk Ltd. | Assay device and reader |
| US11278886B2 (en) | 2010-09-07 | 2022-03-22 | Lumiradx Uk Ltd. | Assay device and reader |
| US8961764B2 (en) | 2010-10-15 | 2015-02-24 | Lockheed Martin Corporation | Micro fluidic optic design |
| US9915613B2 (en) | 2011-02-24 | 2018-03-13 | Gen-Probe Incorporated | Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector |
| US10641707B2 (en) | 2011-02-24 | 2020-05-05 | Gen-Probe Incorporated | Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector |
| US8718948B2 (en) | 2011-02-24 | 2014-05-06 | Gen-Probe Incorporated | Systems and methods for distinguishing optical signals of different modulation frequencies in an optical signal detector |
| US20140287955A1 (en) * | 2011-10-11 | 2014-09-25 | Qiagen Gmbh | Sample processing method and sample processing cartridge |
| US9994891B2 (en) * | 2011-10-11 | 2018-06-12 | Qiagen Gmbh | Sample processing method and sample processing cartridge |
| WO2013053855A1 (en) | 2011-10-11 | 2013-04-18 | Qiagen Gmbh | Sample processing method and sample processing cartridge |
| EP3663408A1 (en) | 2011-10-11 | 2020-06-10 | QIAGEN GmbH | Sample processing method and sample processing cartridge |
| US9625457B2 (en) | 2012-01-20 | 2017-04-18 | Ortho-Clinical Diagnostics, Inc. | Assay device having uniform flow around corners |
| US8895293B2 (en) | 2012-01-20 | 2014-11-25 | Ortho-Clinical Diagnostics, Inc. | Assay device having uniform flow around corners |
| EP3088892A1 (en) | 2012-01-20 | 2016-11-02 | Ortho-Clinical Diagnostics Inc | Assay device having uniform flow around corners |
| US9322054B2 (en) | 2012-02-22 | 2016-04-26 | Lockheed Martin Corporation | Microfluidic cartridge |
| US9988676B2 (en) | 2012-02-22 | 2018-06-05 | Leidos Innovations Technology, Inc. | Microfluidic cartridge |
| US9075042B2 (en) | 2012-05-15 | 2015-07-07 | Wellstat Diagnostics, Llc | Diagnostic systems and cartridges |
| US9081001B2 (en) | 2012-05-15 | 2015-07-14 | Wellstat Diagnostics, Llc | Diagnostic systems and instruments |
| US9625465B2 (en) | 2012-05-15 | 2017-04-18 | Defined Diagnostics, Llc | Clinical diagnostic systems |
| US9213043B2 (en) | 2012-05-15 | 2015-12-15 | Wellstat Diagnostics, Llc | Clinical diagnostic system including instrument and cartridge |
| US11000847B2 (en) | 2016-06-30 | 2021-05-11 | Lumiradx Uk Ltd. | Fluid control |
| US12076720B2 (en) | 2016-06-30 | 2024-09-03 | Lumiradx Uk Ltd. | Fluid control |
| US10744502B2 (en) | 2016-10-07 | 2020-08-18 | Boehringer Ingelheim Vetmedica Gmbh | Analysis device and method for testing a sample |
| US10953403B2 (en) | 2016-10-07 | 2021-03-23 | Boehringer Ingelheim Vetmedica Gmbh | Method and analysis system for testing a sample |
| US12077601B2 (en) | 2016-10-28 | 2024-09-03 | Banyan Biomarkers, Inc. | Antibodies to ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP) and related methods |
Also Published As
| Publication number | Publication date |
|---|---|
| CN100534619C (en) | 2009-09-02 |
| CN101039751A (en) | 2007-09-19 |
| EP1807208B1 (en) | 2013-03-20 |
| US20090136922A1 (en) | 2009-05-28 |
| WO2006042838A1 (en) | 2006-04-27 |
| WO2006042734A1 (en) | 2006-04-27 |
| CN101039750A (en) | 2007-09-19 |
| EP1796838B1 (en) | 2014-10-08 |
| EP1807208A1 (en) | 2007-07-18 |
| US7851227B2 (en) | 2010-12-14 |
| JP2008517259A (en) | 2008-05-22 |
| JP4546534B2 (en) | 2010-09-15 |
| CN101039751B (en) | 2010-05-05 |
| EP1796838A1 (en) | 2007-06-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20090130658A1 (en) | Arrangement for integrated and automated dna or protein analysis in a single-use cartridge, method for producing such a cartridge and operating method for dna or protein analysis using such a cartridge | |
| JP6347861B2 (en) | Test cartridge with integrated transfer module | |
| US7122153B2 (en) | Self-contained microfluidic biochip and apparatus | |
| US8268245B2 (en) | Methods and devices for determining analytes in liquids of small volumes | |
| JP4721414B2 (en) | REACTION CARTRIDGE, REACTOR, AND METHOD FOR TRANSFERRING REACTION CARTRIDGE SOLUTION | |
| US9289764B2 (en) | Method for mixing at least one sample solution having at least one reagent, and device | |
| US8092999B2 (en) | Biological sample reaction chip and biological sample reaction method | |
| AU2016295622B2 (en) | Fluidic system for performing assays | |
| CN109746059B (en) | Micro-droplet generation system | |
| JP5137012B2 (en) | Microchip | |
| JP5430766B2 (en) | Chip card plate for biochemical analysis and method of use thereof | |
| CN109752353B (en) | Micro droplet detection device | |
| JP5131538B2 (en) | Reaction liquid filling method | |
| CN109746063B (en) | Micro-droplet detection system | |
| US20090291025A1 (en) | Microchip And Method Of Using The Same | |
| US20200009555A1 (en) | Cartridge for testing a sample and method for producing a cartridge of this kind | |
| KR102299215B1 (en) | Improved device and method for reactions between a solid and a liquid phase | |
| CN109746062B (en) | Micro-droplet generation device | |
| DE102005049976A1 (en) | Cartridge card for automated DNA or protein analysis has a geometric array of micro-channels with dry reagents | |
| JP2009281779A (en) | Microchip and its using method | |
| JP2010063395A (en) | Chip for reacting biological specimen, and method for reacting biological specimen | |
| KR20190012690A (en) | Analysis module | |
| HK1243452A1 (en) | A test cartridge with integrated transfer module | |
| KR20190064941A (en) | Product method of lab on a chip | |
| HK1223152B (en) | Improved device and method for reactions between a solid and a liquid phase |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AS | Assignment |
Owner name: SIEMENS AKTIENGESELLSCHAFT, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BARLAG, HEIKE;BIRKLE, SIEGFRIED;GUMBRECHT, WALTER;AND OTHERS;REEL/FRAME:020111/0122;SIGNING DATES FROM 20070329 TO 20070404 |
|
| AS | Assignment |
Owner name: BOEHRINGER INGELHEIM VETMEDICA GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIEMENS AG;REEL/FRAME:033190/0899 Effective date: 20140507 |
|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |