US20090111213A1 - High-Density Fine Line Structure And Method Of Manufacturing The Same - Google Patents

High-Density Fine Line Structure And Method Of Manufacturing The Same Download PDF

Info

Publication number
US20090111213A1
US20090111213A1 US12/347,964 US34796408A US2009111213A1 US 20090111213 A1 US20090111213 A1 US 20090111213A1 US 34796408 A US34796408 A US 34796408A US 2009111213 A1 US2009111213 A1 US 2009111213A1
Authority
US
United States
Prior art keywords
fine line
layer
line circuit
semiconductor device
circuit layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/347,964
Inventor
Chien-Wei Chang
Ting-Hao Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/347,964 priority Critical patent/US20090111213A1/en
Publication of US20090111213A1 publication Critical patent/US20090111213A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68345Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector involving a temporary auxiliary member not forming part of the bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06582Housing for the assembly, e.g. chip scale package [CSP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10507Involving several components
    • H05K2201/10515Stacked components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10621Components characterised by their electrical contacts
    • H05K2201/10674Flip chip
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/049Wire bonding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • H05K3/205Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern using a pattern electroplated or electroformed on a metallic carrier

Definitions

  • the present invention relates generally to a method of manufacturing the package structure, and in particular to a high-density fine line structure and method of manufacturing the same.
  • the system-in-package is a package in which chips of various IC types are assembled.
  • a new technique which is developed from the SIP is to be able to stack many chips inside a package module, and to be able to provide or integrate more functions or higher density by utilizing the third dimensional space.
  • the stack CSP is firstly launched to the public, of which the corresponding products are memory combo, and is able to stack six layers of memory chips in a BGA package.
  • the solder bumps or the flip-chip technique can also be used, while the interposers can be added to assist stacking, or perhaps the heat extraction can also be gradually applied.
  • a package of the stack chips should include the dies as the building blocks which are in separated-form each other, but are connected with each other by conducting wires, and may include the stack of one or more memory chips, an analog chip stacked on another SOC or digital chip, and also another separate RF chip disposed on a multi-layer interconnected substrate, where these chips have different control and I/O (input/output) paths.
  • the control software can write into the non-volatile memory (NVM).
  • NVM non-volatile memory
  • the method includes: using a 1.5-5.0 ⁇ m thin copper as the conductive layer for the pattern plating, the flash etching is performed to etch the thin copper layer with thickness of 1.5-5.0 ⁇ m. Because a rough surface of the thin copper layer is required to be combined with the glass-fiber-reinforced resin material, the rough surface structure of the thin copper layer is therefore required in the corresponding method. According to the structure, the etching operation as required is to lead to increased etching depth for processing, thereby resulting in the damage to the wire width after plating. Due to the thickness of the thin copper layer, the etching amount may not be reduced further, and therefore, high-density board having thinner fine pitch lower than 50 ⁇ m can not be manufactured.
  • the electrical current is transmitted into the board, especially for the fine line circuit layer required to be electroplated, it is necessary that the electrical current may be transmitted by the conductor trace lines which are connected with the fine line circuit layer.
  • the fine line circuit layer can be fully covered using the plated nickel layer by this method, the conductor trace lines are still retained in the printed circuit board after the plating, and thereby to occupy the limited wiring density.
  • the thickness of the plated nickel layer may not be uniform; therefore, the decrease of the width of the conductor trace line may not be suitable for use for increasing the wiring density.
  • the printed circuit board currently are designed without the conductor trace lines, and the adhesion of the wire bonding region may be optimized by nickel plating the nickel, rather than by using the chemical nickel plating (or the chemical gold plating) whose reliability is not as good. Therefore, the wire bonding region made without conductor trace lines but using nickel plating method are typically manufactured by the GPP operation.
  • the plated nickel layer is formed before the solder mask (SM)
  • the area of the plated nickel layer occupied under the SM is relatively large. Because the adhesion between the SM and the plated nickel layer is poor, the relatively high requirement for reliability and thermal stability today is unable to be met by the conventional manufacturing methods.
  • NPL non-plating line
  • the fine line layer is to be defined by the un-etched metal layer, and sometimes to rely on the selective etching of the metal layer. But, according to conventional method, the etching cannot be controlled accurately; therefore, the manufacturing of the fine line circuit cannot rely reliably upon etching, otherwise the fine pitch line circuit faces tremendous development barrier.
  • a primary objective of the present invention is to provide a high-density fine line structure and method of manufacturing the same, which without using etching as the method for forming the circuit, only the patterned photoresist layer is used to define the location of the fine line layer, and the plating method is used to form the fine line layer (the plating electrical current is transmitted by a removable carrier or a metal barrier layer hereon), and to form the fine line circuit for realizing the thinning effect. Later, the carrier and the metal barrier layer may be removed during or at the end of the manufacturing process to increase the wiring density for realizing the higher-density objective. Meanwhile, the higher-cost semi-additive process (SAP) technique is also not used in the present invention.
  • SAP semi-additive process
  • the solution of the present invention is to provide a high-density fine line structure, which includes two boards with the similar structures and a dielectric film for combining the two boards.
  • Semiconductor devices respectively in the two boards are opposite to each other after the two boards are combined.
  • the boards each include a fine line circuit, an insulated layer on the same surface as the fine line circuit, and the semiconductor devices installed above the fine line circuit.
  • the surface of the circuit which is not covered by a solder mask, is made into a pad.
  • the pad is filled with the tin balls for electrically connecting with another semiconductor device.
  • Electroplating rather than the etching method is used for forming the fine line circuit layer, and a carrier and a metal barrier layer, which are needed during or at the end of the manufacturing process, are removed to increase the wiring density for realizing the object of high-density.
  • FIGS. 1A-1F are cross-sectional views showing the installation of a semiconductor device in accordance with the present invention.
  • FIG. 2 is a cross-sectional view showing the installation of another semiconductor device in accordance with the present invention.
  • FIGS. 3A-3D are cross-sectional views showing a manufacturing method of a high-density fine line structure in accordance with the present invention.
  • FIGS. 1A-1F the installation of a first semiconductor device in accordance with the present invention is shown, in which the part for forming the circuit without etching is shown in FIGS. 1A-1D , and the part for installing the first semiconductor device 1 is shown in FIGS. 1E-1F .
  • FIG. 2 With reference to FIG. 2 , the installation of a second semiconductor device 2 is completed by processing again the steps shown in FIGS. 1A-1F .
  • FIGS. 3A-3D a manufacturing method of a high-density fine line structure provided in accordance with the present invention is shown.
  • the high-density fine line structure and method of manufacturing the same mainly comprises a first board 1 and a second board 2 combined together to form a single board as shown in FIG. 3C , to increase the wiring density for realizing the high-density objective.
  • electroplating rather than the etching method is used for forming a fine line circuit layer 16 needed in the board 1 and board 2 , and then a carrier 10 and a metal barrier layer 12 (as shown in FIG. 3C ) are removed during the process or at the end of the manufacturing process, to increase the wiring density for realizing the object of the high-density.
  • the structures of the board 1 and the second board 2 and the method of combining the two boards to form a single board are described at first, and the manufacturing method of the fine line circuit layer 16 is described later.
  • the first board 1 and the second board 2 with similar structures each comprise a fine line circuit 16 , an insulated layer 18 on the same surface as the fine line circuit 16 , and a first semiconductor device 20 and a second semiconductor device 40 installed above the fine line circuit 16 .
  • the first board 1 , a dielectric film 50 and the second board 2 are stacked together in sequence. Then, as shown in FIG. 3B , the first board 1 and the second board 2 are combined to be the single board by using the dielectric film 50 .
  • the carrier 10 and the metal barrier layer 12 may be removed to expose the fine line circuit layer 16 as shown in FIG. 3C , to increase the wiring density for realizing the objective of the high-density.
  • the furthest outer fine line circuit layer 16 can be a tin ball pad, as is used for filling in a tin ball 34 , for ease to install on the other circuit boards or the other semiconductor device 41 , as shown in FIG. 3D .
  • a metal via post (not shown) can be formed in the dielectric film 50 .
  • a solder mask 51 is selectively formed above the fine line circuit layer 16 of the first board 1 and the second board 2 .
  • the part of the fine line circuit layer 16 which is not covered by the solder mask 51 , may be made into the pad.
  • the fine line circuit layer 16 may be a plurality of layers, and at the furthest outer layer of the fine line circuit layer 16 , besides the installation of the third semiconductor device 41 , the passive device (not shown) may also be installed. Moreover, during installing the first semiconductor device 20 , the second semiconductor device 40 and the third semiconductor device 41 on the fine line circuit layer 16 , the third semiconductor device 41 can be installed by using the wiring or the flip chip. Below, the manufacturing method of the fine line circuit layer 16 may be further described.
  • the high-density fine line structure and method of manufacturing the same mainly includes: the metal barrier layer 12 (or the carrier 10 itself) by which the plating current can be transmitted so that the fine line circuit layer 16 may be formed without etching (which is only attainable through the capability of manufacturing finer detailed circuits.).
  • the position of the fine line circuit 16 is defined by the patterned photoresist layer 14 , and then the fine line circuit 16 is formed by the plating method, so as to improve the fabrication capability of the fine pitch for meeting the needs of the first semiconductor device 20 having many I/Os.
  • the carrier 10 and the metal barrier layer 12 are removed at the end of the process for increasing the wiring density for realizing the high-density IC packaging objective.
  • the semi-additive process (SAP) which has higher cost associated, may not be required to be used in the present invention for manufacturing the fine line circuit.
  • the metal barrier layer 12 is first formed on the carrier 10 , in particular as shown in FIG. 1A .
  • the patterned photoresist layer 14 is formed above the metal barrier layer 12 (whose photoresist opening 14 a is for forming the circuit).
  • plating current is transmitted through the metal barrier layer 12 , and then the fine line circuit layer 16 may be formed on the metal barrier layer 12 in the photoresist opening 14 a .
  • the patterned photoresist layer 14 is removed.
  • the insulated layer 18 may be filled adjacent to the fine line circuit layer 16 on the metal barrier layer 12 , as show in FIG. 1D .
  • the surface of the fine line circuit 16 may be processed first to increase the surface area and the degree of roughness of the fine line circuit layer 16 .
  • the surface processing can be performed by roughening the surface of the fine line circuit 16 or by forming a plurality of copper micro-bumps (or nodules) on the surface.
  • the purpose is that the fine line circuit layer 16 can remain firmly adhered to the insulated layer 18 and other package components due to the increased contact surface area, after removing the carrier 10 and the metal barrier layer 12 which were used to support the fine line circuit layer 16 as shown in FIG. 3C .
  • the first semiconductor device 20 is formed on the fine line circuit layer 16 .
  • the device operation reliability is improved with the help of the first semiconductor device 20 to disperse the heat if a sufficient area is provided and the surface is processed properly.
  • the first semiconductor device 20 may be installed using wire bonding as shown in FIGS. 1E-1F or the flip chip as shown in FIG. 2 .
  • the first semiconductor device 20 may be adhered to the copper surface by using the heat conductive adhesive, and the conductor trace line 24 may be connected with the terminals of the first semiconductor device 20 on the predetermined fine line circuit layer 16 by using the wiring bonder machine. Then the first semiconductor device 20 and the conductor trace line 24 may be encapsulated by using an adhesive 26 , as shown in FIG. 1F .
  • the tin balls 42 are electrically connected with the fine line circuit layer 16 , and the tin balls 42 are filled using the adhesive 50 .
  • the tin balls 52 are electrically connected with the fine line circuit layer 16 , and the tin balls 52 are filled using the adhesive 54 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

A high-density fine line structure mainly includes: two boards with similar structures and a dielectric film for combing the two boards. Semiconductor devices respectively in two boards are opposite to each other after the two boards are combined. The two boards each include a fine line circuit, an insulated layer on the same surface, and the semiconductor device installed above the fine line circuit. The surface of the circuit, which is not covered by a solder mask, is made into a pad. The pad is filled with the tin balls for electrically connecting with another semiconductor device. Electroplating rather than the etching method is used for forming the fine line circuit layer, and a carrier and a metal barrier layer, which are needed during or at the end of the manufacturing process, are removed to increase the wiring density for realizing the object of high-density.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This is a division of U.S. patent application Ser. No. 11/772,208, filed Jun. 30, 2007, which is incorporated herewith by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates generally to a method of manufacturing the package structure, and in particular to a high-density fine line structure and method of manufacturing the same.
  • 2. The Prior Arts
  • One of the important challenges in the IC industry is how to keep under a proper cost for assembling various types of functions inside a limited package form done effectively, so that chips performing different functions are to reach optimal performance. However, in the applications as used in the digital, analog, memory, and wireless communications fields, etc, different electrical circuits having different functionalities can produce different performance requirements and results corresponding to under the production technology scaling. Therefore, a single chip having many integrated functions may not provide the most optimal solution. As the SOC, SiP, PiP (Package-in-Package), PoP (Package-on-Package), and stack CSP technique have rapidly advanced, it can be predicted that the most capable system chip is a packaged system which can make the most of the space allowance to integrate various chips having different functions under the various different technologies and different voltage operation environments.
  • In detail, the system-in-package (SIP) is a package in which chips of various IC types are assembled. A new technique which is developed from the SIP is to be able to stack many chips inside a package module, and to be able to provide or integrate more functions or higher density by utilizing the third dimensional space. In packaging structures, the stack CSP is firstly launched to the public, of which the corresponding products are memory combo, and is able to stack six layers of memory chips in a BGA package. Herein, apart from the conventional wire bonding, the solder bumps or the flip-chip technique can also be used, while the interposers can be added to assist stacking, or perhaps the heat extraction can also be gradually applied.
  • For example, a package of the stack chips should include the dies as the building blocks which are in separated-form each other, but are connected with each other by conducting wires, and may include the stack of one or more memory chips, an analog chip stacked on another SOC or digital chip, and also another separate RF chip disposed on a multi-layer interconnected substrate, where these chips have different control and I/O (input/output) paths. Moreover, if there is a memory in the stacked chip, the control software can write into the non-volatile memory (NVM).
  • However, because the conventional fine line technique is unable to achieve any major breakthrough in technology, the manufacturing process for fabricating the more complicated package structure as described above cannot yield greater further overall package volume reductions, for meeting the growing thinner and lighter requirements of the electronic devices.
  • In the conventional manufacturing of the 50 μm fine pitch line circuit on the build up material such as the glass-fiber-reinforced resin material, the method includes: using a 1.5-5.0 μm thin copper as the conductive layer for the pattern plating, the flash etching is performed to etch the thin copper layer with thickness of 1.5-5.0 μm. Because a rough surface of the thin copper layer is required to be combined with the glass-fiber-reinforced resin material, the rough surface structure of the thin copper layer is therefore required in the corresponding method. According to the structure, the etching operation as required is to lead to increased etching depth for processing, thereby resulting in the damage to the wire width after plating. Due to the thickness of the thin copper layer, the etching amount may not be reduced further, and therefore, high-density board having thinner fine pitch lower than 50 μm can not be manufactured.
  • During plating of the nickel on the fine line circuit layer of the printed circuit board, the electrical current is transmitted into the board, especially for the fine line circuit layer required to be electroplated, it is necessary that the electrical current may be transmitted by the conductor trace lines which are connected with the fine line circuit layer. Although the fine line circuit layer can be fully covered using the plated nickel layer by this method, the conductor trace lines are still retained in the printed circuit board after the plating, and thereby to occupy the limited wiring density. In order to decrease the wiring density, because the width of the conductor trace line then becomes relatively narrowed, the thickness of the plated nickel layer may not be uniform; therefore, the decrease of the width of the conductor trace line may not be suitable for use for increasing the wiring density.
  • In order to improve electrical performance and reducing interference, and at the same time, to increase the wiring density, the printed circuit board currently are designed without the conductor trace lines, and the adhesion of the wire bonding region may be optimized by nickel plating the nickel, rather than by using the chemical nickel plating (or the chemical gold plating) whose reliability is not as good. Therefore, the wire bonding region made without conductor trace lines but using nickel plating method are typically manufactured by the GPP operation.
  • However, before performing the GPP operation, because the plated nickel layer is formed before the solder mask (SM), the area of the plated nickel layer occupied under the SM is relatively large. Because the adhesion between the SM and the plated nickel layer is poor, the relatively high requirement for reliability and thermal stability today is unable to be met by the conventional manufacturing methods.
  • Otherwise, in the manufacturing method as in the non-plating line (NPL) method, besides having a complex set of procedures, a specialized machine is required for use for plating the thin copper layer, and the etching parameters for the etching are difficult for control after plating the thin copper; as a result, micro short are often resulted, or the micro short occurring during reliability testing are produced resulting in unmanageable situations.
  • No matter whichever type of NPL manufacturing method is used, the fine line layer is to be defined by the un-etched metal layer, and sometimes to rely on the selective etching of the metal layer. But, according to conventional method, the etching cannot be controlled accurately; therefore, the manufacturing of the fine line circuit cannot rely reliably upon etching, otherwise the fine pitch line circuit faces tremendous development barrier.
  • SUMMARY OF THE INVENTION
  • A primary objective of the present invention is to provide a high-density fine line structure and method of manufacturing the same, which without using etching as the method for forming the circuit, only the patterned photoresist layer is used to define the location of the fine line layer, and the plating method is used to form the fine line layer (the plating electrical current is transmitted by a removable carrier or a metal barrier layer hereon), and to form the fine line circuit for realizing the thinning effect. Later, the carrier and the metal barrier layer may be removed during or at the end of the manufacturing process to increase the wiring density for realizing the higher-density objective. Meanwhile, the higher-cost semi-additive process (SAP) technique is also not used in the present invention.
  • Based upon the above objective, the solution of the present invention is to provide a high-density fine line structure, which includes two boards with the similar structures and a dielectric film for combining the two boards. Semiconductor devices respectively in the two boards are opposite to each other after the two boards are combined. The boards each include a fine line circuit, an insulated layer on the same surface as the fine line circuit, and the semiconductor devices installed above the fine line circuit. The surface of the circuit, which is not covered by a solder mask, is made into a pad. The pad is filled with the tin balls for electrically connecting with another semiconductor device. Electroplating rather than the etching method is used for forming the fine line circuit layer, and a carrier and a metal barrier layer, which are needed during or at the end of the manufacturing process, are removed to increase the wiring density for realizing the object of high-density.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be apparent to those skilled in the art by reading the following detailed description of a preferred embodiment thereof, with reference to the attached drawings, in which:
  • FIGS. 1A-1F are cross-sectional views showing the installation of a semiconductor device in accordance with the present invention;
  • FIG. 2 is a cross-sectional view showing the installation of another semiconductor device in accordance with the present invention; and
  • FIGS. 3A-3D are cross-sectional views showing a manufacturing method of a high-density fine line structure in accordance with the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • With reference to the drawings and in particular to FIGS. 1A-1F, the installation of a first semiconductor device in accordance with the present invention is shown, in which the part for forming the circuit without etching is shown in FIGS. 1A-1D, and the part for installing the first semiconductor device 1 is shown in FIGS. 1E-1F.
  • With reference to FIG. 2, the installation of a second semiconductor device 2 is completed by processing again the steps shown in FIGS. 1A-1F.
  • With reference to FIGS. 3A-3D, a manufacturing method of a high-density fine line structure provided in accordance with the present invention is shown.
  • Referring to FIG. 3A, the high-density fine line structure and method of manufacturing the same provided in the present invention, mainly comprises a first board 1 and a second board 2 combined together to form a single board as shown in FIG. 3C, to increase the wiring density for realizing the high-density objective. As shown in FIGS. 1A-1F, to manufacture the board 1 and the board 2, electroplating rather than the etching method is used for forming a fine line circuit layer 16 needed in the board 1 and board 2, and then a carrier 10 and a metal barrier layer 12 (as shown in FIG. 3C) are removed during the process or at the end of the manufacturing process, to increase the wiring density for realizing the object of the high-density.
  • Below, the structures of the board 1 and the second board 2 and the method of combining the two boards to form a single board are described at first, and the manufacturing method of the fine line circuit layer 16 is described later.
  • As show in FIG. 3A, the first board 1 and the second board 2 with similar structures, each comprise a fine line circuit 16, an insulated layer 18 on the same surface as the fine line circuit 16, and a first semiconductor device 20 and a second semiconductor device 40 installed above the fine line circuit 16.
  • In order to let the first semiconductor device 20 in the first board 1 and the second semiconductor device 40 in the second board 2 opposite to each other after the first board 1 and the second board 2 are combined to be the single board, the first board 1, a dielectric film 50 and the second board 2 are stacked together in sequence. Then, as shown in FIG. 3B, the first board 1 and the second board 2 are combined to be the single board by using the dielectric film 50. Thus, the carrier 10 and the metal barrier layer 12 may be removed to expose the fine line circuit layer 16 as shown in FIG. 3C, to increase the wiring density for realizing the objective of the high-density. The furthest outer fine line circuit layer 16 can be a tin ball pad, as is used for filling in a tin ball 34, for ease to install on the other circuit boards or the other semiconductor device 41, as shown in FIG. 3D. Besides, if the first semiconductor device 20 and the second semiconductor device 40 are required to be conducted, a metal via post (not shown) can be formed in the dielectric film 50.
  • Before filling in the tin balls 52 and 62, a solder mask 51 is selectively formed above the fine line circuit layer 16 of the first board 1 and the second board 2. The part of the fine line circuit layer 16, which is not covered by the solder mask 51, may be made into the pad.
  • Specially, in this structure, the fine line circuit layer 16 may be a plurality of layers, and at the furthest outer layer of the fine line circuit layer 16, besides the installation of the third semiconductor device 41, the passive device (not shown) may also be installed. Moreover, during installing the first semiconductor device 20, the second semiconductor device 40 and the third semiconductor device 41 on the fine line circuit layer 16, the third semiconductor device 41 can be installed by using the wiring or the flip chip. Below, the manufacturing method of the fine line circuit layer 16 may be further described.
  • In detail, as shown in FIG. 1C, the high-density fine line structure and method of manufacturing the same provided in the present invention mainly includes: the metal barrier layer 12 (or the carrier 10 itself) by which the plating current can be transmitted so that the fine line circuit layer 16 may be formed without etching (which is only attainable through the capability of manufacturing finer detailed circuits.). The position of the fine line circuit 16 is defined by the patterned photoresist layer 14, and then the fine line circuit 16 is formed by the plating method, so as to improve the fabrication capability of the fine pitch for meeting the needs of the first semiconductor device 20 having many I/Os. In addition, the carrier 10 and the metal barrier layer 12 are removed at the end of the process for increasing the wiring density for realizing the high-density IC packaging objective. Meanwhile, the semi-additive process (SAP), which has higher cost associated, may not be required to be used in the present invention for manufacturing the fine line circuit.
  • As shown in FIGS. 1A-1D, the metal barrier layer 12 is first formed on the carrier 10, in particular as shown in FIG. 1A. For forming the fine line circuit layer 16 as shown in FIG. 1B, the patterned photoresist layer 14 is formed above the metal barrier layer 12 (whose photoresist opening 14 a is for forming the circuit). And as shown in FIG. 1C, plating current is transmitted through the metal barrier layer 12, and then the fine line circuit layer 16 may be formed on the metal barrier layer 12 in the photoresist opening 14 a. Thus, the patterned photoresist layer 14 is removed.
  • After the formation of the fine line circuit layer 16, the insulated layer 18 may be filled adjacent to the fine line circuit layer 16 on the metal barrier layer 12, as show in FIG. 1D.
  • Before filling in the insulated layer 18, in order to improve the reliability of the adhesive between the fine line circuit layer 16 and the filled insulated layer 18, the surface of the fine line circuit 16 may be processed first to increase the surface area and the degree of roughness of the fine line circuit layer 16. The surface processing can be performed by roughening the surface of the fine line circuit 16 or by forming a plurality of copper micro-bumps (or nodules) on the surface. Whatever the method is used, the purpose is that the fine line circuit layer 16 can remain firmly adhered to the insulated layer 18 and other package components due to the increased contact surface area, after removing the carrier 10 and the metal barrier layer 12 which were used to support the fine line circuit layer 16 as shown in FIG. 3C.
  • As shown in FIG. 1E, the first semiconductor device 20 is formed on the fine line circuit layer 16. The device operation reliability is improved with the help of the first semiconductor device 20 to disperse the heat if a sufficient area is provided and the surface is processed properly.
  • During the mounting of the first semiconductor device 20 on the fine line circuit layer 16, the first semiconductor device 20 may be installed using wire bonding as shown in FIGS. 1E-1F or the flip chip as shown in FIG. 2. When using the wiring bonding as shown in FIG. 1E, the first semiconductor device 20 may be adhered to the copper surface by using the heat conductive adhesive, and the conductor trace line 24 may be connected with the terminals of the first semiconductor device 20 on the predetermined fine line circuit layer 16 by using the wiring bonder machine. Then the first semiconductor device 20 and the conductor trace line 24 may be encapsulated by using an adhesive 26, as shown in FIG. 1F.
  • As shown in FIG. 2, when using the flip chip for mounting the second semiconductor device 40, the tin balls 42 are electrically connected with the fine line circuit layer 16, and the tin balls 42 are filled using the adhesive 50. As shown in FIG. 3D, when using the flip chip for mounting the third semiconductor device 41, the tin balls 52 are electrically connected with the fine line circuit layer 16, and the tin balls 52 are filled using the adhesive 54.
  • Although the present invention has been described with reference to the preferred embodiment thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.

Claims (5)

1. A manufacturing method of a high-density fine line structure, comprising:
(a) forming a metal barrier layer on a carrier;
(b) forming a patterned photoresist layer on the metal barrier layer, and the patterned photoresist layer having a photoresist opening;
(c) transmitting a plating current through the metal barrier layer, and forming a fine line circuit layer on the metal barrier layer in the photoresist opening;
(d) removing the patterned photoresist layer;
(e) filling in an insulated layer on the metal barrier layer and at the side of the fine line circuit layer;
(f) installing a first semiconductor device above the fine line circuit layer;
(g) installing a second semiconductor device above a fine line circuit layer by processing the step (a) to the step (f) again.
(h) combing a first board formed in the step (a) to the step (f) and a second board formed in the step (g) to be a single board by a dielectric film; and
(i) removing the carrier and the metal barrier layer of the first board and the second board, and exposing the fine line circuit layer, and parts of the fine line circuit layer are able to be a tin ball pad, as is used for filling in a tin ball.
2. The method as claimed in claim 1, further comprising: selectively forming a solder mask on the fine line circuit layer, and the other surface of the fine line circuit layer which is not covered by the solder mask is to be made into a pad.
3. The method as claimed in claim 2, wherein the pad, which is filled with the tin balls, is electrically connected with a third semiconductor device.
4. The method as claimed in claim 3, wherein the third semiconductor device is installed on the fine line circuit layer by using wire bonding or flip chip.
5. The method as claimed in claim 1, wherein the first semiconductor device or the second semiconductor device is installed on the fine line circuit layer by using wire bonding or flip chip.
US12/347,964 2007-06-30 2008-12-31 High-Density Fine Line Structure And Method Of Manufacturing The Same Abandoned US20090111213A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/347,964 US20090111213A1 (en) 2007-06-30 2008-12-31 High-Density Fine Line Structure And Method Of Manufacturing The Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/772,208 US8471375B2 (en) 2007-06-30 2007-06-30 High-density fine line structure and method of manufacturing the same
US12/347,964 US20090111213A1 (en) 2007-06-30 2008-12-31 High-Density Fine Line Structure And Method Of Manufacturing The Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/772,208 Division US8471375B2 (en) 2007-06-30 2007-06-30 High-density fine line structure and method of manufacturing the same

Publications (1)

Publication Number Publication Date
US20090111213A1 true US20090111213A1 (en) 2009-04-30

Family

ID=40159429

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/772,208 Active 2031-05-23 US8471375B2 (en) 2007-06-30 2007-06-30 High-density fine line structure and method of manufacturing the same
US12/347,964 Abandoned US20090111213A1 (en) 2007-06-30 2008-12-31 High-Density Fine Line Structure And Method Of Manufacturing The Same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/772,208 Active 2031-05-23 US8471375B2 (en) 2007-06-30 2007-06-30 High-density fine line structure and method of manufacturing the same

Country Status (1)

Country Link
US (2) US8471375B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120063106A1 (en) * 2010-09-15 2012-03-15 Young Il Kim Rf layered module using three dimensional vertical wiring and disposing method thereof
TWI583620B (en) * 2015-06-09 2017-05-21 A Method for Making Micron Welded Copper Wire with Oxidation and Etching of Copper

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955953B2 (en) * 2007-12-17 2011-06-07 Freescale Semiconductor, Inc. Method of forming stacked die package
CN104658923B (en) * 2010-09-01 2018-08-14 群成科技股份有限公司 Four side flat non-connection pin packaging methods and its manufactured structure
CN102386105B (en) * 2010-09-01 2016-02-03 群成科技股份有限公司 Four limit flat non-connection pin method for packing and the structure made thereof
CN103346140A (en) * 2013-06-10 2013-10-09 孙青秀 Package based on silvering technology adopted for frame and manufacturing process of package
TWI697082B (en) * 2019-11-01 2020-06-21 藍勝堃 Structure for reducing conductor signal loss of circuit board

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032058A (en) * 1973-06-29 1977-06-28 Ibm Corporation Beam-lead integrated circuit structure and method for making the same including automatic registration of beam-leads with corresponding dielectric substrate leads
US20040145044A1 (en) * 2002-01-23 2004-07-29 Matsushita Electric Industrial Co., Ltd. Circuit component built-in module with embedded semiconductor chip and method of manufacturing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4692839A (en) 1985-06-24 1987-09-08 Digital Equipment Corporation Multiple chip interconnection system and package
US4901136A (en) * 1987-07-14 1990-02-13 General Electric Company Multi-chip interconnection package
TW567601B (en) * 2002-10-18 2003-12-21 Siliconware Precision Industries Co Ltd Module device of stacked semiconductor package and method for fabricating the same
KR100621991B1 (en) * 2003-01-03 2006-09-13 삼성전자주식회사 Chip scale stack package
US6953994B2 (en) * 2003-10-02 2005-10-11 Interdigital Technology Corporation Wireless coupling of staked dies within system in package

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032058A (en) * 1973-06-29 1977-06-28 Ibm Corporation Beam-lead integrated circuit structure and method for making the same including automatic registration of beam-leads with corresponding dielectric substrate leads
US20040145044A1 (en) * 2002-01-23 2004-07-29 Matsushita Electric Industrial Co., Ltd. Circuit component built-in module with embedded semiconductor chip and method of manufacturing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120063106A1 (en) * 2010-09-15 2012-03-15 Young Il Kim Rf layered module using three dimensional vertical wiring and disposing method thereof
KR20120028780A (en) * 2010-09-15 2012-03-23 삼성전자주식회사 Rf stacked module using three dimension vertical interconnection and arrangement method thereof
US8824163B2 (en) * 2010-09-15 2014-09-02 Samsung Electronics Co., Ltd. RF layered module using three dimensional vertical wiring and disposing method thereof
KR101696644B1 (en) * 2010-09-15 2017-01-16 삼성전자주식회사 Rf stacked module using three dimension vertical interconnection and arrangement method thereof
TWI583620B (en) * 2015-06-09 2017-05-21 A Method for Making Micron Welded Copper Wire with Oxidation and Etching of Copper

Also Published As

Publication number Publication date
US8471375B2 (en) 2013-06-25
US20090001603A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
US8115104B2 (en) Circuit board with buried conductive trace formed thereon and method for manufacturing the same
JP5661225B2 (en) Semiconductor device packaging method
JP6057190B2 (en) Method for manufacturing semiconductor element or package
US7202556B2 (en) Semiconductor package having substrate with multi-layer metal bumps
US6667190B2 (en) Method for high layout density integrated circuit package substrate
US20160043041A1 (en) Semiconductor packages and methods of packaging semiconductor devices
US20120049366A1 (en) Package structure having through-silicon-via (tsv) chip embedded therein and fabrication method thereof
US7728437B2 (en) Semiconductor package form within an encapsulation
US9209146B2 (en) Electronic device packages having bumps and methods of manufacturing the same
US20070241463A1 (en) Electrode, manufacturing method of the same, and semiconductor device having the same
US20120307445A1 (en) Printed circuit board (pcb) including a wire pattern, semiconductor package including the pcb, electrical and electronic apparatus including the semiconductor package, method of fabricating the pcb, and method of fabricating the semiconductor package
US20090008766A1 (en) High-Density Fine Line Structure And Method Of Manufacturing The Same
US8471375B2 (en) High-density fine line structure and method of manufacturing the same
KR20100133303A (en) Semiconductor device and method of manufacturing the same
KR101106234B1 (en) Methods of forming a single layer substrate for high capacity memory cards
US7947535B2 (en) Thin package system with external terminals
US7745260B2 (en) Method of forming semiconductor package
US20110110058A1 (en) Board on chip package substrate and manufacturing method thereof
US20070269929A1 (en) Method of reducing stress on a semiconductor die with a distributed plating pattern
US20070267759A1 (en) Semiconductor device with a distributed plating pattern
CN116130456A (en) Chip high-density interconnection packaging structure and manufacturing method thereof
US20090001547A1 (en) High-Density Fine Line Structure And Method Of Manufacturing The Same
US20080303150A1 (en) High-Density Fine Line Structure And Method Of Manufacturing The Same
US20110101510A1 (en) Board on chip package substrate and manufacturing method thereof
JP2008305952A (en) High density fine line mounting structure and manufacturing method of the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION