US20090100589A1 - Motor-driven pump for pool or spa - Google Patents
Motor-driven pump for pool or spa Download PDFInfo
- Publication number
- US20090100589A1 US20090100589A1 US12/342,164 US34216408A US2009100589A1 US 20090100589 A1 US20090100589 A1 US 20090100589A1 US 34216408 A US34216408 A US 34216408A US 2009100589 A1 US2009100589 A1 US 2009100589A1
- Authority
- US
- United States
- Prior art keywords
- motor
- pump
- seal plate
- water
- drive shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 52
- 230000009182 swimming Effects 0.000 claims abstract description 9
- 238000005086 pumping Methods 0.000 claims 5
- 238000001914 filtration Methods 0.000 description 7
- 238000010276 construction Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000013037 co-molding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/10—Shaft sealings
- F04D29/106—Shaft sealings especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/10—Shaft sealings
- F04D29/12—Shaft sealings using sealing-rings
- F04D29/126—Shaft sealings using sealing-rings especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/60—Fluid transfer
- F05D2260/602—Drainage
- F05D2260/6022—Drainage of leakage having past a seal
Definitions
- This invention relates generally to improvements in motor-driven pumps of the type used, for example, for circulating water in a swimming pool or spa environment or the like. More particularly, this invention relates to an improved, relatively simplified and more compact pump of the type having a seal plate mounted at one end of a motor housing and adapted to support multiple seal components to prevent water leakage past the seal plate and into the motor housing.
- Motor-driven pumps for use with a swimming pool or spa are generally known in the art, wherein the pump is adapted to deliver a flow of water under pressure to one or more pool equipment items prior to recirculation of the water to the pool or spa.
- modern swimming pool and/or spa facilities typically include a filtration unit containing an appropriate filter media for collecting and thus removing solid debris such as fine grit and silt, twigs, leaves, insects, and other particulate matter from water circulated therethrough.
- a motor-driven pump draws water from the pool and/or spa for delivery to and through the filtration unit, and for subsequent return circulation to the pool and/or spa.
- This pump is typically operated on a regular schedule to maintain the water in a desired state of cleanliness and clarity.
- the pump may also circulate the water through additional equipment items such as heating and chemical treatment units and the like.
- the water can be circulated from the filtration unit to and through an hydraulically driven pool cleaner device mounted in the pool or spa and adapted for dislodging and collecting debris and particulate which has settled onto submerged surfaces.
- an hydraulically driven pool cleaner device mounted in the pool or spa and adapted for dislodging and collecting debris and particulate which has settled onto submerged surfaces.
- Exemplary hydraulically driven pool cleaner devices are shown and described in U.S. Pat. Nos. 5,863,425; 4,558,479; 4,589,986; and 3,822,754.
- a secondary or so-called booster pump is provided for boosting the pressure of water supplied to the pool cleaner device for insuring proper operation thereof.
- Such motor-driven pumps for pool and/or spa use commonly comprise an electric-powered motor of suitable size encased within a motor housing mounted at a suitable and relatively dry location near the associated pool or spa, typically alongside the associated filtration unit and other pool equipment items.
- the electric motor rotatably drives an output drive shaft which protrudes outwardly through a shaft bearing on the motor housing and is connected to an impeller positioned within a pump chamber defining a suction intake coupled to the body of water within the pool and/or spa, and a discharge outlet coupled to the filtration unit and/or other pool equipment items.
- a shaft seal arrangement is provided for preventing water leakage from the pump chamber, and resultant axial water migration along the drive shaft in a direction toward the motor housing and into potentially damaging contact with the shaft bearing and/or the electric-powered motor contained therein.
- a ventilated or open cylindrical extension bracket is mounted onto the motor housing in surrounding relation to the protruding drive shaft, and supports a pump housing defining the pump chamber at an outboard end of the extension bracket in axially spaced relation to the motor housing.
- a primary seal component is provided for sealing passage of the rotatable drive shaft through the pump housing into the pump chamber.
- a slinger element may be provided on the drive shaft for insuring radial discharge of any such leaking water into the ventilated space of the extension bracket, thereby precluding axial water migration into contact with the motor housing, the shaft bearing, or the electric-powered drive motor.
- extension bracket While such seal arrangements in motor-driven pumps have performed generally in a satisfactory manner, the inclusion of the extension bracket inherently results in a motor-driven pump configuration of extended length which may be unsuitable or undesirable for some mounting locations.
- the extension bracket inherently requires the impeller on the drive shaft to be cantilevered a significant axial distance from the shaft bearing on the motor housing, wherein this cantilevered distance can adversely contribute to vibration, noise, and increased bearing wear.
- an improved motor-driven pump for circulating a flow of water in a swimming pool and/or spa environment or the like.
- the improved motor-driven pump comprises a drive motor contained within a motor housing having a seal plate mounted at one end thereof and carrying a shaft bearing for rotatably supporting an outwardly protruding drive shaft.
- An outboard end of the drive shaft is connected to an impeller disposed within a pump chamber defined cooperatively by the seal plate and a volute housing mounted thereon.
- the seal plate further supports multiple seal components for effectively preventing water leakage from the pump chamber and along the drive shaft into contact with the shaft bearing or drive motor.
- the multiple seal components comprise a primary seal assembly including a stationary annular bushing carried by the seal plate in axially outboard spaced relation to the shaft bearing. This bushing defines an annular outboard face for running engagement by a dynamic seal ring carried on the drive shaft for rotation therewith.
- the stationary bushing is constructed from a ceramic material
- the dynamic seal ring is constructed from carbon or the like to provide a low friction sealed interface.
- the dynamic seal ring is carried at an inboard end of a compliant annular base ring mounted on the drive shaft for rotation therewith, at an axial position between the stationary bushing and a central hub on the impeller.
- This compliant base ring includes a circumferential outer groove defining an axially opposed pair of shoulders, with a spring seated within said groove for axially expanding the base ring to retain the dynamic seal ring in running engagement with the stationary bushing, and to retain an axial outboard end of the base ring against the impeller hub.
- the multiple seal components further include a secondary seal assembly positioned axially between the stationary bushing of the primary seal assembly and the shaft bearing, and within a vent chamber defined by the seal plate.
- the secondary seal assembly comprises at least one slinger element or disk for radially outwardly slinging any water leaking past the primary seal assembly in an inboard direction toward the shaft bearing.
- the vent chamber communicates with a drain channel formed in the seal plate, whereby water displaced radially outwardly by the slinger disk is discharged to atmosphere through the vent chamber and drain channel.
- FIG. 1 is a perspective view of a pump for pool or spa use, constructed in accordance with the present invention
- FIG. 2 is an enlarged and exploded perspective view illustrating assembly of components forming the pump of FIG. 1 ;
- FIG. 3 is an enlarged fragmented sectional view taken generally on the line 3 - 3 of FIG. 1 ;
- FIG. 4 is an enlarged fragmented sectional view corresponding generally with the encircled region 4 of FIG. 3 ;
- FIG. 5 is an enlarged fragmented sectional view corresponding generally with the encircled region 5 of FIG. 3 .
- an improved motor-driven pump referred to generally in FIGS. 1-3 by the reference numeral 10 for circulating a flow of a liquid such as water in a swimming pool or spa environment or the like.
- the improved pump 10 incorporates a drive shaft 12 ( FIGS. 2-4 ) for rotatably driving an impeller 14 to draw water from the pool and/or spa, and to pump or discharge the water under pressure to one or more items of pool equipment (not shown), such as a water filtration unit, or hydraulically driven pool cleaner device, or the like.
- the improved pump 10 has a relatively compact and simplified construction to include a seal plate 16 ( FIGS.
- this seal plate 16 supports multiple seal components for effectively safeguarding against water leakage into potentially damaging contact with a drive motor 20 ( FIG. 2 ) encased within the motor housing 18 , and/or with a shaft bearing 22 ( FIGS. 3 and 5 ) which rotatably supports the drive shaft 12 .
- the motor-driven pump 10 comprises an electric-powered drive motor 20 of suitable size and power output, for rotatably driving the impeller 14 within a pump chamber 24 ( FIGS. 3-4 ) having a suction intake port 26 and a pressure discharge port 28 ( FIGS. 1-2 ).
- the suction intake port 26 may comprise an axial inflow port adapted for connection to a suction conduit 30 which is coupled to the body of water contained within a swimming pool and/or spa (not shown) in a manner known to persons skilled in the art.
- the pressure discharge port 28 may be tangentially oriented and adapted for connection to a pressure-side discharge conduit 32 which is coupled to one or more pool equipment items (also not shown) such as a water filtration unit, or hydraulically driven pool cleaner device, or the like, again in a manner which is well known to persons skilled in the art.
- the drive motor 20 is encased within the motor housing 18 having a typically cylindrical shape and adapted for secure and stable mounting by means of bolts 34 ( FIG. 2 ) or the like onto a cradle-shaped stand 36 , which is in turn adapted for bolt-down or similar mounting onto a concrete base (not shown) or the like positioned typically at a relatively dry location near or adjacent the associated pool and/or spa, and the associated pool equipment items.
- the drive motor 20 when turned on, rotatably drives the drive shaft 12 , for rotatably driving the impeller 14 mounted onto one end of the drive shaft.
- the drive shaft 12 protrudes axially outwardly from one end of the motor housing 18 , to extend through a central bore 38 ( FIGS. 3 and 5 ) formed in the seal plate 16 which is mounted by bolts (not shown) or the like to extend over and substantially close said one end of the motor housing 18 .
- a shaft bearing 22 is seated within an inboard-side counterbore 40 lining this central bore 38 in the seal plate 16 for rotatably supporting the drive shaft 12 .
- An outboard end of the drive shaft 12 is suitably configured for rotary drive connection with a central hub 42 of the impeller 14 . More particularly, as shown best in FIGS. 3-4 , the outboard end of the drive shaft 12 may be formed to define an external thread 44 configured for thread-in connection with an internal thread 46 defined by a cup-shaped insert 48 seated as by co-molding or the like within the central hub 42 of the impeller 14 .
- This insert 48 may be formed from brass or the like, whereas the impeller 14 may be constructed from a sturdy molded plastic or the like.
- the direction of the interengaged threads 44 , 46 is selected to prevent loosening of the threaded interface upon rotary driving of the impeller to pump water.
- the impeller 14 is rotatably driven within the pump chamber 24 , and is configured for drawing water axially inwardly through the section intake port 26 and for discharging the water outwardly through the tangentially oriented pressure discharge port 28 .
- the pump chamber 24 is defined by a shell-shaped volute housing member 50 which in turn forms the intake and discharge ports 26 , 28 .
- This volute housing 50 has a size and shape for seated engagement with a peripheral rim 52 on the seal plate 16 , with a circumferential band clamp 54 or the like being tightly secured about the peripheries of the volute housing 50 and the seal plate rim 52 . As shown best in FIG.
- the band clamp 54 may include a threaded stud 56 extending between circumferentially spaced-apart stops 58 and 60 , with a rotary knob 62 threaded onto the stud 56 for drawing the stops 58 , 60 toward each other for tightly retaining the components together.
- a seal ring 64 such as a large diameter elastomeric O-ring seal or the like is clamped between the periphery of the volute housing 50 and the seal plate rim 52 to prevent water leakage therebetween.
- volute housing 50 thus cooperates with an outboard face of the seal plate 16 to define the pump chamber 24 having the rotary driven impeller 14 therein.
- the volute housing 50 is oriented relative to the seal plate 16 with a generally tangential tubular segment 66 defining the discharge port 28 projecting vertically upwardly.
- a drain port 68 formed in the volute housing 50 and normally closed by a removable drain plug 70 , is positioned generally at the bottom of the pump chamber 24 .
- the clamp-mounted volute housing 50 can be assembled with the seal plate 16 in alternative orientations to accommodate specialized or atypical plumbing connection requirements.
- multiple seal components are carried by the seal plate 16 , for substantially preventing leakage of water from an inboard side of the pump chamber 24 , along the drive shaft 12 , into potentially damaging contact with the shaft bearing 22 or the electric-powered drive motor 20 .
- These multiple seal components include a primary seal assembly 72 ( FIGS. 2-4 ) for sealing passage of the drive shaft 12 through the seal plate 16 and into the water environment of the pump chamber 24 .
- a secondary seal assembly 74 ( FIGS. 2 and 5 ) is additionally provided at a location axially between the shaft bearing 22 and the primary seal assembly 72 , to provide a secondary safeguard against water migration in an inboard direction along the drive shaft 12 into contact with the shaft bearing 22 .
- the shaft bearing 22 is seated within the counterbore 40 at an inboard side or face of an inner wall segment 76 of the seal plate 16 .
- the primary seal assembly 72 includes a stationary annular bushing 78 seated within a counterbore 80 formed in an outboard side or face of an outboard wall segment 82 of the seal plate 16 .
- These inboard and outboard wall segments 76 and 82 of the seal plate 16 are axially separated by a vent chamber 84 having a lower end communicating with a drain channel 86 that is open to the atmosphere at a lower margin of the seal plate 16 .
- the secondary seal assembly 74 is positioned within the vent chamber 84 , at a location axially between the primary seal assembly 72 and the shaft bearing 22 .
- the stationary bushing 78 of the primary seal assembly 72 is shown in seated or nested relation within a cup-shaped annular support ring 88 which may be formed from a compliant rubber-based material or the like.
- This compliant support ring 88 thus sealingly supports the outer diameter of the bushing 78 relative to the outboard wall segment 82 of the seal plate 14 , whereas the inner diameter of the bushing 78 is sized for at least slight running clearance relative to the rotary drive shaft 12 .
- An annular outboard-presented face of the stationary bushing 78 is engaged by an axially spring-loaded dynamic seal ring 90 which is mounted onto the drive shaft 12 for rotation therewith.
- an axially inboard-presented annular face of the dynamic seal ring 90 is springably retained in running engagement with the stationary bushing 78 , upon drive shaft rotation.
- the stationary bushing 78 is formed from a ceramic material
- the dynamic seal ring 90 is formed from a carbon-based or similar material.
- the dynamic seal ring 90 is supported at an axially inboard end of a compliant annular base ring 92 , formed from a rubber-based or other suitable elastomer and mounted onto the drive shaft 12 for rotation therewith.
- FIG. 4 shows this compliant base ring to include at least one and preferably multiple internal annular lands 94 which sealingly engage with the outer diameter of the drive shaft 12 , and thus prevent water leakage between the inner diameter of the base ring 92 and the outer diameter of the drive shaft 12 .
- the dynamic seal ring 90 is physically seated within an axially inboard-presented groove 96 at the rearmost or inboard end of the base ring.
- a mid-section of the compliant base ring 92 defines a radially outwardly open circumferential recessed groove 98 which separates an axially spaced-apart pair of shoulders 100 and 102 .
- a biasing spring 104 is seated within this circumferential groove 98 to react against these shoulders 100 , 102 , for normally urging said shoulders 100 , 102 axially apart, or axially away from each other.
- the groove 98 and adjoining portions of the outer diameter of the base ring 92 can be surface-reinforced by a relatively thin layer 106 of metal or the like, such as a thin lining of stainless steel or the like.
- the compliant base ring 92 is sufficiently expanded in an axial direction by the biasing spring 104 for applying a spring force to retain the dynamic seal ring 90 in spring-loaded running engagement with the stationary bushing 78 . That is, as shown, the spring 104 retains an axial outboard end of the compliant base ring 92 in seated and substantially sealed engagement with an axial inboard-presented face on the central hub 42 of the impeller 14 , and also retains the dynamic seal ring 90 in low friction running engagement with the stationary bushing 78 .
- the running engagement between the dynamic seal ring 90 and the bushing 78 provides a high quality seal between these components to prevent water leakage therebetween. Conveniently, these components are each located at least partially within the pump chamber 24 where water circulating therethrough provides sufficient cooling of the sealing components to prevent friction-caused overheating.
- the secondary seal assembly 74 intercepts such leaking water and physically re-directs it to the drain channel 86 . More particularly, as shown best in FIG. 5 in accordance with one example of the invention, the secondary seal assembly 74 comprises at least one and preferably multiple slinger disks such as the illustrative axially spaced pair of slinger disks 108 and 110 carried on the drive shaft 12 for rotation therewith at a position within the vent chamber 84 .
- An intermediate expansion washer 112 is desirably mounted onto the seal plate 16 between these two slinger disks 108 and 110 , wherein this washer 112 is sized for relatively close running clearance relative to the drive shaft.
- any water leaking in an inboard direction along the drive shaft 12 is initially re-directly radially outwardly by the first slinger disk 108 .
- any residual water remains and continues to leak axially in an inboard direction along the drive shaft, such water must travel through a tortuous or labyrinthine path initially radially outwardly and then radially inwardly to pass through the narrow clearance at the inner diameter of the washer 112 .
- the second slinger disk 110 functions to again re-direct the leaking water in a radially outward direction for discharge through the drain channel 86 .
- Persons skilled in the art will understand that alternative constructions for the secondary seal assembly 74 may be used, including but not limited to alternative seal arrangements including one or more slinger disks.
- the improved motor-driven pump 10 of the present application thus provides a relatively short and compact overall pump length, attributable to combining multiple seal components including the primary and secondary seal assemblies 72 and 74 into the common seal plate 16 on the motor housing 18 .
- the primary seal assembly which seals passage of the drive shaft 12 into the pump chamber 24 is positioned relatively close to the shaft bearing 22 , thereby reducing overall pump length while additionally providing a smooth-running and long-lived pump construction. Additional components such as mounting brackets of the type used in the prior art for spacing the pump chamber from the shaft bearing on the motor housing are thereby avoided.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
An improved motor-driven pump is provided for delivering a flow of water in a swimming pool or spa environment or the like. The improved pump includes a motor mounted within a motor housing having a seal plate mounted at one end thereof. The seal plate carries a shaft bearing for rotatably supporting a drive shaft having an outboard end connected to an impeller disposed within a pump chamber defined cooperatively by the seal plate and a volute housing mounted thereon. A primary seal assembly includes an axially spring-loaded dynamic seal ring carried on the drive shaft for rotation therewith and for running engagement with a stationary bushing carried by the seal plate. A secondary seal assembly is positioned axially between the primary seal assembly and motor bearing, and includes at least one slinger disk for radially outwardly slinging any water leaking past the primary seal assembly through a vent chamber.
Description
- This application claims the benefit of copending U.S.
Provisional Application 60/537,083, filed Jan. 16, 2004. - This invention relates generally to improvements in motor-driven pumps of the type used, for example, for circulating water in a swimming pool or spa environment or the like. More particularly, this invention relates to an improved, relatively simplified and more compact pump of the type having a seal plate mounted at one end of a motor housing and adapted to support multiple seal components to prevent water leakage past the seal plate and into the motor housing.
- Motor-driven pumps for use with a swimming pool or spa are generally known in the art, wherein the pump is adapted to deliver a flow of water under pressure to one or more pool equipment items prior to recirculation of the water to the pool or spa. For example, modern swimming pool and/or spa facilities typically include a filtration unit containing an appropriate filter media for collecting and thus removing solid debris such as fine grit and silt, twigs, leaves, insects, and other particulate matter from water circulated therethrough. A motor-driven pump draws water from the pool and/or spa for delivery to and through the filtration unit, and for subsequent return circulation to the pool and/or spa. This pump is typically operated on a regular schedule to maintain the water in a desired state of cleanliness and clarity. The pump may also circulate the water through additional equipment items such as heating and chemical treatment units and the like.
- In some installations, the water can be circulated from the filtration unit to and through an hydraulically driven pool cleaner device mounted in the pool or spa and adapted for dislodging and collecting debris and particulate which has settled onto submerged surfaces. Exemplary hydraulically driven pool cleaner devices are shown and described in U.S. Pat. Nos. 5,863,425; 4,558,479; 4,589,986; and 3,822,754. In some pool equipment configurations, a secondary or so-called booster pump is provided for boosting the pressure of water supplied to the pool cleaner device for insuring proper operation thereof.
- Such motor-driven pumps for pool and/or spa use commonly comprise an electric-powered motor of suitable size encased within a motor housing mounted at a suitable and relatively dry location near the associated pool or spa, typically alongside the associated filtration unit and other pool equipment items. The electric motor rotatably drives an output drive shaft which protrudes outwardly through a shaft bearing on the motor housing and is connected to an impeller positioned within a pump chamber defining a suction intake coupled to the body of water within the pool and/or spa, and a discharge outlet coupled to the filtration unit and/or other pool equipment items. A shaft seal arrangement is provided for preventing water leakage from the pump chamber, and resultant axial water migration along the drive shaft in a direction toward the motor housing and into potentially damaging contact with the shaft bearing and/or the electric-powered motor contained therein.
- In a common shaft seal arrangement, a ventilated or open cylindrical extension bracket is mounted onto the motor housing in surrounding relation to the protruding drive shaft, and supports a pump housing defining the pump chamber at an outboard end of the extension bracket in axially spaced relation to the motor housing. A primary seal component is provided for sealing passage of the rotatable drive shaft through the pump housing into the pump chamber. With this arrangement, in the event of water leakage past the primary seal component and along the drive shaft in a direction toward the motor housing, such water leakage is normally and harmlessly discharged into the open ventilated space of the extension bracket. A slinger element may be provided on the drive shaft for insuring radial discharge of any such leaking water into the ventilated space of the extension bracket, thereby precluding axial water migration into contact with the motor housing, the shaft bearing, or the electric-powered drive motor.
- While such seal arrangements in motor-driven pumps have performed generally in a satisfactory manner, the inclusion of the extension bracket inherently results in a motor-driven pump configuration of extended length which may be unsuitable or undesirable for some mounting locations. In addition, the extension bracket inherently requires the impeller on the drive shaft to be cantilevered a significant axial distance from the shaft bearing on the motor housing, wherein this cantilevered distance can adversely contribute to vibration, noise, and increased bearing wear.
- Accordingly, there exists a need for further improvements in and to motor-driven pumps of the type used for circulating water in a swimming pool and/or spa and the like, wherein the extension bracket is eliminated to result in an overall motor-driven pump construction of significantly reduced length, and further wherein an effective seal arrangement is provided for safeguarding the shaft bearing and drive motor against contact with any water leaking along the drive shaft. The present invention fulfills these needs and provides further related advantages.
- In accordance with the invention, an improved motor-driven pump is provided for circulating a flow of water in a swimming pool and/or spa environment or the like. The improved motor-driven pump comprises a drive motor contained within a motor housing having a seal plate mounted at one end thereof and carrying a shaft bearing for rotatably supporting an outwardly protruding drive shaft. An outboard end of the drive shaft is connected to an impeller disposed within a pump chamber defined cooperatively by the seal plate and a volute housing mounted thereon. The seal plate further supports multiple seal components for effectively preventing water leakage from the pump chamber and along the drive shaft into contact with the shaft bearing or drive motor.
- In the preferred form, the multiple seal components comprise a primary seal assembly including a stationary annular bushing carried by the seal plate in axially outboard spaced relation to the shaft bearing. This bushing defines an annular outboard face for running engagement by a dynamic seal ring carried on the drive shaft for rotation therewith. In the preferred form, the stationary bushing is constructed from a ceramic material, and the dynamic seal ring is constructed from carbon or the like to provide a low friction sealed interface. The dynamic seal ring is carried at an inboard end of a compliant annular base ring mounted on the drive shaft for rotation therewith, at an axial position between the stationary bushing and a central hub on the impeller. This compliant base ring includes a circumferential outer groove defining an axially opposed pair of shoulders, with a spring seated within said groove for axially expanding the base ring to retain the dynamic seal ring in running engagement with the stationary bushing, and to retain an axial outboard end of the base ring against the impeller hub.
- The multiple seal components further include a secondary seal assembly positioned axially between the stationary bushing of the primary seal assembly and the shaft bearing, and within a vent chamber defined by the seal plate. In the preferred form, the secondary seal assembly comprises at least one slinger element or disk for radially outwardly slinging any water leaking past the primary seal assembly in an inboard direction toward the shaft bearing. The vent chamber communicates with a drain channel formed in the seal plate, whereby water displaced radially outwardly by the slinger disk is discharged to atmosphere through the vent chamber and drain channel.
- Other features and advantages of the invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
- The accompanying drawings illustrate the invention. In such drawings:
-
FIG. 1 is a perspective view of a pump for pool or spa use, constructed in accordance with the present invention; -
FIG. 2 is an enlarged and exploded perspective view illustrating assembly of components forming the pump ofFIG. 1 ; -
FIG. 3 is an enlarged fragmented sectional view taken generally on the line 3-3 ofFIG. 1 ; -
FIG. 4 is an enlarged fragmented sectional view corresponding generally with the encircled region 4 ofFIG. 3 ; and -
FIG. 5 is an enlarged fragmented sectional view corresponding generally with theencircled region 5 ofFIG. 3 . - As shown in the exemplary drawings, an improved motor-driven pump referred to generally in
FIGS. 1-3 by thereference numeral 10 is provided for circulating a flow of a liquid such as water in a swimming pool or spa environment or the like. The improvedpump 10 incorporates a drive shaft 12 (FIGS. 2-4 ) for rotatably driving animpeller 14 to draw water from the pool and/or spa, and to pump or discharge the water under pressure to one or more items of pool equipment (not shown), such as a water filtration unit, or hydraulically driven pool cleaner device, or the like. In accordance with the invention, the improvedpump 10 has a relatively compact and simplified construction to include a seal plate 16 (FIGS. 2-5 ) at one end of amotor housing 18, wherein thisseal plate 16 supports multiple seal components for effectively safeguarding against water leakage into potentially damaging contact with a drive motor 20 (FIG. 2 ) encased within themotor housing 18, and/or with a shaft bearing 22 (FIGS. 3 and 5 ) which rotatably supports thedrive shaft 12. - In general, the motor-driven
pump 10 comprises an electric-powereddrive motor 20 of suitable size and power output, for rotatably driving theimpeller 14 within a pump chamber 24 (FIGS. 3-4 ) having asuction intake port 26 and a pressure discharge port 28 (FIGS. 1-2 ). As illustrated in dotted lines inFIG. 1 , thesuction intake port 26 may comprise an axial inflow port adapted for connection to asuction conduit 30 which is coupled to the body of water contained within a swimming pool and/or spa (not shown) in a manner known to persons skilled in the art. Thepressure discharge port 28 may be tangentially oriented and adapted for connection to a pressure-side discharge conduit 32 which is coupled to one or more pool equipment items (also not shown) such as a water filtration unit, or hydraulically driven pool cleaner device, or the like, again in a manner which is well known to persons skilled in the art. Thedrive motor 20 is encased within themotor housing 18 having a typically cylindrical shape and adapted for secure and stable mounting by means of bolts 34 (FIG. 2 ) or the like onto a cradle-shaped stand 36, which is in turn adapted for bolt-down or similar mounting onto a concrete base (not shown) or the like positioned typically at a relatively dry location near or adjacent the associated pool and/or spa, and the associated pool equipment items. - The
drive motor 20, when turned on, rotatably drives thedrive shaft 12, for rotatably driving theimpeller 14 mounted onto one end of the drive shaft. In this regard, thedrive shaft 12 protrudes axially outwardly from one end of themotor housing 18, to extend through a central bore 38 (FIGS. 3 and 5 ) formed in theseal plate 16 which is mounted by bolts (not shown) or the like to extend over and substantially close said one end of themotor housing 18. A shaft bearing 22 is seated within an inboard-side counterbore 40 lining thiscentral bore 38 in theseal plate 16 for rotatably supporting thedrive shaft 12. - An outboard end of the
drive shaft 12 is suitably configured for rotary drive connection with acentral hub 42 of theimpeller 14. More particularly, as shown best inFIGS. 3-4 , the outboard end of thedrive shaft 12 may be formed to define anexternal thread 44 configured for thread-in connection with aninternal thread 46 defined by a cup-shaped insert 48 seated as by co-molding or the like within thecentral hub 42 of theimpeller 14. Thisinsert 48 may be formed from brass or the like, whereas theimpeller 14 may be constructed from a sturdy molded plastic or the like. Importantly, the direction of theinterengaged threads - The
impeller 14 is rotatably driven within thepump chamber 24, and is configured for drawing water axially inwardly through thesection intake port 26 and for discharging the water outwardly through the tangentially orientedpressure discharge port 28. In accordance with one aspect of the invention, thepump chamber 24 is defined by a shell-shapedvolute housing member 50 which in turn forms the intake anddischarge ports volute housing 50 has a size and shape for seated engagement with aperipheral rim 52 on theseal plate 16, with acircumferential band clamp 54 or the like being tightly secured about the peripheries of thevolute housing 50 and theseal plate rim 52. As shown best inFIG. 2 , theband clamp 54 may include a threadedstud 56 extending between circumferentially spaced-apartstops rotary knob 62 threaded onto thestud 56 for drawing thestops seal ring 64 such as a large diameter elastomeric O-ring seal or the like is clamped between the periphery of thevolute housing 50 and the seal plate rim 52 to prevent water leakage therebetween. - An inboard face of the
volute housing 50 thus cooperates with an outboard face of theseal plate 16 to define thepump chamber 24 having the rotary drivenimpeller 14 therein. In a typical geometry as shown (FIG. 1 ), thevolute housing 50 is oriented relative to theseal plate 16 with a generallytangential tubular segment 66 defining thedischarge port 28 projecting vertically upwardly. In this orientation, adrain port 68 formed in thevolute housing 50, and normally closed by aremovable drain plug 70, is positioned generally at the bottom of thepump chamber 24. However, persons skilled in the art will recognize and appreciate that the clamp-mountedvolute housing 50 can be assembled with theseal plate 16 in alternative orientations to accommodate specialized or atypical plumbing connection requirements. - In accordance with further important aspects of the invention, multiple seal components are carried by the
seal plate 16, for substantially preventing leakage of water from an inboard side of thepump chamber 24, along thedrive shaft 12, into potentially damaging contact with the shaft bearing 22 or the electric-powereddrive motor 20. These multiple seal components include a primary seal assembly 72 (FIGS. 2-4 ) for sealing passage of thedrive shaft 12 through theseal plate 16 and into the water environment of thepump chamber 24. A secondary seal assembly 74 (FIGS. 2 and 5 ) is additionally provided at a location axially between theshaft bearing 22 and theprimary seal assembly 72, to provide a secondary safeguard against water migration in an inboard direction along thedrive shaft 12 into contact with theshaft bearing 22. - More particularly, as viewed best in
FIGS. 3-5 , the shaft bearing 22 is seated within thecounterbore 40 at an inboard side or face of aninner wall segment 76 of theseal plate 16. By contrast, theprimary seal assembly 72 includes a stationaryannular bushing 78 seated within acounterbore 80 formed in an outboard side or face of anoutboard wall segment 82 of theseal plate 16. These inboard andoutboard wall segments seal plate 16 are axially separated by avent chamber 84 having a lower end communicating with adrain channel 86 that is open to the atmosphere at a lower margin of theseal plate 16. Thesecondary seal assembly 74 is positioned within thevent chamber 84, at a location axially between theprimary seal assembly 72 and theshaft bearing 22. - The
stationary bushing 78 of theprimary seal assembly 72 is shown in seated or nested relation within a cup-shapedannular support ring 88 which may be formed from a compliant rubber-based material or the like. Thiscompliant support ring 88 thus sealingly supports the outer diameter of thebushing 78 relative to theoutboard wall segment 82 of theseal plate 14, whereas the inner diameter of thebushing 78 is sized for at least slight running clearance relative to therotary drive shaft 12. An annular outboard-presented face of thestationary bushing 78 is engaged by an axially spring-loadeddynamic seal ring 90 which is mounted onto thedrive shaft 12 for rotation therewith. Accordingly, an axially inboard-presented annular face of thedynamic seal ring 90 is springably retained in running engagement with thestationary bushing 78, upon drive shaft rotation. In the preferred form, for relatively low friction running engagement between these components, thestationary bushing 78 is formed from a ceramic material, and thedynamic seal ring 90 is formed from a carbon-based or similar material. - The
dynamic seal ring 90 is supported at an axially inboard end of a compliantannular base ring 92, formed from a rubber-based or other suitable elastomer and mounted onto thedrive shaft 12 for rotation therewith.FIG. 4 shows this compliant base ring to include at least one and preferably multiple internalannular lands 94 which sealingly engage with the outer diameter of thedrive shaft 12, and thus prevent water leakage between the inner diameter of thebase ring 92 and the outer diameter of thedrive shaft 12. Thedynamic seal ring 90 is physically seated within an axially inboard-presentedgroove 96 at the rearmost or inboard end of the base ring. A mid-section of thecompliant base ring 92 defines a radially outwardly open circumferential recessedgroove 98 which separates an axially spaced-apart pair ofshoulders spring 104 is seated within thiscircumferential groove 98 to react against theseshoulders shoulders FIG. 4 , thegroove 98 and adjoining portions of the outer diameter of thebase ring 92 can be surface-reinforced by a relativelythin layer 106 of metal or the like, such as a thin lining of stainless steel or the like. - The
compliant base ring 92 is sufficiently expanded in an axial direction by the biasingspring 104 for applying a spring force to retain thedynamic seal ring 90 in spring-loaded running engagement with thestationary bushing 78. That is, as shown, thespring 104 retains an axial outboard end of thecompliant base ring 92 in seated and substantially sealed engagement with an axial inboard-presented face on thecentral hub 42 of theimpeller 14, and also retains thedynamic seal ring 90 in low friction running engagement with thestationary bushing 78. The running engagement between thedynamic seal ring 90 and thebushing 78 provides a high quality seal between these components to prevent water leakage therebetween. Conveniently, these components are each located at least partially within thepump chamber 24 where water circulating therethrough provides sufficient cooling of the sealing components to prevent friction-caused overheating. - In the event that the
primary seal assembly 72, as described, permits any water leakage along thedrive shaft 12 in an inboard direction toward the shaft bearing 22, thesecondary seal assembly 74 intercepts such leaking water and physically re-directs it to thedrain channel 86. More particularly, as shown best inFIG. 5 in accordance with one example of the invention, thesecondary seal assembly 74 comprises at least one and preferably multiple slinger disks such as the illustrative axially spaced pair ofslinger disks drive shaft 12 for rotation therewith at a position within thevent chamber 84. Anintermediate expansion washer 112 is desirably mounted onto theseal plate 16 between these twoslinger disks washer 112 is sized for relatively close running clearance relative to the drive shaft. - Accordingly, any water leaking in an inboard direction along the
drive shaft 12 is initially re-directly radially outwardly by thefirst slinger disk 108. In the event that any residual water remains and continues to leak axially in an inboard direction along the drive shaft, such water must travel through a tortuous or labyrinthine path initially radially outwardly and then radially inwardly to pass through the narrow clearance at the inner diameter of thewasher 112. In the unlikely event that continued leakage occurs, thesecond slinger disk 110 functions to again re-direct the leaking water in a radially outward direction for discharge through thedrain channel 86. Persons skilled in the art will understand that alternative constructions for thesecondary seal assembly 74 may be used, including but not limited to alternative seal arrangements including one or more slinger disks. - The improved motor-driven
pump 10 of the present application thus provides a relatively short and compact overall pump length, attributable to combining multiple seal components including the primary andsecondary seal assemblies common seal plate 16 on themotor housing 18. With this construction, the primary seal assembly which seals passage of thedrive shaft 12 into thepump chamber 24 is positioned relatively close to the shaft bearing 22, thereby reducing overall pump length while additionally providing a smooth-running and long-lived pump construction. Additional components such as mounting brackets of the type used in the prior art for spacing the pump chamber from the shaft bearing on the motor housing are thereby avoided. - A variety of further modifications and improvements in and to the improved motor-
drive pump 10 of the present invention will be apparent to those persons skilled in the art. Accordingly, no limitation on the invention is intended by way of the foregoing description and accompanying drawings, except as set forth in the appended claims.
Claims (5)
1.-41. (canceled)
42. A swimming pool or spa pumping system, comprising:
a. a motor-driven pump comprising:
i. a motor;
ii. a drive shaft driven by the motor;
iii. a base comprising a lower surface configured to be oriented generally horizontally;
iv. a volute housing member defining, at least in part, a pump chamber, the volute housing member having (A) an axially-oriented suction intake port and (B) a tangentially-oriented, generally vertically upwardly projecting pressure discharge port; and
v. an impeller carried by the drive shaft within the pump chamber for pumping water from the suction intake port to the pressure discharge port so that water exits the pump generally vertically through the pressure discharge port;
b. means for conveying water from the pool or spa to the suction intake port; and
c. means for conveying water from the pressure discharge port to pool or spa equipment.
43. A pumping system according to claim 42 in which the volute housing member further has a drain port formed therein.
44. A pumping system according to claim 42 in which the pump further comprises a seal plate having a rim and a band clamp, and in which the volute housing member further has a periphery, the seal plate and the volute housing member together defining the pump chamber and the band clamp being removably secured to the rim of the seal plate and to the periphery of the volute housing member.
45. A pumping system according to claim 44 in which the band clamp comprises:
a. first and second stops spaced circumferentially;
b. a threaded stud extending between the first and second stops; and
c. a knob threaded onto the stud for drawing the first and second stops toward each other to secure the band clamp to the rim of the seal plate and the periphery of the volute housing member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/342,164 US20090100589A1 (en) | 2004-01-16 | 2008-12-23 | Motor-driven pump for pool or spa |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53708304P | 2004-01-16 | 2004-01-16 | |
US11/035,504 US7001159B2 (en) | 2004-01-16 | 2005-01-13 | Motor-driven pump for pool or spa |
US11/333,051 US20060177325A1 (en) | 2004-01-16 | 2006-01-17 | Motor-driven pump for pool or spa |
US12/342,164 US20090100589A1 (en) | 2004-01-16 | 2008-12-23 | Motor-driven pump for pool or spa |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/333,051 Continuation US20060177325A1 (en) | 2004-01-16 | 2006-01-17 | Motor-driven pump for pool or spa |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090100589A1 true US20090100589A1 (en) | 2009-04-23 |
Family
ID=34825911
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/035,504 Active US7001159B2 (en) | 2004-01-16 | 2005-01-13 | Motor-driven pump for pool or spa |
US11/333,051 Abandoned US20060177325A1 (en) | 2004-01-16 | 2006-01-17 | Motor-driven pump for pool or spa |
US12/342,164 Abandoned US20090100589A1 (en) | 2004-01-16 | 2008-12-23 | Motor-driven pump for pool or spa |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/035,504 Active US7001159B2 (en) | 2004-01-16 | 2005-01-13 | Motor-driven pump for pool or spa |
US11/333,051 Abandoned US20060177325A1 (en) | 2004-01-16 | 2006-01-17 | Motor-driven pump for pool or spa |
Country Status (6)
Country | Link |
---|---|
US (3) | US7001159B2 (en) |
EP (1) | EP1711709A2 (en) |
AU (1) | AU2005208003A1 (en) |
CA (1) | CA2552743A1 (en) |
WO (1) | WO2005072480A2 (en) |
ZA (1) | ZA200606478B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9051039B1 (en) * | 2014-02-11 | 2015-06-09 | Rm Industries, Inc. | Trolling motor stand |
US9979182B2 (en) | 2014-02-24 | 2018-05-22 | Intex Marketing Ltd. | Wave-making mechanism |
US10960282B2 (en) | 2017-01-11 | 2021-03-30 | Intex Marketing Ltd. | Pool with an annular lane |
US20210129002A1 (en) | 2019-11-01 | 2021-05-06 | Intex Industries Xiamen Co. Ltd. | Attachment structure for a swimming machine |
US11035375B1 (en) * | 2018-06-26 | 2021-06-15 | Sundance Spas, Inc. | Pump drip control system |
US11583743B2 (en) | 2017-06-22 | 2023-02-21 | Intex Marketing Ltd. | Adjustable hanging assembly for flow generating device |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006059238A2 (en) | 2004-10-20 | 2006-06-08 | Waterco Limited | Pump secondary seal |
US8186517B2 (en) * | 2005-11-01 | 2012-05-29 | Hayward Industries, Inc. | Strainer housing assembly and stand for pump |
US7531092B2 (en) * | 2005-11-01 | 2009-05-12 | Hayward Industries, Inc. | Pump |
US8182212B2 (en) * | 2006-09-29 | 2012-05-22 | Hayward Industries, Inc. | Pump housing coupling |
US7988408B2 (en) * | 2007-05-04 | 2011-08-02 | Envirotech Pumpsystems, Inc. | Two-piece bearing housing for a centrifugal pump |
FR2930602A1 (en) * | 2008-04-28 | 2009-10-30 | Gatech Sarl | HYDRAULIC PUMP WITH SPHERICAL BALL JOINT |
US8343339B2 (en) | 2008-09-16 | 2013-01-01 | Hayward Industries, Inc. | Apparatus for facilitating maintenance of a pool cleaning device |
US8297920B2 (en) | 2008-11-13 | 2012-10-30 | Hayward Industries, Inc. | Booster pump system for pool applications |
US8585378B2 (en) * | 2009-06-25 | 2013-11-19 | Nidec Motor Corporation | Integrated endshield and pump volute for an electric pump and method of forming an electric pump |
US8784652B2 (en) | 2010-09-24 | 2014-07-22 | Poolvergnuegen | Swimming pool cleaner with a rigid debris canister |
US8869337B2 (en) | 2010-11-02 | 2014-10-28 | Hayward Industries, Inc. | Pool cleaning device with adjustable buoyant element |
KR101241572B1 (en) * | 2010-11-15 | 2013-03-11 | 기아자동차주식회사 | Motor Driven Water Pump |
US9046107B2 (en) | 2011-08-11 | 2015-06-02 | Itt Manufacturing Enterprises Llc. | Vertical double suction pump enclosing tube seal |
US9194493B2 (en) | 2011-09-30 | 2015-11-24 | Pentair Water Pool And Spa, Inc. | Filter clamp lock |
DE202011108871U1 (en) * | 2011-12-09 | 2013-03-13 | Gardner Denver Schopfheim Gmbh | pump |
US9079128B2 (en) | 2011-12-09 | 2015-07-14 | Hayward Industries, Inc. | Strainer basket and related methods of use |
EP2626571B1 (en) * | 2012-02-08 | 2019-10-23 | Grundfos Holding A/S | Circlip with force limitation |
CN103122874B (en) * | 2013-02-21 | 2015-09-30 | 张其明 | Shaft-seal-free high temperature pump |
US9677294B2 (en) | 2013-03-15 | 2017-06-13 | Hayward Industries, Inc. | Pool cleaning device with wheel drive assemblies |
DE102013223806A1 (en) * | 2013-11-21 | 2015-05-21 | Ksb Aktiengesellschaft | relief device |
US9638205B2 (en) * | 2014-04-21 | 2017-05-02 | Mp Pumps, Inc. | Double seal pump with integral accumulator |
US10302082B2 (en) * | 2015-11-12 | 2019-05-28 | Nidec Motor Corporation | Pump motor for high temperature fluids |
ITUB20160965A1 (en) | 2016-02-23 | 2017-08-23 | Lgb Elettropompe Srl | ELECTRIC |
US10718337B2 (en) | 2016-09-22 | 2020-07-21 | Hayward Industries, Inc. | Self-priming dedicated water feature pump |
US10995763B1 (en) * | 2019-11-22 | 2021-05-04 | Justin Hood | Dynamic seal |
CA3171229A1 (en) | 2020-03-11 | 2021-09-16 | Troy Renken | Disposable insert for strainer basket |
US11788542B2 (en) * | 2020-08-14 | 2023-10-17 | Banjo Corporation | Tandem seal pump |
US11193504B1 (en) | 2020-11-24 | 2021-12-07 | Aquastar Pool Products, Inc. | Centrifugal pump having a housing and a volute casing wherein the volute casing has a tear-drop shaped inner wall defined by a circular body region and a converging apex with the inner wall comprising a blocker below at least one perimeter end of one diffuser blade |
USD986289S1 (en) | 2020-11-24 | 2023-05-16 | Aquastar Pool Products, Inc. | Centrifugal pump |
USD946629S1 (en) | 2020-11-24 | 2022-03-22 | Aquastar Pool Products, Inc. | Centrifugal pump |
Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US347197A (en) * | 1886-08-10 | William pohlmaist | ||
US813033A (en) * | 1905-05-16 | 1906-02-20 | Frederick A Bellamy | Tube-clip. |
US2312525A (en) * | 1941-09-05 | 1943-03-02 | Curtis Pump Co | Pump construction |
US2369282A (en) * | 1943-02-06 | 1945-02-13 | Curtis Pump Co | Submerged booster pump construction |
US2842063A (en) * | 1955-06-24 | 1958-07-08 | American Motors Corp | Water pump mounting |
US3359911A (en) * | 1966-02-21 | 1967-12-26 | Flair Mfg Corp | Circulating pump arrangements |
US3489340A (en) * | 1968-04-16 | 1970-01-13 | Garrett Corp | Centrifugal compressor |
US3549277A (en) * | 1969-03-17 | 1970-12-22 | Laval Turbine | Electric motor-driven rotary fuel pump with wet carbon bearing |
US3552888A (en) * | 1967-12-11 | 1971-01-05 | Svenska Precisionsverktyg Ab | Arrangement in pumps |
US3734650A (en) * | 1970-05-02 | 1973-05-22 | Kuehnle Kopp Kausch Ag | Exhaust-gas driven turbochargers |
US3822754A (en) * | 1972-07-26 | 1974-07-09 | M Henkin | Automatic swimming pool cleaner |
US3838939A (en) * | 1973-08-20 | 1974-10-01 | Kobe Inc | Pitot pump with means for excluding leakage from bearings |
US3841791A (en) * | 1972-05-30 | 1974-10-15 | Worthington Corp | Adaptor and frame for a centrifugal pump |
US3850550A (en) * | 1971-08-05 | 1974-11-26 | Hydr O Matic Pump Co | Centrifugal pump and motor |
US3871796A (en) * | 1973-11-15 | 1975-03-18 | Mccord Corp | Pump assembly |
US3914072A (en) * | 1974-11-19 | 1975-10-21 | Weil Mclain Company Inc | Fluid pumping assembly |
US4172310A (en) * | 1975-09-18 | 1979-10-30 | Societe Internationale De Mecanique Industrielle S.A. | Improvement in assembling a centrifugal pump |
US4380416A (en) * | 1978-09-25 | 1983-04-19 | Societe Internationale De Mecanique Industrielle S.A. | Centrifugal pumps |
US4558479A (en) * | 1984-01-26 | 1985-12-17 | Alopex Industries, Inc. | Pool cleaner |
US4589986A (en) * | 1984-01-26 | 1986-05-20 | Alopex Industries, Inc. | Pool cleaner |
US4810174A (en) * | 1986-12-12 | 1989-03-07 | Flint & Walling, Inc. | Motor and pump assembly |
US4955793A (en) * | 1988-08-17 | 1990-09-11 | Nowax S.R.L. | Turbopump and similar operating machine with sealing connection structure to the motor |
US5624245A (en) * | 1994-10-26 | 1997-04-29 | Mp Pumps, Inc. | Centrufugal pump with thermally isolated and dynamically air cooled shaft seal assembly |
US5863425A (en) * | 1997-06-19 | 1999-01-26 | Polaris Pool Systems | Filter bag for a pool cleaner |
US6360731B1 (en) * | 2000-11-27 | 2002-03-26 | Yung-Yu Chang | Axial-type supercharger |
US6422822B1 (en) * | 2000-06-15 | 2002-07-23 | Shell Oil Company | Pressurized seal for submersible pumps |
US6464471B1 (en) * | 1998-09-08 | 2002-10-15 | Sta-Rite Industries, Inc. | High-efficiency motor/pump system for jetted bath/spas |
US7537439B2 (en) * | 2004-04-15 | 2009-05-26 | Liberty Pumps Inc. | Transfer pump |
-
2005
- 2005-01-06 CA CA002552743A patent/CA2552743A1/en not_active Abandoned
- 2005-01-06 EP EP05705198A patent/EP1711709A2/en not_active Withdrawn
- 2005-01-06 WO PCT/US2005/000428 patent/WO2005072480A2/en active Application Filing
- 2005-01-06 AU AU2005208003A patent/AU2005208003A1/en not_active Abandoned
- 2005-01-13 US US11/035,504 patent/US7001159B2/en active Active
-
2006
- 2006-01-17 US US11/333,051 patent/US20060177325A1/en not_active Abandoned
- 2006-08-03 ZA ZA200606478A patent/ZA200606478B/en unknown
-
2008
- 2008-12-23 US US12/342,164 patent/US20090100589A1/en not_active Abandoned
Patent Citations (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US347197A (en) * | 1886-08-10 | William pohlmaist | ||
US813033A (en) * | 1905-05-16 | 1906-02-20 | Frederick A Bellamy | Tube-clip. |
US2312525A (en) * | 1941-09-05 | 1943-03-02 | Curtis Pump Co | Pump construction |
US2369282A (en) * | 1943-02-06 | 1945-02-13 | Curtis Pump Co | Submerged booster pump construction |
US2842063A (en) * | 1955-06-24 | 1958-07-08 | American Motors Corp | Water pump mounting |
US3359911A (en) * | 1966-02-21 | 1967-12-26 | Flair Mfg Corp | Circulating pump arrangements |
US3552888A (en) * | 1967-12-11 | 1971-01-05 | Svenska Precisionsverktyg Ab | Arrangement in pumps |
US3489340A (en) * | 1968-04-16 | 1970-01-13 | Garrett Corp | Centrifugal compressor |
US3549277A (en) * | 1969-03-17 | 1970-12-22 | Laval Turbine | Electric motor-driven rotary fuel pump with wet carbon bearing |
US3734650A (en) * | 1970-05-02 | 1973-05-22 | Kuehnle Kopp Kausch Ag | Exhaust-gas driven turbochargers |
US3850550A (en) * | 1971-08-05 | 1974-11-26 | Hydr O Matic Pump Co | Centrifugal pump and motor |
US3841791A (en) * | 1972-05-30 | 1974-10-15 | Worthington Corp | Adaptor and frame for a centrifugal pump |
US3822754A (en) * | 1972-07-26 | 1974-07-09 | M Henkin | Automatic swimming pool cleaner |
US3838939A (en) * | 1973-08-20 | 1974-10-01 | Kobe Inc | Pitot pump with means for excluding leakage from bearings |
US3871796A (en) * | 1973-11-15 | 1975-03-18 | Mccord Corp | Pump assembly |
US3914072A (en) * | 1974-11-19 | 1975-10-21 | Weil Mclain Company Inc | Fluid pumping assembly |
US4172310A (en) * | 1975-09-18 | 1979-10-30 | Societe Internationale De Mecanique Industrielle S.A. | Improvement in assembling a centrifugal pump |
US4380416A (en) * | 1978-09-25 | 1983-04-19 | Societe Internationale De Mecanique Industrielle S.A. | Centrifugal pumps |
US4558479A (en) * | 1984-01-26 | 1985-12-17 | Alopex Industries, Inc. | Pool cleaner |
US4589986A (en) * | 1984-01-26 | 1986-05-20 | Alopex Industries, Inc. | Pool cleaner |
US4810174A (en) * | 1986-12-12 | 1989-03-07 | Flint & Walling, Inc. | Motor and pump assembly |
US4955793A (en) * | 1988-08-17 | 1990-09-11 | Nowax S.R.L. | Turbopump and similar operating machine with sealing connection structure to the motor |
US5624245A (en) * | 1994-10-26 | 1997-04-29 | Mp Pumps, Inc. | Centrufugal pump with thermally isolated and dynamically air cooled shaft seal assembly |
US5863425A (en) * | 1997-06-19 | 1999-01-26 | Polaris Pool Systems | Filter bag for a pool cleaner |
US6464471B1 (en) * | 1998-09-08 | 2002-10-15 | Sta-Rite Industries, Inc. | High-efficiency motor/pump system for jetted bath/spas |
US6422822B1 (en) * | 2000-06-15 | 2002-07-23 | Shell Oil Company | Pressurized seal for submersible pumps |
US6360731B1 (en) * | 2000-11-27 | 2002-03-26 | Yung-Yu Chang | Axial-type supercharger |
US7537439B2 (en) * | 2004-04-15 | 2009-05-26 | Liberty Pumps Inc. | Transfer pump |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9051039B1 (en) * | 2014-02-11 | 2015-06-09 | Rm Industries, Inc. | Trolling motor stand |
US9979182B2 (en) | 2014-02-24 | 2018-05-22 | Intex Marketing Ltd. | Wave-making mechanism |
US10193329B2 (en) | 2014-02-24 | 2019-01-29 | Intex Marketing Ltd. | Wave-making mechanism |
US10960282B2 (en) | 2017-01-11 | 2021-03-30 | Intex Marketing Ltd. | Pool with an annular lane |
US11583743B2 (en) | 2017-06-22 | 2023-02-21 | Intex Marketing Ltd. | Adjustable hanging assembly for flow generating device |
US11035375B1 (en) * | 2018-06-26 | 2021-06-15 | Sundance Spas, Inc. | Pump drip control system |
US20210129002A1 (en) | 2019-11-01 | 2021-05-06 | Intex Industries Xiamen Co. Ltd. | Attachment structure for a swimming machine |
US11890522B2 (en) | 2019-11-01 | 2024-02-06 | Intex Marketing Ltd. | Attachment structure for a swimming machine |
Also Published As
Publication number | Publication date |
---|---|
WO2005072480A2 (en) | 2005-08-11 |
US20050158195A1 (en) | 2005-07-21 |
EP1711709A2 (en) | 2006-10-18 |
AU2005208003A1 (en) | 2005-08-11 |
ZA200606478B (en) | 2010-01-27 |
US20060177325A1 (en) | 2006-08-10 |
WO2005072480A3 (en) | 2005-10-06 |
US7001159B2 (en) | 2006-02-21 |
CA2552743A1 (en) | 2005-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7001159B2 (en) | Motor-driven pump for pool or spa | |
EP0746683B1 (en) | Pump with fluid bearing | |
US5779434A (en) | Pump mounted thrust bearing | |
US4822241A (en) | Automatic dishwasher with a pump having a selectively adjustable impeller clearance | |
CA2085560A1 (en) | Combined boiler feed and condensate pump | |
US3664760A (en) | Centrifugal pump | |
MXPA05004774A (en) | Electrically driven pump. | |
US3499388A (en) | Centrifugal pump | |
WO2017058937A1 (en) | Pump devices | |
EP0912848B1 (en) | Mechanical seal arrangement for use with rotary fluid equipment | |
KR950006402B1 (en) | Centrifugal pump lubricant strainer system | |
JP4078833B2 (en) | Double suction centrifugal pump | |
EP1809906B1 (en) | Pump secondary seal | |
JP2004503712A (en) | Fuel pump with pollutant reduction channel | |
US20240309872A1 (en) | Self-priming centrifugal pump assembly with multifunctional sealing system | |
US5944482A (en) | Front-removable bearing housing for vertical turbine pump | |
JP3942428B2 (en) | Canned motor pump | |
KR20100050986A (en) | A underwater pump | |
RU2752789C1 (en) | Hermetically sealed electric pump | |
KR102430825B1 (en) | Canned motor device | |
WO1999030039A1 (en) | Centrifugal pump | |
JPS6235910Y2 (en) | ||
JPH03222898A (en) | Pumping plant | |
JP3179573B2 (en) | In-line pump | |
JPH05332279A (en) | Inline pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |