US20090069163A1 - Tough cordierite glass-ceramics - Google Patents

Tough cordierite glass-ceramics Download PDF

Info

Publication number
US20090069163A1
US20090069163A1 US12/266,982 US26698208A US2009069163A1 US 20090069163 A1 US20090069163 A1 US 20090069163A1 US 26698208 A US26698208 A US 26698208A US 2009069163 A1 US2009069163 A1 US 2009069163A1
Authority
US
United States
Prior art keywords
glass
ceramic
phase
cordierite
fracture toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/266,982
Inventor
George Halsey Beall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/266,982 priority Critical patent/US20090069163A1/en
Publication of US20090069163A1 publication Critical patent/US20090069163A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/16Halogen containing crystalline phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/653Processes involving a melting step
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/724Halogenide content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention relates to a toughened glass-ceramic compound comprising cordierite.
  • Crystalline articles are often produced by sintering. Sintering has certain disadvantages, including void creation and the need for pressing. In contrast, glassy articles may be cast in a nearly void-free state. Unfortunately, glassy materials can thermally deform well below their theoretical melting point.
  • crystalline grains can be annealed from an initially glassy material, thereby forming a glass-ceramic.
  • Glass-ceramics can have improved resistance to thermal deformation compared to the glass.
  • the glass is first shaped, usually above the liquidus temperature, and then annealed above a nucleation temperature.
  • the fluid nature of the glass above its liquidus can permit it to be shaped by casting.
  • the nucleation temperature is a temperature at which crystals begin to form and grow within the glass.
  • the selected nucleation temperature should be below a temperature at which the glass would thermally deform.
  • crystalline grains nucleate, begin to grow, and ultimately comprise a majority of the material.
  • High melting point compounds, such as titanium dioxide, can facilitate nucleation. Below its melting temperature, a crystal typically has significantly lower thermal deformation than a corresponding glass. Glass-ceramics have been used in a variety of applications where resistance to thermal deformation is an issue.
  • One such glass-ceramic composition includes a predominately crystalline phase comprising cordierite.
  • Cordierite a magnesium aluminum silicate
  • Cordierite glass-ceramics have good hardness and resistance to thermal deformation, but they can suffer from a high coefficient of thermal expansion (CTE) and have only average fracture toughness.
  • CTE coefficient of thermal expansion
  • one cordierite glass-ceramic has a fracture toughness of 2.2 MPa ⁇ m 0.5 and an average CTE of 57 ⁇ 10 ⁇ 7 /° C. over the temperature range from 25-1000° C. Poor fracture toughness permits cracks to form and propagate, which can cause an article to shatter or break under stress.
  • a high CTE decreases resistance to thermal shock. Low fracture toughness and high CTE limit the utility of cordierite glass-ceramics.
  • Silicon nitride Si 3 N 4
  • Silicon nitride has been used in applications requiring lower CTE and higher fracture toughness.
  • Silicon nitride has a CTE of about 30 ⁇ 10 ⁇ 7 /° C. and a fracture toughness around 6 MPa ⁇ m 0.5 .
  • Silicon nitride also has better high temperature capabilities than most metals combining high strength, creep resistance, and oxidation resistance. These properties have allowed silicon nitride to replace metals in turbine and reciprocating engines, and as engine components, bearings and cutting tools. In addition, its low thermal expansion coefficient provides good thermal shock resistance compared with most ceramic materials.
  • silicon nitride can be difficult to produce as a fully dense material (often requiring hot pressing), does not readily sinter, may oxidize under certain conditions, and cannot be heated over 1850° C. because it dissociates into silicon and nitrogen. These deficiencies cause silicon nitride components to be expensive, thereby limiting the applications using silicon nitride components.
  • the material should be relatively inexpensive and easy to produce. Preferably, it should be amenable to molding and should combine low CTE with high fracture toughness.
  • the present invention describes an internally nucleated cordierite glass-ceramic.
  • the cordierite glass-ceramic combines good fracture toughness with low CTE. Additionally, the present invention can be cast as a liquid, but after annealing it is substantially crystalline, and has high hardness, high Young's modulus, good thermal stability, high strength, low density and good dielectric properties.
  • the cordierite glass-ceramic of the present invention has a microstructure comprising interlocking crystalline phases dominated by a first phase consisting essentially of elongated cordierite grains and a second phase having an elongated or acicular structure.
  • a third phase may also be present and may comprise a crystalline ceramic capable of twinning. The energy associated with twinning can further increase fracture toughness.
  • the glass-ceramic of the present invention is directed to an internally nucleated cordierite glass-ceramic.
  • the cordierite glass-ceramic combines high fracture toughness in the range of 2.5 to 6.0 MPa ⁇ m 0.5 ; low thermal expansion coefficient in the range of 20-50 ⁇ 10 ⁇ 7 /° C. in the temperature range 25-1000° C.; high hardness with a Knoop value greater than 800; high Young's Modulus with a value greater than 10 GPa; thermal stability to a temperature of 1200° C. and above; high strengths generally above 200 MPa; low density from about 2.5-2.9 g/cc; and good dielectric properties with high resistivity, low dielectric constant and loss tangent.
  • the invention is further directed to a cordierite glass-ceramic where high fracture toughness is achieved by producing a microstructure of interlocking crystal phases in which cordierite predominates and where at least one phase is highly elongated or acicular.
  • an additional phase is desirable that is capable of lamellar twinning, for example without limitation, enstatite (MgSiO 3 ) and/or anorthite (CaAlSi 2 O 8 ). Twinning is known to enhance fracture toughness.
  • the cordierite glass-ceramic of the present invention has a CTE of less than 35 ⁇ 10 ⁇ 7 /° C. and a fracture toughness about up to 6.0 MPa ⁇ m 0.5 .
  • the low CTE results in improved thermal shock resistance. Higher fracture toughness lowers rates of crack initiation and propagation, thereby reducing risks of fracture.
  • the low CTE and increased fracture toughness of cordierite glass-ceramics of the present invention are comparable to silicon nitride.
  • cordierite glass-ceramics may be precision cast from a fluid glassy state, do not require hot pressing and, compared to silicon nitride, have lower densities and superior oxidation resistance.
  • FIG. 1 shows a microstructure of the present invention.
  • a toughened, low CTE cordierite glass-ceramic includes a plurality of phases at least one of which is acicular.
  • a glass-ceramic includes any material that is formed when a substantially glassy material is annealed at elevated temperature to produce a substantially crystalline material. Annealing induces nucleation of one or more crystalline phases. Nucleation may be accelerated by seeding the glass with high melting point compounds such as titanium dioxide. Annealing is completed when the intended level of crystallinity is reached, typically in excess of eighty percent and more typically greater than ninety percent.
  • the glass-ceramic of the present invention includes a plurality of crystalline phases. Importantly, any residual glass must not form a continuous phase throughout the material. To this end, crystallinity should be at least about 85% of the volume and preferably more than 90% crystalline. A typical toughened, low CTE cordierite glass-ceramic will have residual glass of less than 5% by volume.
  • the crystalline phases include at least two interlocked phases.
  • a first crystalline phase comprises elongated grains of cordierite.
  • a second crystalline phase is acicular and includes titanates, such as, for example magnesium titanates, aluminum titanates or combinations thereof.
  • a third phase may be present and preferably includes ceramic compounds capable of lamellar twinning.
  • Twinning ceramic compounds include enstatite (MgSiO3) and plagioclase feldspars, such as anorthite (CaAl 2 Si 2 O 8 ).
  • FIG. 1 shows a micrograph of such a glass ceramic of the present invention, including dark crystals of hexagonal cordierite, white crystals of acicular magnesium aluminum titanate, and grey crystals of anorthite.
  • the glass-ceramic comprises from 50-80 volume percent cordierite.
  • cordierite is inherently resistant to oxidation because it is already an oxide.
  • the cordierite phase includes a hexagonal crystal structure of 6/m 2/m 2/m.
  • Cordierite grains should have an aspect ratio of at least 2:1 and preferably at least about 5:1.
  • the elongated structure may facilitate interlocking with other crystal grains.
  • elongated cordierite grains may permit the second phase to grow along the elongated cordierite grain boundaries, thereby increasing the acicularity of the second phase.
  • the glass-ceramic comprises from 8-20 volume percent of an acicular second phase.
  • second phase crystallization begins around 850° C. culminating in cordierite formation near 1100° C. Further annealing permits the second phase to grow along cordierite grain boundaries.
  • the second crystalline phase should have an aspect ratio of at least 5:1. Acicularity as high as 20:1 has been observed. No theoretical upper limit of acicularity is expected. The measured acicularity will obviously be lower than the actual acicularity unless the second phase falls along the plane of the micrograph.
  • the acicular structure of second phase grains permits such grains to interact with a larger number of other phases or grains.
  • the second phase comprises compounds that inherently grow crystals in acicular, lath-like morphologies.
  • Compounds include, for example, titanates of magnesium and aluminum. Other suitable compounds are known to those skilled in the art. Fluidizing the glass during the annealing process may facilitate acicularization.
  • a low-silica glass can have a steep viscosity versus temperature curve that permits crystal growth in a preferred direction.
  • Orienting the acicular phase can result in a glass-ceramic with substantial mechanical or electrical anisotropy, which may be desirable depending on the application.
  • the glass-ceramic may include a third crystalline phase.
  • the third phase may be up to 20 volume percent of the glass-ceramic and is preferably at least about 10 volume percent.
  • the third crystalline phase increases acicularity of the second phase.
  • a third phase may improve acicularity for two reasons.
  • glass-ceramics including above about 90% cordierite tend to produce cordierite crystals with aspect ratios less than 2:1.
  • the blocky, short grain boundary, cordierite grains physically restrict elongated growth of the second phase.
  • high cordierite glasses include a substantial amount of alumina. High-alumina glasses do not allow solubility of as much titania as do glasses lower in alumina. Therefore, less acicular titanate can form. Also, premature phase separation and opalization can occur, so that benefits of the second phase are impaired.
  • Inclusion of the third phase increases the aspect ratio of cordierite crystals and hinders phase separation of titanates.
  • the third phase comprises crystalline, ceramic compounds that permit acicular growth of the second phase.
  • the third phase has the capacity for lamellar twinning.
  • Such ceramics twin by slipping along parallel twin planes. Twinning dissipates energy and can increase fracture toughness.
  • the glass-ceramic may comprise up to 20% by volume of the third crystalline phase.
  • Twinning ceramics include plagioclase feldspars, such as anorthite, Sr-feldspar, Ba-feldspar and pyroxenes such as enstatite, and aluminous enstatite.
  • the feldspar should have little or no sodium compounds. Sodium-containing feldspars can harm dielectric properties, microwave transparency, and slow crystallization during annealing thereby causing higher residual glass.
  • the third phase may also include, in addition to, or as an alternative to, the lamellar twinning phase, a crystalline phase selected from the group consisting of forsterite, fluormica, fluoramphibole, norbergite, spinel, sapphirine, mullite and xonotlite. These crystals phases can be included as means to enhance the toughness of the overall glass-ceramic.
  • the following toughness enhancement mechanisms are contemplated/theorized: (1) the forsterite, fluoramphibole, norbergite, mullite and xonotlite phases enhance toughness due the presence of blade-like crystals; (2) the spinel and sappharine crystal phases enhance toughness due the high modulus of the crystal phase which is effective to deflect fractures; and (3) the fluormica crystal phase typically exhibits good cleavage which in turn enhances the toughness of the glass-ceramic.
  • the glass-ceramic may be made from a composition comprising, in weight percent, 35-50% SiO 2 , 10-35% Al 2 O 3 , 10-25% MgO, 7-20% TiO 2 , up to 5% CaO, and up to 10% SrO, and up to 5% F, where the sum of CaO and SrO is at least 0.5%.
  • the composition is made into a glass and formed into a desired shape.
  • additives may be added to facilitate processing so that the composition includes up to 5 wt. % BaO, MnO, FeO, CoO, ZnO, As 2 O 3 , Sb 2 O 3 , B 2 O 3 , Na 2 O, and K 2 O).
  • the formed shape is annealed from 1100-1300° C. for a sufficient time to achieve the desired crystallinity.
  • a typical annealing time is around 10 hours. Crystallinity usually exceeds 85%.
  • Annealing produces a glass-ceramic comprising a discontinuous glass phase and a plurality of ceramic phases, including cordierite, a titanate, and optionally a twinning ceramic.
  • the glass-ceramic can have a modulus of rupture of 40,000 psi, which is more than 50% greater than standard cordierite glass-ceramics.
  • the glass-ceramic also has a CTE of less than 35 ⁇ 10 ⁇ 7 /° C. and a fracture toughness up to about 6.0 MPa ⁇ m 0.5 .
  • the glass-ceramic of the present invention may be formed into any number of articles.
  • the glass-ceramic is especially adapted to articles requiring low CTE, good fracture toughness, or oxidation resistance.
  • One such article is a radome.
  • the inherent oxidation-resistance of cordierite glass-ceramic permits its use where silicon nitride would oxidize.
  • cordierite glass-ceramics have typical densities from 2.63-2.77 g/ml compared to a silicon nitride density of about 3.30 g/ml.
  • Articles consisting essentially of the toughened cordierite glass-ceramic will have lower mass than the same silicon nitride articles.
  • a mixture was made consisting essentially of 45 wt. % silica, 28 wt. % alumina, 14 wt. % magnesia, 2 wt. % calicia and 10 wt. % titania.
  • the mixture was heated to form a clear, amber-colored glass and cast into a shape.
  • the shape was first annealed for 2 hours at 800° C.
  • the shape was further annealed for 10 hours at 1200° C. until a crystallinity of 95 vol. % was achieved.
  • the resultant glass-ceramic had a CTE of 30 ⁇ 10 ⁇ 7 /° C. and a fracture toughness of 3.8 MPa ⁇ m 0.5 .
  • Prior art cordierite glass-ceramic have a CTE of 55 ⁇ 10 ⁇ 7 /° C. and a fracture toughness of 2.2 MPa ⁇ m 0.5 .
  • the cordierite glass-ceramic of the present invention had a nearly 50% reduction in CTE while improving fracture toughness by over 70%.
  • compositional information is in weight percent and is, as batched, unless otherwise indicated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

An internally nucleated, toughened cordierite glass-ceramic is disclosed. The cordierite glass-ceramic has good oxidation resistance and fracture toughness and coefficient of thermal expansion rivaling that of silicon nitride. The glass-ceramic may be cast as a liquid. Annealing produces a material of high crystallinity combining high hardness, high Young's modulus, good thermal stability, high strength, low density and good dielectric properties. The glass-ceramic comprises interlocking crystalline phases dominated by cordierite and a second phase having an elongated or acicular structure. A third phase may comprise a crystalline ceramic that promotes acicularity of the second phase. The third phase is preferably capable of twinning.

Description

    FIELD OF THE INVENTION
  • The invention relates to a toughened glass-ceramic compound comprising cordierite.
  • BACKGROUND OF THE INVENTION
  • In high temperature application, crystalline materials often have superior resistance to thermal deformation compared to their glassy counterparts. Crystalline articles are often produced by sintering. Sintering has certain disadvantages, including void creation and the need for pressing. In contrast, glassy articles may be cast in a nearly void-free state. Unfortunately, glassy materials can thermally deform well below their theoretical melting point.
  • Prior art teaches that crystalline grains can be annealed from an initially glassy material, thereby forming a glass-ceramic. Glass-ceramics can have improved resistance to thermal deformation compared to the glass. The glass is first shaped, usually above the liquidus temperature, and then annealed above a nucleation temperature. The fluid nature of the glass above its liquidus can permit it to be shaped by casting. The nucleation temperature is a temperature at which crystals begin to form and grow within the glass. The selected nucleation temperature should be below a temperature at which the glass would thermally deform. During annealing, crystalline grains nucleate, begin to grow, and ultimately comprise a majority of the material. High melting point compounds, such as titanium dioxide, can facilitate nucleation. Below its melting temperature, a crystal typically has significantly lower thermal deformation than a corresponding glass. Glass-ceramics have been used in a variety of applications where resistance to thermal deformation is an issue.
  • One such glass-ceramic composition includes a predominately crystalline phase comprising cordierite. Cordierite, a magnesium aluminum silicate, was described by S. D. Stookey in U.S. Pat. No. 2,920,971, and may be used in refractory applications. Cordierite glass-ceramics have good hardness and resistance to thermal deformation, but they can suffer from a high coefficient of thermal expansion (CTE) and have only average fracture toughness. For example, one cordierite glass-ceramic has a fracture toughness of 2.2 MPa·m0.5 and an average CTE of 57×10−7/° C. over the temperature range from 25-1000° C. Poor fracture toughness permits cracks to form and propagate, which can cause an article to shatter or break under stress. A high CTE decreases resistance to thermal shock. Low fracture toughness and high CTE limit the utility of cordierite glass-ceramics.
  • Silicon nitride, Si3N4, has been used in applications requiring lower CTE and higher fracture toughness. Silicon nitride has a CTE of about 30×10−7/° C. and a fracture toughness around 6 MPa·m0.5. Silicon nitride also has better high temperature capabilities than most metals combining high strength, creep resistance, and oxidation resistance. These properties have allowed silicon nitride to replace metals in turbine and reciprocating engines, and as engine components, bearings and cutting tools. In addition, its low thermal expansion coefficient provides good thermal shock resistance compared with most ceramic materials. Negatively, silicon nitride can be difficult to produce as a fully dense material (often requiring hot pressing), does not readily sinter, may oxidize under certain conditions, and cannot be heated over 1850° C. because it dissociates into silicon and nitrogen. These deficiencies cause silicon nitride components to be expensive, thereby limiting the applications using silicon nitride components.
  • A need exists for a replacement material to silicon nitride. The material should be relatively inexpensive and easy to produce. Preferably, it should be amenable to molding and should combine low CTE with high fracture toughness.
  • SUMMARY OF THE INVENTION
  • The present invention describes an internally nucleated cordierite glass-ceramic. The cordierite glass-ceramic combines good fracture toughness with low CTE. Additionally, the present invention can be cast as a liquid, but after annealing it is substantially crystalline, and has high hardness, high Young's modulus, good thermal stability, high strength, low density and good dielectric properties.
  • The cordierite glass-ceramic of the present invention has a microstructure comprising interlocking crystalline phases dominated by a first phase consisting essentially of elongated cordierite grains and a second phase having an elongated or acicular structure. A third phase may also be present and may comprise a crystalline ceramic capable of twinning. The energy associated with twinning can further increase fracture toughness.
  • The glass-ceramic of the present invention is directed to an internally nucleated cordierite glass-ceramic. The cordierite glass-ceramic combines high fracture toughness in the range of 2.5 to 6.0 MPa·m0.5; low thermal expansion coefficient in the range of 20-50×10−7/° C. in the temperature range 25-1000° C.; high hardness with a Knoop value greater than 800; high Young's Modulus with a value greater than 10 GPa; thermal stability to a temperature of 1200° C. and above; high strengths generally above 200 MPa; low density from about 2.5-2.9 g/cc; and good dielectric properties with high resistivity, low dielectric constant and loss tangent. The invention is further directed to a cordierite glass-ceramic where high fracture toughness is achieved by producing a microstructure of interlocking crystal phases in which cordierite predominates and where at least one phase is highly elongated or acicular. Optionally, an additional phase is desirable that is capable of lamellar twinning, for example without limitation, enstatite (MgSiO3) and/or anorthite (CaAlSi2O8). Twinning is known to enhance fracture toughness.
  • In another embodiment, the cordierite glass-ceramic of the present invention has a CTE of less than 35×10−7/° C. and a fracture toughness about up to 6.0 MPa·m0.5. The low CTE results in improved thermal shock resistance. Higher fracture toughness lowers rates of crack initiation and propagation, thereby reducing risks of fracture. The low CTE and increased fracture toughness of cordierite glass-ceramics of the present invention are comparable to silicon nitride. Advantageously, cordierite glass-ceramics may be precision cast from a fluid glassy state, do not require hot pressing and, compared to silicon nitride, have lower densities and superior oxidation resistance.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a microstructure of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A toughened, low CTE cordierite glass-ceramic includes a plurality of phases at least one of which is acicular. A glass-ceramic includes any material that is formed when a substantially glassy material is annealed at elevated temperature to produce a substantially crystalline material. Annealing induces nucleation of one or more crystalline phases. Nucleation may be accelerated by seeding the glass with high melting point compounds such as titanium dioxide. Annealing is completed when the intended level of crystallinity is reached, typically in excess of eighty percent and more typically greater than ninety percent.
  • The glass-ceramic of the present invention includes a plurality of crystalline phases. Importantly, any residual glass must not form a continuous phase throughout the material. To this end, crystallinity should be at least about 85% of the volume and preferably more than 90% crystalline. A typical toughened, low CTE cordierite glass-ceramic will have residual glass of less than 5% by volume. The crystalline phases include at least two interlocked phases.
  • A first crystalline phase comprises elongated grains of cordierite. A second crystalline phase is acicular and includes titanates, such as, for example magnesium titanates, aluminum titanates or combinations thereof. Optionally, a third phase may be present and preferably includes ceramic compounds capable of lamellar twinning. Twinning ceramic compounds include enstatite (MgSiO3) and plagioclase feldspars, such as anorthite (CaAl2Si2O8). FIG. 1 shows a micrograph of such a glass ceramic of the present invention, including dark crystals of hexagonal cordierite, white crystals of acicular magnesium aluminum titanate, and grey crystals of anorthite.
  • The glass-ceramic comprises from 50-80 volume percent cordierite. Advantageously and unlike silicon nitride, cordierite is inherently resistant to oxidation because it is already an oxide. The cordierite phase includes a hexagonal crystal structure of 6/m 2/m 2/m. Cordierite grains should have an aspect ratio of at least 2:1 and preferably at least about 5:1. The elongated structure may facilitate interlocking with other crystal grains. Furthermore, elongated cordierite grains may permit the second phase to grow along the elongated cordierite grain boundaries, thereby increasing the acicularity of the second phase.
  • The glass-ceramic comprises from 8-20 volume percent of an acicular second phase. During annealing of the glass, second phase crystallization begins around 850° C. culminating in cordierite formation near 1100° C. Further annealing permits the second phase to grow along cordierite grain boundaries. The second crystalline phase should have an aspect ratio of at least 5:1. Acicularity as high as 20:1 has been observed. No theoretical upper limit of acicularity is expected. The measured acicularity will obviously be lower than the actual acicularity unless the second phase falls along the plane of the micrograph. The acicular structure of second phase grains permits such grains to interact with a larger number of other phases or grains. The second phase comprises compounds that inherently grow crystals in acicular, lath-like morphologies. Compounds include, for example, titanates of magnesium and aluminum. Other suitable compounds are known to those skilled in the art. Fluidizing the glass during the annealing process may facilitate acicularization. For example, a low-silica glass can have a steep viscosity versus temperature curve that permits crystal growth in a preferred direction. Orienting the acicular phase can result in a glass-ceramic with substantial mechanical or electrical anisotropy, which may be desirable depending on the application.
  • The glass-ceramic may include a third crystalline phase. The third phase may be up to 20 volume percent of the glass-ceramic and is preferably at least about 10 volume percent. Advantageously, the third crystalline phase increases acicularity of the second phase. Without intending to be bound by this explanation, a third phase may improve acicularity for two reasons. First, glass-ceramics including above about 90% cordierite tend to produce cordierite crystals with aspect ratios less than 2:1. The blocky, short grain boundary, cordierite grains physically restrict elongated growth of the second phase. Second, high cordierite glasses include a substantial amount of alumina. High-alumina glasses do not allow solubility of as much titania as do glasses lower in alumina. Therefore, less acicular titanate can form. Also, premature phase separation and opalization can occur, so that benefits of the second phase are impaired. Inclusion of the third phase increases the aspect ratio of cordierite crystals and hinders phase separation of titanates.
  • The third phase comprises crystalline, ceramic compounds that permit acicular growth of the second phase. Preferably, the third phase has the capacity for lamellar twinning. Such ceramics twin by slipping along parallel twin planes. Twinning dissipates energy and can increase fracture toughness. The glass-ceramic may comprise up to 20% by volume of the third crystalline phase. Twinning ceramics include plagioclase feldspars, such as anorthite, Sr-feldspar, Ba-feldspar and pyroxenes such as enstatite, and aluminous enstatite. Depending on the application, the feldspar should have little or no sodium compounds. Sodium-containing feldspars can harm dielectric properties, microwave transparency, and slow crystallization during annealing thereby causing higher residual glass.
  • It is contemplated that the third phase may also include, in addition to, or as an alternative to, the lamellar twinning phase, a crystalline phase selected from the group consisting of forsterite, fluormica, fluoramphibole, norbergite, spinel, sapphirine, mullite and xonotlite. These crystals phases can be included as means to enhance the toughness of the overall glass-ceramic. In particular, the following toughness enhancement mechanisms are contemplated/theorized: (1) the forsterite, fluoramphibole, norbergite, mullite and xonotlite phases enhance toughness due the presence of blade-like crystals; (2) the spinel and sappharine crystal phases enhance toughness due the high modulus of the crystal phase which is effective to deflect fractures; and (3) the fluormica crystal phase typically exhibits good cleavage which in turn enhances the toughness of the glass-ceramic.
  • The glass-ceramic may be made from a composition comprising, in weight percent, 35-50% SiO2, 10-35% Al2O3, 10-25% MgO, 7-20% TiO2, up to 5% CaO, and up to 10% SrO, and up to 5% F, where the sum of CaO and SrO is at least 0.5%. The composition is made into a glass and formed into a desired shape. Conveniently, additives may be added to facilitate processing so that the composition includes up to 5 wt. % BaO, MnO, FeO, CoO, ZnO, As2O3, Sb2O3, B2O3, Na2O, and K2O). The formed shape is annealed from 1100-1300° C. for a sufficient time to achieve the desired crystallinity. A typical annealing time is around 10 hours. Crystallinity usually exceeds 85%. Annealing produces a glass-ceramic comprising a discontinuous glass phase and a plurality of ceramic phases, including cordierite, a titanate, and optionally a twinning ceramic. The glass-ceramic can have a modulus of rupture of 40,000 psi, which is more than 50% greater than standard cordierite glass-ceramics. The glass-ceramic also has a CTE of less than 35×10−7/° C. and a fracture toughness up to about 6.0 MPa·m0.5.
  • The glass-ceramic of the present invention may be formed into any number of articles. The glass-ceramic is especially adapted to articles requiring low CTE, good fracture toughness, or oxidation resistance. One such article is a radome. The inherent oxidation-resistance of cordierite glass-ceramic permits its use where silicon nitride would oxidize. Further, cordierite glass-ceramics have typical densities from 2.63-2.77 g/ml compared to a silicon nitride density of about 3.30 g/ml. Articles consisting essentially of the toughened cordierite glass-ceramic will have lower mass than the same silicon nitride articles.
  • EXAMPLE 1
  • A mixture was made consisting essentially of 45 wt. % silica, 28 wt. % alumina, 14 wt. % magnesia, 2 wt. % calicia and 10 wt. % titania. The mixture was heated to form a clear, amber-colored glass and cast into a shape. The shape was first annealed for 2 hours at 800° C. The shape was further annealed for 10 hours at 1200° C. until a crystallinity of 95 vol. % was achieved. The resultant glass-ceramic had a CTE of 30×10−7/° C. and a fracture toughness of 3.8 MPa·m0.5. Prior art cordierite glass-ceramic have a CTE of 55×10−7/° C. and a fracture toughness of 2.2 MPa·m0.5. The cordierite glass-ceramic of the present invention had a nearly 50% reduction in CTE while improving fracture toughness by over 70%.
  • The following Table 1 gives further examples of representative compositions according to the invention. Compositional information is in weight percent and is, as batched, unless otherwise indicated.
  • TABLE 1
    A B C D E* F G H* I J K
    SiO2 42.6 43.9 45.4 46.7 45.0 43.5 42.7 44.5 44.3 43.6 45.4
    Al2O3 21.4 20.7 21.1 25.0 28.3 31.7 29.9 28.9 25.7 25.0 18.9
    MgO 18.8 22.8 17.9 16.5 14.1 12.1 12.2 14.5 15.0 16.5 21.7
    CaO 0.0 1.2 3.9 1.8 2.0 3.0 0.0 2.0 2.0 2.0 2.0
    SrO 8.0 1.7 0.0 0.0 0.0 0.0 5.5 0.0 0.0 0.0 0.0
    F 4.0 3.1 1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
    TiO2 7.4 7.8 9.8 9.7 9.6 9.7 9.7 9.5 13.0 12.9 12.0
    Na2O 1.1
    heat treatment: ° C.-hours
     950-4  800-2
    1100-4 1100-10 1200-10 1175-10 1200-10
    CTE (25-1100° C. × 10−7) 30.1 27.1 30.0
    Knoop 855 852
    Toughness MPa · m0.5 2.5 3.8 2.8
    Density 2.764 2.63
    *Composition, as analyzed
  • Obviously, numerous modifications and variations of the present invention are possible. It is, therefore, to be understood that within the scope of the following claims, the invention may be practiced otherwise than as specifically described. While this invention has been described with respect to certain preferred embodiments, different variations, modifications, and additions to the invention will become evident to persons of ordinary skill in the art. All such modifications, variations, and additions are intended to be encompassed within the scope of this patent, which is limited only by the claims appended hereto.

Claims (17)

1. A glass-ceramic having high fracture toughness and low coefficient of thermal expansion, the glass-ceramic formed from a composition comprising, in weight percent:
SiO2 35-50% Al2O3 10-35% MgO 10-25% TIO2  7-20% CaO up to 1% SrO  up to 10% F up to 5%
provided that the sum of CaO and SrO comprises at least 0.5%, and wherein the glass-ceramic includes a microstructure comprising interlocking first and second crystal phases in which at least one phase is acicular.
2. The glass-ceramic of claim 1, wherein the first phase comprises hexagonal cordierite.
3. The glass-ceramic of claim 1, wherein the second phase is acicular and comprises a titanate.
4. The glass-ceramic of claim 3, wherein the titanate is selected from a group consisting of magnesium titanate, aluminum titanate and combinations thereof.
5. The glass-ceramic of claim 2, wherein the first phase comprises from 50-80 vol. % of the glass-ceramic.
6. The glass-ceramic of claim 1, wherein the acicular phase comprises from 8-20 vol. % of the glass-ceramic.
7. The glass-ceramic of claim 1, wherein the glass-ceramic comprises up 20% of a third crystal phase comprising a twinning ceramic compound.
8. The glass-ceramic of claim 7, wherein the twinning ceramic compound is selected from a group consisting of anorthite, Sr-feldspar, Ba-feldspar, enstatite and aluminous enstatite.
9. The glass-ceramic of claim 1 wherein the glass-ceramic includes up to 20% of a third crystal selected from the group consisting of fluormica, fluoramphibole, norbergite, spinel, sapphirine, mullite, forsterite and xonotlite.
10. The glass-ceramic of claim 7, wherein the glass-ceramic comprises up to 20 vol. % of the third phase.
11. The glass-ceramic of claim 1, wherein the glass-ceramic has a CTE from 20-50×10−7/° C. in the temperature range 25-1000° C. and a Knoop hardness greater than 800.
12. The glass-ceramic of claim 1, wherein the glass-ceramic has a Young's modulus greater than 10 GPa.
13. The glass-ceramic of claim 1, wherein the glass-ceramic has a fracture toughness from 2.5 to 6.0 MPa·m0.5.
14. A method of forming a toughened, cordierite glass-ceramic article, the method comprising:
a) blending a composition comprising, in weight percent, 35-50% SiO2, 10-35% Al2O3, 10-25% MgO, 7-20% TiO2, up to 5% CaO, up to 10% SrO, where the amount of CaO and SrO comprises at least 0.5%, and F is up to 5%;
b) heating the composition to a fluid glass;
c) forming the composition to a desired shape;
d) cooling the shape to solid glass;
e) annealing the solid glass at 1100-1300° C. for a sufficient amount of time to achieve a crystallinity of at least 85 vol. %.
15. The method of claim 14, wherein forming includes casting the fluid glass.
16. The method of claim 14, wherein the method further includes heat-treating after cooling the shape and before annealing, where heat-treating includes heating the shape to at least 800° C. for more than one hour.
17-23. (canceled)
US12/266,982 2006-05-31 2008-11-07 Tough cordierite glass-ceramics Abandoned US20090069163A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/266,982 US20090069163A1 (en) 2006-05-31 2008-11-07 Tough cordierite glass-ceramics

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/445,049 US7465687B2 (en) 2006-05-31 2006-05-31 Tough cordierite glass-ceramics
US12/266,982 US20090069163A1 (en) 2006-05-31 2008-11-07 Tough cordierite glass-ceramics

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/445,049 Division US7465687B2 (en) 2006-05-31 2006-05-31 Tough cordierite glass-ceramics

Publications (1)

Publication Number Publication Date
US20090069163A1 true US20090069163A1 (en) 2009-03-12

Family

ID=38790989

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/445,049 Expired - Fee Related US7465687B2 (en) 2006-05-31 2006-05-31 Tough cordierite glass-ceramics
US12/266,982 Abandoned US20090069163A1 (en) 2006-05-31 2008-11-07 Tough cordierite glass-ceramics

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/445,049 Expired - Fee Related US7465687B2 (en) 2006-05-31 2006-05-31 Tough cordierite glass-ceramics

Country Status (6)

Country Link
US (2) US7465687B2 (en)
EP (1) EP2041042A4 (en)
JP (1) JP2009538819A (en)
KR (1) KR20090021198A (en)
CN (1) CN101460423A (en)
WO (1) WO2007142922A2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8394732B2 (en) 2010-07-23 2013-03-12 King Abdulaziz City For Science And Technology Sintered cordierite glass-ceramic bodies
CN108698913A (en) * 2016-02-25 2018-10-23 Agc株式会社 The excellent glass of crack resistance
US20220076893A1 (en) * 2019-08-16 2022-03-10 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11492286B2 (en) 2017-11-30 2022-11-08 Corning Incorporated Colored glasses with improved tempering capabilities
JP2023041251A (en) * 2021-09-13 2023-03-24 株式会社オハラ crystallized glass
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US11891324B2 (en) 2014-07-31 2024-02-06 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US12006221B2 (en) 2021-12-09 2024-06-11 Corning Incorporated Direct graphene transfer and graphene-based devices

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8956436B2 (en) 2006-06-30 2015-02-17 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US10501375B2 (en) 2006-06-30 2019-12-10 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US7960009B2 (en) * 2008-02-29 2011-06-14 Corning Incorporated Dispersion-toughened cordierite for filter and substrate applications
BRPI0923723A2 (en) * 2008-12-31 2017-07-11 Saint Gobain Ceramics CERAMIC ARTICLE AND ITS PRODUCTION PROCESS
CN103073273A (en) * 2011-11-18 2013-05-01 常熟市创新陶瓷有限公司 Alumina toughened ceramic and preparation method thereof
EP2867177A1 (en) * 2012-06-29 2015-05-06 Corning Incorporated Glass-ceramic substrates for semiconductor processing
JP6462579B2 (en) 2012-11-02 2019-01-30 コーニング インコーポレイテッド Method for texturing opaque, colored and translucent materials
US10526249B2 (en) 2012-11-30 2020-01-07 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
CN104743883A (en) * 2013-12-30 2015-07-01 朱晓明 Industrial protective glass ceramic and preparation method thereof
DE102014219442A1 (en) * 2014-09-25 2016-03-31 Schott Ag Non-porous ceramic component
US10239782B2 (en) 2015-02-26 2019-03-26 Corning Incorporated Method for controlling surface features on glass-ceramic articles and articles formed therefrom
CN105152641A (en) * 2015-10-12 2015-12-16 苏州法斯特信息科技有限公司 Novel corrosion-resistant ceramic material and preparation method thereof
US10473829B2 (en) 2016-01-18 2019-11-12 Corning Incorporated Enclosures having an improved tactile surface
CN110357435B (en) * 2019-08-01 2021-09-24 电子科技大学 High-strength high-modulus magnesium-aluminum-silicon microcrystalline glass material and preparation method thereof
CN110342824B (en) * 2019-08-01 2022-03-15 电子科技大学 Low-loss low-thermal-expansion magnesium-aluminum-silicon-based microcrystalline glass material and preparation method thereof
US11177072B2 (en) * 2019-08-16 2021-11-16 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon
US11731907B2 (en) 2020-08-04 2023-08-22 Applied Materials, Inc. Ceramic material with high thermal shock resistance and high erosion resistance
JP7189181B2 (en) * 2020-08-07 2022-12-13 株式会社オハラ glass and crystallized glass

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098725A (en) * 1974-11-28 1978-07-04 Tokyo Denki Kagaku Kogyo Kabushiki Kaisha Low thermal expansive, electroconductive composite ceramics
US4598054A (en) * 1983-12-28 1986-07-01 Ngk Insulators, Ltd. Ceramic material for a honeycomb structure
US5998314A (en) * 1997-03-04 1999-12-07 Murata Manufacturing Co., Ltd. Low-temperature sinterable ceramic composition, and monolithic ceramic substrate using the same
US6905988B2 (en) * 1999-07-07 2005-06-14 Hoya Corporation Substrate for information recording medium and magnetic recording medium composed of crystallized glass

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2290971A (en) * 1940-06-25 1942-07-28 Herman C King Article container
BE557975A (en) * 1956-06-04 1957-11-30
US3940255A (en) * 1974-08-05 1976-02-24 Ferro Corporation Process for making cordierite glass-ceramic having nucleating agent and increased percent cordierite crystallinity
US4304603A (en) * 1980-08-11 1981-12-08 Corning Glass Works Glass-ceramic compositions designed for radomes
US5001086A (en) * 1989-10-26 1991-03-19 Corning Incorporated Sintered glass-ceramic body and method
US5532194A (en) * 1994-11-18 1996-07-02 Kabushiki Kaisya Ohara Cordierite glass-ceramic and method for manufacturing the same
JP2000203880A (en) * 1998-09-11 2000-07-25 Ohara Inc Glass ceramic substrate for information recording medium, its production and information recording medium disc
US6171988B1 (en) * 1999-07-30 2001-01-09 International Business Machines Corporation Low loss glass ceramic composition with modifiable dielectric constant
US6300263B1 (en) * 1999-12-16 2001-10-09 Corning Incorporated Low-expansion cordierite glass ceramics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4098725A (en) * 1974-11-28 1978-07-04 Tokyo Denki Kagaku Kogyo Kabushiki Kaisha Low thermal expansive, electroconductive composite ceramics
US4598054A (en) * 1983-12-28 1986-07-01 Ngk Insulators, Ltd. Ceramic material for a honeycomb structure
US5998314A (en) * 1997-03-04 1999-12-07 Murata Manufacturing Co., Ltd. Low-temperature sinterable ceramic composition, and monolithic ceramic substrate using the same
US6905988B2 (en) * 1999-07-07 2005-06-14 Hoya Corporation Substrate for information recording medium and magnetic recording medium composed of crystallized glass

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8925350B2 (en) 2010-07-23 2015-01-06 King Abdulaziz City For Science And Technology Preparation of sintered cordierite glass-ceramic bodies
US8394732B2 (en) 2010-07-23 2013-03-12 King Abdulaziz City For Science And Technology Sintered cordierite glass-ceramic bodies
US11891324B2 (en) 2014-07-31 2024-02-06 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
US11643355B2 (en) 2016-01-12 2023-05-09 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
CN108698913A (en) * 2016-02-25 2018-10-23 Agc株式会社 The excellent glass of crack resistance
US11485673B2 (en) 2017-08-24 2022-11-01 Corning Incorporated Glasses with improved tempering capabilities
US11845692B2 (en) 2017-11-30 2023-12-19 Corning Incorporated Colored glasses with improved tempering capabilities
US11492286B2 (en) 2017-11-30 2022-11-08 Corning Incorporated Colored glasses with improved tempering capabilities
US11708296B2 (en) 2017-11-30 2023-07-25 Corning Incorporated Non-iox glasses with high coefficient of thermal expansion and preferential fracture behavior for thermal tempering
US11697617B2 (en) 2019-08-06 2023-07-11 Corning Incorporated Glass laminate with buried stress spikes to arrest cracks and methods of making the same
US11309132B2 (en) * 2019-08-16 2022-04-19 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon
US11694847B2 (en) * 2019-08-16 2023-07-04 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon
US11670459B2 (en) * 2019-08-16 2023-06-06 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon
US20220208475A1 (en) * 2019-08-16 2022-06-30 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon
US20220076893A1 (en) * 2019-08-16 2022-03-10 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon
JP2023041251A (en) * 2021-09-13 2023-03-24 株式会社オハラ crystallized glass
JP7460586B2 (en) 2021-09-13 2024-04-02 株式会社オハラ crystallized glass
US12006221B2 (en) 2021-12-09 2024-06-11 Corning Incorporated Direct graphene transfer and graphene-based devices

Also Published As

Publication number Publication date
KR20090021198A (en) 2009-02-27
WO2007142922A3 (en) 2008-07-31
US7465687B2 (en) 2008-12-16
CN101460423A (en) 2009-06-17
EP2041042A4 (en) 2011-12-21
JP2009538819A (en) 2009-11-12
US20070281850A1 (en) 2007-12-06
WO2007142922A2 (en) 2007-12-13
EP2041042A2 (en) 2009-04-01

Similar Documents

Publication Publication Date Title
US7465687B2 (en) Tough cordierite glass-ceramics
Beall Refractory glass–ceramics based on alkaline earth aluminosilicates
US6300263B1 (en) Low-expansion cordierite glass ceramics
EP0265045B1 (en) Refractory glass-ceramics containing enstatite
JP6847406B2 (en) Percolation mullite and its formation method
US4467039A (en) Potassium fluorrichterite glass ceramics and method
EP2205533B1 (en) Refractory glass ceramics
JPH07232931A (en) Glass-ceramic biomaterial and its preparation
JP2011525471A (en) High strength machinable glass ceramic
JP2006001828A (en) Crystallized glass
CN113816611B (en) Microcrystalline glass for 5G intelligent communication equipment backboard and preparation method thereof
EP0424795B1 (en) Sintered Glass-Ceramic Body and Method
JPH092870A (en) High zirconia electro brick
KR101179510B1 (en) Crystallizable Borosilicate based glass frit, and Low Temperature Co-fired Dielectric Ceramic Composition containing the same
US10836680B2 (en) Yoshiokaite glass-ceramics obtained from glass frits
KR101038772B1 (en) Ceramic Low-k dielectric composition with Nucleation Agent for low-temperature firing and ceramic Low-k dielectric
EP1159230B1 (en) Glass-ceramic material and process for the production thereof
KR20200102418A (en) Crack-resistant glass and glass-ceramic rich in Al₂O₃
JP3226056B2 (en) Low dielectric constant high strength glass ceramic composition
Idris et al. Effect of glass composition and heat treatment parameters on crystallisation behaviour in the Li2O-BaO-Al2O3-SiO2 system
JPH0611666B2 (en) Ultra-heat shock resistant ceramic material
JP2004051465A (en) Low temperature sintered ceramics material and its producing method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION