US20090059244A1 - Web Measurement Device - Google Patents
Web Measurement Device Download PDFInfo
- Publication number
- US20090059244A1 US20090059244A1 US12/200,196 US20019608A US2009059244A1 US 20090059244 A1 US20090059244 A1 US 20090059244A1 US 20019608 A US20019608 A US 20019608A US 2009059244 A1 US2009059244 A1 US 2009059244A1
- Authority
- US
- United States
- Prior art keywords
- sensor
- web
- optical
- sensor head
- inductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 67
- 230000003287 optical effect Effects 0.000 claims abstract description 78
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 24
- 230000004075 alteration Effects 0.000 claims abstract description 11
- 239000000523 sample Substances 0.000 claims description 40
- 239000000835 fiber Substances 0.000 claims description 38
- 230000003595 spectral effect Effects 0.000 claims description 12
- 238000004804 winding Methods 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 4
- 230000003746 surface roughness Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 13
- 230000000087 stabilizing effect Effects 0.000 abstract 1
- 238000006073 displacement reaction Methods 0.000 description 21
- 239000011521 glass Substances 0.000 description 11
- 238000007667 floating Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 230000010354 integration Effects 0.000 description 6
- 229910052594 sapphire Inorganic materials 0.000 description 5
- 239000010980 sapphire Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000012876 topography Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/86—Investigating moving sheets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
- G01B11/0691—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of objects while moving
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/026—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
- G01B7/023—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/02—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
- G01B7/06—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
- G01B7/10—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
- G01B7/107—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance for measuring objects while moving
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/34—Paper
- G01N33/346—Paper sheets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/40—Caliper-like sensors
- G01B2210/44—Caliper-like sensors with detectors on both sides of the object to be measured
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B2210/00—Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
- G01B2210/50—Using chromatic effects to achieve wavelength-dependent depth resolution
Definitions
- This invention relates to web measurement systems.
- Sheet materials such as paper are produced in thin continuous webs and require highly accurate thickness (caliper) measurement and control. Commonly, these measurements are accomplished by means of sensors that physically contact the web at both the top and bottom side. Also, various non-contacting sensors have been developed that may be fully non-contacting (no physical contact), or sensors that contact physically contact sheet at only one side.
- Non-contacting sensors offer an advantage as they minimize the risks of such damage. Further, non-contacting sensors eliminate issues related to dirt buildup and wear that may cause measurement inaccuracies, thereby leading to frequent maintenance.
- Non contacting thickness sensor solutions include single sided and dual sided air-bearings with magnetic distance measurement, single sided and dual sided laser triangulators with magnetic distance measurement, as well as other supplemental devices to improve sensor accuracy and stabilize the moving web.
- a sensor in accordance with the present invention for monitoring the thickness of a moving web.
- the sensor includes a first sensor head positioned on a first side of the moving web, a second sensor head positioned on a second side of the moving web, opposed to the first side, an inductor positioned in the first sensor head and including a ferrite core and a winding, a contacting plate secured to the second sensor head and adapted to contact the second side of the moving web, a target plate secured proximate to the contacting plate, wherein the inductor is adapted to measure the distance to the target plate, and an optical sensor probe, positioned in the first sensor head, and including an objective lens having an axial chromatism, the optical sensor being adapted to measure the distance to the first side of the moving web using confocal chromatic aberration.
- a sensor for monitoring the thickness of a moving web.
- the sensor includes a first sensor head positioned on a first side of the moving web and including an optical measuring device adapted to measure the distance to the moving web.
- a second sensor head is positioned on a second side of the moving web, opposed to the first side.
- An inductor is positioned in the first or the second sensor head and includes a ferrite core and a winding.
- a contacting plate is secured to the second sensor head and includes a plurality of suction slots.
- a target plate is secured to the first or second sensor head opposed from the inductor, wherein the inductor is adapted to measure the distance to the target plate.
- An optical reference body is positioned on the second sensor head, centrally of the contacting plate and is axially aligned with the optical measuring device, the optical reference body is positioned closer to the first sensor head than the contacting plate and the suction slots are spaced from the optical body.
- FIG. 2 shows a section view of the target plate and elevated optical reference body
- FIG. 3 shows a section view of the target plate and optical reference body
- FIG. 4 shows top view of the contacting plate, target plate and optical reference body
- FIG. 5 shows a sectional view of a sensor according to an alternate embodiment of the present invention
- FIG. 5A shows an elevated view of the target plate of the embodiment of FIG. 5 ;
- FIG. 5B shows an elevated view of the first sensor head having an air bearing arrangement
- FIG. 5C shows an elevated view of the first sensor head having an alternate air bearing arrangement
- FIG. 6 shows a sectional view of a sensor according to a second alternate embodiment of the present invention.
- FIG. 7 shows an enlarged sectional view of the sensor of FIG. 6 ;
- FIG. 8 shows a sectional and partially schematic view of the sensor of FIG. 6 ;
- FIG. 9 shows an enlarged view of the floating guides proximate to the web
- FIG. 10 shows a sectional view of a sensor according to a third alternate embodiment of the present invention.
- FIG. 11A shows a section view of one embodiment of a fiber optic cable according to the present invention.
- FIG. 11B shows a section view of a second embodiment of a fiber optic cable according to the present invention.
- FIG. 11C shows a section view of a third embodiment of a fiber optic cable according to the present invention.
- FIG. 12 shows a top view of the web and representations of the surface coverage using the fiber optic cable of FIG. 11B or 11 C.
- FIG. 13 shows a 2d imaging spectrograph
- FIG. 14 shows a close-up side section view of the surface of a web
- FIG. 15A shows a displacement graph representing the surface of a slow moving web
- FIG. 15B shows a spectral graph representative of a point on the slow moving web
- FIG. 16A shows a displacement graph representing the surface of a fast moving web
- FIG. 16B shows a spectral graph representative of a point on the fast moving web.
- a gauge measurement device (hereinafter device 10 ) is shown and generally indicated by the numeral 10 .
- Device 10 may be installed and used in a web making process line, for example, a paper making line. When installed, device 10 is positioned in close proximity to a moving web 12 for measurement thereof. Though the present invention is particularly useful for paper making applications, device 10 may be used to measure any type of continuously produced web. Further, one or more devices 10 may be positioned at any point along the continuous web production process to continuously measure web thickness at multiple points in the process.
- the web 12 may move at high speeds through device 10 in the machine direction D.
- production line speeds in paper manufacturing can reach 100 km per hour or more.
- Device 10 contacts a bottom surface 14 of web 12 , while a top surface 16 is not contacted and is measured optically.
- a pair of opposed sensor heads cooperate to measure the thickness, or caliper, of web 12 .
- a first sensor head 18 is positioned above top surface 16 and does not contact web 12 .
- a second sensor head 20 contacts web 12 at bottom surface 14 and, as will become apparent, serves as a reference point for the measurement devices in first head 18 .
- First head 18 includes an optical displacement sensor probe 22 that employs a confocal chromatic aberration method to determine the distance from the probe to the top surface 16 of web 12 .
- Probe 22 includes an objective lens 24 having axial chromatism, which results from the variation of the refractive index as a function of wavelength.
- Such a lens if exposed to a point source of broad spectrum white light (such as from a fiber optic cable), will produce a continuum of monochromatic image points distributed along the optical axis A.
- a singular monochromatic point image is focalized at M.
- each interface between adjacent layers reflects light at a different wavelength, and the spectrum of the detected light is composed of a series of spectral peaks.
- Such probes are configured and calibrated so that each spectral peak indicates a specific distance from the probe.
- a light source and optical spectrograph 26 communicate with lens 24 through a fiber optic cable 30 .
- White light travels through cable 30 , is directed through objective lens 24 and onto the web 12 .
- the reflected light that is focused back to the fiber optic cable 30 corresponds to the wavelength at that specific distance from lens 24 . All other wavelengths will be out of focus.
- the spectrograph 26 produces a distance measurement 32 which represents the distance from probe 22 to the top surface 16 of web 12 .
- First sensor head 18 includes a second displacement measurement sensor in the form of an inductor 33 having a ferrite cup core 34 and a winding 36 .
- Core 34 is annular and coaxial with lens 24 , defining a center aperture 38 that provides an optical path between lens 24 and web 12 . It is important to know the relative distances between inductor 33 and probe 22 , thus ferrite cup core 34 is spaced from probe 22 by a spacer 40 , the size of which is precisely known so that the exact distance to lens 24 is known.
- Inductor 33 magnetically measures the distance to a ferrite target plate 42 in second sensor head 20 which is in physical contact with bottom surface 14 of web 12 . The inductance is converted to a displacement measurement 44 by electronic unit 46 .
- first and second head 18 and 20 may be permanently fixed a predetermined distance apart. In such cases, magnetic measurement between heads 18 and 20 may be unnecessary.
- Web thickness is thus determined by calculating the difference between the inductive sensor displacement measurement 44 (plus the height of spacer 40 ) and the optical sensor measurement 32 .
- Second sensor head 20 includes a contacting plate 60 within which resides ferrite target plate 42 .
- Contacting plate 60 includes a plurality of suction slots 62 that are in communication with a vacuum chamber 63 positioned beneath contacting plate 60 .
- a vacuum generator 64 draws air from vacuum chamber 63 which effectively draws air into chamber 63 through suction slots 62 .
- vacuum generator 64 may be a venturi based vacuum generator operable with compressed air.
- Contacting plate 60 may also support an optical reference body 66 that is co-axial with lens 24 .
- a linear motion actuator 68 is included in second sensor head 20 , and is utilized for calibration as well as vertical adjustment to attain the best operating distance/gap.
- Linear motion actuator 68 is capable of moving up or down a frame 69 that supports contacting plate 60 , target plate 42 and reference body 66 .
- linear motion actuators such as lead screw equipped stepper motors or piezoelectric linear positioners are capable of reliably moving frame 69 a known distance with a high degree of accuracy.
- Calibration can be performed when the web 12 is not present.
- the actuator 68 may move reference body 66 , along with target plate 42 , to a plurality of positions.
- the resulting responses from the optical and magnetic signals may then be compared.
- the magnetic gap measurement 44 may then be calibrated using the optical sensor 22 for a reference displacement measurement.
- the magnetic measurement may be forced to equal the optical measurement at each measurement point.
- the calibration can, for instance, involve a fine stepping linear motion of 3 mm total range while reading the optical and magnetic sensor signals every 0.01 mm of travel. In this way a continuous calibration curve can be periodically determined to correct for various issues such as drift, physical wear and misalignment.
- optical reference body 66 may be positioned a known distance e slightly above ferrite target plate 42 .
- optical reference body 66 extends above the top surface of target plate 42 by up to 0.5 mm. This arrangement enables more intimate contact of web 12 against optical reference body 66 at the point of optical measurement due to local stretching.
- the web 12 moving in direction D may advantageously be subjected to multiple suction slots 60 before passing over the reference body 66 .
- the suction slots 60 in conjunction with the elevated reference body 66 , combine to provide improved web contact with reference body 66 .
- the web 12 has to slide over, for instance, three different suction zones 70 a, 70 b, and 70 c, before reaching the reference body 66 where measurement takes place. This helps remove boundary layer air from disturbing the measurements, even at high speeds.
- the outermost suction slots 62 extend outwardly at an angle ⁇ from the machine direction D.
- the angle ⁇ is twenty five (25) degrees.
- the angle ⁇ may be from one (1) to five (5) degrees.
- This shallow angle acts to stretch the web 12 in the cross-machine direction to eliminate fluctuations and wrinkles.
- the multiple suction zones 70 a, 70 b and 70 c ensure that there is no loss of suction when measuring near the edge of web 12 . It should be appreciated that other suction arrangements may be employed including, for example, concentric annular slots or other patterns such as plural holes.
- the contacting plate 60 , ferrite target plate 42 and optical reference body 66 are made of very smooth, low friction and wear resistant materials.
- the top surface of reference body 66 may be made from solid ceramic, sapphire, synthetic diamond or the like.
- Ferrite target plate 42 and contact plate 60 may include a smooth coating such as diamond film, plasma sprayed and lapped ceramics, or a thin ceramic sapphire cover that is post-machined and lapped.
- Ferrite target plate 60 and inductor 33 may also be mounted with exchanged locations between first sensor head 82 and second sensor head 84 .
- Sensor 80 is adapted to measure web thickness without any direct contact with either side of web 12 .
- sensor 80 may be positioned in close proximity to a moving web 12 .
- the web thickness, or caliper is measured by means of a first sensor head 82 that does not contact web 12 and an opposed second sensor head 84 that also does not contact web 12 .
- first sensor head 82 that does not contact web 12
- second sensor head 84 that also does not contact web 12 .
- non-contact means that the measurements themselves do not require physical contact between the web 12 and either of the sensor heads.
- First head 82 includes an optical displacement sensor probe 86 that employs the confocal chromatic aberration method to determine the distance to the top surface 16 of web 12 .
- Probe 86 includes an objective lens 88 which varies the refractive index as a function of wavelength.
- a light source and optical spectrograph (not shown) communicate with lens 88 through a fiber optic cable 94 .
- Sensor probe 86 outputs a distance measurement which represents the distance from the lens 88 to top surface 16 of web 12 .
- First sensor head 82 further includes an inductor 98 having a ferrite cup core 100 with a winding 102 .
- Core 100 is annular, defining a center aperture 104 that provides an optical path between lens 88 and web 12 . It is important to know the relative distances between inductor 98 and probe 86 , thus ferrite cup core 100 is spaced from probe 86 by a spacer 106 , the size of which is precisely known so that the exact distance to lens 24 is known.
- Inductor 98 is coaxial with lens 88 and is utilized to magnetically measure distance to a ferrite target plate 108 in second sensor head 84 . The inductance is converted to a displacement measurement by an electronic unit (not shown). As with the previous embodiment, inductor 98 and target plate 108 may be switched, with the target plate in first head 82 and the inductor positioned in he second head 84 . Also, other magnetic measurement methods may be employed.
- Second head 84 also includes an optical displacement sensor probe 114 that employs a confocal chromatic aberration method to determine the distance to the bottom surface 14 of web 12 .
- Probe 114 includes an objective lens 116 which varies the refractive index as a function of wavelength.
- Probe 114 views the bottom surface 14 of web 12 through an aperture 115 in target plate 108 .
- the optical axis of second probe 114 is advantageously coaxial with the optical axis of first probe 86 .
- a light source and optical spectrograph (not shown) communicate with lens 116 through a fiber optic cable 122 .
- Sensor probe 114 produces a distance measurement which represents the distance from the lens 116 to the bottom surface 14 of web 12 .
- the thickness of web 12 may be measured.
- Air-bearing arrangement 126 includes guide bars 128 a and 128 b that extend in the cross-machine direction and are positioned at opposed upstream and downstream ends of first sensor head 82 .
- guide bar 128 may be circular, extending circumferentially around the entire sensor 80 (see FIG. 5C ).
- guide bars 128 a and 128 b may each be arced or curved.
- Guide bars 128 direct compressed air through a plurality of holes 129 downwardly toward web 12 .
- First head 82 also includes a port 130 that communicates with a chamber 132 located between lens 88 and web 12 . Air is supplied through port 130 , into chamber 132 and through aperture 104 toward web 12 . As will be hereinafter discussed, this promotes the removal of wrinkles from web 12 at the area of measurement. Also, the evacuation of air through aperture 104 helps prevent contaminates from entering chamber 132 and dirtying lens 88 .
- Second sensor head 84 includes a port 134 that communicates compressed air to a peripheral chamber 136 that feeds a slot 138 at the periphery of ferrite target plate 108 .
- Slot 138 may be annular and is positioned inwardly of guide bar 128 and may extend the entire periphery of the target plate 108 .
- Slot 138 may be angled to direct air upwardly and outwardly.
- a ring 139 may be positioned outwardly of slot 138 that, in cross-section, curves away from web 12 .
- ring 138 includes an upwardly convex profile.
- Chamber 136 communicates with a central chamber 140 , located in front of lens 116 , through a channel 142 .
- the web 12 will, by this arrangement, float a small distance above ferrite target plate 108 .
- the ratio of air flowing through aperture 115 and peripheral slot 134 may be controlled by a control valve 144 . This ratio should be balanced to just barely lift web 12 away from contacting the central area of bottom head 84 while not deforming the local shape of web 12 . Air flowing through the aperture 136 helps keep lens 88 clean and offers additional airbearing lift, to stretch web 12 without physically contact.
- Air bearing arrangement 126 stretches web 12 to control flatness and parallelism for optical measurement.
- Guide bars may be adjusted to force web 12 to pass through sensor 80 in a zigzag or serpentine pattern in the gap between first sensor head 82 and second sensor head 83 .
- This arrangement is effective in making the sheet flat by bending it in opposite directions as it passes through the sensor.
- the web stretching, at the optical point of measurement, is further promoted by an elevated lip 146 , which is attached to target plate 108 surrounding aperture 115 and promotes a slight rise in the web at the area of the optical measurement.
- Lip 146 may be made of a smooth, non-magnetic and non-conductive material so that it does not interfere with magnetic measurements.
- sensor 150 may be positioned in close proximity to a web 12 moving in direction D.
- the web thickness, or gauge is measured by means of a first sensor head 152 that does not contact web 12 and a second sensor head 154 that also does not contact web 12 .
- First head 152 includes an optical displacement sensor probe 156 that employs a confocal chromatic aberration method to determine the distance to the top surface 16 of web 12 .
- Probe 156 includes an objective lens 158 which varies the refractive index as a function of wavelength.
- a light source and optical spectrograph (not shown) communicate with lens 158 through a fiber optic cable 160 .
- Sensor probe 156 measures the distance from the lens 158 to the top surface 16 of web 12 .
- First sensor head 152 further includes a first floating guide 162 that floats on a cushion of air above web 12 .
- Floating guide 162 may be a body of rotational symmetry to assure symmetry and parallel lift of the air cushion.
- Guide 162 includes an inductor 164 having an annular ferrite cup core 166 with a winding 168 .
- Core 166 defines a center aperture 170 , within which is positioned a thin window 171 .
- Window 171 may be a transparent or semitransparent material. In one or more embodiments window 171 is made of glass or sapphire.
- Inductor 164 is utilized to magnetically measure distance to a ferrite target plate 172 in a second floating guide 174 . The inductance is converted to a displacement measurement by an electronic unit (not shown).
- First floating guide 162 includes an outer body 176 that forms an interior chamber 178 .
- a collar 180 extends upwardly from body 176 and is received in a bore 182 .
- a spherical section 184 extends radially outwardly from collar 180 with a small clearance to bore 182 , and by a small amount of escaping air forming a friction free airbearing around the spherical section 184 to allow free angular and axial articulation of guide 162 in the bore 182 .
- the friction free suspension together with pneumatic force balance permits the guide 162 to achieve an equilibrium position parallel to, and at a relatively constant distance from the upper surface of web 12 .
- Compressed air is received through a port 186 in first head 152 .
- first guide 162 is maintained above web 12 in a self-adjusting fashion.
- Second head 154 includes an optical displacement sensor probe 192 , axially aligned with probe 156 , that employs a confocal chromatic aberration method to determine the distance to the bottom surface 14 of web 12 .
- Probe 192 includes an objective lens 194 which varies the refractive index as a function of wavelength.
- Probe 192 views the bottom surface 14 of web 12 through a window 196 located centrally on target plate 172 .
- Window 196 may be a transparent or semitransparent material. In one or more embodiments window 196 is made of glass or sapphire.
- a light source and optical spectrograph (not shown) communicate with lens 194 through a fiber optic cable 198 .
- Sensor probe 192 measures the distance from the lens 194 to the bottom surface 14 of web 12 .
- Second floating guide 174 includes an outer body 200 that forms an interior chamber 202 .
- a spherical section 208 extends radially outwardly from collar 204 with a small clearance to bore 206 , and by a small amount of escaping air forming a friction free airbearing around the spherical section 208 to allow free angular and axial articulation of guide 174 in the bore 206 .
- the friction free suspension together with pneumatic force balance permits the guide 174 to achieve an equilibrium position parallel to, and at a relatively constant distance from the lower surface of web 12 .
- Compressed air is received through a port 210 in second head 154 .
- the air is thereafter communicated to chamber 202 through the inlet formed by collar 204 .
- a plurality of spaced holes or slots 212 are located on the top surface 214 of body 200 so that the compressed air is directed from chamber 202 upwardly toward web 12 . In this manner, second guide 174 is maintained below web 12 in a self-adjusting fashion.
- guides 162 and 174 may be chosen so that each is maintained at about 100 ⁇ m away from the respective surface of web 12 . Because guides 162 and 174 are maintained relatively close to web 12 (and consequently to each other) the inductor 164 and ferrite target plate 172 are likewise held in close proximity, and can therefore be designed to be highly accurate, as well as small in size.
- windows 171 and 196 may be glass, sapphire or the like and may be used to calibrate sensor 150 .
- windows 171 and 196 may be, for example 5 mm in diameter and precision machined to 0.2 mm thickness.
- the chromatic aberration optical paths 216 a, 216 b and 216 c that will return to the fiber optic cable in focus originate from three different locations; 216 a is reflected from top surface 16 of web 12 , 216 b is reflected from the bottom surface 218 of window 171 and 216 c is reflected from the top surface 220 of window 171 .
- the chromatic paths of second probe 192 reflect from the bottom surface 14 of web 12 , as well as the top and bottom surface 222 and 224 of window 196 .
- Probes 156 and 192 can distinguish multiple surface reflections simultaneously and determine each surface location separately. By this method, as guides 162 and 174 articulate, each of the three surfaces can be located and measured using the optical spectrograph. By also knowing the distance between each guide 162 and 174 using the inductor 164 and target plate 172 , web thickness may be derived.
- top and bottom spectrographs 226 a and 226 b respectively.
- the spectrograph 226 a indicates three peaks for the three optical interfaces g 1 , g 2 and D top for the top device and g 3 , g 4 and D bot for the bottom device 226 b.
- these additional signals g 1 , g 2 , g 3 , and g 4 can be used to dynamically correct for web tilt. Also, these signals can be used to determine the height of the guides 162 and 174 while measuring web 12 .
- the floating guides 162 and 174 are free to move with the moving web 12 , and as a result may experience a varying degree of tilt during measurement. As a result, the optical axis and magnetic axis may no longer be parallel, which may cause measurement errors. With reference to FIG. 9 , a method is shown to dynamically correct the resulting error when the optical axis is not normal to the moving web 12 .
- the measured apparent thickness t m g1 and the actual thickness t a g1 of window 171 are used to dynamically determine the actual perpendicular distance d a AB1 between the guide 162 and the moving web 12 .
- the measured distance between top and bottom glass surfaces 218 and 220 or 222 and 224 may be used to determine the tilt angle ⁇ AB1 and ⁇ AB2 of the respective floating guides 162 and 174 .
- the actual guide height d a AB1 and d a AB2 is then calculated by the trigonometric steps below, using the measured guide heights d m AB1 and d m AB2 .
- ⁇ g1 arccos( t g1 a /t g1 m )
- ⁇ AB1 arcsin( n sin( ⁇ g1 )
- ⁇ g2 arccos( t g2 a /t g2 m )
- ⁇ AB2 arcsin( n sin( ⁇ g2 )
- guides 162 and 174 can articulate to track local web tilt and flutter while still providing accurate measurements. It is also noted that the measured glass thickness will always be greater or equal to the actual thicknesses of the windows. It should be appreciated, however, that a suitable optical density correction may be required because a portion of the optical path is through a medium other than air.
- sensor 230 may be positioned in close proximity to a web 12 .
- the web thickness, or gauge is measured by means of a first sensor head 232 that does not contact web 12 and a second sensor head (not shown) that may generally mirror first head 232 .
- First head 232 includes an optical displacement sensor probe 234 that employs a confocal chromatic aberration method to determine the distance to the top surface 16 of web 12 .
- Probe 234 includes an objective lens 236 which varies the refractive index as a function of wavelength.
- a light source and optical spectrograph (not shown) communicate with lens 236 through a fiber optic cable 238 .
- First sensor head 232 further includes a first guide 240 that floats on a cushion of air above web 12 .
- Guide 240 includes an inductor 242 having an annular ferrite cup core 244 with a winding 246 .
- Core 244 defines a center aperture 248 , within which is positioned an annular plate 250 .
- Inductor 242 is utilized to magnetically measure distance to a ferrite target plate (not shown) in the second guide (not shown) on the opposed side of web 12 . The inductance is converted to a displacement measurement by an electronic unit (not shown).
- Guide 240 is substantially similar to guide 162 with the exception that annular plate 250 is positioned within center aperture 248 instead of a window 171 . This provides a non-obstructed view of the moving web surface 16 without a window that could potentially collect dirt and require regular cleaning.
- probe 234 may include multiple fibers (of a fiber optic cable) optically viewing through the same lens 236 . These fibers use the same lens 236 for delivery and collection of light, but have offset lateral positions. For example, in FIG.
- FIG. 11 a an exemplary cross-sectional fiber arrangement is shown having a central fiber 252 that measures the distance to web 12 through the central aperture 254 of annular plate 250 , while a plurality of fibers 256 are circumferentially spaced around central fiber 252 and measure distance to the annular reference plate 250 . These measurements may be used to calculate the tilt of the guide 240 . Because the tilt of guide 240 generally parallels the tilt of web 12 , the measured guide tilt may be used to dynamically correct the measured gauge of web 12 . It should be appreciated that the fiber arrangement of FIG. 11A , as well as FIGS. 11B and 11C may be used with on or more of the previous sensor embodiments.
- FIG. 11B an alternate fiber arrangement is shown wherein a multitude of fibers 256 are arranged in a row in the cross-machine direction to be focused onto the material in the pattern shown in FIG. 12 .
- Each individual fiber 256 may be interrogated by an imaging spectrograph.
- An exemplary resulting graph is shown in FIG. 13 .
- each fiber is directed onto a different line across the 2D imaging spectrograph (A 1 . . . An) and individual displacements are determined by signal processing.
- Each individual spectral line provides a high resolution surface profile.
- the fibers 256 can be arranged to be of comparable width to that of current online caliper measuring devices.
- the average distance to the material surface can be estimated from the average spectral spread at each integration instance ⁇ x.
- the line of fibers 256 may be used to measure tilt along the axis of the machine direction, thus enabling automatic correction.
- measurements taken by fibers 256 may correlate to a roughness, porosity, or runnability measurement.
- FIG. 11C an alternate fiber arrangement is shown, wherein the fibers 256 are arranged to obtain a two dimensional surface area profile.
- multiple spectrographs may be separate or combined to make a 2d spectrograph (not shown) measures distance to the sheet at more than one point (i.e. pixels arranged in rows).
- This arrangement offers measurement of displacement as well as web tilt in both the cross-machine and machine direction. As previously discussed, web tilt can cause the thickness measurement to be in error due to the axial optical displacements combined with any non-concentricity of the two opposed optical probes. The measurement of web tilt permits compensation of measurement errors.
- the fibers 256 can be arranged to be of comparable width to that of current online caliper measuring devices.
- the average distance to the material surface may be produced by averaging the output of each fiber 256 .
- measurements taken by fibers 256 may correlate to a 2D roughness, porosity, or runnability measurement.
- FIG. 14 a profile is shown of a web 12 with rough surface being probed by the optical beam 258 .
- the resultant measured displacement 260 is shown in FIG. 15 a which shows the expected spectra detected if the sample is moved at slow speed, or if integration time is very high, to resolve surface variations.
- the intensity at a given wavelength would be comparably very high in such an arrangement, as shown in FIG. 15 b. If the same surface measurement is taken at a faster web speed or slower integration time, it can be seen in FIG. 16 a that the measured distance is the averaged distance 264 measured by the probe during the spectrograph integration time.
- FIG. 16 b shows the resultant spectral width 262 widening due to the rough surface integrated measurement.
- a relationship can be found analytically and/or empirically on the amount of spread as a function of integration distance and surface roughness. This offers multiple benefits, the surface topography can be used as an on-line sheet smoothness or gloss indicator, and the sheet thickness measurement may be corrected for topography induced measurement errors.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
A sensor is provided that measures web caliper using optical and magnetic measuring devices. The optical measuring devices may employ a confocal chromatic aberration method to accurately determine the distance to the moving web and the magnetic devices may be ferrite core coil and target. Means of stabilizing a moving web are included for improving dynamic measurement accuracy.
Description
- This application claims the priority of U.S. provisional patent application Ser. No. 60/969,373 filed on Aug. 31, 2007 entitled “Web Thickness Measurement Device,” the contents of which are relied upon and incorporated herein by reference in their entirety, and the benefit of priority under 35 U.S.C. 119(e) is hereby claimed
- This invention relates to web measurement systems.
- Sheet materials, such as paper, are produced in thin continuous webs and require highly accurate thickness (caliper) measurement and control. Commonly, these measurements are accomplished by means of sensors that physically contact the web at both the top and bottom side. Also, various non-contacting sensors have been developed that may be fully non-contacting (no physical contact), or sensors that contact physically contact sheet at only one side.
- The speed of papermaking machinery has increased dramatically over time, while the web materials, for process economy, have become thinner and cheaper. This industry transition has illuminated the inherent limitations of contacting sensors, which may mark, scratch or otherwise damage the web. In particular, sensors that contact the sheet simultaneously from both sides have a risk of pinching sheets containing lumps or defects, resulting in the sensors causing holes or even sheet break on thin paper grades. Non-contacting sensors offer an advantage as they minimize the risks of such damage. Further, non-contacting sensors eliminate issues related to dirt buildup and wear that may cause measurement inaccuracies, thereby leading to frequent maintenance.
- Existing non contacting thickness sensor solutions include single sided and dual sided air-bearings with magnetic distance measurement, single sided and dual sided laser triangulators with magnetic distance measurement, as well as other supplemental devices to improve sensor accuracy and stabilize the moving web.
- One particular drawback to prior art non-contacting devices are the issues related to light penetration. Most paper has some degree of translucency, making the exterior surface position difficult to establish by traditional optical means. Cellulose fibers are relatively clear, and light reflected from the sheet does not radiate strictly from the sheet surface, but also from areas deeper in the paper. This often leads to optically measured thickness values that are too low. Therefore, using laser measurement may make a paper web appear thinner than the true thickness. These errors can be significant, and depending upon the paper grades, laser measurement can generate optical thickness measurements that are only 50% of the true value. Correct measurements are typically only accomplished if the measured sheet is coated or else has a very dense and opaque surface. Thus, none of the current non-contacting sensor solutions offer acceptable accuracy for the majority of paper grades, and furthermore, they tend to be complex in design and unreliable.
- There is therefore a need in the art for a web measurement device that provides accurate measurements even when the traveling web is of a partially translucent type, such as paper.
- In general a sensor in accordance with the present invention is provided for monitoring the thickness of a moving web. The sensor includes a first sensor head positioned on a first side of the moving web, a second sensor head positioned on a second side of the moving web, opposed to the first side, an inductor positioned in the first sensor head and including a ferrite core and a winding, a contacting plate secured to the second sensor head and adapted to contact the second side of the moving web, a target plate secured proximate to the contacting plate, wherein the inductor is adapted to measure the distance to the target plate, and an optical sensor probe, positioned in the first sensor head, and including an objective lens having an axial chromatism, the optical sensor being adapted to measure the distance to the first side of the moving web using confocal chromatic aberration.
- In accordance with another embodiment of the present invention, a sensor is provided for monitoring the thickness of a moving web. The sensor includes a first sensor head positioned on a first side of the moving web and including an optical measuring device adapted to measure the distance to the moving web. A second sensor head is positioned on a second side of the moving web, opposed to the first side. An inductor is positioned in the first or the second sensor head and includes a ferrite core and a winding. A contacting plate is secured to the second sensor head and includes a plurality of suction slots. A target plate is secured to the first or second sensor head opposed from the inductor, wherein the inductor is adapted to measure the distance to the target plate. An optical reference body is positioned on the second sensor head, centrally of the contacting plate and is axially aligned with the optical measuring device, the optical reference body is positioned closer to the first sensor head than the contacting plate and the suction slots are spaced from the optical body.
-
FIG. 1 shows a sectional and partially schematic view of a sensor according to the present invention; -
FIG. 2 shows a section view of the target plate and elevated optical reference body; -
FIG. 3 shows a section view of the target plate and optical reference body; -
FIG. 4 shows top view of the contacting plate, target plate and optical reference body; -
FIG. 5 shows a sectional view of a sensor according to an alternate embodiment of the present invention; -
FIG. 5A shows an elevated view of the target plate of the embodiment ofFIG. 5 ; -
FIG. 5B shows an elevated view of the first sensor head having an air bearing arrangement; -
FIG. 5C shows an elevated view of the first sensor head having an alternate air bearing arrangement; -
FIG. 6 shows a sectional view of a sensor according to a second alternate embodiment of the present invention; -
FIG. 7 shows an enlarged sectional view of the sensor ofFIG. 6 ; -
FIG. 8 shows a sectional and partially schematic view of the sensor ofFIG. 6 ; -
FIG. 9 shows an enlarged view of the floating guides proximate to the web; -
FIG. 10 shows a sectional view of a sensor according to a third alternate embodiment of the present invention; -
FIG. 11A shows a section view of one embodiment of a fiber optic cable according to the present invention; -
FIG. 11B shows a section view of a second embodiment of a fiber optic cable according to the present invention; -
FIG. 11C shows a section view of a third embodiment of a fiber optic cable according to the present invention; -
FIG. 12 shows a top view of the web and representations of the surface coverage using the fiber optic cable ofFIG. 11B or 11C. -
FIG. 13 shows a 2d imaging spectrograph; -
FIG. 14 shows a close-up side section view of the surface of a web; -
FIG. 15A shows a displacement graph representing the surface of a slow moving web; -
FIG. 15B shows a spectral graph representative of a point on the slow moving web; -
FIG. 16A shows a displacement graph representing the surface of a fast moving web; and -
FIG. 16B shows a spectral graph representative of a point on the fast moving web. - Referring now to
FIG. 1 , a gauge measurement device (hereinafter device 10) is shown and generally indicated by the numeral 10.Device 10 may be installed and used in a web making process line, for example, a paper making line. When installed,device 10 is positioned in close proximity to a movingweb 12 for measurement thereof. Though the present invention is particularly useful for paper making applications,device 10 may be used to measure any type of continuously produced web. Further, one ormore devices 10 may be positioned at any point along the continuous web production process to continuously measure web thickness at multiple points in the process. - The
web 12 may move at high speeds throughdevice 10 in the machine direction D. In the example whereweb 12 is a paper product, production line speeds in paper manufacturing can reach 100 km per hour or more.Device 10 contacts abottom surface 14 ofweb 12, while atop surface 16 is not contacted and is measured optically. A pair of opposed sensor heads cooperate to measure the thickness, or caliper, ofweb 12. Afirst sensor head 18 is positioned abovetop surface 16 and does not contactweb 12. Asecond sensor head 20contacts web 12 atbottom surface 14 and, as will become apparent, serves as a reference point for the measurement devices infirst head 18. -
First head 18 includes an opticaldisplacement sensor probe 22 that employs a confocal chromatic aberration method to determine the distance from the probe to thetop surface 16 ofweb 12.Probe 22 includes anobjective lens 24 having axial chromatism, which results from the variation of the refractive index as a function of wavelength. Such a lens, if exposed to a point source of broad spectrum white light (such as from a fiber optic cable), will produce a continuum of monochromatic image points distributed along the optical axis A. When a surface of the measured sample, in the present case theweb 12, intercepts the measurement axis A at point M, a singular monochromatic point image is focalized at M. Due to the confocal configuration, only the wavelength λM will pass back to the spectrometer (through the fiber optic cable) with high efficiency because all other wavelengths are out of focus. If theweb 12 is viewed through one or more transparent thin layers, each interface between adjacent layers reflects light at a different wavelength, and the spectrum of the detected light is composed of a series of spectral peaks. Such probes are configured and calibrated so that each spectral peak indicates a specific distance from the probe. - In the present embodiment, a light source and
optical spectrograph 26 communicate withlens 24 through afiber optic cable 30. White light travels throughcable 30, is directed throughobjective lens 24 and onto theweb 12. The reflected light that is focused back to thefiber optic cable 30 corresponds to the wavelength at that specific distance fromlens 24. All other wavelengths will be out of focus. Thespectrograph 26 produces adistance measurement 32 which represents the distance fromprobe 22 to thetop surface 16 ofweb 12. -
First sensor head 18 includes a second displacement measurement sensor in the form of aninductor 33 having aferrite cup core 34 and a winding 36.Core 34 is annular and coaxial withlens 24, defining a center aperture 38 that provides an optical path betweenlens 24 andweb 12. It is important to know the relative distances betweeninductor 33 andprobe 22, thusferrite cup core 34 is spaced fromprobe 22 by aspacer 40, the size of which is precisely known so that the exact distance tolens 24 is known.Inductor 33 magnetically measures the distance to aferrite target plate 42 insecond sensor head 20 which is in physical contact withbottom surface 14 ofweb 12. The inductance is converted to a displacement measurement 44 byelectronic unit 46. Even though the ferrite based inductor system may advantageously provide a more accurate displacement measurement, prior art eddy current systems may also be utilized in the present invention. Further, it should be appreciated that first andsecond head heads - Web thickness is thus determined by calculating the difference between the inductive sensor displacement measurement 44 (plus the height of spacer 40) and the
optical sensor measurement 32. -
Second sensor head 20 includes a contactingplate 60 within which residesferrite target plate 42. Contactingplate 60 includes a plurality ofsuction slots 62 that are in communication with a vacuum chamber 63 positioned beneath contactingplate 60. Avacuum generator 64 draws air from vacuum chamber 63 which effectively draws air into chamber 63 throughsuction slots 62. In oneembodiment vacuum generator 64 may be a venturi based vacuum generator operable with compressed air. Contactingplate 60 may also support anoptical reference body 66 that is co-axial withlens 24. - Accurate measurements require calibration of the
magnetic distance measurement 32, betweeninductor 33 andtarget plate 42, versus the optical distance measurement 44 betweensensor probe 22 andoptical reference body 66. Alinear motion actuator 68 is included insecond sensor head 20, and is utilized for calibration as well as vertical adjustment to attain the best operating distance/gap.Linear motion actuator 68 is capable of moving up or down aframe 69 that supports contactingplate 60,target plate 42 andreference body 66. As is known in the art, linear motion actuators such as lead screw equipped stepper motors or piezoelectric linear positioners are capable of reliably moving frame 69 a known distance with a high degree of accuracy. - Calibration can be performed when the
web 12 is not present. Theactuator 68 may movereference body 66, along withtarget plate 42, to a plurality of positions. The resulting responses from the optical and magnetic signals may then be compared. The magnetic gap measurement 44 may then be calibrated using theoptical sensor 22 for a reference displacement measurement. In other words, the magnetic measurement may be forced to equal the optical measurement at each measurement point. This utilizes the pre-calibration of the optical sensor as a master measurement of the motion, and translates this motion of exactly the same amount to calibrate the magnetic sensor. The calibration can, for instance, involve a fine stepping linear motion of 3 mm total range while reading the optical and magnetic sensor signals every 0.01 mm of travel. In this way a continuous calibration curve can be periodically determined to correct for various issues such as drift, physical wear and misalignment. - Faulty thickness measurements will occur unless
web 12 is in intimate contact withreference body 66. This is a challenge in many web production machines due to the very high travel speed of the web. For example, at high speeds,web 12 tends to experience aerodynamic and tension dynamic sheet vibrations, wrinkles and waves. - With reference to
FIGS. 2-4 , a more detailed view of contactingplate 60 is shown. As can be seen, in one embodiment,optical reference body 66 may be positioned a known distance e slightly aboveferrite target plate 42. In one embodiment,optical reference body 66 extends above the top surface oftarget plate 42 by up to 0.5 mm. This arrangement enables more intimate contact ofweb 12 againstoptical reference body 66 at the point of optical measurement due to local stretching. - Further drawing the
web 12 toward contactingplate 60 are the plurality ofsuction slots 62. Theweb 12 moving in direction D may advantageously be subjected tomultiple suction slots 60 before passing over thereference body 66. Thesuction slots 60, in conjunction with theelevated reference body 66, combine to provide improved web contact withreference body 66. Theweb 12 has to slide over, for instance, threedifferent suction zones reference body 66 where measurement takes place. This helps remove boundary layer air from disturbing the measurements, even at high speeds. - As can be seen in
FIG. 4 ,web 12 moves in direction D acrosscontact plate 60. Theoutermost suction slots 62 extend outwardly at an angle α from the machine direction D. In the present embodiment, the angle α is twenty five (25) degrees. In still other embodiments, particularly when used in very high speed machines the angle α may be from one (1) to five (5) degrees. This shallow angle acts to stretch theweb 12 in the cross-machine direction to eliminate fluctuations and wrinkles. Further, themultiple suction zones web 12. It should be appreciated that other suction arrangements may be employed including, for example, concentric annular slots or other patterns such as plural holes. - The contacting
plate 60,ferrite target plate 42 andoptical reference body 66 are made of very smooth, low friction and wear resistant materials. The top surface ofreference body 66 may be made from solid ceramic, sapphire, synthetic diamond or the like.Ferrite target plate 42 andcontact plate 60 may include a smooth coating such as diamond film, plasma sprayed and lapped ceramics, or a thin ceramic sapphire cover that is post-machined and lapped.Ferrite target plate 60 andinductor 33 may also be mounted with exchanged locations betweenfirst sensor head 82 andsecond sensor head 84. - Referring now to
FIG. 5 , an alternate embodiment of a sensor according to the present invention is shown and generally indicated by the numeral 80.Sensor 80 is adapted to measure web thickness without any direct contact with either side ofweb 12. - As with the previously described embodiment,
sensor 80 may be positioned in close proximity to a movingweb 12. The web thickness, or caliper, is measured by means of afirst sensor head 82 that does not contactweb 12 and an opposedsecond sensor head 84 that also does not contactweb 12. It should be appreciated that, though the sensor heads are described as non-contacting, some incidental contact betweenweb 12 and the sensor heads may occur. In the context of the present disclosure, non-contact means that the measurements themselves do not require physical contact between theweb 12 and either of the sensor heads. -
First head 82 includes an opticaldisplacement sensor probe 86 that employs the confocal chromatic aberration method to determine the distance to thetop surface 16 ofweb 12.Probe 86 includes anobjective lens 88 which varies the refractive index as a function of wavelength. A light source and optical spectrograph (not shown) communicate withlens 88 through afiber optic cable 94.Sensor probe 86 outputs a distance measurement which represents the distance from thelens 88 totop surface 16 ofweb 12. -
First sensor head 82 further includes aninductor 98 having aferrite cup core 100 with a winding 102.Core 100 is annular, defining acenter aperture 104 that provides an optical path betweenlens 88 andweb 12. It is important to know the relative distances betweeninductor 98 andprobe 86, thusferrite cup core 100 is spaced fromprobe 86 by aspacer 106, the size of which is precisely known so that the exact distance tolens 24 is known.Inductor 98 is coaxial withlens 88 and is utilized to magnetically measure distance to aferrite target plate 108 insecond sensor head 84. The inductance is converted to a displacement measurement by an electronic unit (not shown). As with the previous embodiment,inductor 98 andtarget plate 108 may be switched, with the target plate infirst head 82 and the inductor positioned in hesecond head 84. Also, other magnetic measurement methods may be employed. -
Second head 84 also includes an opticaldisplacement sensor probe 114 that employs a confocal chromatic aberration method to determine the distance to thebottom surface 14 ofweb 12.Probe 114 includes anobjective lens 116 which varies the refractive index as a function of wavelength.Probe 114 views thebottom surface 14 ofweb 12 through anaperture 115 intarget plate 108. In order to minimize errors, the optical axis ofsecond probe 114 is advantageously coaxial with the optical axis offirst probe 86. In other words, the same point on theweb 12 is measured at both thebottom surface 14 andtop surface 16. A light source and optical spectrograph (not shown) communicate withlens 116 through afiber optic cable 122.Sensor probe 114 produces a distance measurement which represents the distance from thelens 116 to thebottom surface 14 ofweb 12. - Thus, by measuring the distance between each
sensor head inductor 98, and measuring the distance of eachprobe web 12 by theconfocal lenses web 12 may be measured. -
Sensor 80 includes an air-bearing arrangement 126 that acts to stabilize and flatten the movingweb 12. Air-bearingarrangement 126 includes guide bars 128 a and 128 b that extend in the cross-machine direction and are positioned at opposed upstream and downstream ends offirst sensor head 82. According to another embodiment,guide bar 128 may be circular, extending circumferentially around the entire sensor 80 (seeFIG. 5C ). In yet another embodiment, guide bars 128 a and 128 b may each be arced or curved. Guide bars 128 direct compressed air through a plurality ofholes 129 downwardly towardweb 12. -
First head 82 also includes aport 130 that communicates with a chamber 132 located betweenlens 88 andweb 12. Air is supplied throughport 130, into chamber 132 and throughaperture 104 towardweb 12. As will be hereinafter discussed, this promotes the removal of wrinkles fromweb 12 at the area of measurement. Also, the evacuation of air throughaperture 104 helps prevent contaminates from entering chamber 132 and dirtyinglens 88. -
Second sensor head 84 includes aport 134 that communicates compressed air to a peripheral chamber 136 that feeds aslot 138 at the periphery offerrite target plate 108.Slot 138 may be annular and is positioned inwardly ofguide bar 128 and may extend the entire periphery of thetarget plate 108.Slot 138 may be angled to direct air upwardly and outwardly. Aring 139 may be positioned outwardly ofslot 138 that, in cross-section, curves away fromweb 12. In one embodiment,ring 138 includes an upwardly convex profile. - Chamber 136 communicates with a
central chamber 140, located in front oflens 116, through achannel 142. Theweb 12 will, by this arrangement, float a small distance aboveferrite target plate 108. The ratio of air flowing throughaperture 115 andperipheral slot 134 may be controlled by acontrol valve 144. This ratio should be balanced to just barely liftweb 12 away from contacting the central area ofbottom head 84 while not deforming the local shape ofweb 12. Air flowing through the aperture 136 helps keeplens 88 clean and offers additional airbearing lift, to stretchweb 12 without physically contact. -
Air bearing arrangement 126 stretchesweb 12 to control flatness and parallelism for optical measurement. Guide bars may be adjusted to forceweb 12 to pass throughsensor 80 in a zigzag or serpentine pattern in the gap betweenfirst sensor head 82 and second sensor head 83. This arrangement is effective in making the sheet flat by bending it in opposite directions as it passes through the sensor. The web stretching, at the optical point of measurement, is further promoted by anelevated lip 146, which is attached to targetplate 108 surroundingaperture 115 and promotes a slight rise in the web at the area of the optical measurement.Lip 146 may be made of a smooth, non-magnetic and non-conductive material so that it does not interfere with magnetic measurements. - Referring now to
FIGS. 6 and 7 , a second alternate embodiment of a sensor is shown and generally indicated by the numeral 150. As with the embodiment described above, sensor 150 may be positioned in close proximity to aweb 12 moving in direction D. The web thickness, or gauge, is measured by means of afirst sensor head 152 that does not contactweb 12 and asecond sensor head 154 that also does not contactweb 12. -
First head 152 includes an opticaldisplacement sensor probe 156 that employs a confocal chromatic aberration method to determine the distance to thetop surface 16 ofweb 12.Probe 156 includes anobjective lens 158 which varies the refractive index as a function of wavelength. A light source and optical spectrograph (not shown) communicate withlens 158 through afiber optic cable 160.Sensor probe 156 measures the distance from thelens 158 to thetop surface 16 ofweb 12. -
First sensor head 152 further includes a first floatingguide 162 that floats on a cushion of air aboveweb 12. Floatingguide 162 may be a body of rotational symmetry to assure symmetry and parallel lift of the air cushion.Guide 162 includes aninductor 164 having an annularferrite cup core 166 with a winding 168.Core 166 defines acenter aperture 170, within which is positioned athin window 171.Window 171 may be a transparent or semitransparent material. In one ormore embodiments window 171 is made of glass or sapphire.Inductor 164 is utilized to magnetically measure distance to aferrite target plate 172 in a second floatingguide 174. The inductance is converted to a displacement measurement by an electronic unit (not shown). - First floating
guide 162 includes anouter body 176 that forms aninterior chamber 178. Acollar 180 extends upwardly frombody 176 and is received in abore 182. Aspherical section 184 extends radially outwardly fromcollar 180 with a small clearance to bore 182, and by a small amount of escaping air forming a friction free airbearing around thespherical section 184 to allow free angular and axial articulation ofguide 162 in thebore 182. The friction free suspension together with pneumatic force balance permits theguide 162 to achieve an equilibrium position parallel to, and at a relatively constant distance from the upper surface ofweb 12. Compressed air is received through aport 186 infirst head 152. The air is thereafter communicated tochamber 178 through the inlet formed bycollar 180. A plurality of spaced holes or circumferentially extendingslots 188 are located on thebottom surface 190 ofbody 176 so that the compressed air is directed downwardly towardweb 12. In this manner,first guide 162 is maintained aboveweb 12 in a self-adjusting fashion. -
Second head 154 includes an opticaldisplacement sensor probe 192, axially aligned withprobe 156, that employs a confocal chromatic aberration method to determine the distance to thebottom surface 14 ofweb 12.Probe 192 includes anobjective lens 194 which varies the refractive index as a function of wavelength.Probe 192 views thebottom surface 14 ofweb 12 through awindow 196 located centrally ontarget plate 172.Window 196 may be a transparent or semitransparent material. In one ormore embodiments window 196 is made of glass or sapphire. A light source and optical spectrograph (not shown) communicate withlens 194 through afiber optic cable 198.Sensor probe 192 measures the distance from thelens 194 to thebottom surface 14 ofweb 12. - Second floating
guide 174 includes anouter body 200 that forms aninterior chamber 202. Aspherical section 208 extends radially outwardly fromcollar 204 with a small clearance to bore 206, and by a small amount of escaping air forming a friction free airbearing around thespherical section 208 to allow free angular and axial articulation ofguide 174 in thebore 206. The friction free suspension together with pneumatic force balance permits theguide 174 to achieve an equilibrium position parallel to, and at a relatively constant distance from the lower surface ofweb 12. Compressed air is received through aport 210 insecond head 154. The air is thereafter communicated tochamber 202 through the inlet formed bycollar 204. A plurality of spaced holes orslots 212 are located on thetop surface 214 ofbody 200 so that the compressed air is directed fromchamber 202 upwardly towardweb 12. In this manner,second guide 174 is maintained belowweb 12 in a self-adjusting fashion. - The design parameters of
guides web 12. Becauseguides inductor 164 andferrite target plate 172 are likewise held in close proximity, and can therefore be designed to be highly accurate, as well as small in size. - As discussed above,
windows windows FIGS. 7 and 8 , the chromatic aberrationoptical paths top surface 16 ofweb bottom surface 218 ofwindow top surface 220 ofwindow 171. Similarly, the chromatic paths ofsecond probe 192 reflect from thebottom surface 14 ofweb 12, as well as the top andbottom surface window 196. -
Probes guides guide inductor 164 andtarget plate 172, web thickness may be derived. - As noted above, when the optical path travels through
windows additional signals - Referring now to
FIG. 8 , an exemplary chromatic separation of the peaks is shown in top andbottom spectrographs spectrograph 226 a indicates three peaks for the three optical interfaces g1, g2 and Dtop for the top device and g3, g4 and Dbot for thebottom device 226 b. Because the window thickness can be precisely measured, and because the window thickness is very stable over time, these additional signals g1, g2, g3, and g4 can be used to dynamically correct for web tilt. Also, these signals can be used to determine the height of theguides web 12. - The floating guides 162 and 174 are free to move with the moving
web 12, and as a result may experience a varying degree of tilt during measurement. As a result, the optical axis and magnetic axis may no longer be parallel, which may cause measurement errors. With reference toFIG. 9 , a method is shown to dynamically correct the resulting error when the optical axis is not normal to the movingweb 12. The measured apparent thickness tm g1 and the actual thickness ta g1 ofwindow 171 are used to dynamically determine the actual perpendicular distance da AB1 between theguide 162 and the movingweb 12. Because the actual thickness ta g1 of theglass window 171 is known (and constant), the measured distance between top and bottom glass surfaces 218 and 220 or 222 and 224 may be used to determine the tilt angle θAB1 and θAB2 of the respective floatingguides -
θg1=arccos(t g1 a /t g1 m) -
- tg1 a=actual glass thickness (Known)
- tg1 a=measured glass thickness
-
θAB1=arcsin(n sin(θg1) -
- n=refractive index, glass (Known)
-
d AB1 a =d AB1 m×cos(θAB1) -
θg2=arccos(t g2 a /t g2 m) -
- tg2 a=actual glass thickness (Known)
- tg2 a=measured glass thickness
-
θAB2=arcsin(n sin(θg2) -
d AB2 a =d AB2 m×cos(θAB2) -
Caliper=Gap−(d AB1 a +d AB2 a) - Using this method, guides 162 and 174 can articulate to track local web tilt and flutter while still providing accurate measurements. It is also noted that the measured glass thickness will always be greater or equal to the actual thicknesses of the windows. It should be appreciated, however, that a suitable optical density correction may be required because a portion of the optical path is through a medium other than air.
- Referring now to
FIG. 10 , a third alternate embodiment of a sensor is shown and generally indicated by the numeral 230. As with the embodiments described above,sensor 230 may be positioned in close proximity to aweb 12. The web thickness, or gauge, is measured by means of afirst sensor head 232 that does not contactweb 12 and a second sensor head (not shown) that may generally mirrorfirst head 232. -
First head 232 includes an opticaldisplacement sensor probe 234 that employs a confocal chromatic aberration method to determine the distance to thetop surface 16 ofweb 12.Probe 234 includes anobjective lens 236 which varies the refractive index as a function of wavelength. A light source and optical spectrograph (not shown) communicate withlens 236 through afiber optic cable 238. -
First sensor head 232 further includes afirst guide 240 that floats on a cushion of air aboveweb 12.Guide 240 includes aninductor 242 having an annularferrite cup core 244 with a winding 246.Core 244 defines acenter aperture 248, within which is positioned anannular plate 250.Inductor 242 is utilized to magnetically measure distance to a ferrite target plate (not shown) in the second guide (not shown) on the opposed side ofweb 12. The inductance is converted to a displacement measurement by an electronic unit (not shown). -
Guide 240 is substantially similar to guide 162 with the exception thatannular plate 250 is positioned withincenter aperture 248 instead of awindow 171. This provides a non-obstructed view of the movingweb surface 16 without a window that could potentially collect dirt and require regular cleaning. In this arrangement,probe 234 may include multiple fibers (of a fiber optic cable) optically viewing through thesame lens 236. These fibers use thesame lens 236 for delivery and collection of light, but have offset lateral positions. For example, inFIG. 11 a an exemplary cross-sectional fiber arrangement is shown having acentral fiber 252 that measures the distance toweb 12 through thecentral aperture 254 ofannular plate 250, while a plurality offibers 256 are circumferentially spaced aroundcentral fiber 252 and measure distance to theannular reference plate 250. These measurements may be used to calculate the tilt of theguide 240. Because the tilt ofguide 240 generally parallels the tilt ofweb 12, the measured guide tilt may be used to dynamically correct the measured gauge ofweb 12. It should be appreciated that the fiber arrangement ofFIG. 11A , as well asFIGS. 11B and 11C may be used with on or more of the previous sensor embodiments. - Referring now to
FIG. 11B , an alternate fiber arrangement is shown wherein a multitude offibers 256 are arranged in a row in the cross-machine direction to be focused onto the material in the pattern shown inFIG. 12 . Eachindividual fiber 256 may be interrogated by an imaging spectrograph. An exemplary resulting graph is shown inFIG. 13 . As can be seen, each fiber is directed onto a different line across the 2D imaging spectrograph (A1 . . . An) and individual displacements are determined by signal processing. Each individual spectral line provides a high resolution surface profile. Thefibers 256 can be arranged to be of comparable width to that of current online caliper measuring devices. Alternatively the average distance to the material surface can be estimated from the average spectral spread at each integration instance Δx. In yet another embodiment, the line offibers 256 may be used to measure tilt along the axis of the machine direction, thus enabling automatic correction. In still another embodiment, measurements taken byfibers 256 may correlate to a roughness, porosity, or runnability measurement. - Referring now to
FIG. 11C , an alternate fiber arrangement is shown, wherein thefibers 256 are arranged to obtain a two dimensional surface area profile. In this embodiment, multiple spectrographs may be separate or combined to make a 2d spectrograph (not shown) measures distance to the sheet at more than one point (i.e. pixels arranged in rows). This arrangement offers measurement of displacement as well as web tilt in both the cross-machine and machine direction. As previously discussed, web tilt can cause the thickness measurement to be in error due to the axial optical displacements combined with any non-concentricity of the two opposed optical probes. The measurement of web tilt permits compensation of measurement errors. Thefibers 256 can be arranged to be of comparable width to that of current online caliper measuring devices. Alternatively, the average distance to the material surface may be produced by averaging the output of eachfiber 256. In still another embodiment, provided surface intensity is high and integration time very small, measurements taken byfibers 256 may correlate to a 2D roughness, porosity, or runnability measurement. - Referring now to
FIG. 14 , a profile is shown of aweb 12 with rough surface being probed by theoptical beam 258. The resultant measureddisplacement 260 is shown inFIG. 15 a which shows the expected spectra detected if the sample is moved at slow speed, or if integration time is very high, to resolve surface variations. The intensity at a given wavelength would be comparably very high in such an arrangement, as shown inFIG. 15 b. If the same surface measurement is taken at a faster web speed or slower integration time, it can be seen inFIG. 16 a that the measured distance is the averageddistance 264 measured by the probe during the spectrograph integration time.FIG. 16 b shows the resultantspectral width 262 widening due to the rough surface integrated measurement. A relationship can be found analytically and/or empirically on the amount of spread as a function of integration distance and surface roughness. This offers multiple benefits, the surface topography can be used as an on-line sheet smoothness or gloss indicator, and the sheet thickness measurement may be corrected for topography induced measurement errors. - It is to be understood that the description of the foregoing exemplary embodiment(s) is (are) intended to be only illustrative, rather than exhaustive, of the present invention. Those of ordinary skill will be able to make certain additions, deletions, and/or modifications to the embodiment(s) of the disclosed subject matter without departing from the spirit of the invention or its scope, as defined by the appended claims.
Claims (20)
1. A sensor for monitoring the thickness of a moving web, the sensor comprising:
a first sensor head positioned on a first side of the moving web;
a second sensor head positioned on a second side of the moving web, opposed to said first side;
an annular inductor positioned in said first or second sensor head and including a ferrite core and a winding;
a contacting plate secured to said second sensor head, and adapted to contact the second side of the moving web;
a target plate secured to said first or said second sensor head opposed from said inductor, wherein said inductor is adapted to measure the distance to said target plate; and
an optical sensor probe, positioned in said first sensor head, and including an objective lens having an axial chromatism, said objective lens being coaxial with said inductor, said optical sensor being adapted to measure the distance to said first side of the moving web using confocal chromatic aberration.
2. The sensor of claim 1 further comprising a light source that communicates with said objective lens through a fiber optic cable, a reflected signal being received by a spectrograph through said fiber optic cable.
3. The sensor of claim 2 wherein said spectrograph analyzes said reflected signal and computes an optical distance value.
4. The sensor of claim 2 wherein said spectrograph determines said reflected signal and determines a spectral width, said spectral width correlating to a web surface characteristic including gloss or surface roughness.
5. The sensor of claim 3 further comprising electronics adapted to receive a signal from the inductor and convert said signal to an inductor distance value, which is subtracted from said optical distance value to output a measurement indicative of the thickness of the moving web.
6. The sensor of claim 4 wherein said spectrograph compensates an optical distance value based on said spectral width.
7. The sensor of claim 1 wherein said second sensor head includes a plurality of suction slots extending through said contacting plate and communicating with a vacuum chamber located beneath said contacting plate, air being withdrawn from said vacuum chamber by a vacuum generator.
8. The sensor of claim 1 wherein said second sensor head includes an optical reference body positioned centrally of said contacting plate and being axially aligned with said objective lens, said optical reference body being positioned closer to said first sensor head than said contacting plate.
9. The sensor of claim 8 wherein said contacting plate includes a plurality of suction slots spaced from said optical reference body.
10. The sensor of claim 9 wherein said plurality of suction slots are positioned on said target plate so that said moving web traverses at lease two of said plurality of suction slots before contacting said optical reference body.
11. The sensor of claim 1 further comprising a frame adapted to carry said contacting plate, and a linear actuator adapted to selectively move said frame relative to said first sensor head.
12. A sensor for monitoring the thickness of a moving web, the sensor comprising:
a first sensor head positioned on a first side of the moving web and including an optical measuring device adapted to measure the distance to the moving web;
a second sensor head positioned on a second side of the moving web, opposed to said first side;
an inductor positioned in said first or said second sensor head and including a ferrite core and a winding;
a contacting plate secured to said second sensor head and including a plurality of suction slots;
a target plate secured to said first or said second sensor head opposed from said inductor, wherein said inductor is adapted to measure the distance to said target plate; and
an optical reference body positioned on said second sensor head, centrally of said contacting plate and being axially aligned with said optical measuring device, said optical reference body being positioned closer to said first sensor head than said contacting plate and said suction slots being spaced from said optical body.
13. The sensor of claim 12 wherein said optical measuring device includes an objective lens having an axial chromatism, said optical measuring device being adapted to measure the distance to said first side of the moving web using confocal chromatic aberration.
14. The sensor of claim 13 further comprising a light source that communicates with said objective lens through a fiber optic cable, a reflected signal being received by a spectrograph through said fiber optic cable.
15. The sensor of claim 14 wherein said spectrograph analyzes said reflected signal and computes an optical distance value.
16. The sensor of claim 15 wherein said spectrograph determines said reflected signal and determines a spectral width, said spectral width correlating to a web surface characteristic including gloss or surface roughness.
17. The sensor of claim 15 further comprising electronics adapted to receive a signal from the inductor and convert said signal to an inductor distance value.
18. The sensor of claim 12 wherein said suction slots extend through said contacting plate and communicate with a vacuum chamber located beneath said contacting plate, air being withdrawn from said vacuum chamber by a vacuum generator.
19. The sensor of claim 12 further comprising a frame adapted to carry said contacting plate, and a linear actuator adapted to selectively move said frame relative to said first sensor head.
20. The sensor of claim 12 wherein said plurality of suction slots are positioned on said target plate so that said moving web traverses at lease two of said plurality of suction slots before contacting said optical reference body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/200,196 US20090059244A1 (en) | 2007-08-31 | 2008-08-28 | Web Measurement Device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US96937307P | 2007-08-31 | 2007-08-31 | |
US12/200,196 US20090059244A1 (en) | 2007-08-31 | 2008-08-28 | Web Measurement Device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090059244A1 true US20090059244A1 (en) | 2009-03-05 |
Family
ID=39940588
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/200,258 Active 2029-01-26 US7889342B2 (en) | 2007-08-31 | 2008-08-28 | Web measurement device |
US12/200,302 Active 2029-03-19 US7847943B2 (en) | 2007-08-31 | 2008-08-28 | Web measurement device |
US12/200,196 Abandoned US20090059244A1 (en) | 2007-08-31 | 2008-08-28 | Web Measurement Device |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/200,258 Active 2029-01-26 US7889342B2 (en) | 2007-08-31 | 2008-08-28 | Web measurement device |
US12/200,302 Active 2029-03-19 US7847943B2 (en) | 2007-08-31 | 2008-08-28 | Web measurement device |
Country Status (6)
Country | Link |
---|---|
US (3) | US7889342B2 (en) |
CN (1) | CN101868689B (en) |
CA (2) | CA2884632C (en) |
DE (1) | DE112008002244B4 (en) |
FI (4) | FI127623B (en) |
WO (1) | WO2009032094A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090059232A1 (en) * | 2007-08-31 | 2009-03-05 | Abb Ltd. | Web Measurement Device |
US20110176149A1 (en) * | 2010-01-18 | 2011-07-21 | Spirit Aerosystems, Inc. | Apparatus and method for thickness detection |
US20130083332A1 (en) * | 2011-09-30 | 2013-04-04 | Honeywell Asca Inc. | Method of Measuring the Thickness of a Moving Web |
US20140028999A1 (en) * | 2012-07-24 | 2014-01-30 | Samsung Sdi Co., Ltd. | Web thickness measuring equipment and method |
US20150077738A1 (en) * | 2013-09-16 | 2015-03-19 | Honeywell Asca Inc. | Co-located Porosity and Caliper Measurement for Membranes and other Web Products |
US20160123773A1 (en) * | 2014-11-03 | 2016-05-05 | Honeywell Asca Inc. | Gap and displacement magnetic sensor system for scanner heads in paper machines or other systems |
US9383191B2 (en) * | 2014-08-05 | 2016-07-05 | Mitutoyo Corporation | Outer dimension measuring apparatus and outer dimension measuring method |
CN109154494A (en) * | 2016-03-16 | 2019-01-04 | 海克斯康测量技术有限公司 | Probe and Probe clip with Anti-bumping protection |
JP2021001915A (en) * | 2015-12-25 | 2021-01-07 | 株式会社キーエンス | Confocal displacement meter |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI20075975L (en) * | 2007-12-31 | 2009-07-01 | Metso Automation Oy | Measuring a trajectory |
WO2010104466A1 (en) * | 2009-03-12 | 2010-09-16 | Daprox Ab | Method and means for non-contact measuring thickness of non-metal coating on surface of metal matrix |
GB0910736D0 (en) * | 2009-06-22 | 2009-08-05 | Pilkington Group Ltd | Improved film thickness measurement |
WO2011000665A1 (en) * | 2009-07-02 | 2011-01-06 | Voith Patent Gmbh | Method and apparatus for the contactless determination of the thickness of a web of material, including correction of the alignment error |
CN102483321A (en) * | 2009-07-02 | 2012-05-30 | 沃依特专利有限责任公司 | Method for contactless determination of the thickness of a material web |
FI124299B (en) * | 2009-10-08 | 2014-06-13 | Focalspec Oy | MEASURING INSTRUMENT AND METHOD FOR MEASURING THE PROPERTIES OF THE SUBJECT AND SURFACE |
BR112012023814A2 (en) * | 2010-03-25 | 2016-08-02 | Japan Tobacco Inc | machine and method of making a low flame spread continuous sheet and method of making a low flame spread wrapping paper |
US9325860B2 (en) * | 2010-12-01 | 2016-04-26 | Quadtech, Inc. | Line color monitoring system |
IL216903A (en) * | 2010-12-10 | 2016-09-29 | Advanced Vision Tech (A V T ) Ltd | Conveying apparatus with an imaging backing surface |
TWI426227B (en) * | 2010-12-30 | 2014-02-11 | Ind Tech Res Inst | Measuring method for topography of moving specimen and a measuring apparatus thereof |
US8527212B2 (en) | 2011-02-14 | 2013-09-03 | Honeywell Asca Inc. | Increased absorption-measurement accuracy through windowing of photon-transit times to account for scattering in continuous webs and powders |
TWM409088U (en) * | 2011-03-25 | 2011-08-11 | Der Shine Rubber Ind Co Ltd | Safe base bag |
DE102011051601A1 (en) * | 2011-05-16 | 2012-11-22 | Wolfgang Hausmann | Device for one-sided non-contact measuring of thickness of sheet-like objects such as plastic films, has a sensor set facing away from load carrier and object, and a sensor which operates in accordance with optical imaging principle |
US8773656B2 (en) * | 2011-08-24 | 2014-07-08 | Corning Incorporated | Apparatus and method for characterizing glass sheets |
DE102012203315B4 (en) | 2011-11-30 | 2014-10-16 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Device and a method for measuring the distance or thickness of an object |
FI125119B (en) * | 2011-12-28 | 2015-06-15 | Metso Automation Oy | Measurement of a flat measuring object |
US9441961B2 (en) | 2012-04-30 | 2016-09-13 | Honeywell Limited | System and method for correcting caliper measurements of sheet products in sheet manufacturing or processing systems |
US9266694B2 (en) | 2012-06-08 | 2016-02-23 | Honeywell International Inc. | Noncontact caliper measurements of sheet products using intersecting lines in sheet manufacturing or processing systems |
US8944001B2 (en) * | 2013-02-18 | 2015-02-03 | Nordson Corporation | Automated position locator for a height sensor in a dispensing system |
DE102013008582B4 (en) | 2013-05-08 | 2015-04-30 | Technische Universität Ilmenau | Method and apparatus for chromatic-confocal multipoint measurement and their use |
US9581433B2 (en) * | 2013-12-11 | 2017-02-28 | Honeywell Asca Inc. | Caliper sensor and method using mid-infrared interferometry |
US8926798B1 (en) | 2014-02-07 | 2015-01-06 | Honeywell International Inc. | Apparatus and method for measuring cross direction (CD) profile of machine direction (MD) tension on a web |
US9151595B1 (en) | 2014-04-18 | 2015-10-06 | Advanced Gauging Technologies, LLC | Laser thickness gauge and method including passline angle correction |
DE102014019336B3 (en) * | 2014-12-29 | 2016-01-28 | Friedrich Vollmer Feinmessgerätebau Gmbh | Device for protecting the windows of laser distance sensors |
US9527320B2 (en) * | 2015-04-23 | 2016-12-27 | Xerox Corporation | Inkjet print head protection by acoustic sensing of media |
US20160349175A1 (en) * | 2015-05-28 | 2016-12-01 | Microaeth Corporation | Apparatus for receiving an analyte, method for characterizing an analyte, and substrate cartridge |
DE102015217637C5 (en) | 2015-09-15 | 2023-06-01 | Carl Zeiss Industrielle Messtechnik Gmbh | Operation of a confocal white light sensor on a coordinate measuring machine and arrangement |
JP6520669B2 (en) | 2015-12-03 | 2019-05-29 | オムロン株式会社 | Optical measuring device |
CN106066169B (en) * | 2016-06-14 | 2019-01-11 | 中南大学 | A kind of detection method of the copper negative plate for electrolysis verticality, apparatus and system |
JP2018124167A (en) | 2017-01-31 | 2018-08-09 | オムロン株式会社 | Inclination measuring device |
CN106871773B (en) * | 2017-02-14 | 2019-07-09 | 肇庆市嘉仪仪器有限公司 | A kind of non-contact thickness-measuring equipment and its measurement method online |
JP6852455B2 (en) * | 2017-02-23 | 2021-03-31 | オムロン株式会社 | Optical measuring device |
FI20185410A1 (en) | 2018-05-03 | 2019-11-04 | Valmet Automation Oy | Measurement of elastic modulus of moving web |
JP7062518B2 (en) * | 2018-05-25 | 2022-05-06 | 株式会社キーエンス | Confocal displacement meter |
CN109001221A (en) * | 2018-07-12 | 2018-12-14 | 钱晓斌 | A kind of finished paper checking machine |
CN108955549A (en) * | 2018-09-11 | 2018-12-07 | 深圳立仪科技有限公司 | A kind of two-sided measuring thickness device of translucent material |
EP3718939B1 (en) * | 2019-04-03 | 2023-01-04 | Fitesa Nãotecidos S.A. | Device and method for detecting the presence of abnormalities in a reel |
CN110425973A (en) * | 2019-08-29 | 2019-11-08 | 威海华菱光电股份有限公司 | Thickness detection apparatus, method, system, storage medium and processor |
SE543843C2 (en) * | 2019-12-20 | 2021-08-10 | Stora Enso Oyj | Method for identifying defects in a film, method and device for producing a film |
SE543802C2 (en) * | 2019-12-20 | 2021-07-27 | Stora Enso Oyj | Method for determining film thickness, method for producing a film and device for producing a film |
US11740356B2 (en) | 2020-06-05 | 2023-08-29 | Honeywell International Inc. | Dual-optical displacement sensor alignment using knife edges |
CN114894106B (en) * | 2022-05-18 | 2023-07-21 | 天津大学 | Opaque sample thickness measurement system and method |
US20240090110A1 (en) * | 2022-09-14 | 2024-03-14 | Kla Corporation | Confocal Chromatic Metrology for EUV Source Condition Monitoring |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3827808A (en) * | 1973-05-09 | 1974-08-06 | Industrial Nucleonics Corp | Method and apparatus for measuring the opacity of sheet material in which the transmittance signal is compensated for the reflectivity of the material |
US4449398A (en) * | 1982-06-24 | 1984-05-22 | Accuray Corporation | Sheet property sensor with sheet wrinkle remover |
US4773760A (en) * | 1986-05-14 | 1988-09-27 | Tapio Makkonen | Procedure and means for measuring the thickness of a film-like or sheet-like web |
US5479720A (en) * | 1994-01-21 | 1996-01-02 | Abb Industrial Systems, Inc. | Methods and apparatus for measuring web thickness and other characteristics of a moving web |
US6111261A (en) * | 1996-04-02 | 2000-08-29 | Koenig & Bauer Aktiengesellschaft | Process and device for assessing the quality of processed material |
US6281679B1 (en) * | 1998-12-21 | 2001-08-28 | Honeywell - Measurex | Web thickness measurement system |
US20030024301A1 (en) * | 2001-07-03 | 2003-02-06 | Metso Paper Automation Oy | Method and measuring device for measuring at least one property of moving web |
US20030066200A1 (en) * | 2001-10-10 | 2003-04-10 | Hellstrom Ake Arvid | Non-contact sheet sensing system and related method |
US20040109170A1 (en) * | 2002-09-12 | 2004-06-10 | Anton Schick | Confocal distance sensor |
US20050157314A1 (en) * | 2003-12-22 | 2005-07-21 | Pekka Typpoe | Measuring device |
US20060109483A1 (en) * | 2004-11-24 | 2006-05-25 | Tamar Technology, Inc. | Trench measurement system employing a chromatic confocal height sensor and a microscope |
US20060132808A1 (en) * | 2004-12-21 | 2006-06-22 | Honeywell International Inc. | Thin thickness measurement method and apparatus |
US20060152231A1 (en) * | 2005-01-13 | 2006-07-13 | Plast-Control Gmbh | Apparatus and method for capacitive measurement of materials |
US7146279B2 (en) * | 2003-12-22 | 2006-12-05 | Voith Paper Patent Gmbh | Measuring device |
US20070263203A1 (en) * | 2006-05-12 | 2007-11-15 | Voith Patent Gmbh | Device and process for optical distance measurement |
US20070263228A1 (en) * | 2006-05-12 | 2007-11-15 | Voith Paper Patent Gmbh | Device and process for optical distance measurement |
US20080130013A1 (en) * | 2005-05-17 | 2008-06-05 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Device and method for measurement of surfaces |
US20080136091A1 (en) * | 2006-12-11 | 2008-06-12 | Honeywell International Inc. | Apparatus and method for stabilization of a moving sheet relative to a sensor |
US20080158572A1 (en) * | 2006-12-27 | 2008-07-03 | Honeywell, Inc. | System and method for measurement of thickness of thin films |
US7414740B2 (en) * | 2004-07-17 | 2008-08-19 | Schott Ag | Method and apparatus for contactless optical measurement of the thickness of a hot glass body by optical dispersion |
US20090056412A1 (en) * | 2006-03-10 | 2009-03-05 | Metso Automation Oy | Method for calibration of measuring equipment and measuring equipment |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04265814A (en) | 1991-02-20 | 1992-09-22 | Nissin Electric Co Ltd | Displacement measuring apparatus |
DE19713362A1 (en) * | 1997-03-29 | 1998-10-01 | Zeiss Carl Jena Gmbh | Confocal microscopic arrangement |
DE19733297C2 (en) * | 1997-08-01 | 1999-12-09 | Marcus Gut | Non-contact optical thickness measurement |
US6313915B1 (en) * | 1998-08-27 | 2001-11-06 | Murata Manufacturing Co., Ltd. | Displacement measuring method and apparatus |
EP1258766A3 (en) * | 2001-05-14 | 2004-09-22 | Robert Bosch Gmbh | Optical system for shape measurement |
FR2824903B1 (en) | 2001-05-21 | 2004-01-16 | Sciences Tech Ind De La Lumier | IMPROVEMENT OF METHODS AND DEVICES FOR MEASURING BY CONFOCAL IMAGING WITH EXTENDED CHROMATISM |
DE20314026U1 (en) | 2003-09-10 | 2005-01-13 | Precitec Optronik Gmbh | Contactless measurement of surface e.g. for aviation, space flight or power station, has source of light with continuous spectrum with spectrograph detecting spectral distribution of intensity of light by lens towards surface |
JP2005099430A (en) | 2003-09-25 | 2005-04-14 | Olympus Corp | Optical observation device, scanning type microscope and endoscopic observation device |
DE102004026193B4 (en) * | 2004-05-28 | 2012-03-29 | Carl Mahr Holding Gmbh | Measuring method for shape measurement |
DE102004049541A1 (en) | 2004-10-12 | 2006-04-20 | Precitec Optronik Gmbh | Measuring system for measuring surfaces and calibration method therefor |
DE102005002351A1 (en) * | 2005-01-18 | 2006-07-27 | Voith Paper Patent Gmbh | Optical reflection and refraction process and electronic assembly to measure the thickness of a web of foil, paper, carton, plastic or textile |
US20060232790A1 (en) | 2005-04-18 | 2006-10-19 | Lee Chase | Confocal measurement method and apparatus in a paper machine |
DE102005022819A1 (en) | 2005-05-12 | 2006-11-16 | Nanofocus Ag | Method for determining the absolute thickness of non-transparent and transparent samples by means of confocal measuring technology |
EP1883781B1 (en) * | 2005-05-19 | 2019-08-07 | Zygo Corporation | Analyzing low-coherence interferometry signals for thin film structures |
US7528400B2 (en) * | 2005-12-22 | 2009-05-05 | Honeywell Asca Inc. | Optical translation of triangulation position measurement |
DE102006026775B4 (en) * | 2006-06-07 | 2008-04-30 | Stiftung Für Lasertechnologien In Der Medizin Und Messtechnik An Der Universität Ulm | Method and device for characterizing moving surfaces |
CA2884632C (en) * | 2007-08-31 | 2016-10-25 | Abb Ltd. | Web thickness measurement device |
JP4265814B1 (en) | 2008-06-30 | 2009-05-20 | 任天堂株式会社 | Posture calculation device, posture calculation program, game device, and game program |
-
2008
- 2008-08-25 CA CA2884632A patent/CA2884632C/en active Active
- 2008-08-25 CA CA2697543A patent/CA2697543C/en active Active
- 2008-08-25 CN CN200880108430.8A patent/CN101868689B/en active Active
- 2008-08-25 DE DE112008002244T patent/DE112008002244B4/en active Active
- 2008-08-25 FI FI20155193A patent/FI127623B/en active IP Right Grant
- 2008-08-25 WO PCT/US2008/010064 patent/WO2009032094A1/en active Application Filing
- 2008-08-28 US US12/200,258 patent/US7889342B2/en active Active
- 2008-08-28 US US12/200,302 patent/US7847943B2/en active Active
- 2008-08-28 US US12/200,196 patent/US20090059244A1/en not_active Abandoned
-
2010
- 2010-03-25 FI FI20105304A patent/FI123478B/en active IP Right Grant
-
2013
- 2013-01-09 FI FI20135027A patent/FI125343B/en active IP Right Grant
- 2013-01-09 FI FI20135026A patent/FI127396B/en active IP Right Grant
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3827808A (en) * | 1973-05-09 | 1974-08-06 | Industrial Nucleonics Corp | Method and apparatus for measuring the opacity of sheet material in which the transmittance signal is compensated for the reflectivity of the material |
US4449398A (en) * | 1982-06-24 | 1984-05-22 | Accuray Corporation | Sheet property sensor with sheet wrinkle remover |
US4773760A (en) * | 1986-05-14 | 1988-09-27 | Tapio Makkonen | Procedure and means for measuring the thickness of a film-like or sheet-like web |
US5479720A (en) * | 1994-01-21 | 1996-01-02 | Abb Industrial Systems, Inc. | Methods and apparatus for measuring web thickness and other characteristics of a moving web |
US6111261A (en) * | 1996-04-02 | 2000-08-29 | Koenig & Bauer Aktiengesellschaft | Process and device for assessing the quality of processed material |
US6281679B1 (en) * | 1998-12-21 | 2001-08-28 | Honeywell - Measurex | Web thickness measurement system |
US20030024301A1 (en) * | 2001-07-03 | 2003-02-06 | Metso Paper Automation Oy | Method and measuring device for measuring at least one property of moving web |
US20030066200A1 (en) * | 2001-10-10 | 2003-04-10 | Hellstrom Ake Arvid | Non-contact sheet sensing system and related method |
US20040109170A1 (en) * | 2002-09-12 | 2004-06-10 | Anton Schick | Confocal distance sensor |
US7146279B2 (en) * | 2003-12-22 | 2006-12-05 | Voith Paper Patent Gmbh | Measuring device |
US20050157314A1 (en) * | 2003-12-22 | 2005-07-21 | Pekka Typpoe | Measuring device |
US7414740B2 (en) * | 2004-07-17 | 2008-08-19 | Schott Ag | Method and apparatus for contactless optical measurement of the thickness of a hot glass body by optical dispersion |
US20060109483A1 (en) * | 2004-11-24 | 2006-05-25 | Tamar Technology, Inc. | Trench measurement system employing a chromatic confocal height sensor and a microscope |
US20060132808A1 (en) * | 2004-12-21 | 2006-06-22 | Honeywell International Inc. | Thin thickness measurement method and apparatus |
US20060152231A1 (en) * | 2005-01-13 | 2006-07-13 | Plast-Control Gmbh | Apparatus and method for capacitive measurement of materials |
US20080130013A1 (en) * | 2005-05-17 | 2008-06-05 | Micro-Epsilon Messtechnik Gmbh & Co. Kg | Device and method for measurement of surfaces |
US20090056412A1 (en) * | 2006-03-10 | 2009-03-05 | Metso Automation Oy | Method for calibration of measuring equipment and measuring equipment |
US20070263203A1 (en) * | 2006-05-12 | 2007-11-15 | Voith Patent Gmbh | Device and process for optical distance measurement |
US20070263228A1 (en) * | 2006-05-12 | 2007-11-15 | Voith Paper Patent Gmbh | Device and process for optical distance measurement |
US20080136091A1 (en) * | 2006-12-11 | 2008-06-12 | Honeywell International Inc. | Apparatus and method for stabilization of a moving sheet relative to a sensor |
US20080158572A1 (en) * | 2006-12-27 | 2008-07-03 | Honeywell, Inc. | System and method for measurement of thickness of thin films |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7847943B2 (en) * | 2007-08-31 | 2010-12-07 | Abb Ltd. | Web measurement device |
US20090059232A1 (en) * | 2007-08-31 | 2009-03-05 | Abb Ltd. | Web Measurement Device |
US8619268B2 (en) * | 2010-01-18 | 2013-12-31 | Spirit Aerosystems, Inc. | Apparatus and method for thickness detection |
US20110176149A1 (en) * | 2010-01-18 | 2011-07-21 | Spirit Aerosystems, Inc. | Apparatus and method for thickness detection |
US8760669B2 (en) * | 2011-09-30 | 2014-06-24 | Honeywell Asca Inc. | Method of measuring the thickness of a moving web |
US20130083332A1 (en) * | 2011-09-30 | 2013-04-04 | Honeywell Asca Inc. | Method of Measuring the Thickness of a Moving Web |
US20140028999A1 (en) * | 2012-07-24 | 2014-01-30 | Samsung Sdi Co., Ltd. | Web thickness measuring equipment and method |
US9115979B2 (en) * | 2012-07-24 | 2015-08-25 | Samsung Sdi Co., Ltd. | Web thickness measuring equipment and method of measuring thickness of a web |
US20150077738A1 (en) * | 2013-09-16 | 2015-03-19 | Honeywell Asca Inc. | Co-located Porosity and Caliper Measurement for Membranes and other Web Products |
US9007589B2 (en) * | 2013-09-16 | 2015-04-14 | Honeywell Asca Inc. | Co-located porosity and caliper measurement for membranes and other web products |
US9383191B2 (en) * | 2014-08-05 | 2016-07-05 | Mitutoyo Corporation | Outer dimension measuring apparatus and outer dimension measuring method |
US20160123773A1 (en) * | 2014-11-03 | 2016-05-05 | Honeywell Asca Inc. | Gap and displacement magnetic sensor system for scanner heads in paper machines or other systems |
US9753114B2 (en) * | 2014-11-03 | 2017-09-05 | Honeywell Limited | Gap and displacement magnetic sensor system for scanner heads in paper machines or other systems |
JP2021001915A (en) * | 2015-12-25 | 2021-01-07 | 株式会社キーエンス | Confocal displacement meter |
CN109154494A (en) * | 2016-03-16 | 2019-01-04 | 海克斯康测量技术有限公司 | Probe and Probe clip with Anti-bumping protection |
Also Published As
Publication number | Publication date |
---|---|
WO2009032094A1 (en) | 2009-03-12 |
DE112008002244B4 (en) | 2013-07-25 |
FI127623B (en) | 2018-10-31 |
US7889342B2 (en) | 2011-02-15 |
DE112008002244T5 (en) | 2010-07-22 |
US7847943B2 (en) | 2010-12-07 |
CA2884632C (en) | 2016-10-25 |
FI125343B (en) | 2015-08-31 |
CA2697543C (en) | 2016-01-26 |
CA2884632A1 (en) | 2009-03-12 |
FI20105304A (en) | 2010-03-25 |
FI20135027A (en) | 2013-01-09 |
US20090059232A1 (en) | 2009-03-05 |
CN101868689A (en) | 2010-10-20 |
FI20135026A (en) | 2013-01-09 |
FI20155193A (en) | 2015-03-20 |
FI127396B (en) | 2018-05-15 |
CA2697543A1 (en) | 2009-03-12 |
US20090056156A1 (en) | 2009-03-05 |
CN101868689B (en) | 2016-11-02 |
FI123478B (en) | 2013-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7889342B2 (en) | Web measurement device | |
US7528400B2 (en) | Optical translation of triangulation position measurement | |
EP2844954B1 (en) | System and method for correcting caliper measurements of sheet products in sheet manufacturing or processing systems | |
US5654799A (en) | Method and apparatus for measuring and controlling the surface characteristics of sheet materials such as paper | |
US6743338B2 (en) | Method and measuring device for measuring at least one property of moving web | |
US8760669B2 (en) | Method of measuring the thickness of a moving web | |
EP2859303B1 (en) | Noncontact caliper measurements of sheet products using intersecting lines in sheet manufacturing or processing systems | |
CA2705991C (en) | Sheet stabilizers with suction nozzle having center protrusion | |
EP1624280A2 (en) | Optical triangulation device and method of measuring a variable of a web using the device | |
US20060096727A1 (en) | Jet velocity vector profile measurement and control | |
Graeffe et al. | An online laser caliper measurement for the paper industry | |
CA2766845A1 (en) | Method for contactless determination of the thickness of a web of material | |
WO1996035112A1 (en) | Sheet stabilizer for optical sensor | |
Naimohasses et al. | Innovation in action |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABB LTD., IRELAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HELLSTROM, AKE;NAIMI, RAMBOD;O'HORA, MICHAEL;REEL/FRAME:021943/0992 Effective date: 20081120 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |