US20090046555A1 - Write signal generator with delay calibration - Google Patents
Write signal generator with delay calibration Download PDFInfo
- Publication number
- US20090046555A1 US20090046555A1 US12/257,833 US25783308A US2009046555A1 US 20090046555 A1 US20090046555 A1 US 20090046555A1 US 25783308 A US25783308 A US 25783308A US 2009046555 A1 US2009046555 A1 US 2009046555A1
- Authority
- US
- United States
- Prior art keywords
- signal
- phase
- write
- signals
- calibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 11
- 230000003111 delayed effect Effects 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 13
- 101100311554 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) SWC7 gene Proteins 0.000 description 8
- 101100382340 Arabidopsis thaliana CAM2 gene Proteins 0.000 description 7
- 101100494530 Brassica oleracea var. botrytis CAL-A gene Proteins 0.000 description 7
- 101100165913 Brassica oleracea var. italica CAL gene Proteins 0.000 description 7
- 101150118283 CAL1 gene Proteins 0.000 description 7
- 101100029577 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CDC43 gene Proteins 0.000 description 7
- 101100439683 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CHS3 gene Proteins 0.000 description 7
- 101150014174 calm gene Proteins 0.000 description 7
- 230000001934 delay Effects 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/10009—Improvement or modification of read or write signals
- G11B20/10046—Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
- G11B20/10212—Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter compensation for data shift, e.g. pulse-crowding effects
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0045—Recording
- G11B7/00456—Recording strategies, e.g. pulse sequences
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/12—Formatting, e.g. arrangement of data block or words on the record carriers
- G11B2020/1264—Formatting, e.g. arrangement of data block or words on the record carriers wherein the formatting concerns a specific kind of data
- G11B2020/1265—Control data, system data or management information, i.e. data used to access or process user data
- G11B2020/1287—Synchronisation pattern, e.g. VCO fields
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/14—Digital recording or reproducing using self-clocking codes
- G11B20/1403—Digital recording or reproducing using self-clocking codes characterised by the use of two levels
- G11B20/1423—Code representation depending on subsequent bits, e.g. delay modulation, double density code, Miller code
- G11B20/1426—Code representation depending on subsequent bits, e.g. delay modulation, double density code, Miller code conversion to or from block codes or representations thereof
- G11B2020/1461—8 to 14 modulation, e.g. the EFM code used on CDs or mini-discs
Definitions
- FIG. 1 illustrates a block diagram of a laser power control system in a conventional optical disk drive.
- the laser power control system 10 includes an EFM (Eight-to-Fourteen Modulation) encoder 11 , a write signal generator 12 , a LD driver (Laser diode driver) 13 , and a LD (Laser Diode) 14 .
- the EFM encoder 11 receives the input data and generates the EFM signal according to the EFM encoding rule.
- the write signal generator 12 receives the EFM signal and converts the EFM signal into a plurality of write signals, e.g. three write signals WS 1 , WS 2 , WS 3 as shown in FIG.
- FIG. 3A shows deformed write signals.
- FIG. 3B shows a drive signal generated by the LD driver according to the write signals in FIG. 3A .
- the aligned write signal generator 48 of the invention has two operation modes, including a calibration mode and a normal mode.
- the calibration mode the phase error between the write signals are calibrated before the laser power control system 40 starts to write.
- the normal mode is the general write mode of the aligned write signal generator 48 .
- the phase calibration unit 46 is disabled and the alignment unit 45 is utilized to delay each write signal according to the delay setting obtained in the calibration mode so as to align the phase of these write signals.
- phase calibration unit 46 ′ adjusts the delay time of the first alignment unit 45 , the control signal CAL 1 is disabled and the switch 69 ′ will output the phase control signals including the up-counting signal and the down-counting signal to the delay unit of the first alignment unit 45 .
- Step S 924 end the calibration procedure.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Optical Recording Or Reproduction (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
- Television Signal Processing For Recording (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
An aligned write signal generator with alignment calibration utilizes an alignment unit to align a plurality of write signal. The aligned write signal generator includes a write signal generator for receiving an EFM signal and converting the EFM signal into a plurality of write signals according to a write strategy waveform generating rule, an alignment unit for receiving the plurality of write signals, aligning the write signals and outputting phase adjusted write signals, and a phase calibration unit for receiving the phase adjusted write signals, detecting phase error between the phase adjusted write signals, and outputting phase control signals. The alignment unit further receives the phase control signals to adjust the delay time of each write signal.
Description
- This application claims the benefit of the filing date of Taiwan Application Ser. No. 092116882, filed Jun. 20, 2003, the content of which is incorporated herein by reference.
- 1. Field of the Invention
- The invention relates to a write signal generator in an optical disk drive, and more particularly to an aligned write signal generator with delay calibration in an optical disk drive utilizing an alignment unit to align the write signals with each other in time.
- 2. Description of the Related Art
-
FIG. 1 illustrates a block diagram of a laser power control system in a conventional optical disk drive. Referring toFIG. 1 , the laserpower control system 10 includes an EFM (Eight-to-Fourteen Modulation)encoder 11, awrite signal generator 12, a LD driver (Laser diode driver) 13, and a LD (Laser Diode) 14. TheEFM encoder 11 receives the input data and generates the EFM signal according to the EFM encoding rule. Thewrite signal generator 12 receives the EFM signal and converts the EFM signal into a plurality of write signals, e.g. three write signals WS1, WS2, WS3 as shown inFIG. 1 , according to the write strategy waveform generating rule. Thewrite signal generator 12 typically includes a writestrategy pulse generator 121, a flip-flop unit 122, and awrite signal calculator 123. TheLD driver 13 receives the plurality of write signals and integrates them into a drive signal to drive theLD 14. How thewrite signal generator 12 converts the EFM signal into a plurality of write signals according to the write strategy waveform generating rule is a well-known art in this filed and can be found in U.S. Pat. No. 6,445,661, so detailed descriptions thereof will be omitted. - Along with increase in write speed of the optical disk drive, the timing accuracy among the write signals becomes more critical. Correspondingly, the problems of the waveform deformation caused by the digital logic gate, buffer, and output driver within the write signal generator also become more serious owing to, for example, the different delay time among the write signals.
FIG. 2 shows the ideal waveforms of three write signals and the corresponding drive signal, whereinFIG. 2A shows three write signals generated by an ideal write signal generator, andFIG. 2B shows the drive signal generated by the LD driver. Because the three write signals WS1, WS2 and WS3 are not deformed, the drive signal generated by the LD driver is consequently quite ideal. -
FIG. 3 shows the deformed write signals and the corresponding drive signal, whereinFIG. 3A shows three write signals generated by thewrite signal generator 12, andFIG. 3B shows the drive signal generated by the LD driver. As shown inFIG. 3 , because the three write signals WS1, WS2 and WS3 are not aligned in phase (or say, not aligned in time), the drive signal generated by the LD driver is seriously deformed. If the optical disk drive outputs such a deformed drive signal to theLD 14, the data may not be recorded in the optical disk in a proper format, thereby causing data error when one tries to reproduce the data in the optical disk. Therefore, it is an important subject to provide phase adjusted write signals. - In view of the above-mentioned problems, an object of the invention is to provide an aligned write signal generator capable of aligning the write signals in time, wherein the device calibrates the phase delays between the write signals in advance, and then adjusts the delay time of each write signal to align the phase of the write signals.
- To achieve the above-mentioned object, the aligned write signal generator of the invention includes a write signal generator for receiving the EFM signal and converting the EFM signal into a plurality of write signals according to a write strategy waveform generating rule, an alignment unit for receiving the plurality of write signals, aligning the phase of the write signals, and outputting a plurality of phase adjusted write signals, and a phase calibration unit for receiving the phase adjusted write signals outputted from the alignment unit, detecting phase differences between the phase adjusted write signal, and outputting phase control signals. The alignment unit further receives the phase control signals to adjust the delay time of each write signal.
-
FIG. 1 illustrates a block diagram of a laser power control system in a conventional optical disk drive. -
FIG. 2A shows ideal write signals. -
FIG. 2B shows a drive signal generated by the LD driver according to the write signals inFIG. 2A . -
FIG. 3A shows deformed write signals. -
FIG. 3B shows a drive signal generated by the LD driver according to the write signals inFIG. 3A . -
FIG. 4 illustrates a block diagram of a laser power control system containing an aligned write signal generator according to the present invention. -
FIG. 5 illustrates a block diagram of an alignment unit and a phase calibration unit ofFIG. 4 according to a first embodiment of the invention. -
FIG. 6 illustrates a block diagram of the delay unit and the delay time control unit ofFIG. 5 . -
FIG. 7 illustrates a block diagram of the alignment unit and the phase calibration unit ofFIG. 4 according to a second embodiment of the invention. -
FIG. 8 illustrates a block diagram of the delay unit and the delay time control unit ofFIG. 7 . -
FIG. 9 shows a flow chart of a calibration method for the aligned write signal generator according to the present invention. - The aligned write signal generator with alignment calibration in an optical disk drive of the present invention will be described with reference to the accompanying drawings.
- The conventional laser power control system utilizes the write signal generator to generate a plurality of write signals and then directly outputs them to the LD driver without the process of detecting whether the write signals are aligned in phase (or equivalently, in time) or not. Usually, a conventional write signal generator will introduce different phase delay to different write signal due to the different signal processing path. In order to solve this problem, the invention utilizes a phase calibration unit to detect the phase differences (or equivalently, the delay differences) between the write signals, and an alignment unit to adjust the phase (or equivalently, the time delay) of the write signals, such that the write signals outputted to the LD driver are substantially aligned in phase.
-
FIG. 4 illustrates a block diagram of a laserpower control system 40 with an alignedwrite signal generator 48 of the present invention. The laserpower control system 40 includes anEFM encoder 41, an alignedwrite signal generator 48, aLD driver 43 and aLD 44. The alignedwrite signal generator 48 includes awrite signal generator 42, analignment unit 45 and aphase calibration unit 46. TheEFM encoder 41 receives the input data and generates the EFM signal according to the EFM encoding rule. Thewrite signal generator 42 receives the EFM signal and converts the EFM signal into a plurality of write signals, e.g. three write signals WS1, WS2 and WS3 as shown in this embodiment, according to the write strategy waveform generating rule. Thealignment unit 45 receives the write signals WS1, WS2 and WS3, respectively delays the write signals WS1, WS2 and WS3, and generating phase adjusted write signals AWS1, AWS2 and AWS3 for output. ALD driver 43 receives the phase adjusted write signals AWS1, AWS2 and AWS3 and generates a drive signal to drive aLD 44. The architectures and functions of thewrite signal generator 42, theLD driver 43, and theLD 44 are the same as those of the prior art, and detailed descriptions thereof will be omitted. Thephase calibration unit 46 receives and detects the phase errors of the phase adjusted write signals AWS1, AWS2 and AWS3 during calibration mode, and outputs phase control signals to thealignment unit 45. - The aligned
write signal generator 48 of the invention has two operation modes, including a calibration mode and a normal mode. In the calibration mode, the phase error between the write signals are calibrated before the laserpower control system 40 starts to write. The normal mode is the general write mode of the alignedwrite signal generator 48. When the alignedwrite signal generator 48 is in the normal mode, thephase calibration unit 46 is disabled and thealignment unit 45 is utilized to delay each write signal according to the delay setting obtained in the calibration mode so as to align the phase of these write signals. - When the aligned
write signal generator 48 is in the calibration mode, thephase calibration unit 46 is enabled and receives the phase adjusted write signals AWS1, AWS2 and AWS3, detects the phase errors among the phase adjusted write signals, and then generates the phase control signals. Thealignment unit 45 adjusts the delay time of each write signal according to the phase control signals. -
FIG. 5 illustrates a block diagram of an alignment unit and a phase calibration unit ofFIG. 4 according to a first embodiment of the present invention. Referring toFIG. 5 , thealignment unit 45 includes threedelay units alignment unit 45 is determined according to the number of write signals outputted from thewrite signal generator 42. - Referring again to
FIG. 5 , thephase calibration unit 46 includes aswitch 463, a PD (phase detector) 464, acharge pump 465, anintegrator 466, and a delaytime control unit 467. Thephase calibration unit 46 detects the phase error between two selected write signals, and outputting the phase control signals to thealignment unit 45. Thephase detector 464 receives the phase adjusted write signal AWS1 and one of the phase adjusted write signals AWS2 and AWS3 outputted from theswitch 463. Because thephase detector 464 detects the phase error between two input signals and outputs a detection signal, thephase calibration unit 46 utilizes theswitch 463 to switch the phase adjusted write signals AWS2 and AWS3 according to a switch signal. - The
PD 464 detects the phase error between a first input signal A and a second input signal B and outputs control signals UP and DN to control thecharge pump 465 according to the phase error, wherein the first input signal A is the phase adjusted write signal AWS1, and the second input signal B is the signal outputted from theswitch 463. If the phase of the first input signal A leads that of the second input signal B, the pulse width of the control signal UP is larger than the pulse width of the control signal DN. Thereby thecharge pump 465 generates a positive control current Icp. On the contrary, if the phase of the first input signal A lags behind that of the second input signal B, the pulse width of the control signal UP is smaller than the pulse width of the control signal DN. Thereby thecharge pump 465 generates a negative control current Icp. The calibration circuit utilizes theintegrator 466 to integrate the control current Icp and then to output an error voltage Verr. The delaytime control unit 467 generates the phase control signals for adjusting the delay time of each delay unit of thealignment unit 45 according to the error voltage Verr. -
FIG. 6 illustrates a block diagram of the delay unit and the delaytime control unit 467 ofFIG. 5 . As shown inFIG. 6 , the delay unit 451 (452, 453) is composed of a plurality of serially connecteddelay cells 61, amultiplexer 62, and acounter 63. Thedelay cells 61 receive the write signal, generate a plurality of delayed signals with different delay time, and output the delayed signals to themultiplexer 62. Themultiplexer 62 selects one of the delayed signals for output according to the selecting signal (delay time) outputted by thecounter 63. Thecounter 63 outputs the count value as the selecting signal. Consequently, the delay time of the delay unit may be changed according to the count value of thecounter 63. - The delay
time control unit 467 includescomparators gates switch 69. Thecomparator 65 compares the error voltage Verr with a first reference voltage V1 and generates a first comparison signal. Thecomparator 66 compares the error voltage Verr with a second reference voltage V2 and generates a second comparison signal. The ANDgate 67 receives a trigger clock SC and the first comparison signal to generate an up-counting signal. The ANDgate 68 receives the trigger clock SC and the second comparison signal to generate a down-counting signal. Theswitch 69 receives the up-counting signal and the down-counting signal for outputting the up-counting signal and down-counting signal as the phase control signals to thecounter 63 in one of the delay units according to the switch signal. The counter 63 counts the pulse number of the up-counting signal and the down-counting signal as the delay time. Consequently, according to the architecture ofFIG. 6 , when the error voltage Verr is higher than the first reference voltage V1, it means that the first input signal A leads the second input signal B. So, the ANDgate 67 will generate a pulse in the up-counting signal at each rising edge of the trigger clock, therefore the counter will up-count in order to increase the delay time of signal B. Alternatively, when the error voltage Verr is lower than the second reference voltage V2, it means that the first input signal A lags behind the second input signal B. So, the ANDgate 68 will generate a pulse in the down-counting signal at each rising edge of the trigger clock, therefore the counter will down-count in order to decrease the delay time of signal B. Of course, the delay unit shown inFIG. 6 is just one of the embodiments, other embodiments of the delay unit capable of achieving the function are also fully supported by the present invention. - In addition, when the phase calibration unit calibrates the phase error of the write signals WS1 and WS2, the phase control signals containing the up-counting signal and the down-counting signal are outputted to the counter in the
delay unit 452 through theswitch 69 according to the switch signal. When the phase calibration unit calibrates the phase error of the write signals WS1 and WS3, the phase control signals containing the up-counting signal and the down-counting signal are outputted to the counter in thedelay unit 453 through theswitch 69 according to the switch signal. Theswitch 69 may be a pure switch or a de-multiplexer. In the embodiment ofFIG. 5 , the delay time of each of the write signals WS2 and WS3 are adjusted on the basis of the write signal WS1. Because the phase of the write signals WS2 and WS3 may lead or lag behind the write signal WS1, it is preferable to set the count values of the counters in thedelay units 451 of thealignment unit 45 to one half of the maximum count value. By choosing one of the write signals as reference, it needs only to adjust the delay time (count values) of the delay units associated with the other write signals to achieve alignment among all the write signals. Furthermore, the counter in the delay unit may be a counter with a reload function and the counter is reloaded an initial value at the beginning of calibration. -
FIG. 7 illustrates a block diagram of thealignment unit 45 and thephase calibration unit 46 ofFIG. 4 according to a second embodiment of the present invention. In the first embodiment, the alignedwrite signal generator 48 utilizes thephase calibration unit 46 to calibrate the phase error between the write signals WS1, WS2 and WS3, which are inputted to thefirst alignment unit 45, without considering the delay error caused by thephase calibration unit 46 itself. In view of this, in addition to aswitch 463, aPD 464, acharge pump 465, anintegrator 466, and a delaytime control unit 467′, thephase calibration unit 46′ of the second embodiment further includes amultiplexer module 461 and asecond alignment unit 462, and utilizes themultiplexer module 461 and thesecond alignment unit 462 for calibrating the delay error caused by thephase calibration unit 46′ itself. After the delay calibration of thephase calibration unit 46′ is finished, the phase error of the write signals WS1, WS2 and WS3 are calibrated as in the first embodiment. - The
multiplexer module 461 includes three multiplexers for selecting the phase adjusted write signals AWS1, AWS2, AWS3 or the calibration clock CLK to output. Thesecond alignment unit 462, which is the same as thefirst alignment unit 45, also includes threedelay units multiplexer module 461. When the circuit calibrates the delay error of thephase calibration unit 46′, the control signal CAL1 is enabled to make themultiplexer module 461 output the calibration clock CLK to thesecond alignment unit 462. Thereafter, thephase calibration unit 46′ utilizes the loop, including thesecond alignment unit 462, thePD 464, thecharge pump 465, theintegrator 466, and the delaytime control unit 467′, to calibrate the delay error due to thephase calibration unit 46′, especially caused by theswitch 463. The delay time of each delay unit of thesecond alignment unit 462 is adjusted in a way similar that described inFIG. 6 . In the example given inFIG. 7 , once the delay units of thesecond alignment unit 462 are well adjusted, the path delay of the following paths: the path from signal AWS1 input of thephase calibration unit 46′ to the signal A input of thePD 464, the path from signal AWS2 input of thephase calibration unit 46′ to the signal B input of thePD 464, and the path from signal AWS3 input of thephase calibration unit 46′ to the signal B input of thePD 464, will be substantially the same. -
FIG. 8 illustrates a block diagram of the delay unit and the delay time control unit ofFIG. 7 . The delaytime control unit 467′ ofFIG. 8 is the same as the delaytime control unit 467 ofFIG. 6 except that theswitch 69′ of the delaytime control unit 467′ further receives the control signal CAL1. That is, whenphase calibration unit 46′ calibrates thephase calibration unit 46′ itself, the control signal CAL1 is enabled and theswitch 69′ will output the phase control signals including the up-counting signal and the down-counting signal to the delay unit of thesecond alignment unit 462. On the contrary, when thephase calibration unit 46′ adjusts the delay time of thefirst alignment unit 45, the control signal CAL1 is disabled and theswitch 69′ will output the phase control signals including the up-counting signal and the down-counting signal to the delay unit of thefirst alignment unit 45. - In addition, because the aligned
write signal generator 48 of this embodiment generates three write signals, the phase calibration units inFIGS. 5 and 7 use theswitches 463 to switch different signals for calibration. However, if the write signal generator only generates two write signals, theswitches 463 of the phase calibration unit ofFIGS. 5 and 7 is no longer needed and can be omitted. -
FIG. 9 shows a flow chart of a calibration method for the aligned write signal generator with alignment calibration in an optical disk drive according to the present invention. Referring toFIG. 9 , the calibration method for the aligned write signal generator of the invention includes two stages. First stage is to calibrate the delay error of the phase calibration unit itself, and second stage is to calibrate the phase error of the write signal caused by the write signal generator. Thus, in thephase calibration unit 46 shown in the block diagram ofFIG. 5 , only the second stage is needed because the calibration architecture of thephase calibration unit 46 is not included. The steps of the calibration method of the aligned write signal generator with alignment calibration of the invention will be described with reference toFIG. 9 . - Step S900: start the calibration procedure.
- Step S902: enable the control signal CAL1 and set an initial value to the counter of each delay unit. Because the control signal CAL1 is enabled, the delay time of the phase calibration unit itself is calibrated.
- Step S904: set the switch signal to be a first set of signal. If the number of write signal outputted from the write signal generator exceeds two (three write signals in this embodiment), it is necessary to use the switch to switch the signal to be calibrated. If there are only two write signals outputted from the write signal generator, this step may be omitted.
- Step S906: calibrate the delay time of the delay unit of the second alignment unit in the phase calibration unit itself according to the calibration loop.
- Step S908: detect whether all of the delay units have been calibrated. If yes, the process jumps to step S912; otherwise the process jumps to step S910.
- Step S910: set the switch signal to be a next set of signal to switch next signal to be calibrated and jump back to step S906.
- Step S912: disable the control signal CAL1 and enable the calibration signal. Because the control signal is disabled, the calibration of the delay time of the write signal generator is performed. To enable the calibration signal is to ask the EFM encoder to generate the calibration reference clock, such as all of the write signals have substantial the same phase.
- Step S914: set the switch signal to be a first set of signal. If the number of write signal outputted from the write signal generator exceeds two (three write signals in this embodiment), it is necessary to use the switch to switch the signal to be calibrated. If there are only two write signals outputted from the write signal generator, this step may be omitted.
- Step S916: calibrate the delay time of the delay unit according to the calibration loop.
- Step S918: detect whether all of the delay units have been calibrated. If yes, the process jumps to step S922; otherwise the process jumps to step S920.
- Step S920: set the switch signal to be a next set of signal to switch next to be calibrated and jumps back to step S916.
- Step S922: disable the calibration signal.
- Step S924: end the calibration procedure.
- While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific construction and arrangement shown and described, since various other modifications may occur to those ordinarily skilled in the art. For example, the phase calibration unit of the embodiment also may be combined with a PLL.
Claims (14)
1. An aligned write signal generator with alignment calibration, comprising:
a write signal generator for receiving an EFM signal and converting the EFM signal into a plurality of write signals according to a write strategy waveform generating rule;
a first alignment unit for receiving the write signals, delaying at least one of the write signals according to a plurality of phase control signals and outputting a plurality of phase adjusted write signals, wherein the first alignment unit generates a plurality of preset phase adjusted write signals at a calibration mode; and
a phase calibration unit for receiving the preset phase adjusted write signals, and detecting the phase errors among the preset phase adjusted write signals at the calibration mode to adjust the phase control signals, wherein the phase calibration unit outputs the adjusted phase control signals at a normal mode.
2. The aligned write signal generator according to claim 1 , wherein the EFM signal is a calibration EFM signal when a calibration signal is enabled, so as to make the write signal generator output the write signals with aligned phase.
3. The aligned write signal generator according to claim 1 , wherein the first alignment unit further receives the phase control signals and adjusts delay time of each write signal when the calibration signal is enabled.
4. The aligned write signal generator according to claim 1 , wherein the first alignment unit has a plurality of delay units, each of delay units comprises:
a counter for outputting a count value as a selecting signal:
a cascaded delay cell module for receiving one of the write signals and outputting a plurality of delayed signals with different delay time; and
a multiplexer for receiving the delayed signals and selecting one of the delayed signals for output as the phase adjusted write signal according to the selecting signal;
wherein the counter up-counts or down-counts according to the phase control signals.
5. The aligned write signal generator according to claim 1 , wherein the phase calibration unit comprises:
a phase detector for receiving the phase adjusted write signals and outputting a phase error signal;
a charge pump for receiving the phase error signal and generating a control current according to the phase error signal;
an integrator for receiving the control current, integrating the control current, and then generating an error voltage; and
a delay time control unit for outputting the phase control signals according to the error voltage.
6. The aligned write signal generator according to claim 5 , wherein the phase calibration unit further comprises:
a selection switch for receiving the phase adjusted write signals and selecting two of the phase adjusted write signal to be outputted to the phase detector.
7. The aligned write signal generator according to claim 5 , wherein the delay time control unit comprises:
a first comparator for comparing the error voltage with a first reference voltage and outputting a first comparison signal, wherein the first comparison signal is of high level when the error voltage is higher than the first reference voltage;
a second comparator for comparing the error voltage with a second reference voltage and outputting a second comparison signal, wherein the second comparison signal is of high level when the error voltage is less than the second reference voltage;
a first AND gate for receiving the first comparison signal and a trigger clock, and generating an up-counting signal;
a second AND gate for receiving the second comparison signal and the trigger clock, and generating a down-counting signal; and
a switch for receiving the up-counting signal and the down-counting signal, and outputting the up-counting signal and the down-counting signal as the phase control signals to one of the delay units according to a switch signal;
wherein the first reference voltage is higher than or equal to the second reference voltage.
8. The aligned write signal generator according to claim 7 , wherein the phase calibration unit further comprises:
a multiplexer module having a plurality of multiplexers, each of which has a first input terminal and a second input terminal, wherein the first input terminals of the multiplexers receive a calibration clock, the second input terminals of the multiplexers receive the phase adjusted write signal, respectively, and the multiplexer module outputs the calibration clock when a control signal is enabled and outputs the phase adjusted write signal when the control signal is disabled; and
a second alignment unit comprising a plurality of delay units for respectively receiving the signals outputted from the multiplexer module and outputting signals to the phase detector.
9. The aligned write signal generator according to claim 8 , wherein the switch outputs the up-counting signal and the down-counting signal to the delay units of the second alignment unit of the phase calibration unit when the control signal is enabled and outputs the up-counting signal and the down-counting signal to the delay units of the first alignment unit when the control signal is disabled.
10. The aligned write signal generator according to claim 6 , wherein the delay time control unit comprises:
a first comparator for comparing the error voltage with a first reference voltage and outputting a first comparison signal, wherein the first comparison signal is of high level when the error voltage is higher than the first reference voltage;
a second comparator for comparing the error voltage with a second reference voltage and outputting a second comparison signal, wherein the second comparison signal is of high level when the error voltage is less than the second reference voltage;
a first AND gate for receiving the first comparison signal and a trigger clock, and generating an up-counting signal,
a second AND gate for receiving the second comparison signal and the trigger clock, and generating a down-counting signal; and
a switch for receiving the up-counting signal and the down-counting signal, and outputting the up-counting signal and the down-counting signal as the phase control signals to one of the delay units according to a switch signal;
wherein the first reference voltage is higher than or equal to the second reference voltage.
11. The aligned write signal generator according to claim 10 , wherein the phase calibration unit further comprises:
a multiplexer module having a plurality of multiplexers, each of which has a first input terminal and a second input terminal, wherein the first input terminals of the multiplexers receive a calibration clock, the second input terminals of the multiplexers receive the phase adjusted write signal, respectively, and the multiplexer module outputs the calibration clock when a control signal is enabled and outputs the phase adjusted write signal when a control signal is disabled; and
a second alignment unit comprising a plurality of delay units for respectively receiving the signals outputted from the multiplexers of the multiplexer module and outputting signals to the phase detector.
12. The aligned write signal generator according to claim 11 , wherein the switch outputs the up-counting signal and the down-counting signal to the delay units of the second alignment unit of the phase calibration unit when the control signal is enabled and outputs the up-counting signal and the down-counting signal to the delay units of the first alignment unit when the control signal is disabled.
13. A method for generating phase adjusted write signals in an optical disk drive, the method comprising the steps of:
generating the preset write signal to obtain a plurality of preset phase adjusted write signals at a calibration mode;
detecting the phase errors among the preset phase adjusted write signals at the calibration mode;
adjusting at least one of the preset write signals for a delay time according to the phase errors of the preset phase adjusted write signals at the calibration mode;
obtaining a delay setting at the calibration mode;
receiving an EFM signal;
converting the EFM signal into a plurality of write signals according to a write strategy waveform generating rule; and
delaying the write signals according to delay settings for generating the phase adjusted write signals with aligned phase.
14. The method according to claim 13 , wherein the step of adjusting the delay settings comprises the steps of:
generating a calibration EFM signal;
converting the calibration EFM signal into the plurality of write signals; and
adjusting the delay settings according to the phase difference among the phase adjusted write signals to make the phase of the phase adjusted write signals be substantially aligned.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/257,833 US20090046555A1 (en) | 2003-06-20 | 2008-10-24 | Write signal generator with delay calibration |
US12/975,076 US20110090774A1 (en) | 2003-06-20 | 2010-12-21 | Write signal generator with delay calibration |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW092116882A TWI237249B (en) | 2003-06-20 | 2003-06-20 | Write pulse generator with alignment calibration |
TW092116882 | 2003-06-20 | ||
US10/868,952 US7457213B2 (en) | 2003-06-20 | 2004-06-17 | Write signal generator with delay calibration |
US12/257,833 US20090046555A1 (en) | 2003-06-20 | 2008-10-24 | Write signal generator with delay calibration |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/868,952 Continuation US7457213B2 (en) | 2003-06-20 | 2004-06-17 | Write signal generator with delay calibration |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/975,076 Division US20110090774A1 (en) | 2003-06-20 | 2010-12-21 | Write signal generator with delay calibration |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090046555A1 true US20090046555A1 (en) | 2009-02-19 |
Family
ID=33516586
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/868,952 Expired - Fee Related US7457213B2 (en) | 2003-06-20 | 2004-06-17 | Write signal generator with delay calibration |
US12/257,833 Abandoned US20090046555A1 (en) | 2003-06-20 | 2008-10-24 | Write signal generator with delay calibration |
US12/975,076 Abandoned US20110090774A1 (en) | 2003-06-20 | 2010-12-21 | Write signal generator with delay calibration |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/868,952 Expired - Fee Related US7457213B2 (en) | 2003-06-20 | 2004-06-17 | Write signal generator with delay calibration |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/975,076 Abandoned US20110090774A1 (en) | 2003-06-20 | 2010-12-21 | Write signal generator with delay calibration |
Country Status (2)
Country | Link |
---|---|
US (3) | US7457213B2 (en) |
TW (1) | TWI237249B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090003164A1 (en) * | 2004-10-08 | 2009-01-01 | Koninklijke Philips Electronics, N.V. | Fast Disc Recognition by Elimination of Calibrations |
US8649400B2 (en) * | 2010-07-29 | 2014-02-11 | Ciena Corporation | Communication clock transport method and device |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI240256B (en) * | 2003-01-03 | 2005-09-21 | Mediatek Inc | High speed optical recording apparatus |
TWI233263B (en) * | 2004-04-30 | 2005-05-21 | Mediatek Inc | Multiphase waveform generator capable of phase calibration and related phase calibration method |
JP4310256B2 (en) * | 2004-10-22 | 2009-08-05 | 株式会社日立製作所 | Optical disc recording apparatus, laser diode driving apparatus, and recording signal generating apparatus |
KR100699851B1 (en) * | 2005-06-27 | 2007-03-27 | 삼성전자주식회사 | Apparatus for generating tracking signal, and digital phase controller |
WO2009063274A1 (en) * | 2007-11-13 | 2009-05-22 | Freescale Semiconductor, Inc. | System and method to improve switching in power switching applications |
KR20110029757A (en) * | 2009-09-16 | 2011-03-23 | 삼성전자주식회사 | Apparatus and method for improving a radiated performance of a wireless device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6445661B1 (en) * | 1999-08-11 | 2002-09-03 | Oak Technology, Inc. | Circuit, disk controller and method for calibrating a high precision delay of an input signal |
US6775217B1 (en) * | 2000-05-18 | 2004-08-10 | Cirrus Logic, Inc. | Multi-stage ring oscillator for providing stable delays on EFM data pulses for recording CD-R and CD-RW medium |
-
2003
- 2003-06-20 TW TW092116882A patent/TWI237249B/en not_active IP Right Cessation
-
2004
- 2004-06-17 US US10/868,952 patent/US7457213B2/en not_active Expired - Fee Related
-
2008
- 2008-10-24 US US12/257,833 patent/US20090046555A1/en not_active Abandoned
-
2010
- 2010-12-21 US US12/975,076 patent/US20110090774A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6445661B1 (en) * | 1999-08-11 | 2002-09-03 | Oak Technology, Inc. | Circuit, disk controller and method for calibrating a high precision delay of an input signal |
US6775217B1 (en) * | 2000-05-18 | 2004-08-10 | Cirrus Logic, Inc. | Multi-stage ring oscillator for providing stable delays on EFM data pulses for recording CD-R and CD-RW medium |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090003164A1 (en) * | 2004-10-08 | 2009-01-01 | Koninklijke Philips Electronics, N.V. | Fast Disc Recognition by Elimination of Calibrations |
US8023376B2 (en) * | 2004-10-08 | 2011-09-20 | Koninklijke Philips Electronics N.V. | Fast disc recognition by elimination of calibrations |
US8649400B2 (en) * | 2010-07-29 | 2014-02-11 | Ciena Corporation | Communication clock transport method and device |
Also Published As
Publication number | Publication date |
---|---|
US20110090774A1 (en) | 2011-04-21 |
US7457213B2 (en) | 2008-11-25 |
US20040257949A1 (en) | 2004-12-23 |
TWI237249B (en) | 2005-08-01 |
TW200501115A (en) | 2005-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110090774A1 (en) | Write signal generator with delay calibration | |
US20080036509A1 (en) | Methods of Reducing Skew Between Multiphase Signals and Related Phase Correction Circuits | |
US20040022339A1 (en) | Clock recovery circuit | |
KR100817081B1 (en) | Apparatus for preventing the lock failure and delay locked loop thereof | |
US6998891B2 (en) | Apparatus for calibrating a charge pump and method therefor | |
US8065552B2 (en) | Clock generation circuit, recording device and clock generation method | |
US6897691B2 (en) | Phase locked loop with low steady state phase errors and calibration circuit for the same | |
JP5241776B2 (en) | Duty compensation circuit | |
CN116155267A (en) | Delay chain circuit with configurable delay time length | |
US7471599B2 (en) | Write signal control circuit in an optical disk drive | |
US20090027093A1 (en) | Sampling circuit and method | |
US6282253B1 (en) | Post-filtered recirculating delay-locked loop and method for producing a clock signal | |
US6876707B2 (en) | Signal processing circuit and signal processing method | |
US7606340B2 (en) | Phase detection device and method thereof | |
US20090179675A1 (en) | Dll circuit and method of controlling the same | |
US10483988B1 (en) | Synchronization circuit and method relating to the synchronization circuit | |
US20110285419A1 (en) | Semiconductor integrated circuit for generating clock signals | |
US6342849B1 (en) | Method and apparatus for peak detection of an analog signal | |
US20090278578A1 (en) | Delay locked loop circuit and delay locking method | |
US20080025453A1 (en) | Sampling-error phase compensating apparatus and method thereof | |
US20040188591A1 (en) | Automatic power controller | |
US20020196076A1 (en) | Filter circuit | |
JP2002141956A (en) | Identification level automatic control circuit and control method, identification phase automatic control circuit and control method, and optical receiver | |
EP1168706B1 (en) | Method and circuit for aligning data flows in time division frames | |
US6646575B2 (en) | Circuit and method for protecting the run length in RLL code |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |