US20090023791A1 - PH-dependent NMDA receptor antagonists - Google Patents
PH-dependent NMDA receptor antagonists Download PDFInfo
- Publication number
- US20090023791A1 US20090023791A1 US12/151,633 US15163308A US2009023791A1 US 20090023791 A1 US20090023791 A1 US 20090023791A1 US 15163308 A US15163308 A US 15163308A US 2009023791 A1 US2009023791 A1 US 2009023791A1
- Authority
- US
- United States
- Prior art keywords
- lower alkyl
- group
- independently
- alkyl
- independently selected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 C.[9*]C1=C([10*])C([18*])=C([11*])C([12*])=C1OC Chemical compound C.[9*]C1=C([10*])C([18*])=C([11*])C([12*])=C1OC 0.000 description 204
- CSCPPACGZOOCGX-UHFFFAOYSA-N CC(C)=O Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- XQEUYPDIQHZDAD-HYXAFXHYSA-N C/C(/C(C)=P)=C(\N)/NN Chemical compound C/C(/C(C)=P)=C(\N)/NN XQEUYPDIQHZDAD-HYXAFXHYSA-N 0.000 description 1
- ZOZFXMXOLKBNPS-UHFFFAOYSA-N C/C(/NN)=P/N[I]=N Chemical compound C/C(/NN)=P/N[I]=N ZOZFXMXOLKBNPS-UHFFFAOYSA-N 0.000 description 1
- VHHSJGQGBYXPLI-LEWLKWHUSA-N C1=CC=NC=C1.CC(=O)OC(C)=O.CC(=O)O[C@H](COC1=CC=C(NS(C)(=O)=O)C=C1)CN(CCC1=CC(Cl)=C(Cl)C=C1)C(C)=O.CN(C)C1=CC=NC=C1.CN(C)C1=CC=NC=C1.CS(=O)(=O)NC1=CC=C(OCC2CN(CCC3=CC(Cl)=C(Cl)C=C3)C(=O)O2)C=C1.CS(=O)(=O)NC1=CC=C(OC[C@@H](O)CNCCC2=CC(Cl)=C(Cl)C=C2)C=C1.O=C(N1C=CN=C1)N1C=CN=C1 Chemical compound C1=CC=NC=C1.CC(=O)OC(C)=O.CC(=O)O[C@H](COC1=CC=C(NS(C)(=O)=O)C=C1)CN(CCC1=CC(Cl)=C(Cl)C=C1)C(C)=O.CN(C)C1=CC=NC=C1.CN(C)C1=CC=NC=C1.CS(=O)(=O)NC1=CC=C(OCC2CN(CCC3=CC(Cl)=C(Cl)C=C3)C(=O)O2)C=C1.CS(=O)(=O)NC1=CC=C(OC[C@@H](O)CNCCC2=CC(Cl)=C(Cl)C=C2)C=C1.O=C(N1C=CN=C1)N1C=CN=C1 VHHSJGQGBYXPLI-LEWLKWHUSA-N 0.000 description 1
- DSKARLQNQRDJCO-XGMZYLJQSA-N C1CCOC1.CCN(CC)C(C)C.CS(=O)(=O)Cl.NCCC1=CC(Cl)=C(Cl)C=C1.O=[N+]([O-])C1=CC=CC(O)=C1.[H]C[C@@]1(COS(=O)(=O)C2=CC([N+](=O)[O-])=CC=C2)CO1.[H][C@@]1(COC2=CC(N)=CC=C2)CO1.[H][C@@]1(COC2=CC(NC)=CC=C2)CO1.[H][C@@]1(COC2=CC([N+](=O)[O-])=CC=C2)CO1.[H][C@](O)(CNCCC1=CC(Cl)=C(Cl)C=C1)COC1=CC=CC(NS(C)(=O)=O)=C1 Chemical compound C1CCOC1.CCN(CC)C(C)C.CS(=O)(=O)Cl.NCCC1=CC(Cl)=C(Cl)C=C1.O=[N+]([O-])C1=CC=CC(O)=C1.[H]C[C@@]1(COS(=O)(=O)C2=CC([N+](=O)[O-])=CC=C2)CO1.[H][C@@]1(COC2=CC(N)=CC=C2)CO1.[H][C@@]1(COC2=CC(NC)=CC=C2)CO1.[H][C@@]1(COC2=CC([N+](=O)[O-])=CC=C2)CO1.[H][C@](O)(CNCCC1=CC(Cl)=C(Cl)C=C1)COC1=CC=CC(NS(C)(=O)=O)=C1 DSKARLQNQRDJCO-XGMZYLJQSA-N 0.000 description 1
- QTKBJQUKCPGXSW-YBKNGBSMSA-N CC(=O)B([Na])C(C)=O.CC(=O)O.CO.CO[Na].O.O.[H]C(=O)COC(=O)CCC.[H][C@@](O)(COC1=CC=C(NS(C)(=O)=O)C=C1)CN(CCO)CCC1=CC(Cl)=C(Cl)C=C1.[H][C@@](O)(COC1=CC=C(NS(C)(=O)=O)C=C1)CN(CCOC(=O)CCC)CCC1=CC(Cl)=C(Cl)C=C1.[H][C@](O)(CNCCC1=CC(Cl)=C(Cl)C=C1)COC1=CC=C(NS(C)(=O)=O)C=C1 Chemical compound CC(=O)B([Na])C(C)=O.CC(=O)O.CO.CO[Na].O.O.[H]C(=O)COC(=O)CCC.[H][C@@](O)(COC1=CC=C(NS(C)(=O)=O)C=C1)CN(CCO)CCC1=CC(Cl)=C(Cl)C=C1.[H][C@@](O)(COC1=CC=C(NS(C)(=O)=O)C=C1)CN(CCOC(=O)CCC)CCC1=CC(Cl)=C(Cl)C=C1.[H][C@](O)(CNCCC1=CC(Cl)=C(Cl)C=C1)COC1=CC=C(NS(C)(=O)=O)C=C1 QTKBJQUKCPGXSW-YBKNGBSMSA-N 0.000 description 1
- SAFLMFCUFNHEIG-VYESTDQGSA-M CI.CN(C1=CC=C(OC[C@@H](O)CNCCC2=CC(Cl)=C(Cl)C=C2)C=C1)S(C)(=O)=O.NCCC1=CC(Cl)=C(Cl)C=C1.O=COO[K].[H][C@@]1(COC2=CC=C(N(C)C)C=C2)CO1.[H][C@@]1(COC2=CC=C(NS(C)(=O)=O)C=C2)CO1.[KH] Chemical compound CI.CN(C1=CC=C(OC[C@@H](O)CNCCC2=CC(Cl)=C(Cl)C=C2)C=C1)S(C)(=O)=O.NCCC1=CC(Cl)=C(Cl)C=C1.O=COO[K].[H][C@@]1(COC2=CC=C(N(C)C)C=C2)CO1.[H][C@@]1(COC2=CC=C(NS(C)(=O)=O)C=C2)CO1.[KH] SAFLMFCUFNHEIG-VYESTDQGSA-M 0.000 description 1
- HOSPAIJVWNPZMJ-MLZAPQKDSA-N CS(=O)(=O)Cl.CS(=O)(=O)NC1=CC=CC=C1CC[C@@H](O)CNCCC1=CC(Cl)=C(Cl)C=C1.NC1=CC=CC=C1CCC1CN(CCC2=CC(Cl)=C(Cl)C=C2)C(C2=CC=CC=C2)O1.NCCC1=CC(Cl)=C(Cl)C=C1.O=CC1=CC=CC=C1.O=[N+]([O-])C1=C(O)C=CC=C1.O=[N+]([O-])C1=CC=CC=C1CCC1CN(CCC2=CC(Cl)=C(Cl)C=C2)C(C2=CC=CC=C2)O1.[HH].[H]C[C@@]1(COS(=O)(=O)C2=CC([N+](=O)[O-])=CC=C2)CO1.[H][C@@]1(COC2=C([N+](=O)[O-])C=CC=C2)CO1.[H][C@](O)(CNCCC1=CC(Cl)=C(Cl)C=C1)COC1=CC=CC=C1[N+](=O)[O-] Chemical compound CS(=O)(=O)Cl.CS(=O)(=O)NC1=CC=CC=C1CC[C@@H](O)CNCCC1=CC(Cl)=C(Cl)C=C1.NC1=CC=CC=C1CCC1CN(CCC2=CC(Cl)=C(Cl)C=C2)C(C2=CC=CC=C2)O1.NCCC1=CC(Cl)=C(Cl)C=C1.O=CC1=CC=CC=C1.O=[N+]([O-])C1=C(O)C=CC=C1.O=[N+]([O-])C1=CC=CC=C1CCC1CN(CCC2=CC(Cl)=C(Cl)C=C2)C(C2=CC=CC=C2)O1.[HH].[H]C[C@@]1(COS(=O)(=O)C2=CC([N+](=O)[O-])=CC=C2)CO1.[H][C@@]1(COC2=C([N+](=O)[O-])C=CC=C2)CO1.[H][C@](O)(CNCCC1=CC(Cl)=C(Cl)C=C1)COC1=CC=CC=C1[N+](=O)[O-] HOSPAIJVWNPZMJ-MLZAPQKDSA-N 0.000 description 1
- YEQOINAAEOFGRV-UHFFFAOYSA-N Cc([nH]c(N)c1N)c1N Chemical compound Cc([nH]c(N)c1N)c1N YEQOINAAEOFGRV-UHFFFAOYSA-N 0.000 description 1
- FWGHKWLPDVPIOJ-UHFFFAOYSA-N Cc([nH]c1c2[nH]c(C)c1N)c2N Chemical compound Cc([nH]c1c2[nH]c(C)c1N)c2N FWGHKWLPDVPIOJ-UHFFFAOYSA-N 0.000 description 1
- WBYNAIWXICBRLD-UHFFFAOYSA-N Cc(c(N)c(c(N)c1N)N)c1N Chemical compound Cc(c(N)c(c(N)c1N)N)c1N WBYNAIWXICBRLD-UHFFFAOYSA-N 0.000 description 1
- JYVPUGQZJRFFAF-UHFFFAOYSA-N Cc1c(N)[nH]nc1C Chemical compound Cc1c(N)[nH]nc1C JYVPUGQZJRFFAF-UHFFFAOYSA-N 0.000 description 1
- IWIVNDSBHZYPDA-QBPAYKPBSA-N NCCC1=CC(Cl)=C(Cl)C=C1.O=S(=O)(Cl)C1=CC=[C+]C=C1.O=S(=O)(NC1=CC=C(OC[C@@H](O)CNCCC2=CC(Cl)=C(Cl)C=C2)C=C1)C1=CC=CC=C1.[H][C@@]1(COC2=CC=C(N)C=C2)CO1.[H][C@@]1(COC2=CC=C(NS(=O)(=O)C3=CC=CC=C3)C=C2)CO1 Chemical compound NCCC1=CC(Cl)=C(Cl)C=C1.O=S(=O)(Cl)C1=CC=[C+]C=C1.O=S(=O)(NC1=CC=C(OC[C@@H](O)CNCCC2=CC(Cl)=C(Cl)C=C2)C=C1)C1=CC=CC=C1.[H][C@@]1(COC2=CC=C(N)C=C2)CO1.[H][C@@]1(COC2=CC=C(NS(=O)(=O)C3=CC=CC=C3)C=C2)CO1 IWIVNDSBHZYPDA-QBPAYKPBSA-N 0.000 description 1
- DVXSKCNVNQBFBI-AUBIZZOWSA-N NCCC1=CC(Cl)=C(Cl)C=C1.O=[N+]([O-])C1=CC=C(OC[C@@H](O)CNCCC2=CC(Cl)=C(Cl)C=C2)C=C1.[H][C@@]1(COC2=CC=C([N+](=O)[O-])C=C2)CO1 Chemical compound NCCC1=CC(Cl)=C(Cl)C=C1.O=[N+]([O-])C1=CC=C(OC[C@@H](O)CNCCC2=CC(Cl)=C(Cl)C=C2)C=C1.[H][C@@]1(COC2=CC=C([N+](=O)[O-])C=C2)CO1 DVXSKCNVNQBFBI-AUBIZZOWSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/02—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
- C07C217/04—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
- C07C217/28—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines
- C07C217/30—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines having the oxygen atom of at least one of the etherified hydroxy groups further bound to a carbon atom of a six-membered aromatic ring
- C07C217/32—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines having the oxygen atom of at least one of the etherified hydroxy groups further bound to a carbon atom of a six-membered aromatic ring the six-membered aromatic ring or condensed ring system containing that ring being further substituted
- C07C217/34—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines having the oxygen atom of at least one of the etherified hydroxy groups further bound to a carbon atom of a six-membered aromatic ring the six-membered aromatic ring or condensed ring system containing that ring being further substituted by halogen atoms, by trihalomethyl, nitro or nitroso groups, or by singly-bound oxygen atoms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/04—Centrally acting analgesics, e.g. opioids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/01—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
- C07C311/02—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C311/08—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/15—Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings
- C07C311/21—Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/08—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D263/16—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D263/18—Oxygen atoms
- C07D263/20—Oxygen atoms attached in position 2
- C07D263/24—Oxygen atoms attached in position 2 with hydrocarbon radicals, substituted by oxygen atoms, attached to other ring carbon atoms
Definitions
- NMDA receptors are a subtype of glutamate-gated ion channels that mediate excitatory synaptic transmission between neurons in the central nervous system (Dingledine, R. et al., [1999], “The glutamate receptor ion channels,” Pharmacological Reviews 51:7-61).
- NMDA receptors are a subtype of the most widespread excitatory neurotransmitter receptor in the brain. Excessive activation of NMDA receptors kills neurons, and current evidence implicates NMDA receptor activation in a variety of neurologic disorders that include epilepsy, ischemic brain damage, traumatic brain/spinal cord injury, and Alzheimer's Diseases, Huntington's chorea and Amyotrophic Lateral Sclerosis (ALS).
- ALS Amyotrophic Lateral Sclerosis
- NMDA receptor blockers are effective in limiting the volume of damaged brain tissue in experimental models of stroke and traumatic brain injury.
- NMDA receptor antagonists are known to be anti-convulsant in many experimental models of epilepsy (Bradford, H. R. [1995] “Glutamate, GABA, and Epilepsy,” Progress in Neurobiology 47:477-511; McNamara, J. O. [2001] Drugs effective in the therapy of the epilepsies.
- NMDA receptor blockers also act synergistically with L-DOPA to relieve symptoms of Parkinsonism. In addition, such compounds are useful for treating chronic neuropathic pain and bipolar disorder.
- NMDA receptor antagonists channel blockers, competitive blockers of the glutamate or glycine agonist sites, and noncompetitive allosteric antagonists
- NMDA receptor antagonists can reduce the rate of tumor growth in vivo as well as in some in vitro models.
- NMDA receptor antagonists phenylethanolamines
- This class exemplified by the compound ifenprodil, selectively interacts with NMDA receptors containing the NR2B subunit. These compounds have exhibited neuroprotective properties in preclinical models.
- This class of antagonist lacks the severe side-effect liability of other types of NMDA antagonists (e.g. PCP-like psychotic symptoms and cardiovascular effects).
- NMDA receptor which contains the NR2B subunit has the unusual property of being normally inhibited by protons by about 50% at physiological pH (Traynelis, S. F. and Cull-Candy, S. G. [1990] “Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons,” Nature 345:347-350.
- phenylethanolamines typified by ifenprodil and CP101,606 inhibit activation of NMDA receptors by potentiating allosteric inhibition mediated by protons.
- small reduction of pH in the physiological range increases the potency of some phenylethanol-amines as NMDA receptor antagonists.
- Therapeutic compounds for the foregoing pathologies may have toxic side effects. It is thus an object of this invention to provide compounds which have enhanced activity under the lower pH conditions characteristic of such pathologies, and which are less active under the normal pH conditions of healthy brain tissue.
- NMDA receptor antagonists including U.S. Pat. No. 6,080,743 to Acklin et al.; U.S. Pat. Nos. 4,924,008 and 4,957,909 to Abou-Gharbia et al.; U.S. Pat. Nos. 5,889,026, 5,952,344, 6,071,929, 6,265,426, and 6,339,093 to Alanine et al.; U.S. Pat. No. 5,633,379 to Allgeier; U.S. Pat. Nos. 5,922,716, 5,753,657 and 5,777,114 to Aloup et al.; U.S. Pat. No.
- NMDA receptor blockers are needed which are enhanced at low pHs characteristic of certain pathological conditions for treatment of such pathological conditions.
- NMDA receptor blockers including pH-sensitive NMDA receptor blockers, as neuroprotective drugs that are useful in stroke, traumatic brain injury, epilepsy, and other neurologic events that involve acidification of brain or spinal cord tissue.
- Compositions and methods of this invention are used for treating neurodegeneration resulting from NMDA receptor activation.
- the compounds described herein have enhanced activity in brain tissue having lower-than-normal pH due to pathological conditions such as hypoxia resulting from stroke, traumatic brain injury, global ischemia that may occur during cardiac surgery, hypoxia that may occur following cessation of breathing, pre-eclampsia, spinal cord trauma, epilepsy, status epilepticus, neuropathic or inflammatory pain, chronic pain, vascular dementia and glioma tumors.
- drugs activated by low pH are useful in slowing tumor growth because they have enhanced activity only at the site of the tumor.
- Compounds described herein are also useful in preventing neurodegeneration in patients with Parkinson's Alzheimer's, Huntington's chorea, ALS, and other neurodegenerative conditions known to the art to be responsive to treatment using NMDA receptor blockers.
- the compounds provided herein are allosteric NMDA inhibitors.
- the compounds provided herein are selective NMDA receptor blockers, that is, they do not interact with other receptors or ion channels at therapeutic concentrations.
- NMDA receptor blockers that is, they do not interact with other receptors or ion channels at therapeutic concentrations.
- General blocking of NMDA receptors throughout the brain causes adverse effects such as ataxia, memory deficits, hallucinations and other neurological problems.
- the compounds provided herein block the NR2B-containing NMDA receptors, have varying activity against receptors containing NR2A or NR2D, and may be selective for other members of the NMDA receptor family (NR2C, NR3A and NR3B).
- novel small molecule NMDA receptor antagonists of this invention are useful both in the treatment of stroke and head trauma in the emergency room setting, and for use as prophylactic agents for at risk patients.
- the acid generated by ischemic tissue during stroke is harnessed as a switch to activate the neuroprotective agents described herein. In this way side effects are minimized in unaffected tissue since drug at these sites are less active.
- These compounds reduce the amount of neuronal death associated with stroke and head trauma.
- These compounds also have military uses as a neuroprotective for battlefield head trauma. They may be given chronically to individuals with epilepsy or who are at risk for stroke or head trauma, preoperatively in high risk heart/brain surgery, etc., in order to lengthen the window of opportunity for subsequent therapy.
- This invention provides the following useful for treating conditions characterized by lowered brain-tissue pH, selected from the group consisting of (R)- and (S)-enantiomers and mixtures thereof of compounds of the formula:
- R 13 is alkyl, aralkyl or aryl; where R 17 is H or lower alkyl; and the others of R 9 , R 10 , R 11 , R 12 and R 18 are H, F, Cl, I or R wherein R is lower alkyl; or:
- R 9 , R 10 , R 11 and R 12 are independently selected from the group consisting of H, F, Cl, Br, I, and R wherein R is lower alkyl, and R 13 is alkyl aralkyl or aryl;
- A is selected from the group consisting of:
- These compounds are preferably provided in combination with a suitable pharmaceutical carrier.
- Preferred compounds of this invention include (R)- and (S)-enantiomers and mixtures thereof of compounds selected from the group consisting of:
- R 1 and R 5 are independently H or F;
- R 2 is independently O, S, NH or NR where R is lower alkyl; —R 3 is N;
- R 4 is selected from the group consisting of H, F, Cl, Br, I and OR wherein R is lower alkyl, R 6 and R 6 ′ are independently H or F;
- R 7 is selected from the group consisting of H, lower n-alkyl, CH 2 Ar, CH 2 CH 2 Ar, CH 2 CHFAr and CH 2 CF 2 Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl;
- R 8 is OH, OR, where R is lower alkyl, or F;
- R 9 , R 10 , R 11 and R 12 are independently selected from the group consisting of H, F, Cl,
- This invention also provides a method of treating neurodegeneration associated with a pathological condition characterized by lowered brain-tissue pH, said method comprising administering to a patient in need of such treatment a pharmaceutically effective amount of a compound having enhanced NMDA receptor blocking activity at said lowered brain-tissue pH over normal brain-tissue pH, said compound being selected from the group consisting of the above-described compounds.
- the methods of this invention also include treating neurodegeneration associated with a pathological condition characterized by lowered brain-tissue pH, said method comprising administering to a patient in need of such treatment a pharmaceutically effective amount of a compound having enhanced NMDA receptor blocking activity at said lowered brain-tissue pH over normal brain-tissue pH, said compound being selected from the group consisting of: zolantidine dimaleate; 2-(4-chloroanilino)-4-(4-phenylpiperazino)cyclopent-2-en-1-one; haloperidol; cirazoline; 1,10-phenanthroline; 6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptanecarboxamide; (R,S)1-(4-methanesulfonamidophenoxy)-3-(N-methyl-3,4-dichlorophenylethylamine)-2-propanol hydrochloride (AM92016,
- This invention also provides a method of treating neurodegeneration associated with a pathological condition characterized by lowered brain-tissue pH, said method comprising administering to a patient in need of such treatment a pharmaceutically effective amount of a compound having enhanced NMDA receptor blocking activity at said lowered brain-tissue pH over normal brain-tissue pH, said compound being selected from the group consisting of (R)- or (S)-enantiomers or mixtures thereof of compounds of the formula:
- R 13 is alkyl, aralkyl or aryl; where R 17 is H or lower alkyl; and the others of R 9 , R 10 , R 11 , R 12 and R 18 are H, F, Cl, I or R wherein R is lower alkyl; or:
- A is a bulky, ring-containing group
- B is selected from the group consisting of:
- novel compounds disclosed herein may be used to treat pathological conditions not involving lowered brain-tissue pH, as well as pathological conditions involved lowered pH. Such conditions include Parkison's Disease, Alzheimers, and Amyotrophic Lateral Sclerosis (ALS).
- pathological conditions include Parkison's Disease, Alzheimers, and Amyotrophic Lateral Sclerosis (ALS).
- ALS Amyotrophic Lateral Sclerosis
- This invention also provides methods of making compounds described herein comprising:
- This invention also comprises a method of forming a further compound of said formula wherein R 1 is selected from the group consisting of C 2 H 5 , C 3 H 7 , C 4 H 9 , benzyl, 2-fluorobenzyl, 3-fluorobenzyl, 4-fluorobenzyl, 2,6-difluorobenzyl, and 2,3,4-trifluorobenzyl, said method comprising reacting the product of the foregoing method wherein R 1 is H with 1,2 dichloroethane to form said further compound.
- a further method for forming a further compound of said formula wherein R 1 is C 2 H 4 —OH, wherein said method further comprises reacting a product of the above formula wherein R 1 is H with O-butyryl glycoaldehyde to give a second reaction product; and further reacting said second reaction product with sodium methoxide to form said further compound.
- a further method is provided of forming a further compound of said formula wherein R 1 is acetyl comprising reacting the compound of the above formula wherein R 1 is H with N,N-dimethylaminopyridine and acetic anhydride.
- a further method is provided further comprising forming a further compound of said formula wherein R 1 and R 2 taken together are CH 2 —O—CH 2 comprising reacting the compound of the above formula wherein R 1 is H with 1,1′-carbonyldiimidazole and N,N-dimethylaminopyridine in benzene.
- R3 may be a meta- or para-substituent in the reaction intermediates and in the final product. Intermediates and corresponding final products may be in the (S)- or (R)-forms.
- a method for making (S)- or (R)-1-(2-methanesulphonamidephenoxy)-3-(3,4-dichlorophenylethylamino)-2-propanol) comprising the steps of:
- a method for making (S)- or (R)-1-(4-N-methyl-methanesulphonamidephenoxy)-3-(3,4-dichlorophenylethylamino)-2-propanol comprising:
- a method for making (S)- or (R)-(1-(4-benzenesulphonamideophenoxy)-3-(3,4-dichloro-phenylethylamino)-2-propanol comprising reacting (S)- or (R)-glycidyl N-methylsulfonyl-aminophenyl ether with N,N-diisopropyl-N-ethylamine to form (S)- or (R)-glycidyl N-benzenesulfonyl-p-aminophenyl ether, and reacting said ether with 3,4-dichlorophenylethylamine to form said (S)- or (R)-(1-(4-benzenesulphonamideophenoxy)-3-(3,4-dichloro-phenylethylamino)-2-propanol.
- a method for making (S)- or (R)-1-(4-nitrophenoxy)3-3,4-dichlorophenylethylamino)-2-propanol comprising reacting p-nitrophenyl ether with 3,4-dichirophenylethylamine to form said (S)- or (R)-1-(4-nitrophenoxy)3-(3,4-dichlorophenylethylamino)-2-propanol.
- NMDA-receptor blockers which are derivatives of and related compounds to those described above may be synthesized, as will be appreciated by those of skill in the art, by methods analogous to those described herein.
- alkyl takes its usual meaning in the art and is intended to include straight-chain, branched and cycloalkyl groups.
- the term includes, but is not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, neopentyl, 2-methylbutyl, 1-methylbutyl, 1-ethylpropyl, 1,1-dimethylpropyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 2-ethylbutyl, 1-ethylbutyl, 1,3-dimethylbutyl, n-heptyl, 5-methylhexyl, 4-methylhexyl,
- ring-containing group refers to a group containing 1 or more ring structures which may be aryl rings or cycloalkyl rings.
- cycloalkyl refers to alkyl groups having a hydrocarbon ring, particularly to those having rings of 3 to 7 carbon atoms. Cycloalky groups include those with alkyl group substitution on the ring. Cycloalkyl groups can include straight-chain and branched-chain portions. Cycloalkyl groups include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and cyclononyl. Cycloalkyl groups can optionally be substituted.
- aryl is used herein generally to refer to aromatic groups which have at least one ring having a conjugated pi electron system and includes without limitation carbocyclic aryl, aralkyl, heterocyclic aryl, biaryl groups and heterocyclic biaryl, all of which can be optionally substituted.
- Preferred aryl groups have one or two aromatic rings.
- Substitution of alkyl groups includes substitution at one or more carbons in the group by moieties containing heteroatoms. Suitable substituents for these groups include but are not limited to OH, SH, NH 2 , COH, CO 2 H, ORc, SRc, NRc Rd, CONRc Rd, and halogens, particularly fluorines where Rc and Rd, independently, are alkyl, unsaturated alkyl or aryl groups.
- Preferred alkyl and unsaturated alkyl groups are lower alkyl, alkenyl or alkynyl groups having from 1 to about 3 carbon atoms.
- Alkyl refers to an alkyl group substituted with an aryl group. Suitable aralkyl groups include among others benzyl, phenethyl and picolyl, and may be optionally substituted. Aralkyl groups include those with heterocyclic and carbocyclic aromatic moieties.
- Heterocyclic aryl groups refers to groups having at least one heterocyclic aromatic ring with from 1 to 3 heteroatoms in the ring, the remainder being carbon atoms. Suitable heteroatoms include without limitation oxygen, sulfur, and nitrogen. Heterocyclic aryl groups include among others furanyl, thienyl, pyridyl, pyrrolyl, N-alkyl pyrrolo, pyrimidyl, pyrazinyl, imidazolyl, benzofuranyl, quinolinyl, and indolyl, all optionally substituted.
- Heterocyclic biaryl refers to heterocyclic aryls in which a phenyl group is substituted by a heterocyclic aryl group ortho, meta or para to the point of attachment of the phenyl ring to the decalin or cyclohexane. Para or meta substitution is preferred. Heterocyclic biaryl includes among others groups which have a phenyl group substituted with a heterocyclic aromatic ring. The aromatic rings in the heterocyclic biaryl group can be optionally substituted.
- Biaryl refers to carbocyclic aryl groups in which a phenyl group is substituted by a carbocyclic aryl group ortho, meta or para to the point of attachment of the phenyl ring to the decalin or cyclohexane.
- Biaryl groups include among others a first phenyl group substituted with a second phenyl ring ortho, meta or para to the point of attachment of the first phenyl ring to the decalin or cyclohexane structure. Para substitution is preferred.
- the aromatic rings in the biaryl group can be optionally substituted.
- Aryl group substitution includes substitutions by non-aryl groups (excluding H) at one or more carbons or where possible at one or more heteroatoms in aromatic rings in the aryl group.
- Unsubstituted aryl in contrast, refers to aryl groups in which the aromatic ring carbons are all substituted with H, e.g. unsubstituted phenyl(—C 6 H 5 ), or naphthyl(—C 10 H 7 ).
- Suitable substituents for aryl groups include among others alkyl groups, unsaturated alkyl groups, halogens, OH, SH, NH 2 , COH, CO 2 H, ORe, SRe, NRe Rf, CONRe Rf, where Re and Rf independently are alkyl, unsaturated alkyl or aryl groups.
- Preferred substituents are OH, SH, ORe, and SRe where Re is a lower alkyl, i.e. an alkyl group having from 1 to about 3 carbon atoms.
- Other preferred substituents are halogens, more preferably fluorine, and lower alkyl and unsaturated lower alkyl groups having from 1 to about 3 carbon atoms.
- Substituents include bridging groups between aromatic rings in the aryl group, such as —CO 2 —, —CO—, —O—, —S—, —NH—, —CHCH— and —(CH 2 ) 1 — where 1 is an integer from 1 to about 5, and particularly —CH 2 —.
- aryl groups having bridging substituents include phenylbenzoate, Substituents also include moieties, such as —(CH 2 ) 1 —, —O—(CH 2 ) 1 — or —OCO—(CH 2 ) 1 —, where 1 is an integer from about 2 to 7, as appropriate for the moiety, which bridge two ring atoms in a single aromatic ring as, for example, in a 1, 2, 3, 4-tetrahydronaphthalene group.
- Alkyl and unsaturated alkyl substituents of aryl groups can in turn optionally be substituted as described supra for substituted alkyl and unsaturated alkyl groups.
- the compounds of Formula I and their salts, as herein described, can be incorporated into standard pharmaceutical dosage forms, for example, for oral or parenteral application with the usual pharmaceutical adjuvant materials, for example, organic or inorganic inert carrier materials, such as, water, gelatin, lactose starch, magnesium stearate, talc, vegetable oils, gums, polyalkylene-glycols and the like. Carriers which do not consist of water or water and buffer alone are also contemplated in this invention.
- the pharmaceutical preparations can be employed in a solid form, for example, as tablets, suppositories, capsules, or in liquid form, for example, as solutions, suspensions or emulsions.
- compositions comprising a compound of Formula I, in particular a preferred compound as described above, or a pharmaceutically acceptable salt thereof and an inert carrier.
- the dosage of the compounds referred to herein can vary within wide limits and will, of course, be fitted to the individual requirements in each particular case. In the case of oral administration the dosage lies in the range of about 0.1 mg per dosage to about 1000 mg per day of a compound of formula I although the upper limit can also be exceeded when this is shown to be indicated. An amount effective to alleviate the neurodegeneration depends on the individual, however alleviation occurs when the condition in question exhibits either symptomatic improvement or improvement according to an accepted assay.
- dosages of these compounds for use in the methods of this invention involving administration to a patient having lower-than-normal brain-tissue pH are less than normal dosage amounts for similar compounds not having such enhanced activity at lowered pH.
- the treatment should be administered prior or to or immediately after the event.
- Lowered pH due to pathological conditions is between about 6.4 and about 7.2, generally about 6.9.
- Normal brain-tissue pH is between about 7.2 and about 7.6, generally about 7.4.
- This solution was composed of (in MM): 90 NaCl, 1.0 KCl, 10 Hepes and 0.5 BaCl 2 . Recording pipettes were filled with 0.3M KCl. Saturating concentrations of glutamate (20-50 ⁇ M) and glycine (20 ⁇ M) were used to activate the receptor. Drugs were prepared daily from frozen stock solutions in DMSO. Glutamatelglycine-activated currents were typically elicited from a holding potential of ⁇ 20 to ⁇ 40 mV. Current signals were digitized and analyzed using custom acquisition software. To study the effects of pH, oocytes were perfused with Ringer's solution at the desired pH until a stable baseline had been reached before subsequent agonist application.
- the pKa of the amine group in the linker chain was calculated by the web-based pKa calculator from ACDLabs ( www.acdlabs.com ).
- the fold decrease in IC50 as a function of pH for antagonist of NR1-1a/NR2B receptors was measured in Xenopus oocytes as described above.
- mice were stimulated on three consecutive days, referred to as “control”, “test”, and “recovery”.
- a minimum control THE duration of 4 s was used as a criterion for inclusion in subsequent testing; 90% of animals screened had a control THE duration greater than 4 s.
- test day On “test” day, each animal received either vehicle or drug at varying intervals prior to stimulation. Reversibility of drug effect on THE was ascertained by response to stimulation administered one day after the “test” session.
- the values shown in the table are the mean ( ⁇ sem) THE duration in the test condition, as a percentage of the mean of control and recovery conditions. Four rats were used for each time point.
- Palladium on activated carbon (5%, w/w, 0.2 g) was tared in a three-necked baloon flask. Then, ethylenediamine (0.42 g, 0.1 M) in 70 ml anhydrous methanol was added to the Pd/C under an argon atmosphere. The reaction mixture was stirred for 32 hours under argon. The catalyst was filtered and washed with methanol and ether, then dried for 24 hours under high vacuum pumping.
- the product ratio from NO 2 reduction and ring opening (94:6) was determined by integrating the epoxide-ring protons in the reduced compound and the methyl proton in the ring opened compound (98% total yield for the mixture).
- the NMR signals for 2-S are the same as reported in the literature.
- Compound 8-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid which which complexes with 1 mol of water.
- Compound 10-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid which which complexes with 1 mol of water.
- Compound 12-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid which which complexes with 1 mol of water.
- Compound 15-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- Compound 16-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- Compound 20-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- Compound 21-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Pain & Pain Management (AREA)
- Hospice & Palliative Care (AREA)
- Hematology (AREA)
- Psychiatry (AREA)
- Diabetes (AREA)
- Rheumatology (AREA)
- Psychology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
NMDA receptor blockers, including pH-sensitive NMDA receptor blockers, are provided as neurprotective drugs that are useful in stroke, traumatic brain injury, epilepsy, and other neurologic events that involve acidification of brain or spinal cord tissue. Compositions and methods of this invention are used for treating neurodegeneration resulting from NMDA receptor activation. The compounds described herein have enhanced activity in brain tissue having lower than normal pH due to pathological conditions such as hypoxia resulting from stroke, traumatic brain injury, global ischemia that may occur during cardiac surgery, hypoxia that may occur following cessation of breathing, pre-eclampsia, spinal cord trauma, epilepsy, chrounic pain, vascular dementia and glioma rumors. Compounds described herein are also useful in preventing neurodegeneration in patients with Parkinson's Alzheimer's, Huntington's chorea, ALS, and other neurodegenerative conditions known to the art to be responsive to treatment using NMDA receptor blockers. Prefebably the compounds provided herein are allosteric NMDA inhibitors.
Description
- This application claims priority to U.S. patent application No. 60/274,205, filed Mar. 8, 2001, which is incorporated herein by reference to the extent not inconsistent herewith.
- NMDA receptors are a subtype of glutamate-gated ion channels that mediate excitatory synaptic transmission between neurons in the central nervous system (Dingledine, R. et al., [1999], “The glutamate receptor ion channels,” Pharmacological Reviews 51:7-61). NMDA receptors are a subtype of the most widespread excitatory neurotransmitter receptor in the brain. Excessive activation of NMDA receptors kills neurons, and current evidence implicates NMDA receptor activation in a variety of neurologic disorders that include epilepsy, ischemic brain damage, traumatic brain/spinal cord injury, and Alzheimer's Diseases, Huntington's chorea and Amyotrophic Lateral Sclerosis (ALS).
- In animal models of stroke and brain trauma, glutamate released from affected neurons can overstimulate NMDA receptors, which in turn causes neuronal death. Because overactivation of NMDA receptors is neurotoxic, compounds that block NMDA receptors have been considered candidates for treatment of stroke or head injuries. Numerous animal studies have validated NMDA receptors as targets for neuroprotection in stroke, brain and spinal cord trauma, and related settings that involve brain ischemia NMDA receptor blockers are effective in limiting the volume of damaged brain tissue in experimental models of stroke and traumatic brain injury. (Choi, D. (1998), “Antagonizing excitotoxicity: A therapeutic strategy for stroke,” Mount Sinai J. Med. 65:133-138; Dirnagle, U. et al. (1999) “Pathobiology of ischaemic stroke: an integrated view,” Tr. Neurosci. 22:391-397; Obrenovitch, T. P. and Urenjak, J. (1997) “Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury,” J. Neurotrauma 14:677-698.) In addition, NMDA receptor antagonists are known to be anti-convulsant in many experimental models of epilepsy (Bradford, H. R. [1995] “Glutamate, GABA, and Epilepsy,” Progress in Neurobiology 47:477-511; McNamara, J. O. [2001] Drugs effective in the therapy of the epilepsies. In Goodman & Gliman's: The pharmacological basis of therapeutics [Eds. J. G. Hardman and L. E. Limbird] McGraw Hill, New York). However, dose-limiting side effects have thus far prevented clinical use of NMDA receptor antagonists for these neurologic conditions (Muir, K. W. and Lees, K. R. [1995] “Clinical experience with excitatory amino acid antagonist drugs,” Stroke 26:503-513; Herrling, P. L., ed. [1997] “Excitatory amino acid—clinical results with antagonists” Academic Press; Parsons, C. G. et al. [1998] “Glutamate in CNS disorders as a target for drug development: an update,” Drug News Perspective 11:523-569), and consequently enthusiasm for this receptor protein as a drug target has diminished within the pharmaceutical industry. NMDA receptor blockers also act synergistically with L-DOPA to relieve symptoms of Parkinsonism. In addition, such compounds are useful for treating chronic neuropathic pain and bipolar disorder. However, the first three generations of NMDA receptor antagonists (channel blockers, competitive blockers of the glutamate or glycine agonist sites, and noncompetitive allosteric antagonists) have not proved useful clinically.
- Several recent papers have suggested that rapidly-growing brain gliomas can kill adjacent neurons by secreting glutamate and overactivating NMDA receptors The dying neurons make room for the growing tumor, and may release cellular components that stimulate tumor growth. These studies shown NMDA receptor antagonists can reduce the rate of tumor growth in vivo as well as in some in vitro models. (Takano, T., et al. (2001), “Glutamate release promotes growth of malignant glioma,” Nature Medicine 7:1010-1015; Rothstein, J. D. and Bren, H. (2001), “Excitotoxic destruction facilitates brain tumor growth,” Nature Medicine 7:994-995; Rzeski, W., et al. (2001), “Glutamate antagonists limit tumor growth,” Proc. Nat'l Acad. Sci 98:6372-6377.)
- In the late 1980's a new class of NMDA receptor antagonists (phenylethanolamines) was discovered which did not bind at the agonist binding sites. This class, exemplified by the compound ifenprodil, selectively interacts with NMDA receptors containing the NR2B subunit. These compounds have exhibited neuroprotective properties in preclinical models. This class of antagonist lacks the severe side-effect liability of other types of NMDA antagonists (e.g. PCP-like psychotic symptoms and cardiovascular effects).
- One of the most prevalent subtypes of NMDA receptor which contains the NR2B subunit has the unusual property of being normally inhibited by protons by about 50% at physiological pH (Traynelis, S. F. and Cull-Candy, S. G. [1990] “Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons,” Nature 345:347-350. We have found that phenylethanolamines, typified by ifenprodil and CP101,606 inhibit activation of NMDA receptors by potentiating allosteric inhibition mediated by protons. In turn, small reduction of pH in the physiological range increases the potency of some phenylethanol-amines as NMDA receptor antagonists. The potency of ifenprodil for inhibition of NR2B subunit-containing recombinant NMDA receptors is enhanced at pH 6.8 compared to pH 7.5. (Mott et al. [1998], “Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition,” Nature Neuroscience 1(8):659-667.) Ischemic brain tissue, as well as the site of seizure generation in epilepsy, is characterized by a lower pH than is found in brain tissue.
- Therapeutic compounds for the foregoing pathologies may have toxic side effects. It is thus an object of this invention to provide compounds which have enhanced activity under the lower pH conditions characteristic of such pathologies, and which are less active under the normal pH conditions of healthy brain tissue.
- A number of patents discuss NMDA receptor antagonists, including U.S. Pat. No. 6,080,743 to Acklin et al.; U.S. Pat. Nos. 4,924,008 and 4,957,909 to Abou-Gharbia et al.; U.S. Pat. Nos. 5,889,026, 5,952,344, 6,071,929, 6,265,426, and 6,339,093 to Alanine et al.; U.S. Pat. No. 5,633,379 to Allgeier; U.S. Pat. Nos. 5,922,716, 5,753,657 and 5,777,114 to Aloup et al.; U.S. Pat. No. 5,124,319 to Baudy et al.; U.S. Pat. No. 5,179,085 to Bigge et al.; U.S. Pat. No. 5,962,472 to Bourson et al.; U.S. Pat. Nos. 5,919,826, 6,007,841, 6,054,451, and 6,187,338 to Caruso et al.; U.S. Pat. Nos. 5,498,610, 5,594,007, 5,710,168, and 6,258,827 to Chenard et al.; U.S. Pat. Nos. 5,888,996 and 6,083,941 to Farb; U.S. Pat. No. 5,981,553 to Farr et al.; U.S. Pat. Nos. 5,866,585, 6,057,373, and 6,294,583 to Fogel; U.S. Pat. No. 6,274,633 to Franks et al.; U.S. Pat. No. 5,385,947 to Godel et al.; U.S. Pat. Nos. 6,034,134 and 6,071,966 to Gold et al.; U.S. Pat. No. 5,714,500 to Griffith et al.; U.S. Pat. Nos. 5,563,157 and 5,606,063 to Harrison et al.; U.S. Pat. No. 5,395,822 to Izumi et al.; U.S. Pat. No. 5,118,675 to Jirkovsky et al.; U.S. Pat. No. 6,177,434 to Kopke et al.; U.S. Pat. No. 5,132,313 to Kozikowski et al.; U.S. Pat. Nos. 5,321,012, 5,502,058, 5,556,838, 5,654,281, 5,834,479, 5,840,731, 5,863,922, and 5,869,498 to Mayer et al.; U.S. Pat. Nos. 5,318,985, 5,441,963 and 5,489,579 to McDonald et al.; U.S. Pat. No. 6,284,776 to Meltzer; U.S. Pat. No. 6,180,786 to Metz, Jr.; U.S. Pat. No. 5,783,572 to Mowbray et al.; U.S. Pat. No. 6,200,990 to Namil et al.; U.S. Pat. No. 5,783,700 to Nichols et al.; U.S. Pat. Nos. 5,034,400, 5,039,528, 5,474,990, 5,605,911, 5,616,580, 5,629,307, 5,767,130, 5,834,465, 5,902,815, 5,925,634, and 5,958,919 to Olney et al.; U.S. Pat. No. 5,990,126 to Park et al.; U.S. Pat. No. 5,013,540 to Redburn; 6,025,369 to Rosenquist et al.; U.S. Pat. Nos. 5,106,847, 5,189,054 5,491,153, 5,519,048 5,675,018, and 5,703,107 to Salituro et al.; U.S. Pat. No. 6,096,743 to Shishikura et al.; U.S. Pat. No. 6,242,456 to Shuster et al.; U.S. Pat. No. 6,194,00 to Smith et al.; U.S. Pat. No. 6,197,820 to Sontheimer et al.; U.S. Pat. No. 5,385,903 to Steppuhn et al.; U.S. Pat. No. 5,710,139 to Swahn; U.S. Pat. No. 5,192,751 to Thor; U.S. Pat. No. 5,614,509 to Turski et al.; U.S. Pat. Nos. 4,906,779, 5,093,525, 5,190,976, 5,262,568, 5,336,689, 5,559,154, 5,637,622, 5,767,162, 5,798,390, and 6,251,948 to Weber et al.; U.S. Pat. No. 5,095,009, 5,194,430, 5,326,756, 5,470,844, and 5,538,958 to Whitten; U.S. Pat. No. 6,284,774 to Wright et al.; U.S. Pat. No. 5,587,384 and Re U.S. Pat. No. 36,397 to Zhang et al.; and U.S. Pat. No. 4,994,467 to Zimmerman. However, NMDA receptor blockers are needed which are enhanced at low pHs characteristic of certain pathological conditions for treatment of such pathological conditions.
- All publications referred to herein are incorporated by reference to the extent not inconsistent herewith.
- This invention provides NMDA receptor blockers, including pH-sensitive NMDA receptor blockers, as neuroprotective drugs that are useful in stroke, traumatic brain injury, epilepsy, and other neurologic events that involve acidification of brain or spinal cord tissue. Compositions and methods of this invention are used for treating neurodegeneration resulting from NMDA receptor activation. The compounds described herein have enhanced activity in brain tissue having lower-than-normal pH due to pathological conditions such as hypoxia resulting from stroke, traumatic brain injury, global ischemia that may occur during cardiac surgery, hypoxia that may occur following cessation of breathing, pre-eclampsia, spinal cord trauma, epilepsy, status epilepticus, neuropathic or inflammatory pain, chronic pain, vascular dementia and glioma tumors. Because tumors produce an acidic environment, drugs activated by low pH are useful in slowing tumor growth because they have enhanced activity only at the site of the tumor. Compounds described herein are also useful in preventing neurodegeneration in patients with Parkinson's Alzheimer's, Huntington's chorea, ALS, and other neurodegenerative conditions known to the art to be responsive to treatment using NMDA receptor blockers. Preferably the compounds provided herein are allosteric NMDA inhibitors.
- Also preferably, the compounds provided herein are selective NMDA receptor blockers, that is, they do not interact with other receptors or ion channels at therapeutic concentrations. General blocking of NMDA receptors throughout the brain causes adverse effects such as ataxia, memory deficits, hallucinations and other neurological problems.
- The compounds provided herein block the NR2B-containing NMDA receptors, have varying activity against receptors containing NR2A or NR2D, and may be selective for other members of the NMDA receptor family (NR2C, NR3A and NR3B).
- The novel small molecule NMDA receptor antagonists of this invention are useful both in the treatment of stroke and head trauma in the emergency room setting, and for use as prophylactic agents for at risk patients. The acid generated by ischemic tissue during stroke is harnessed as a switch to activate the neuroprotective agents described herein. In this way side effects are minimized in unaffected tissue since drug at these sites are less active. These compounds reduce the amount of neuronal death associated with stroke and head trauma. These compounds also have military uses as a neuroprotective for battlefield head trauma. They may be given chronically to individuals with epilepsy or who are at risk for stroke or head trauma, preoperatively in high risk heart/brain surgery, etc., in order to lengthen the window of opportunity for subsequent therapy.
- This invention provides the following useful for treating conditions characterized by lowered brain-tissue pH, selected from the group consisting of (R)- and (S)-enantiomers and mixtures thereof of compounds of the formula:
- wherein one of R9, R10, R11, R12 and R18 is
- where R13 is alkyl, aralkyl or aryl; where R17 is H or lower alkyl; and the others of R9, R10, R11, R12 and R18 are H, F, Cl, I or R wherein R is lower alkyl; or:
- wherein R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I, and R wherein R is lower alkyl, and R13 is alkyl aralkyl or aryl;
- wherein A is selected from the group consisting of:
-
- wherein R1 and R5 are independently H or F; R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl, or R2 and R3 taken together are O—CH2—O;
-
- wherein R1, R4, and R5 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl, R3 is independently O, S, NH or NR, R2 is N, and R16 is C-alkyl, C-aralkyl or C-aryl;
-
- wherein R1, R4, and R5 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl, R2 is independently O, S, NH or NR, R3 is N; and R16 is C-alkyl, C-aralkyl or C-aryl;
-
- wherein R1 through R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl, or R2 and R3 taken together are O—CH2—O;
-
- wherein R1, R2 and R3 are independently selected from the group consisting of O, S, NH or NR where R is lower alkyl, or R2 and R3 taken together are O—CH2—O, and R4 is N;
-
- wherein R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; and R4 is N;
-
- wherein R1 is selected from the group consisting of O, S, NH and NR where R is lower alkyl; R2 is N, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl;
-
- wherein R1 is selected from the group consisting of O, S, NH and NR where R is lower alkyl; R2 and R4 are N, and R3 is independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl;
-
- wherein R1 is selected from the group consisting of O, S, NH and NR where R is lower alkyl; R2 is selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; and R3 and R4 are N;
-
- wherein R1 is selected from the group consisting of O, S, NH and NR where R is lower alkyl; and R2, R3 and R4 are N;
-
- wherein R1 and R3 are independently selected from the group consisting of O, S, NH and NR where R is lower alkyl; and R2, R2′ and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl;
-
- wherein R1 and R2 are independently selected from the group consisting of O, S, NH and NR where R is lower alkyl; and R2′, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl;
-
- wherein X, is C—R3 or N, X2 is C—R4 or N, X3 is C—R4′ or N where R1—R4′ are independently selected from the group consisting of O, S, NH and NR where R is lower alkyl, or where R1 and R2 taken together are O—CH2—O;
- and wherein B is selected from the group consisting of:
-
- wherein R6 and R6′ are independently H or F; and R7 is H, lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr, or CH2CHF2Ar; and R. is OH, OR, where R is lower alkyl, or F;
-
- wherein R6 and R6′ are independently H or F; R7 is CH2 and R8 is O;
-
- wherein R5, R6 and R7 are independently CH2, CHR or CR2 where R is lower alkyl; and R8 is OH, OR, where R is lower alkyl, or F;
-
- wherein R6 and R7 are independently CH2, CHR or CR2 where R is lower alkyl; and R8 is OH, OR, where R is lower alkyl, or F;
-
- wherein R6 and R7 are independently CH2, CHR or CR2 where R is lower alkyl; R8 is OH or F; and n=1-3; and
- pharmaceutically acceptable salts, enantiomers, enantiomeric mixtures, and mixtures of the foregoing.
- These compounds are preferably provided in combination with a suitable pharmaceutical carrier.
- Preferred compounds of this invention include (R)- and (S)-enantiomers and mixtures thereof of compounds selected from the group consisting of:
-
- wherein R1 and R5 are independently H or F; and
- when R1 and R5 are H, R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl, and R2 and R3 taken together are O—CH2—O; R6 and R6′ are independently H or F; R7 is selected from the group consisting of lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr and CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11, and R12 are independently selected from the group consisting of H, F, Cl, Br I and lower alkyl; and R13 is alkyl, aralkyl or aryl; and
- when one of R1 or R5 is F and the other is H or F, R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl and R2 and R3 taken together are O—CH2—O; R6 and R6′ are independently H or F; R7 is selected from the group consisting of H, lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr and CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br I and lower alkyl; and R13 is alkyl, aralkyl or aryl;
-
- wherein R1 and R5 are independently H or F; R2 is N; R3 is O, S, NH or NR where R is lower alkyl; R4 is selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl, R6 and R6′ are independently H or F; R7 is selected from the group consisting of H, lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr and CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R16 is C-alkyl, C-aralkyl or C-aryl;
- wherein R1 and R5 are independently H or F; R2 is independently O, S, NH or NR where R is lower alkyl; —R3 is N; R4 is selected from the group consisting of H, F, Cl, Br, I and OR wherein R is lower alkyl, R6 and R6′ are independently H or F; R7 is selected from the group consisting of H, lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr and CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R16 is C-alkyl, C-aralkyl, or C-aryl;
-
- wherein R1 through R5 are independently selected from the group consisting of H, F, Cl, Br, I and OR14, and R2 and R3 taken together are O—CH2—O; R6 and R6′ are independently H or F; R7 is CH2, R8 is O; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; R14 is C-alkyl, C-aralkyl or C-aryl; and R15 is lower alkyl;
-
- wherein R1, R4 and R5 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R2 is O, S, NH or NR15; R3 is N; R6 and R6′ are independently H or F; R7 is CH2; R8 is O; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; R15 is lower alkyl; and R16 is C-alkyl, C-aralkyl or C-aryl;
-
- wherein R1, R4 and R5 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R2 is N; R3 is O, S, NH or NR15; R6 and R6′ are independently H or F; R7 is CH2, R8 is O, R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R15 is lower alkyl; and R16 is C-alkyl, C-aralkyl or C-aryl;
-
- wherein R1 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR14; R2 and R3 are independently selected from the group consisting of F, Cl, Br, I, and OR14, and R2 and R3 taken together are O—CH2—O; R5, R6 and R7 are independently CH2, CHR15 or C(R15)2; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I or lower alkyl; R13 is alkyl, aralkyl or aryl; and R14 is C-alkyl, C-aralkyl or C-aryl;
-
- wherein R1 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR14; R2is selected from the group consisting of O, S, NH or NR15; R3 is N; R5, R6and R7 are independently CH2, CHR15 or C(R15)2; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R14is C-alkyl, C-aralkyl or C-aryl; R15 is lower alkyl; and R16 is C-alkyl, C-aralkyl, or C-aryl;
-
- wherein R1 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR14; R2 is N; R3 is selected from the group consisting of O, S, NH and NR15; R5, R6 and R7 are independently CH2, CHR15 or C(R15)2; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R14 is C-alkyl, C-aralkyl or C-aryl, R15 is lower alkyl; and R16 is C-alkyl, C-aralkyl, or C-aryl;
-
- wherein R1, R2, R3, R4 and R5 are independently selected from the group consisting of H, F, Cl, Br, I and OR14, and where R2 and R3 taken together are O—CH2—O; R1 and R7 are independently CH2, CHR15 or C(R15)2, R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alky, R13 is alkyl, aralkyl or aryl; R14 is C-alkyl, C-aralkyl or C-aryl, and R15 is lower alkyl; and n=1-3;
-
- )wherein R1, R4 and R5 are independently selected form the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R2 is O, S, NH or NR15; R3 is N; R6 and R7 are independently CH2, CHR15 or C(R15)2; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R15 is lower alkyl; R16 is C-alkyl, C-aralkyl or C-aryl; and n=1-3;
-
- wherein R1, R4 and R5 are independently selected form the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R2 is N; R3 is O, S, NH or NR15; R6 and R7 are independently CH2, CHR15 or C(R15)2; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R15 is lower alkyl; R16 is C-alkyl, C-aralkyl or C-aryl; and n=1-3;
-
- wherein R1, R2, R3, R4 and R5 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl, and where R2 and R3 taken together are O—CH2—O; R6 and R7 are independently CH2, CHR15 or C(R15)2, R8 is OH, OR, where R is lower alky, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I or lower alkyl, R13 is alkyl, aralkyl or aryl; R15 is lower alkyl; and n=1-3;
-
- wherein R1, R4 and R5 are independently selected form the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R2 is O, S, NH or NR15; R3is N; R6 and R7 are independently CH2, CHR15 or C(R15)2; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R15 is lower alkyl; R16 is C-alkyl, C-aralkyl or C-aryl; R16 is C-alkyl, C-aralkyl or C-aryl; and n=1-3;
-
- wherein R1, R4 and R5 are independently selected form the group consisting of H, F, Cl, Br, I and or where R is lower alkyl; R2 is N; R3is O, S, NH or NR15; R6 and R7 are independently CH2, CHR15 or C(R15)2; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13is alkyl, aralkyl or aryl; R15 is lower alkyl; R16 is C-alkyl, C-aralkyl or C-aryl, and n=1-3;
-
- wherein R1 is selected from the group consisting of O, S, NH and NR15; R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alky, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R15 is lower alkyl;
-
- wherein R1 is selected from the group consisting of O, S, NH and NR15; R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl, and R2 and R3 taken together are O—CH2—O; R4, R5 and R6 are independently CH2, CHR15 or C(R15)2; R7 is H, R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alky; R13 is alkyl, aralkyl or aryl; and R15 is lower alkyl;
-
- wherein R1 is selected from the group consisting of O, S, NH and NR15; R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl, and R2 and R3 taken together are O—CH2—O; R4 is N; R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R15 is lower alkyl;
-
- wherein R1 and R2 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R3 is selected from the group consisting of O, S, NH and NR15; R4 is N; R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R15 is lower alkyl;
-
- wherein R1 is selected from the group consisting of O, S, NH and NR15; R2 is N; R3 and R4 are is selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R5 is H, R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R15 is lower alkyl;
-
- wherein R1 is selected from the group consisting of O, S, NH and NR15; R2 is N; R3 is selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R4, R5 and R6 are independently CH2, CHR15 or C(R15)2; R7 is H; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I or lower alkyl; R13 is alkyl, aralkyl or aryl; and R15 is lower alkyl;
-
- wherein R1 is selected from the group consisting of O, S, NH and NR15; R3 is selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R2 and R4 are N; R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R15 is lower alkyl;
-
- wherein R1 is selected from the group consisting of O, S, NH and NR15; R2 is selected from the group consisting of H, F, Cl, Br, I and Or where R is lower alkyl; R3 and R4 are N; R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R15 is lower alkyl;
-
- wherein R1 is selected from a group consisting of O, S, NH or NR15; R2, R3 and R4 are N; R5 is H, R6 and R6′ are independently H or F; R7 is selected from the group consisting of H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R15 is lower alkyl;
-
- wherein R1 and R3 are independently selected from the group consisting of O, S, NH and NR15; R2, R2′ and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I or lower alkyl; R13 is alkyl, aralkyl or aryl; and R15 is lower alkyl;
-
- wherein R1 and R2 are independently selected from the group consisting of O, S, NH and NR15; R2′, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; R is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R15 is lower alkyl;
-
- wherein R1 and R4 are independently selected from the group consisting of O, S, NH and NR15; R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R14, and R2 and R3 taken together are O—CH2—O; R5, R6 and R7 are independently CH2, CHR15 or C(R15)2; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; R14 is C-alkyl, C-aralkyl or C-aryl and R15 is lower alkyl;
-
- wherein R1 and R2 are independently selected from the group consisting of O, S, NH and NR15; R2′, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR14, and R3 and R4 taken together are O—CH2—O; R5, R6 and R7 are independently CH2, CHR15 or C(R15)2; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; R14 is C-alkyl, C-aralkyl or C-aryl, and R15 is lower alkyl;
-
- wherein R1, R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR where R is lower alkyl; and where R1 and R2 taken together are O-CH2—O; R5 is H, R6 and R6′ are independently H or F; R7 is H or lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; R15 is lower alkyl; and X1 is C—R3 or N; X2 is C—R4 or N; and X3 is C—R4′ or N;
-
- wherein R1, R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR14, and where R1 and R2 taken together are O—CH2—O; R5, R6 and R7 are independently CH2, CHR15 or C(R15)2; R8 is OH, OR, where R is lower alkyl, or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I or lower alkyl; R13 is alkyl, aralkyl or aryl; R14 is C-alkyl, C-aralkyl or C-aryl; R15 is lower alkyl; and X1 is C—R2 or N; X2 is C—R3 or N; and X3 is C—R4 or N.
- Derivatives of the above compounds in which 5-membered rings contain O, S or N heteroatoms and 6-membered rings contain N heteroatoms are also provided herein. (R)- and (S)-forms, and racemic mixtures thereof, of the foregoing compounds are also provided herein.
- Other preferred compounds are those selected from the group consisting of the (S) or (R) forms and racernic mixtures of:
-
- 1-(4-methanesulphonamidepheoxy)3-(N-methyl-3,4-dichlorophenylethylamino)-2-propanol;
- 1-(4-Methanesulphonamidephenoxy)-3-(3,4-dichlorophenylethyl-amino)-2-propanol;
- 1-(4-Methanesulphonamidephenoxy)-3-(N-ethyl-3,4-dichloro-phenylethylamino)-2-propanol;
- 1-(4-Methanesulphonamidephenoxy)3-(N-propyl-3,4-dichloro-phenylethylamino)-2-propanol;
- 1-(4-Methanesulphonamidephenoxy)-3-(N-butyl-3,4-dichloro-phenylethylamino)-2-propanol;
- 1-(4-Methanesulphonamidephenoxy)-3-(N-benzyl-3,4-dichloro-phenylethylamino)-2-propanol;
- 1-(4-Methanesulphonamidephenoxy)-3-(N-(2-fluorobenzyl)-3,4-dichlorophenylethyl-amino)-2-propanol;
- 1-(4-Methanesulphonamidephenoxy)-3-(N-(3-fluorobenzyl)-3,4-dichlorophenylethyl-amino)-2-propanol;
- 1-4-Methanesulphonamidephenoxy)-3-(N-(3-fluorobenzyl)-3,4-dichloro-phenylethylamino)-2-propanol;
- 1-4-Methanesulphonamidephenoxy)-3-(N-(2,6-difluorobenzyl)-3,4-dichloro-phenylethylamino)-2-propanol;
- 1-(4-Methanesulphonamidephenoxy)-3-(N-(2,3,4-trifluorobenzyl)-3,4-dichlorophenylethylamino)-2-propanol;
- 1-(4-Methanesulphonamidephenoxy)-3-(N-(2,3,4,5,6-pentafluoro-benzyl)-3,4-dichlorophenylethylamino)-2-propanol;
- 1-(4-Methanesulphonamidephenoxy)-3-(N-(2-hydroxyethyl)-3,4-dichlorophenylethylamino)-2-propanol;
- 1-(3-Methanesulphonamidephenoxy)3-(3,4-dichlorophenylethyl-amino)-2-propanol;
- 1-(2-Methanesulphonamidephenoxy)-3-(3,4-dichlorophenyl-ethylamino)-2-propanol;
- 1-(4-Methanesulphonamidophenoxy)-3-(N-acetyl-3,4-dichloro-phenylethylamino)-2-propylacetate;
- N-(3,4-dichlorophenyl)ethyl-5-(4-methanesulphonamidophenoxy)methyl-oxazolidine-2-one;
- 1-(4-N-methyl-methanesulphonamidephenoxy)-3-(3,4-dichloro-phenylethylamino)-2-propanol;
- 1-4-benzenesulphonamidophenoxy)-3-(3,4-dichloro-phenylethyl-amino)-2-propanol;
- 1-(4-Nitrophenoxy)3-(3,4-dichlorophenylethylamino)-2-propanol;
- mixtures thereof and pharmaceutically acceptable salts thereof.
- This invention also provides a method of treating neurodegeneration associated with a pathological condition characterized by lowered brain-tissue pH, said method comprising administering to a patient in need of such treatment a pharmaceutically effective amount of a compound having enhanced NMDA receptor blocking activity at said lowered brain-tissue pH over normal brain-tissue pH, said compound being selected from the group consisting of the above-described compounds.
- The methods of this invention also include treating neurodegeneration associated with a pathological condition characterized by lowered brain-tissue pH, said method comprising administering to a patient in need of such treatment a pharmaceutically effective amount of a compound having enhanced NMDA receptor blocking activity at said lowered brain-tissue pH over normal brain-tissue pH, said compound being selected from the group consisting of: zolantidine dimaleate; 2-(4-chloroanilino)-4-(4-phenylpiperazino)cyclopent-2-en-1-one; haloperidol; cirazoline; 1,10-phenanthroline; 6-[2-(4-imidazolyl)ethylamino]-N-(4-trifluoromethylphenyl)heptanecarboxamide; (R,S)1-(4-methanesulfonamidophenoxy)-3-(N-methyl-3,4-dichlorophenylethylamine)-2-propanol hydrochloride (AM92016, compound 93); 3-[[4-(4-chlorophenyl)piperazin-1-yl]methyl]-1H-pyrrolo[2,3-b]pyridine; 8-[2-( 1,4-benzodiaxan-2-ylmethylamino)ethyl]-8-azaspiro[4.5]decane-7,9-dione; (±)-8-hydroxy-2-dipropylaminotetralin hydrobromide; (±)-7-hydroxy-2-dipropylaminotetralin hydrobromide; 8-[3-(4-fluorophenoxy)propyl]-1-phenyl-1,3,8-triazospiro[4.5]-decan-4-one (AMI 193); PPHT; 4-(4-fluorobenzoyl)-1-(4-phenylbutyl)piperidine; 2-(2-benzofuranyl)-2-imidazoline hydrochloride (2-BFI); benextramine; trifluoperidol; clobenpropit; and benoxathian.
- This invention also provides a method of treating neurodegeneration associated with a pathological condition characterized by lowered brain-tissue pH, said method comprising administering to a patient in need of such treatment a pharmaceutically effective amount of a compound having enhanced NMDA receptor blocking activity at said lowered brain-tissue pH over normal brain-tissue pH, said compound being selected from the group consisting of (R)- or (S)-enantiomers or mixtures thereof of compounds of the formula:
-
- wherein one of R9, R10, R11 and R12 and R18 is
- where R13 is alkyl, aralkyl or aryl; where R17 is H or lower alkyl; and the others of R9, R10, R11, R12 and R18 are H, F, Cl, I or R wherein R is lower alkyl; or:
-
- wherein R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I, and R wherein R is lower alkyl, and R13 is alkyl aralkyl or aryl;
- wherein A is a bulky, ring-containing group;
- and wherein B is selected from the group consisting of:
-
- wherein R6 and R6′ are independently H or F; and R7 is H, lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr, or CH2CHF2Ar; and R8 is OH, OR, where R is lower alkyl, or F;
-
- wherein R6 and R6′ are independently H or F; R7 is CH2 and R8 is O;
-
- wherein R5, R6 and R7 are independently CH2, CHR or CR 2 where R is lower alkyl; and R8 is OH, OR, where R is lower alkyl, or F;
-
- wherein R6 and R7 are independently CH2, CHR or CR2 where R is lower alkyl; and R8 is OH, OR, where R is lower alkyl, or F;
-
- wherein R6 and R7 are independently CH2, CHR or CR2 where R is lower alkyl; R8 is OH, OR, where R is lower alkyl, or F; and n=1-3; and
- pharmaceutically acceptable salts, enantiomers, enantiomeric mixtures, and mixtures of the foregoing.
- The novel compounds disclosed herein may be used to treat pathological conditions not involving lowered brain-tissue pH, as well as pathological conditions involved lowered pH. Such conditions include Parkison's Disease, Alzheimers, and Amyotrophic Lateral Sclerosis (ALS).
- This invention also provides methods of making compounds described herein comprising:
- the (S)- or (R)-form of a compound having the formula:
- wherein R1 is CH3 or H, R2 is H, and R3 is selected from the group consisting of NHSO2CH3, N(CH3)SO2CH3, NHSO2Ph and NO2, said method comprising reacting an (S) or (R)-glycidyl (R)-R3-phenyl ether with N-methyl-3,4-dichlorophenylethylamine to form the compound wherein R1 is CH3; or with 3,4-dichlorophenylethylamine to form the compound of the above formula wherein R1 is H.
- This invention also comprises a method of forming a further compound of said formula wherein R1 is selected from the group consisting of C2H5, C3H7, C4H9, benzyl, 2-fluorobenzyl, 3-fluorobenzyl, 4-fluorobenzyl, 2,6-difluorobenzyl, and 2,3,4-trifluorobenzyl, said method comprising reacting the product of the foregoing method wherein R1 is H with 1,2 dichloroethane to form said further compound.
- A further method is provided for forming a further compound of said formula wherein R1 is C2H4—OH, wherein said method further comprises reacting a product of the above formula wherein R1 is H with O-butyryl glycoaldehyde to give a second reaction product; and further reacting said second reaction product with sodium methoxide to form said further compound.
- A further method is provided of forming a further compound of said formula wherein R1 is acetyl comprising reacting the compound of the above formula wherein R1 is H with N,N-dimethylaminopyridine and acetic anhydride.
- A further method is provided further comprising forming a further compound of said formula wherein R1 and R2 taken together are CH2—O—CH2 comprising reacting the compound of the above formula wherein R1 is H with 1,1′-carbonyldiimidazole and N,N-dimethylaminopyridine in benzene.
- R3 may be a meta- or para-substituent in the reaction intermediates and in the final product. Intermediates and corresponding final products may be in the (S)- or (R)-forms.
- A method is also provided for making (S)- or (R)-1-(2-methanesulphonamidephenoxy)-3-(3,4-dichlorophenylethylamino)-2-propanol) comprising the steps of:
-
- (a) reacting 2-nitrophenol with (S)- or (R)-glycidyl nosylate to form (S)- or (R)-glycidyl o-nitrophenyl ether;
- (b) reacting the product of step (a) with 3,4-dichloropentylethylamine to form (S) or (R)-1-(2-nitrophenyoxy)-3-(3,4-dichlorophenylethylamino)-2-propanol;
- (c) reacting the product of step (b) with p-tolune-sulphonic acid and benzaldehyde to form 2-phenyl-3(N-phenylethylamino)-5-(4-nitrophenoxymethyl)oxazolidine;
- (d) reacting the product of step (c) with sodium hydroxide to form 2-phenyl-3(N-phenylethylamino)-5-(4-aminophenoxy methyl)oxazolidine; and
- (e) reacting the product of step (d) with diisopropylamine and methansulfonylchloride to form 1-2-methanesulphoneamidephenoxy)-3-(3,4-dichlorophenylethylamino)-2-propanol.
- A method is also provided for making (S)- or (R)-1-(4-N-methyl-methanesulphonamidephenoxy)-3-(3,4-dichlorophenylethylamino)-2-propanol comprising:
-
- (a) reacting (S)- or (R)-blycidyl N-methylsulfonyl-p-aminophenyl ether with potassium carbonate and methyl iodide to form (S)- or (R)-glycidyl N-methyl-N-methanesulfonyl-p-aminophenyl ether;
- (b) reacting the product of step a) with 3,4-dichlorophenylethylamine to form (S)-or (R)-1-(4-N-methyl-methanesulphonamidephenoxy)-3-(3,4-dichlorophenylethylamino)-2-propanol.
- A method is also provided for making (S)- or (R)-(1-(4-benzenesulphonamideophenoxy)-3-(3,4-dichloro-phenylethylamino)-2-propanol comprising reacting (S)- or (R)-glycidyl N-methylsulfonyl-aminophenyl ether with N,N-diisopropyl-N-ethylamine to form (S)- or (R)-glycidyl N-benzenesulfonyl-p-aminophenyl ether, and reacting said ether with 3,4-dichlorophenylethylamine to form said (S)- or (R)-(1-(4-benzenesulphonamideophenoxy)-3-(3,4-dichloro-phenylethylamino)-2-propanol.
- A method is also provided for making (S)- or (R)-1-(4-nitrophenoxy)3-3,4-dichlorophenylethylamino)-2-propanol comprising reacting p-nitrophenyl ether with 3,4-dichirophenylethylamine to form said (S)- or (R)-1-(4-nitrophenoxy)3-(3,4-dichlorophenylethylamino)-2-propanol.
- The remaining NMDA-receptor blockers which are derivatives of and related compounds to those described above may be synthesized, as will be appreciated by those of skill in the art, by methods analogous to those described herein.
- The term “alkyl” takes its usual meaning in the art and is intended to include straight-chain, branched and cycloalkyl groups. The term includes, but is not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, neopentyl, 2-methylbutyl, 1-methylbutyl, 1-ethylpropyl, 1,1-dimethylpropyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 2-ethylbutyl, 1-ethylbutyl, 1,3-dimethylbutyl, n-heptyl, 5-methylhexyl, 4-methylhexyl, 3-methylhexyl, 2-methylhexyl, 1-methylhexyl, 3-ethylpentyl, 2-ethylpentyl, 1-ethylpentyl, 4,4-dimethylpentyl, 3,3-dimethylpentyl, 2,2-dimethylpentyl, 1,1-dimethylpentyl, n-octyl, 6-methylheptyl, 5-methylheptyl, 4-methylheptyl, 3-methylheptyl, 2-methylheptyl, 1-methylheptyl, 1-ethylhexyl, 1-propylpentyl, 3-ethylhexyl, 5,5-dimethylhexyl, 4,4-dimethylhexyl, 2,2-diethylbutyl, 3,3-diethylbutyl, and 1-methyl-1-propylbutyl. Alkyl groups are optionally substituted. Lower alkyl groups include among others methyl, ethyl, n-propyl, and isoprophyl groups. Lower alkyl groups as referred to herein have one to six carbon atoms.
- The term “bulky ring-containing group” refers to a group containing 1 or more ring structures which may be aryl rings or cycloalkyl rings.
- The term “cycloalkyl” refers to alkyl groups having a hydrocarbon ring, particularly to those having rings of 3 to 7 carbon atoms. Cycloalky groups include those with alkyl group substitution on the ring. Cycloalkyl groups can include straight-chain and branched-chain portions. Cycloalkyl groups include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, and cyclononyl. Cycloalkyl groups can optionally be substituted.
- The term “aryl” is used herein generally to refer to aromatic groups which have at least one ring having a conjugated pi electron system and includes without limitation carbocyclic aryl, aralkyl, heterocyclic aryl, biaryl groups and heterocyclic biaryl, all of which can be optionally substituted. Preferred aryl groups have one or two aromatic rings.
- Substitution of alkyl groups includes substitution at one or more carbons in the group by moieties containing heteroatoms. Suitable substituents for these groups include but are not limited to OH, SH, NH2, COH, CO2H, ORc, SRc, NRc Rd, CONRc Rd, and halogens, particularly fluorines where Rc and Rd, independently, are alkyl, unsaturated alkyl or aryl groups. Preferred alkyl and unsaturated alkyl groups are lower alkyl, alkenyl or alkynyl groups having from 1 to about 3 carbon atoms.
- “Aralkyl” refers to an alkyl group substituted with an aryl group. Suitable aralkyl groups include among others benzyl, phenethyl and picolyl, and may be optionally substituted. Aralkyl groups include those with heterocyclic and carbocyclic aromatic moieties.
- “Heterocyclic aryl groups” refers to groups having at least one heterocyclic aromatic ring with from 1 to 3 heteroatoms in the ring, the remainder being carbon atoms. Suitable heteroatoms include without limitation oxygen, sulfur, and nitrogen. Heterocyclic aryl groups include among others furanyl, thienyl, pyridyl, pyrrolyl, N-alkyl pyrrolo, pyrimidyl, pyrazinyl, imidazolyl, benzofuranyl, quinolinyl, and indolyl, all optionally substituted.
- “Heterocyclic biaryl” refers to heterocyclic aryls in which a phenyl group is substituted by a heterocyclic aryl group ortho, meta or para to the point of attachment of the phenyl ring to the decalin or cyclohexane. Para or meta substitution is preferred. Heterocyclic biaryl includes among others groups which have a phenyl group substituted with a heterocyclic aromatic ring. The aromatic rings in the heterocyclic biaryl group can be optionally substituted.
- “Biaryl” refers to carbocyclic aryl groups in which a phenyl group is substituted by a carbocyclic aryl group ortho, meta or para to the point of attachment of the phenyl ring to the decalin or cyclohexane. Biaryl groups include among others a first phenyl group substituted with a second phenyl ring ortho, meta or para to the point of attachment of the first phenyl ring to the decalin or cyclohexane structure. Para substitution is preferred. The aromatic rings in the biaryl group can be optionally substituted.
- Aryl group substitution includes substitutions by non-aryl groups (excluding H) at one or more carbons or where possible at one or more heteroatoms in aromatic rings in the aryl group. Unsubstituted aryl, in contrast, refers to aryl groups in which the aromatic ring carbons are all substituted with H, e.g. unsubstituted phenyl(—C6 H5), or naphthyl(—C10H7). Suitable substituents for aryl groups include among others alkyl groups, unsaturated alkyl groups, halogens, OH, SH, NH2, COH, CO2 H, ORe, SRe, NRe Rf, CONRe Rf, where Re and Rf independently are alkyl, unsaturated alkyl or aryl groups. Preferred substituents are OH, SH, ORe, and SRe where Re is a lower alkyl, i.e. an alkyl group having from 1 to about 3 carbon atoms. Other preferred substituents are halogens, more preferably fluorine, and lower alkyl and unsaturated lower alkyl groups having from 1 to about 3 carbon atoms. Substituents include bridging groups between aromatic rings in the aryl group, such as —CO2—, —CO—, —O—, —S—, —NH—, —CHCH— and —(CH2)1— where 1 is an integer from 1 to about 5, and particularly —CH2—. Examples of aryl groups having bridging substituents include phenylbenzoate, Substituents also include moieties, such as —(CH2)1—, —O—(CH2)1— or —OCO—(CH2)1—, where 1 is an integer from about 2 to 7, as appropriate for the moiety, which bridge two ring atoms in a single aromatic ring as, for example, in a 1, 2, 3, 4-tetrahydronaphthalene group. Alkyl and unsaturated alkyl substituents of aryl groups can in turn optionally be substituted as described supra for substituted alkyl and unsaturated alkyl groups.
- The compounds of Formula I and their salts, as herein described, can be incorporated into standard pharmaceutical dosage forms, for example, for oral or parenteral application with the usual pharmaceutical adjuvant materials, for example, organic or inorganic inert carrier materials, such as, water, gelatin, lactose starch, magnesium stearate, talc, vegetable oils, gums, polyalkylene-glycols and the like. Carriers which do not consist of water or water and buffer alone are also contemplated in this invention. The pharmaceutical preparations can be employed in a solid form, for example, as tablets, suppositories, capsules, or in liquid form, for example, as solutions, suspensions or emulsions. Pharmaceutical adjuvant materials can be added and include preservatives stabilizers, wetting or emulsifying agents, salts to change the osmotic pressure or to act as buffers. The pharmaceutical preparations can also contain other therapeutically active substances. Thus part of this invention is a pharmaceutical composition comprising a compound of Formula I, in particular a preferred compound as described above, or a pharmaceutically acceptable salt thereof and an inert carrier.
- The dosage of the compounds referred to herein can vary within wide limits and will, of course, be fitted to the individual requirements in each particular case. In the case of oral administration the dosage lies in the range of about 0.1 mg per dosage to about 1000 mg per day of a compound of formula I although the upper limit can also be exceeded when this is shown to be indicated. An amount effective to alleviate the neurodegeneration depends on the individual, however alleviation occurs when the condition in question exhibits either symptomatic improvement or improvement according to an accepted assay. For the compounds herein having enhanced activity at pH lower than normal, dosages of these compounds for use in the methods of this invention involving administration to a patient having lower-than-normal brain-tissue pH, are less than normal dosage amounts for similar compounds not having such enhanced activity at lowered pH. When used to treat stroke or other traumatic ischemic events, the treatment should be administered prior or to or immediately after the event.
- Lowered pH due to pathological conditions is between about 6.4 and about 7.2, generally about 6.9. Normal brain-tissue pH is between about 7.2 and about 7.6, generally about 7.4.
- The following examples illustrate the present invention in more detail. However, they are not intended to limit its scope in any manner.
- Current recordings were obtained using two electrode voltage clamp of Xenopus oocytes injected with cRNA encoding the NR1-1a and NR2B NMDA receptor subunits. Cells were injected with 5-15 ng of cRNA encoding NR1-1a in combination with a 2-3 fold greater amount of either NR2B cRNA. Injected oocytes were maintained at 17° C. in Barths solution containing penicillin (10 U/ml) and streptomycin (10 μg/ml) for 2-6 days, after which recordings were made at room temperature from oocytes continuously perfused in a standard frog Ringers solution. This solution was composed of (in MM): 90 NaCl, 1.0 KCl, 10 Hepes and 0.5 BaCl2. Recording pipettes were filled with 0.3M KCl. Saturating concentrations of glutamate (20-50 μM) and glycine (20 μM) were used to activate the receptor. Drugs were prepared daily from frozen stock solutions in DMSO. Glutamatelglycine-activated currents were typically elicited from a holding potential of −20 to −40 mV. Current signals were digitized and analyzed using custom acquisition software. To study the effects of pH, oocytes were perfused with Ringer's solution at the desired pH until a stable baseline had been reached before subsequent agonist application.
- Application of glutamate and glycine produced a stable, rapidly-rising and nondesensitizing current in the majority of oocytes. Oocytes in which the glutamate/glycine current was not stable or in which the baseline holding current drifted were discarded. Inhibition of the glutamate/glycine current by drugs was examined by applying 1-4 different concentrations of the antagonist to each oocyte. The amplitude of the glutamate/glycine current at each concentration of antagonist was expressed as a percentage of the control glutamate/glycine current in the absence of antagonist, and IC50's were determined by fitting the logistic equation to the data (n=3-46 oocytes per condition). On average recordings were made from 14 oocytes per condition. The fold potency boost was calculated as the ratio of the experimental IC50 values determined at pH 7.6 and 6.9 (IC50 at pH 7.6/IC50 at pH 6.9).
-
TABLE A Novel NMDA receptor inhibitors with potency boosts >5-fold for changes from pH 7.6 to pH 6.9 Racemic mixtures were studied when stereochemistry is not indicated. The fold- decrease in IC50 as a function of pH for antagonists of NR1-1a/NR2B receptors was measured in Xenopus oocytes as described above. All compounds were more potent at pH 6.9. Fold increase in potency IC50 at pH 6.9 between pH R1 R2 R3 R4 R5 (μM) 7.6 and 6.9 Novel Compounds 93-31 (S) Cl H n-butyl OH Me 0.058 51.2 93-29 (S) Cl H H OH phenyl 1.160 18.0 93-24 H Cl H OH Me 1.360 11.8 93-1 (R) Cl H Methyl OH Me 0.085 11.3 93-8 (S) Cl H EtOH OH Me 0.029 11.3 93-28 (S) Cl H COCH3 OCOCH3 Me 1.638 11.1 93-5 (S) Cl H Ethyl OH Me 0.020 8.00 93-30 (S) Cl H benzyl OH Me 0.070 16.8 93-6 (S) Cl H n-propyl OH Me 0.111 6.54 93-2 (S) Cl H Methyl OH Me 0.063 5.87 Known compounds Haloperidol — — — — — 0.81 16.5 -
TABLE B Novel NMDA receptor inhibitors with pH potency boosts <5 fold for changes from pH 7.6 to pH 6.9 Racemic mixtures were studied when stereochemistry is not indicated. The fold decrease in IC50 as a function of pH for antagonists of NR1-1a/NR2B receptors was measured in Xenopus oocytes as described above. Fold increase in potency IC50 at pH 6.9 between pH R1 R2 R3 (μM) 7.6 and 6.9 Novel compound 93-34 (S) meta-F-benzyl H NHSO2Me 0.210 4.62 93-35 (S) ortho-F-benzyl H NHSO2Me 0.048 3.60 93-4 (S) H H NHSO2Me 0.026 3.54 93-3 (R) H H NHSO2Me 0.099 3.26 93-14 H H OCH3 19.900 2.01 93-27 (S) R1 = R2 NHSO2Me 0.338 0.95 93-33 (S) para-F-benzyl H NHSO2Me 0.520 0.810 Known compounds Ifenprodil — — — 0.068 2.66 Ro256981 — — — 0.018 0.444 -
TABLE C Importance of chain N ionization on potency boost at low pH for NMDA receptor inhibitors. All compounds shown are assumed to be novel. Compounds with pKa values for the chain nitrogen between 9 and 5 undergo changes in the concentration of the ionized species over the range of pH values tested (6.9-7.6). Compounds with reduced pKa values show larger increases in ionization at pH 6.9 compared to pH 7.6. We found a significant correlation (R = −0.98) between the potency boost and pKa of the chain nitrogen for the following series of compounds (n-butyl was omitted because other features of the molecule dominate the potency boost). Molecules with no ionization at this nitrogen showed no pH dependent potency boost. For each compound, the pKa of the amine group in the linker chain was calculated by the web-based pKa calculator from ACDLabs (www.acdlabs.com). The fold decrease in IC50 as a function of pH for antagonist of NR1-1a/NR2B receptors was measured in Xenopus oocytes as described above. Fold increase in potency pKa of the between pH R1 R2 chain amine 7.6 and 6.9 Compounds with ionization of N changing between pH 6.9 and 7.6 93-4 (S) H H 8.36 3.54 93-6 (S) n-Propyl H 8.11 6.54 93-5 (S) Ethyl H 8.11 8.00 93-31 (S) n-Butyl H 8.11 51.2 93-2 (S) Me H 8.03 5.87 93-8 (S) EtOH H 7.57 11.3 93-30 (S) Benzyl H 7.08 16.8 Compound with an unionized nitrogen at both pH 6.9 and 7.6 93-27 (S) R1 = R2 <1 0.954 -
TABLE D Importance of the NHSO2-Me constituent on the phenyl ring for NMDA receptor inhibitors. All compounds shown are assumed to be novel. Racemic mixtures were studied when stereochemistry is not indicated. Values not determined are indicated as N.D. The fold decrease in IC50 as a function of pH for antagonists of NR1-1a/NR2B receptors was measured in Xenopus oocytes as described above. All compounds were more potent at pH 6.9. Fold increase in IC50 at potency Com- pH 6.9 between pH pound R1 R2 R3 (μM) 7.6 and 6.9 93-4 (S) H H NHSO2- 0.026 3.54 Me 93-9 (S) H NHSO2- H 0.208 8.19 Me 93-32 (S) NHSO2- H H 17.9 N.D. Me 93-7 (S) H H N(CH3)SO2- 2.33 5.51 Me 93-29 (S) H H NHSO2- 1.16 18.02 phenyl 93-10 (S) H H NO2 12.1 1.60 93-14 H H OCH3 19.9 2.01 93-16 H H OCF3 11.2 4.82 -
TABLE E Anticonvulsant effect Delay Control tonic from drug hindlimb injection to extension Dose electroshock (THE) time THE in drug Drug (mg/kg) (min) (sec) (% control) Vehicle 0 15 8.5 ± 0.3 102 ± 3.1 Carbamazepine 40 30 8.5 ± 0.3 0.0 ± 0.0 93 10 15 8.5 ± 0.4 78.2 ± 4.5 93 10 30 8.8 ± 0.2 58.5 ± 11.3* 93 10 60 9.0 ± 0.2 62.4 ± 3.9* 93 30 240 7.4 ± 0.3 96.2 ± 1.7 93-4 3 15 7.2 ± 0.2 91.1 ± 2.7 93-4 3 60 6.7 ± 0.6 109 ± 11.5 93-4 30 15 7.5 ± 0.2 66.6 ± 12.5* 93-4 30 60 6.6 ± 0.6 30.8 ± 12.1* 93-8 30 15 7.0 ± 0.4 91.9 ± 0.4 93-8 30 30 7.4 ± 0.2 85.7 ± 2.8 93-8 30 60 7.7 ± 0.4 59.3 ± 4.1* 93-27 30 15 7.4 ± 0.31 97.0 ± 0.6 93-27 30 30 8.1 ± 0.5 95.6 ± 1.3 93-27 30 60 7.5 ± 0.2 89.7 ± 0.8 - Anticonvulsive effects of (R,S) 1-(4-methanesulfonamidophenoxy)-3-(N-methyl-3,4-dichlorophenylethylamine)-2-propanol hydrochloride (AM92016) [Compound 93], (S)-1-(4-methanesulfonamideophenoxy)-3-(3,4-dichlorophenylethylamine)-2-propanol hydrochloride [Compound 93-4] and (S)-1-(4-methanesulphonamidephenoxy)-e-(N-(2-hydroxyethyl)-3,4-dichlorophenylethylamino)-2-propanol [Compound 93-8], but not (S)-1-(4-methanesulphonamideophenoxy)-3-(N-acetyl-3,4-dichlorophenylethylamino)-2-propylacetate [compound 93-27] were shown.
- Methods: Male Sprague-Dawley rats weighing less than 150 gm were used for these experiments. Maximal electroshock seizures were produced by delivering 200 ms biphasic square-wave pulses of 200 mA at 60 Hz via corneal electrodes, using a Wahlquist Constant Current Source (Salt Lake City, Utah). A drop of 0.9% lidocaine in saline was applied to each cornea 30 s before stimulus delivery to minimize pain. Automatic timers recorded the durations of-tonic hindlimb flexion, tonic hindlimb extension (THE), clonus and flaccidity that sequentially followed stimulus delivery. The duration of THE was used as an index of seizure severity. Animals were stimulated on three consecutive days, referred to as “control”, “test”, and “recovery”. A minimum control THE duration of 4 s was used as a criterion for inclusion in subsequent testing; 90% of animals screened had a control THE duration greater than 4 s. On “test” day, each animal received either vehicle or drug at varying intervals prior to stimulation. Reversibility of drug effect on THE was ascertained by response to stimulation administered one day after the “test” session. The values shown in the table are the mean (± sem) THE duration in the test condition, as a percentage of the mean of control and recovery conditions. Four rats were used for each time point.
-
- P<0.001 for difference from vehicle by one-way ANOVA with Dunnett's post hoc test. For all other conditions P>0.05.
- Compounds implied by the following general formula and given in Table 1 are representative.
-
TABLE 1 Compound R1 R2 R3 4 CH3 H 4-NHSO2CH3 5 H H 4-NHSO2CH3 6 C2H5 H 4-NHSO2CH3 7 C2H4—OH H 4-NHSO2CH3 8 C3H7 H 4-NHSO2CH3 9 C4H9 H 4-NHSO2CH3 10 Benzyl H 4-NHSO2CH3 11 2-Fluorobenzyl H 4-NHSO2CH3 12 3-Fluorobenzyl H 4-NHSO2CH3 13 4-Fluorobenzyl H 4-NHSO2CH3 14 2,6-Difluorobenzyl H 4-NHSO2CH3 15 2,3,4-Trifluorobenzyl H 4-NHSO2CH3 16 H H 3-NHSO2CH3 17 H H 2-NHSO2CH3 18 acetyl acetyl 4-NHSO2CH3 19 4-NHSO2CH3 20 H H 4-N(CH3)SO2CH3 21 H H 4-NHSO2Ph 22 H H 4-NO2 - Synthesis of the above series is exemplified by 4 and 5 as shown in Scheme 1.
- Spectroscopic and Purity Determinations. The 1H-NMR and 13C-NMR spectra were recorded on a Varian Inova-400 (400 MHz) spectrometer. HPLC analyses were performed on a Schimadzu LC-10A system equipped with a SPD-10A UV detector. Enantiomeric excesses were determined by HPLC on a Chiralcel OD column using a Hexane-ethanol 90:10 solvent system. Hydrogenations were performed using the baloon technique in a two-necked flask.
- Syntheses: All the reactions were performed under anhydrous nitrogen atmosphere in oven-dried glassware.
- p-Nitrophenol (0.92 g, 6.6 mmol) was dissolved in 5 ml anhydrous DMF and cesium fluoride (3.02 g, 19.9 mmol) was added. The reaction mixture was stirred for 1 hour at room temperature and (S)-Glycidyl nosylate (1.71 g, 6.6 mmol) was added. The system was stirred for an additional 24 hours at room temperature. Water (150 ml) was added, and the solution was extracted with ethylacetate. The organic phase was dried over MgSO4 and evaporated. The residue was purified with column chromatograph using ethylacetate:hexane (50:50) solvent system to give (S)-Glycidyl p-nitrophenyl ether (99.6% ee, based on chiral HPLC with Chiralcel OD, m.p 78-9° C.) as a yellowish solid (1.21 g, 93% yield). The NMR values are the same as the literature values for the racemic mixture: 1H-NMR (CDCl3) δ 2.78 (dd, 1H), 2.95 (t 1H), 3.39 (m 1H), 4.0 (dd, 1H), 4.38 (dd, 1H), 6.99 (dd, 2H), 8.2 (dd, 2H).
- The (R)-enantiomer of compound 1, starting with (R)-Glycidyl nosylate (1-R) was prepared similarly: 1H-NMR (CDCl3) δ 2.79 (dd, 1H), 2.95 (t 1H), 3.4 (m 1H), 4.0 (dd, 1H), 4.39 (dd, 1H), 7.00 (dd, 2H), 8.2 (dd, 2H).
- Palladium on activated carbon (5%, w/w, 0.2 g) was tared in a three-necked baloon flask. Then, ethylenediamine (0.42 g, 0.1 M) in 70 ml anhydrous methanol was added to the Pd/C under an argon atmosphere. The reaction mixture was stirred for 32 hours under argon. The catalyst was filtered and washed with methanol and ether, then dried for 24 hours under high vacuum pumping.
- Compound 1 (0.5 g, 2.6 mmol) and 5% Pd/C(en) (10% of the weight of starting material) in 5 ml anhydrous THF was hydrogenated at ambient pressure and temperature for 3-5 hours. The reaction mixture was filtered through a membrane filter (13, 0.22 μm) and the filtrate was concentrated in vacuo. The compound was obtained as a crude mixture of products arising from nitro group reduction and epoxide ring opening. Isolation of the desired compound was difficult because of the lability of the components of the mixture on silica gel. The product ratio from NO2 reduction and ring opening (94:6) was determined by integrating the epoxide-ring protons in the reduced compound and the methyl proton in the ring opened compound (98% total yield for the mixture). The NMR signals for 2-S are the same as reported in the literature.
- 1H-NMR (CDCl3) δ 2.69 (dd, 1H), 2.83 (t, 1H), 3.26-3.30 (m 1H), 3.43 (brs, 2H), 3.83 (dd, 1H), 4.1 (dd, 1H), 6.59 (dd, 2H), 6.72 (dd, 2H).
- The (R)-enantiomer of compound 2 (2-R) was also prepared from compound 1-R. 1H-NMR (CDCl3) δ 2.69 (dd, 1H), 2.83 (t, 1H), 3.26-3.30 (m 1H), 3.43 (brs, 2H), 3.83 (dd, 1H), 4.1 (dd, 1H), 6.59 (dd, 2H), 6.72 (dd, 2H).
- Compound 2-S (0.4 g, 2.4 mmol) dissolved in 20 ml anhydrous DCM and N,N-diisopropyl-N-ethylamine (0.45 ml, 2.6 mmol) were combined at 0° C. After stirring the latter mixture for 15 minutes, methanesulfonyl chloride (0.2 ml, 2.6 mmol) was added dropwise at 0° C. After stirring over night, the reaction was extracted with water and washed with brine. The organic phase was dried over magnesium sulfate and evaporated. The non-volatile residue was purified with flash chromatography using ethyl acetate: DCM (30:70) solvent to give a white solid (m.p: 106-108° C., 70% yield).
- 1H-NMR (CDCl3) δ 2.77 (dd, 1H), 2.92 (t, 1H), 2.95 (s, 3H), 3.34-3.36 (m 1H), 3.92 (dd, 1H), 4.24 (dd, 1H), 6.34 (s, 1H), 6.91 (dd, 2H), 7.19 (dd, 2H).
- The (R)-enantiomer of compound 3 (3-R) was also prepared starting with compound 2-R. 1H-NMR (CDCl3) δ 2.76 (dd, 1H), 2.92 (t, 1H), 2.95 (s, 3H), 3.34-3.36 (m 1H), 3.92 (dd, 1H), 4.24 (dd, 1H), 6.36 (s, 1H), 6.91 (dd, 2H), 7.19 (dd, 2H).
- Compound 3-S (0.326 g, 1.34 mmol) and N-methyl-3,4-dichloropenylethylamine (0.276 g, 1.34 mmol) were dissolved in 5 ml ethanol and refluxed for 20 hours. The solvent was then evaporated and the residue purified by flash chromatography using dichloromethane: methanol (90:10) solvent to give the product as a colorless oil (30% yield).
- 1H-NMR (CDCl3) δ 2.37 (s, 3H), 2.52-2.78 (m, 6H), 2.93 (s, 3H), 3.91, (dd, Hα, 1H), 3.92 (s, Hβ, !H), 3.98-4.04 (m, 1H), 6.86 (dd, 2H), 7.01 (dd, 1H), 7.17 (dd, 2H), 7.28 (d, 1H), 7.33 (d, 1H).
- Compound 4-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid which complexes with 1 mol of water. Anal. Calcd for C19H24N2O4SCl2.HCl.1H2O: C, 45.47; H 5.42; N, 5.58. Found: C, 43.87; H 5.41; N, 4.94.
- The (R)-enantiomer of compound 4 (4-R) was also prepared from compound 3-R.
- 1H-NMR (CDCl3) δ 2.37 (s, 3H), 2.52-2.78 (m, 6H), 2.93 (s, 3H), 3.91, (dd, Hα, 1H), 3.92 (s, Hβ, !H), 3.98-4.04 (m, 1H), 6.86 (dd, 2H), 7.01 (dd, 1H), 7.17 (dd, 2H), 7.28 (d, 1H), 7.33 (d, 1H).
- Compound 4-R was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid which complexes with 1 mol of water. Anal. Calcd for C19H24N2O4SCl2.HCl.1H2O: C, 45.47; H 5.42; N, 5.58. Found: C, 43.80; H 5.45; N, 5.27.
- Compound 3-S (0.364 g, 1.5 mmol) and 3,4-dichloropenylethylamine (0.284 g, 0.11 ml, 1.5 mmol) were dissolved in 5 ml ethanol and refluxed for 5 hours. The solvent was evaporated and the non-volatile residue purified by flash chromatography using dichloromethane: methanol (90:10) solvent to give the product as a colorless oil (80% yield). 1H-NMR (CDCl3) δ 2.75-2.93 (m, 6H), 2.95 (s, 3H), 3.94, (dd, Hα, 1H), 3.96 (s, Hβ, 1H), 4.00-4.05 (m, 1H), 6.86 (dd, 2H), 7.04 (dd, 1H), 7.17 (dd, 2H), 7.30 (d, 1H), 7.35 (d, 1H).
- Compound 5-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid. Anal. Calcd for C18H22N2O4SCl2.HCl: C, 46.02; H 4.93; N, 5.96. Found: C, 46.44; H 4.95; N, 5.78.
- The (R)-enantiomer of compound 5 (5-R) was also prepared from compound 4-R.
- 1H-NMR (CDCl3) δ 2.75-2.94 (m, 6H), 2.95 (s, 3H), 3.94, (dd, Hα, 1H), 3.96 (s, Hβ, 1H), 3.99-4.05 (m, 1H), 6.87 (dd, 2H), 7.04 (dd, 1H), 7.18 (dd, 2H), 7.30 (d, 1H), 7.35 (d, 1H).
- Compound 5-R was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid. Anal. Calcd for C18H22N2O4SCl2.HCl: C, 46.02; H 4.93; N, 5.96. Found: C, 46.29; H 5.06; N, 5.84.
- The general reactions for the synthesis of representative compounds 6 and 8-15 are given in Scheme 2. The corresponding substituents are listed in Table 2.
-
TABLE 2 Substitutents representing both S- and R-enantiomers Compound R 6 CH3 8 C2H5 9 C3H7 10 Phenyl 11 2-Fluorophenyl 12 3-Fluorophenyl 13 4-Fluorophenyl 14 2,6-Difluorophenyl 15 2,3,4-Trifluorophenyl
General Method for preparation of compounds 6, 8-15. - Compound 5 (1 mmol) and the appropriate aldehyde (1 mmol) were dissolved in 10 ml 1,2-dichloroethane and treated with sodium triacetoxyborohydride (1.4 mmol). After stirring overnight at room temperature, the reaction mixture was quenched with saturated sodium bicarbonate. The water phase was extracted with 1,2-dichloroethane; the organic phase was dried over MgSO4 and evaporated. The residue was purified with flash chromatography to give a colorless oil.
- 72% yield, solvent for flash chromatography DCM:MeOH (90:10). 1H-NMR (CDCl3) δ 1.03 (t, 3H), 2.58-2.80 (m, 8H), 2.91 (s, 3H), 3.88, (dd, Hα, 1H), 3.90 (s, Hβ, 1H), 3.94-3.96 (m, 1H), 6.83 (dd, 2H), 6.99 (dd, 1H), 7.16 (dd, 2H), 7.25 (d, 1H), 7.31 (d, 1H).
- Compound 6-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid which which complexes with 1 mol of water.
- 80% yield, solvent for flash chromatography DCM:MeOH (90:10). 1H-NMR (CDCl3) δ 0.86 (t, 3H), 1.39-1.56 (m, 2H), 2.56-2.82 (m, 8H), 2.91 (s, 3H), 3.89, (dd, Hα, 1H), 3.90 (s, Hβ, 1H), 3.92-3.96 (m, 1H), 6.84 (dd, 2H), 6.99 (dd, 1H), 7.16 (dd, 2H), 7.25 (d, 1H), 7.31 (d, 1H).
- Compound 8-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid which which complexes with 1 mol of water.
- 74% yield, solvent for flash chromatography DCM:MeOH (90:10). 1H-NMR (CDCl3) δ 0.88 (t, 3H), 1.22-1.30 (m, 2H), 1.36-1.45 (m, 2H), 2.44-2.80 (m, 8H), 2.89 (s, 3H), 3.88, (dd, Hα, 1H), 3.89 (s, Hβ, 1H), 3.92-3.96 (m, 1H), 6.82 (dd, 2H), 6.98 (dd, 1H), 7.16 (dd, 2H), 7.24 (d, 1H), 7.29 (d, 1H).
- Compound 9-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- 70% yield, solvent for flash chroma-tography DCM:MeOH (90:10). 1H-NMR (CDCl3) δ 2.62-2.84 (m, 6H), 2.91 (s, 3H), 3.57 (d, 1H), 3.79 (d, 1H), 3.84, (d, Hα, 1H), 3.86 (s, Hβ, 1H), 3.92-4.08 (m, 1H), 6.80 (dd, 2H), 6.92 (dd, 1H), 7.15 (dd, 2H), 7.19 (d, 1H), 7.24-7.36 (m, 6H).
- Compound 10-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid which which complexes with 1 mol of water.
- 65% yield, solvent for flash chromatography DCM:EtOAc (70:30). 1H-NMR (CDCl3) δ 2.69-2.88 (m, 6H), 2.93 (s, 3H), 3.68 (d, 1H), 3.81 (d, 1H), 3.88, (d, Hα, 1H), 3.89 (s, Hβ, 1H), 4.01-4.06 (m, 1H), 6.83 (dd, 2H), 6.91 (dd, 1H), 7.08 (dd, 2H), 7.14-7.20 (m, 3H), 7.22-7.29 (m, 3H).
- Compound 11-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid which which complexes with 1 mol of water.
- 85% yield, solvent for flash chro-matography DCM:EtOAc (70:30). 1H-NMR (CDCl3) δ 2.69-2.88 (m, 6H), 2.94 (s, 3H), 3.59 (d, 1H), 3.78 (d, 1H), 3.86, (d, Hα, 1H), 3.88 (s, Hβ, 1H), 3.98-4.03 (m, 1H), 6.83 (dd, 2H), 6.93 (dd, 1H), 7.17 (dd, 2H), 7.16-7.21 (m, 3H), 7.24-7.32 (m, 3H).
- Compound 12-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid which which complexes with 1 mol of water.
- 80% yield, solvent for flash chro-matography DCM:EtOAc (70:30). 1H-NMR (CDCl3) δ 2.67-2.86 (m, 6H), 2.94 (s, 3H), 3.55 (d, 1H), 3.76 (d, 1H), 3.85, (d, Hα, 1H), 3.87 (s, Hβ, 1H), 3.97-4.03 (m, 1 H), 6.82 (dd, 2H), 6.92 (dd, 1H), 6.97 (dd, 2H), 7.14-7.20 (m, 5H), 7.29 (d, 1H).
- Compound 13-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid which which complexes with 1 mol of water.
- 60% yield, solvent system for flash chromatography DCM:EtOAc (70:30). 1H-NMR (CDCl3) δ 2.67-2.81 (m, 6H), 2.94 (s, 3H), 3.77 (d, 1H), 3.85 (d, 1H), 3.89, (d, Hα, 1H), 3.90 (s, Hβ, 1H), 4.02-4.09 (m, 1H), 6.85 (dd, 2H), 6.86 (s, 1H), 6.92 (dd, 2H), 7.15 (dd, 2H), 7.17 (d, 1H), 7.25 (dd, 2H).
- Compound 14-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- 65% yield, solvent for flash chromatography DCM:EtOAc (70:30). 1H-NMR (CDCl3) δ 2.65-2.80 (m, 6H), 2.95 (s, 3H), 3.68 (d, 1H), 3.78 (d, 1H), 3.87, (d, Hα, 1H), 3.89 (s, Hβ, 1H), 4.00-4.04 (m, 1H), 6.83 (dd, 1H), 6.88-6.95 (m, 3H), 7.16 (dd, 2H), 7.18 (dd, 2H), 7.30 (dd, 1H).
- Compound 15-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- 40% yield, solvent for flash chromatography DCM:EtOAc (70:30). 1H-NMR (CDCl3) δ 2.58-2.79 (m, 6H), 2.93 (s, 3H), 3.41 (dd, 1H), 3.61 (dd, 1H), 4.08(d, 2H), 4.50-4.60 (m, 1H), 6.87-6.93 (m, 3H), 7.00(d, 1H), 7.15(d, 1H), 7.19 (dd, 2H).
- Compound 7 was prepared in two steps as shown in scheme 3.
- With the general method, O-Butyryl glycoaldehyde and compound S gave the (S)-1-(4-Methanesulphonamidephenoxy)3-(N-(2-butyroxyethyl)-3,4-dichlorophenylethylamino)-2-propanol in 85% yield as a colorless oil. This compound was purified with flash chromatography using DCM: Ethyl acetate (70:30) solvent.
- 1H-NMR (CDCl3) δ 0.89 (t, 3H), 1.56-1.64 (m, 2H), 2.24 (t, 2H), 2.64-2.87 (m, 6H), 2.90 (s, 3H), 3.87-4.13 (m, 6H), 4.38-4.44 (m, 1 H), 6.83 (dd, 2H), 6.99 (dd, 1H), 7.16 (dd, 2H), 7.25 (dd, 1H), 7.31 (d, 1H).
- Reaction of compound 7a-S with sodium methoxide (2 equiv) gave compound 7-S in 75% yield as a colorless oil. This compound was purified with flash chromatography using DCM:MeOH (90:10) solvent.
- 1H-NMR (CDCl3) δ 2.72-2.86 (m, 8H), 2.94 (s, 3H), 3.64, (dt, 2H), 3.87 (s, Hβ, 1H), 3.89 (dd, Hα, 1H), 3.98-4.04 (m, 1H), 6.84 (dd, 2H), 7.03 (dd, 1H), 7.17 (dd, 2H), 7.29 (d, 1H), 7.33 (d, 1H).
- Compound 7-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- Synthesis of compound 16 is shown in Scheme 4.
- 3-Nitrophenol (0.92 g, 6.6 mmol) was dissolved in 5 ml anhydrous DMF, and cesium fluoride (3.02 g, 19.9 mmol) was added. The reaction mixture was stirred for 1 hour at room temperature, and (S)-glycidyl nosylate (1.71 g, 6.6 mmol) was added. The reaction mixture was stirred for 20 hours at room temperature. Water (150 ml) was added, and the solution was extracted with ethylacetate. The organic phase was dried over MgSO4 and evaporated. The residue was purified with column chromatograph using ethylacetate:hexane (50:50) solvent to give (S)-glycidyl m-nitrophenyl ether (1.02 g 80% yield, m.p 44-5° C.) as a yellowish solid.
- 1H-NMR (CDCl3) δ 2.78 (dd, 1H), 2.95 (t 1H), 3.39 (m 1H), 4.0 (dd, 1H), 4.38 (dd, 1H), 7.28 (dd, 1H), 7.41(q, 1H), 7.67-7.87(m, 2H).
- Compound 16a-S (0.5 g, 2.6 mmol) and %5 Pd/C(en) (10% of the weight of starting material) in 5 ml anhydrous THF was hydrogenated at ambient pressure and temperature for 3-5 hours. The reaction mixture was filtered by using a membrane filter (13, 0.22 μm), and the filtrate was concentrated in vacuo. The resulting compound is a crude mixture of nitro group reduction and epoxide ring opening. Isolation of the desired compound was difficult because of the lability of the components of the mixture on silica gel. The product ratio of the NO2 reduction and ring opening (80:20) was determined on the basis of the integration ratio of the epoxide-ring protons from nitro group reduction and the methyl proton of the ring opened compound (98% total yield for the mixture).
- 1H-NMR (CDCl3) δ 2.69 (dd, 1H), 2.83 (dt, 1H), 3.27-3.32 (m 1H), 3.43 (brs, 2H), 4.15 (dd, 1H), 4.27 (dd, 1H), 6.13-6.35 (m, 3H), 6.89-7.03 (m, 1H).
- Compound 16b-S (0.4 g, 2.4 mmol) dissolved in 20 ml anhydrous DCM, and N,N-diisopropyl-N-ethylamine (0.45 ml, 2.6 mmol) was added at 0° C.. After stirring for 15 minutes, methanesulfonyl chloride (0.2 ml, 2.6 mmol) was added to the reaction mixture at 0° C.. After stirring overnight, the reaction mixture was extracted with water and washed with brine. The organic phase was dried and evaporated. The residue was purified with flash chromatography using ethyl acetate:DCM (30:70) solvent to give a colorless oil (45% yield).
- 1H-NMR (CDCl3) δ 2.75 (dd, 1H), 2.89 (t, 1H), 2.99 (s, 3H), 3.33-3.36 (m 1H), 3.88 (dd, 1H), 4.24 (dd, 1H), 6.70 (dd, 1H), 6.81 (dt, 1H), 7.16-7.23 (m, 2H), 7.52 (s, 1H).
- Compound 16c-S (0.364 g, 1.5 mmol) and 3,4-dichloropenylethylamine (0.284 g, 0.11 ml, 1.5 mmol) were dissolved in 5 ml ethanol and refluxed for 10 hours. Then, solvent was evaporated and the residue purified by flash chromatography using dichloromethane: methanol (90: 10) solvent to give the product (55% yield).
- 1H-NMR (CDCl3) δ 2.75-2.95 (m, 6H), 3.01 (s, 3H), 3.96, (dd, Hα, 1H), 3.97 (s, Hβ, 1H), 3.99-4.05 (m, 1H), 6.71 (dd, 1H), 6.75 (dd, 1H), 6.82 (t, 1H), 7.05 (dd, 1H), 7.24 (d, 1H), 7.30 (d, 1H), 7.36 (d, 1H).
- Compound 16-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- Compound 17-S was prepared as follows (Scheme 5).
- 2-Nitrophenol (0.92 g, 6.6 mmol) was dissolved in 5 ml anhydrous DMF. Cesium fluoride (3.02 g, 19.9 mmol) was added to the reaction. The reaction mixture was stirred for 1 hour at room temperature and (S)-glycidyl nosylate (1.71 g, 6.6 mmol) was added. The reaction was stirred for 16 hours at room temperature. Water (150 ml) was added, and the solution was extracted with ethylacetate. The organic phase was dried over MgSO4 and evaporated. The residue was purified with column chromatograph using ethylacetate:hexane (50:50) solvent to give (S)-glycidyl o-nitrophenyl ether (1.21 g, 90% yield, m.p. 46-47° C.) as a white solid.
- 1H-NMR (CDCl3) δ 2.87 (dd, 1H), 2.92 (t 1H), 3.37-3.41 (m 1H), 4.14 (dd, 1H), 4.40 (dd, 1H), 7.06 (dt, 1H), 7.12 (d, 1H), 7.53(dt, 1H), 7.84 (dd, 1H).
- Compound 17a-S (1.05 g, 5.4 mmol) and 3,4-dichloropenylethylamine (1.02 g, 0.8 ml, 5.4 mmol) were dissolved in 25 ml ethanol and refluxed for 12 hours. Then the solvent was evaporated and the residue recrystallized from ethylacetate-petroleum ether to give the product (1.02 g, 99% yield, m.p. 73-74 ° C. ) as a white solid.
- 1H-NMR (CDCl3) δ 2.75-2.94 (m, 6H), 4.02-4.18 (m, 3H), 7.05 (dt, 3H), 7.33 (dd, 2H), 7.53 (dt, 1H), 7.87 (dd, 1H).
- Compound 17b-S (1.02 g, 2.6 mmol), benzaldehyde (0.315 g, 0.3 ml, 2.96 mmol), and p-toluene sulphonic acid (catalytic amount) were dissolved in 50 ml of toluene and refluxed in a Dean Stark apparatus for 30 hours, cooled, and extracted with saturated sodium bicarbonate. The organic layer was dried over MgSO4 and evaporated yielding a yellow oil as a mixture of stereoisomers. The material was used directly for the next step.
- 1H-NMR (CDCl3) δ 2.61-2.99 (m, 10H), 3.56 (dd, 1H), 3.61 (dd, 1H), 3.83 (t, 1H), 4.03 (t, 1H), 4.20 (dd, 2H), 4.32 (dd, 2H), 4.544.58 (m, 1H), 4.64-4.69 (m, 1H), 4.81 (s, 1H), 4.94 (s, 1H), 6.88 (dd, 1H), 6.93 (dd, 1H), 7.04-7.21 (m, 6H), 7.26-7.43 (m, 12H), 7.51 (d, 1H), 7.55 (d, 1H), 7.85 (dd, 1H), 7.88 (dd, 1H).
- Compound 17c-S (1.28 g, 2.7 mmol) was dissolved in 30 ml ethanol. 2N sodium hydroxide (1.28 g) and Pd/C (%10) (0.128 g, 10% of the weight of starting material) was added to the solution. The reaction was hydrogenated at ambient pressure and temperature for 12 hours. The reaction mixture was filtered by using a membrane filter (13, 0.22 μm), and the filtrate was concentrated in vacuo leaving a yellow oil. The latter was dissolved in DCM and extracted with water, dried over MgSO4 and the solvent removed leaving a colorless oil (0.46 g, 39% yield). The material was used directly in the next step.
- Compound 17d-S (0.460 g, 1.05 mmol) was dissolved in DCM and cooled to 0° C. followed by addition of diisopropylamine (0.149 g, 0.2 ml, 1.15 mmol) and methanesulfonylchloride (0.132 g, 0.1 ml, 1.15 mmol). The reaction mixture was stirred at 0° C. for 2 hours, then warmed to room temperature slowly, and stirred at room temperature for another 16 hours. Solvent was evaporated leaving a yellow brown oil. The latter was added to 50 ml of 1N HCl solution, stirred at room temperature for 4 hours and extracted with DCM. The water layer was removed under reduced pressure, and the resulting solid was recrystallized from ethanol/ether to give the hydrochloride salt of compound 17-S.
- 1H-NMR (DMSO-d6) δ 2.34 (s, 3H), 2.93-3.39 (m, 6H), 3.94-4.10 (m, 2H), 4.15-4.30(m, 1H), 6.55-7.03 (m, 2H), 7.24-7.60 (m, 5H), 8.74 (s, 1H).
- The syntheses of compounds 18 and 19 are shown in scheme 6.
- Compound 5-S (0.303 g, 0.7 mmol) and a catalytic amount of 4-(N,N-dimethylamino)pyridine were dissolved in acetic anhydride (1 ml) and pyridine (1 ml) and stirred at room temperature overnight. The reaction was poured into 10 ml ice-water and extracted with DCM. The organic layer was dried over MgSO4, and evaporated. The residue was purified with flash chromatography using ethyl acetate:DCM (30:70) solvent to give as a colorless oil (75% yield).
- 1H-NMR (CDCl3) δ 1.96 (s, 3H), 2.08 (s, 3H), 2.82 (dd, 2H), 3.39 (dd, 2H), 3.44 (s, 3H), 3.56 (dd, 2H), 4.07, (dd, Hα, 1H), 4.11 (dd, Hβ, 1H), 5.23-5.35 (m, 1H), 6.96 (d, 2H), 7.03 (dq, 1H), 7.20 (dq, 2H), 7.30 (dd, 1H), 7.37 (dd, 1H).
- Compound 18-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- Compound 5S (0.303 g, 0.7 mmol), 1,1′-carbonyldiimidazole (0.147 g, 0.906 mmol) and a catalytic amount of 4-(N,N-dimethylamino)pyridine were dissolved in 10 ml benzene. After 12 hours refluxing the solvent was evaporated, and the residue was purified with flash chromatography using ethyl acetate:DCM (30:70) solvent to give a colorless oil (85% yield).
- 1H-NMR (CDCl3) δ 2.88 (t, 2H), 2.95 (s, 3H), 3.42-3.62 (m, 4H), 4.02 (dd, 2H), 4.76-4.82 (m, 1H), 6.51 (s, 1H), 6.83 (dd, 2H), 7.09 (dd, 1H), 7.20 (dd, 2H), 7.32 (d, 1H), 7.35 (d, 1H). Compound 19-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- The synthesis of compound 20 is shown in Scheme 7.
- A solution of compound 3-S (0.243 g, 1 mmol) and potassium carbonate (0.166 g, 1.2 mmol) in 20 ml acetone was stirred for 1 hour at room temperature, then methyl iodide (0.142 g, 0.062 ml, 1 mmol) was added dropwise at room temperature. After stirring for 8 hours, the reaction was filtered and the solvent evaporated to finish a white solid that was used directly in the next step (0.2 g, 78% yield).
- 1H-NMR (CDCl3) δ 2.76 (dd, 1 H), 2.83 (s, 3H), 2.92 (t, 1H), 3.28 (s, 3H), 3.33-3.39 (m 1H), 3.93 (dd, 1H), 4.24 (dd, 1H), 6.92 (dd, 2H), 7.29 (dd, 2H).
- Compound 20a-S (0.2 g, 0.8 mmol) and 3,4-dichloropenylethylamine (0.147 g, 0.11 ml, 0.8 mmol) were dissolved in 5 ml ethanol, refluxed for 5 hours, and relieved of solvent by evaporation. The residue was purified by flash chromatography using dichloromethane:methanol (90:10) solvent to give the product as a white solid (80% yield).
- 1H-NMR (CDCl3) δ 2.72-2.78 (m, 2H), 2.80 (s, 3H), 2.83-2.93 (m, 4H), 3.24 (s, 3H), 3.93, (d, 2H), 4.00-4.04 (m, 1H), 6.85 (dd, 2H), 7.02 (dd, 1H), 7.24 (dd, 2H), 7.26 (d, 1H), 7.31 (d, 1H).
- Compound 20-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- Compound 21 was prepared in a manner similar to compound 5 (Scheme 8)
- Compound 2-S (0.423 g, 2.56 mmol) in 20 ml anhydrous DCM at 0° C. was combined with N,N-diisopropyl-N-ethylamine (0.364 g, 0.49 ml, 2.82 mmol). After stirring for 15 minutes, benzenesulfonyl chloride (0.497 g, 0.36 ml, 2.82 mmol) was added dropwise at 0° C., and the reaction was stirred for 3 hours. The reaction solution was extracted with water and washed with brine; the organic phase dried and evaporated. The residue was purified with flash chromatography using ethyl acetate:DCM (30:70) solvent to give a white solid (75% yield).
- 1H-NMR (CDCl3) δ 2.74 (dd, 1H), 2.90 (t, 1H), 3.31-3.36 (m 1H), 3.86 (dd, 1H), 4.18 (dd, 1H), 6.66 (s, 1H), 6.77 (dd, 2H), 6.97 (dd, 2H), 7.42 (t, 2H), 7.52 (dd, 1H), 7.70 (dd, 2H).
- Compound 21a-S (0.620 g, 2.0 mmol) and 3,4-dichloropenylethylamine (0.386, 0.30 ml, 2.0 mmol) were dissolved in 25 ml ethanol and refluxed for 16 hours. The solvent was then evaporated and the residue was purified by flash chromatography using dichloromethane:methanol (90:10) solvent to give the product (90% yield).
- 1H-NMR (CDCl3) δ 2.73-2.94 (m, 6H), 3.89, (dd, Hα, 1H), 3.91 (s, Hβ, 1H), 3.97-4.01 (m, 1H), 6.74 (dd, 2H), 6.94 (dd, 2H), 7.03 (dd, 1H), 7.29 (d, 1H), 7.34 (d, 1H), 7.43 (t, 2H), 7.52 (dd, 1H), 7.67 (dd, 2H).
- Compound 21-S was dissolved in ethanol and treated with HCl gas to provide the HCl salt as a white solid.
- The synthesis of compound 22 was accomplished in a single step (Scheme 9).
- Compound 1-S (0.195 g, 1 mmol) and 3,4-dichloropenylethylamine (0.190 g, 0.15 ml, 1 mmol) were dissolved in 5 ml ethanol and refluxed for 2 hours. After 2 hours, a solid precipitated from the reaction (0.296 g, 77% yield). It proved to be pure by NMR and TLC.
- 1H-NMR (CDCl3) δ 2.74-2.80 (m, 3H), 2.86-2.97 (m, 3H), 4.02-4.08 (m, 3H), 6.96 (dd, 2H), 7.04 (dd, 1H), 7.3 1 (d, 1H), 7.36 (d, 1H), 8.20 (dd, 2H).
Claims (26)
1-20. (canceled)
21. A compound selected from the group consisting of (R)- or (S)-enantiomers and racemic mixtures of a compound of the formula:
where R13 is alkyl, aralkyl or aryl; R17 is H or lower alkyl; and the others of R9, R10, R11, R12 and R18 are H, F, Cl, Br, I or lower alkyl;
wherein either
I) A is selected from the group consisting of:
wherein R1, R4, and R5 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 is independently O, S, NH or N(lower alkyl); R2 is N, and R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1 and R5 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R2 is independently O, S, NH or N(lower alkyl); R3 is N; and R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1 is independently O, S, NH or N(lower alkyl); and R2 through R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
wherein R1,is selected from the group consisting of O, S, NH or N(lower alkyl); and R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O, and R4 is N;
wherein R2 selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 is selected from the group consisting of O, S, NH or N(lower alkyl); and R4 is N;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is N, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 and R4 are N, and R3 is independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); and R3 and R4 are N;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); and R2, R3 and R4 are N;
wherein R1 and R3 are independently selected from the group consisting of O, S, NH and N(lower alkyl); and R2, R2′ and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); and
wherein R1 and R2 are independently selected from the group consisting of O, S, NH and N(lower alkyl); and R2′, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
and B is selected from the group consisting of:
wherein R6 and R6′ are independently H or F; and R7 is H, lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr, or CH2CF2Ar; and R8 is OH, O(lower alkyl); Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl;
wherein R5, R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; and R8 is OH, or O(lower alkyl);
wherein R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; and R8 is OH, or O(lower alkyl);
wherein R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; and R8 is OH, or O(lower alkyl); and n=1-3;
or
II) A is
wherein R1 and R5 are independently H or F; R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
and B is selected from the group consisting of:
wherein R6 and R6′ are independently H or F; and R7 is CH2Ar, CH2CH2Ar, CH2CHFAr, or CH2CF2Ar, where Ar is 2,3,4,5,6-pentafluorophenyl; and R8 is OH, O(lower alkyl);
wherein R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; and R8 is OH, or O(lower alkyl); and
wherein R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; and R8 is OH, or O(lower alkyl); and n=1-3;
or
III) A is selected from the group consisting of:
wherein R1 and R5 are independently H or F; R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
wherein R1, R4, and R5 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 is independently O, S, NH or NR, R2 is N, and R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1, R4, and R5 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R2 is independently O, S, NH or N(lower alkyl); R3 is N; and R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1 is independently O, S, NH or N(lower alkyl); and R2 through R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
wherein R1, is selected from the group consisting of O, S, NH or N(lower alkyl); and R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O, and R4 is N;
wherein R2 selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 is selected from the group consisting of O, S, NH or N(lower alkyl); and R4 is N;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is N, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 and R4 are N, and R3 is independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); and R3 and R4 are N;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); and R2, R3 and R4 are N;
wherein R1 and R3 are independently selected from the group consisting of O, S, NH and N(lower alkyl); and R2, R2′ and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); and
wherein R1 and R2 are independently selected from the group consisting of O, S, NH and N(lower alkyl); and R2′, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
and B is selected from the group consisting of:
wherein R6 and R6′ are independently H or F; and R7 is H, lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr, or CH2CF2Ar; Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl;
and R8 is F;
22. The compound of claim 21 in combination with a suitable pharmaceutical carrier.
23. The compound of claim 21 selected from (R)- and (S)-enantiomers and mixtures thereof of compounds selected from the group consisting of:
wherein R1 and R5 are independently H or F; and
R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O; R6 and R6′ are independently H or F;
R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; and R13 is alkyl, aralkyl or aryl; and
when R1 and R5 are H; R7 is selected from the group consisting of CH2Ar, CH2CH2Ar, CH2CHFAr and CH2CF2Ar, where Ar is 2,3,4,5,6-pentafluorophenyl; R8 is OH, O(lower alkyl) or F; and
when one of R1 or R5 is F and the other is H or F; R7 is CH2Ar, CH2CH2Ar, CH2CHFAr, or CH2CF2Ar, where Ar is 2,3,4,5,6-pentafluorophenyl; R8 is OH or F;
wherein R1 and R5 are independently H or F; R2 is N; R3 is O, S, NH or N(lower alkyl);
R4 is selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R6 and R6′ are independently H or F; R7 is selected from the group consisting of H, lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr and CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, O(lower alkyl) or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1 and R5 are independently H or F; R2 is independently O, S, NH or N(lower alkyl); R3 is N; R4 is selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R6 and R6′ are independently H or F; R7 is selected from the group consisting of H, lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr and CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, O(lower alkyl) or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; and R16 is C-alkyl, C-aralkyl, or C-aryl;
wherein R1 through R5 are independently selected from the group consisting of H, F, Cl, Br, I and OR14; or R2 and R3 taken together are O—CH2—O; R6 and R6′ are independently H or F; R7 is CH2, R8 is O; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; R14 is C-alkyl, C-aralkyl or C-aryl;
wherein R1, R4 and R5 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R2 is O, S, NH or N(lower alkyl); R3 is N; R6 and R6′ are independently H or F; R7 is CH2; R8 is O; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl;
and R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1, R4 and R5 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R2 is N; R3 is O, S, NH or N(lower alkyl); R6 and R6′ are independently H or F; R7 is CH2; R8 is O; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; and R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR14; R2 and R3 are independently selected from the group consisting of F, Cl, Br, I, and OR14, or R2 and R3 taken together are O—CH2—O; R5, R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; R1 is F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I or lower alkyl; R13 is alkyl, aralkyl or aryl; and R14 is C-alkyl, C-aralkyl or C-aryl;
wherein R1 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR14; R2 is selected from the group consisting of O, S, NH or N(lower alkyl); R3 is N; R5, R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R14 is C-alkyl, C-aralkyl or C-aryl; and R16 is C-alkyl, C-aralkyl, or C-aryl;
wherein R1 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and OR14; R2 is N; R3 is selected from the group consisting of O, S, NH and N(lower alkyl); R5, R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R14 is C-alkyl, C-aralkyl or C-aryl; and R16 is C-alkyl, C-aralkyl, or C-aryl;
wherein R1, R2, R3, R4 and R5 are independently selected from the group consisting of H, F, Cl, Br, I and OR14, or R2 and R3 taken together are O—CH2—O; R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R14 is C-alkyl, C-aralkyl or C-aryl; and
n=1-3;
wherein R1, R4 and R5 are independently selected form the group consisting of H, F, Cl, Br, I and O(lower alkyl); R2 is O, S, NH or N(lower alkyl); R3 is N; R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R16 is C-alkyl, C-aralkyl or C-aryl; and
n=1-3;
wherein R1, R4 and R5 are independently selected form the group consisting of H, F, Cl, Br, I and O(lower alkyl); R2 is N; R3 is O, S, NH or N(lower alkyl); R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; R16 is C-alkyl, C-aralkyl or C-aryl; and
n=1-3;
wherein R1, R2, R3, R4 and R5 are independently selected from the group g of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O; R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I or lower alkyl; R13 is alkyl, aralkyl or aryl; and n=1-3;
wherein R1, R4 and R5 are independently selected form the group consisting of H, F, Cl, Br, I and O(lower alkyl); R2 is O, S, NH or N(lower alkyl); R3 is N; R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R16 is C-alkyl, C-aralkyl or C-aryl; R16 is C-alkyl, C-aralkyl or C-aryl; and n=1-3;
wherein R1, R4 and R5 are independently selected form the group consisting of H, F, Cl, Br, I and O(lower alkyl); R2 is N; R3 is O, S, NH or N(lower alkyl); R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl, R13 is alkyl, aralkyl or aryl; R16 is C-alkyl, C-aralkyl or C-aryl, and n=1-3;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O; R4, R5 and R6 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; R7 is H, R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O; R4 is N; R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl;
wherein R1 and R2 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 is selected from the group consisting of O, S, NH and N(lower alkyl); R4 is N; R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is N; R3 and R4 are is selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R5 is H, R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is N; R3 is selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R4, R5 and R6 are independently CH2, CH(lower alkyl) or C(lower alkyl); R7 is H; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I or lower alkyl; R13 is alkyl, aralkyl or aryl;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R3 is selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R2 and R4 are N;
R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl;
R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 and R4 are N;
R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl;
R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl;
wherein R1 is selected from a group consisting of O, S, NH or N(lower alkyl); R2, R3 and R4 are N; R5 is H, R6 and R6′ are independently H or F; R7 is selected from the group consisting of H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl;
wherein R1 and R3 are independently selected from the group consisting of O, S, NH and N(lower alkyl); R2, R2′ and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I or lower alkyl; R13 is alkyl, aralkyl or aryl;
wherein R1 and R2 are independently selected from the group consisting of O, S, NH and N(lower alkyl); R2′, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R5 is H; R6 and R6′ are independently H or F; R7 is H, lower alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr or CH2CF2Ar, where Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl; R8 is OH, O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl;
wherein R1 and R4 are independently selected from the group consisting of O, S, NH and N(lower alkyl); R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O; R5, R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl); R8 is OH, or O(lower alkyl), or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl; and
wherein R1 and R2 are independently selected from the group consisting of O, S, NH and N(lower alkyl); R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl) or R3 and R4 taken together are O—CH2—O; R5, R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl); R8 is OH or F; R9, R10, R11 and R12 are independently selected from the group consisting of H, F, Cl, Br, I and lower alkyl; R13 is alkyl, aralkyl or aryl.
24. The compound of claim 21 selected from the group consisting of the (S) or (R) forms of:
1-(4-Methanesulphonamidophenoxy)-3-(N-(2,3,4,5,6-pentafluoro-benzyl)-3,4-di-chlorophenylethylamino)-2-propanol;
mixtures thereof and pharmaceutically acceptable salts thereof.
25. The compound of claim 21 wherein A is selected from the group consisting of:
wherein R1, R4, and R5 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 is independently O, S, NH or N(lower alkyl); R2 is N, and R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1 is independently O, S, NH or N(lower alkyl); and R2 through R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
wherein R1, is selected from the group consisting of O, S, NH or N(lower alkyl); and R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O, and R4 is N;
wherein R2 selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 is selected from the group consisting of O, S, NH or N(lower alkyl); and R4 is N;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is N, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 and R4 are N, and R3 is independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); and R3 and R4 are N;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); and R2, R3 and R4 are N;
wherein R1 and R3 are independently selected from the group consisting of O, S, NH and N(lower alkyl); and R2, R2′ and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); and
wherein R1 and R2 are independently selected from the group consisting of O, S, NH and N(lower alkyl); and R2′, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
and wherein B is
26. The compound of claim 27 wherein R7 is lower-alkyl.
27. The compound of claim 27 wherein R7 is CH2Ar.
28. The compound of claim 27 wherein R8 is OH.
29. The compound of claim 27 wherein R8 is F.
30. The compound of claim 21 wherein A is
wherein R1 and R5 are independently H or F; R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
and B is
31. The compound of claim 30 wherein R7 is CH2Ar, where Ar is 2,3,4,5,6-pentafluorophenyl.
32. The compound of claim 30 wherein R8 is OH.
33. The compound of claim 30 wherein R8 is O(lower alkyl).
34. The compound of claim 25 wherein A is
wherein R1 and R5 are independently H or F; R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
and B is
35. The compound of claim 21 wherein A is
wherein R1 and R5 are independently H or F; R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
and B is
36. A compound of claim 21 wherein A is selected from the group consisting of:
wherein R1 and R5 are independently H or F; R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
and B is selected from the group consisting of:
37. The compound of claim 21 wherein A is
wherein R1 and R5 are independently H or F; R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
and wherein B is
38. The compound of claim 37 wherein R7 is lower alkyl.
39. The compound of claim 37 wherein R7 is CH2Ar.
40. The compound of claim 37 wherein R3 and R4 are Cl.
41. The compound of claim 37 wherein R3 and R4 are O(lower alkyl).
42. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 21 optionally in a pharmaceutically acceptable carrier.
43. The pharmaceutical composition of claim 42 suitable for oral administration.
44. The pharmaceutical composition of claim 42 suitable for parenteral administration.
45. A method of treating neurodegeneration associated with a pathological condition characterized by lowered brain-tissue pH, said method comprising
administering to a patient in need of such treatment a pharmaceutically effective amount of a compound having enhanced NMDA receptor blocking activity at said lowered brain-tissue pH over normal brain-tissue pH, said compound being selected from the group consisting of (R)- or (S)-enantiomers and racemic mixtures of a compound of the formula:
where R13 is alkyl, aralkyl or aryl; R17 is H or lower alkyl; and
the others of R9, R10, R11, R12 and R18 are H, F, Cl, Br, I or lower alkyl;
wherein either
I) A is selected from the group consisting of:
wherein R1, R4, and R5 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 is independently O, S, NH or N(lower alkyl); R2 is N, and R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1 and R5 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R2 is independently O, S, NH or N(lower alkyl); R3 is N; and R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1 is independently O, S, NH or N(lower alkyl); and R2 through R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
wherein R1, is selected from the group consisting of O, S, NH or N(lower alkyl); and R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and O (lower alkyl); or R2 and R3 taken together are O—CH2—O, and R4 is N;
wherein R2 selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 is selected from the group consisting of O, S, NH or N(lower alkyl); and R4 is N;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is N, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 and R4 are N, and R3 is independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); and R3 and R4 are N;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); and R2, R3 and R4 are N;
wherein R1 and R3 are independently selected from the group consisting of O, S, NH and N(lower alkyl); and R2, R2′ and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); and
wherein R1 and R2 are independently selected from the group consisting of O, S, NH and N(lower alkyl); and R2′, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
and B is selected from the group consisting of:
wherein R6 and R6′ are independently H or F; and R7 is H, lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr, or CH2CF2Ar; and R8 is OH, O(lower alkyl); Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl;
wherein R5, R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; and R8 is OH, or O(lower alkyl);
wherein R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; and R8 is OH, or O(lower alkyl);
wherein R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; and R8 is OH, or O(lower alkyl); and n=1-3;
or
II) A is
wherein R1 and R5 are independently H or F; R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
and B is selected from the group consisting of:
wherein R6 and R6′ are independently H or F; and R7 is CH2Ar, CH2CH2Ar, CH2CHFAr, or CH2CF2Ar, where Ar is 2,3,4,5,6-pentafluorophenyl; and R8 is OH, O(lower alkyl);
wherein R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; and R8 is OH, or O(lower alkyl); and
wherein R6 and R7 are independently CH2, CH(lower alkyl) or C(lower alkyl)2; and R8 is OH, or O(lower alkyl); and n=1-3;
or
III) A is selected from the group consisting of:
wherein R1 and R5 are independently H or F; R2, R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O;
wherein R1, R4, and R5 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 is independently O, S, NH or NR, R2 is N, and R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1, R4, and R5 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R2 is independently O, S, NH or N(lower alkyl); R3 is N; and
R16 is C-alkyl, C-aralkyl or C-aryl;
wherein R1 is independently O, S, NH or N(lower alkyl); and R2 through R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or
R2 and R3 taken together are O—CH2—O;
wherein R1, is selected from the group consisting of O, S, NH or N(lower alkyl); and R2 and R3 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); or R2 and R3 taken together are O—CH2—O, and R4 is N;
wherein R2 selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); R3 is selected from the group consisting of O, S, NH or N(lower alkyl); and R4 is N;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is N, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 and R4 are N, and R3 is independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); R2 is selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); and R3 and R4 are N;
wherein R1 is selected from the group consisting of O, S, NH and N(lower alkyl); and R2, R3 and R4 are N;
wherein R1 and R3 are independently selected from the group consisting of O, S, NH and N(lower alkyl); and R2, R2′ and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl); and
wherein R1 and R2 are independently selected from the group consisting of O, S, NH and N(lower alkyl); and R2′, and R3 and R4 are independently selected from the group consisting of H, F, Cl, Br, I and O(lower alkyl);
and B is selected from the group consisting of:
wherein R6 and R6′ are independently H or F; and R7 is H, lower n-alkyl, CH2Ar, CH2CH2Ar, CH2CHFAr, or CH2CF2Ar; Ar is aryl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2,6-difluorophenyl, 2,3,4-trifluorophenyl, or 2,3,4,5,6-pentafluorophenyl;
and R8 is F;
and pharmaceutically acceptable salts, enantiomers, enantiomeric mixtures, and mixtures of the foregoing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/151,633 US20090023791A1 (en) | 2001-03-08 | 2008-05-08 | PH-dependent NMDA receptor antagonists |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27420501P | 2001-03-08 | 2001-03-08 | |
US10/469,824 US7375136B2 (en) | 2001-03-08 | 2002-03-08 | pH-dependent NMDA receptor antagonists |
PCT/US2002/007033 WO2002072542A2 (en) | 2001-03-08 | 2002-03-08 | Ph-dependent nmda receptor antagonists |
US12/151,633 US20090023791A1 (en) | 2001-03-08 | 2008-05-08 | PH-dependent NMDA receptor antagonists |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/007033 Continuation WO2002072542A2 (en) | 2001-03-08 | 2002-03-08 | Ph-dependent nmda receptor antagonists |
US10/469,824 Continuation US7375136B2 (en) | 2001-03-08 | 2002-03-08 | pH-dependent NMDA receptor antagonists |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090023791A1 true US20090023791A1 (en) | 2009-01-22 |
Family
ID=23047230
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/469,824 Expired - Fee Related US7375136B2 (en) | 2001-03-08 | 2002-03-08 | pH-dependent NMDA receptor antagonists |
US12/151,633 Abandoned US20090023791A1 (en) | 2001-03-08 | 2008-05-08 | PH-dependent NMDA receptor antagonists |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/469,824 Expired - Fee Related US7375136B2 (en) | 2001-03-08 | 2002-03-08 | pH-dependent NMDA receptor antagonists |
Country Status (6)
Country | Link |
---|---|
US (2) | US7375136B2 (en) |
EP (1) | EP1436258A4 (en) |
JP (1) | JP2005506292A (en) |
AU (1) | AU2002250256B2 (en) |
CA (1) | CA2440284A1 (en) |
WO (1) | WO2002072542A2 (en) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005506292A (en) * | 2001-03-08 | 2005-03-03 | エモリー ユニバーシティ | pH-dependent NMDA receptor antagonist |
ES2414706T3 (en) * | 2001-12-06 | 2013-07-22 | Fibrogen, Inc. | Methods to increase endogenous erythropoietin |
JP2004123562A (en) * | 2002-09-30 | 2004-04-22 | Japan Science & Technology Corp | Pharmaceutical using compound having inhibitory action on neurocyte death |
US7732162B2 (en) * | 2003-05-05 | 2010-06-08 | Probiodrug Ag | Inhibitors of glutaminyl cyclase for treating neurodegenerative diseases |
US7846094B2 (en) * | 2004-03-17 | 2010-12-07 | Miller Landon C G | System and method for neurological injury detection, classification and subsequent injury amelioration |
JP5015779B2 (en) * | 2004-08-23 | 2012-08-29 | エモリー・ユニバーシテイ | Improved method for selecting pH-dependent compounds for in vivo therapy |
WO2007076875A2 (en) * | 2006-01-06 | 2007-07-12 | Aarhus Universitet | Compounds acting on the serotonin transporter |
WO2008055945A1 (en) | 2006-11-09 | 2008-05-15 | Probiodrug Ag | 3-hydr0xy-1,5-dihydr0-pyrr0l-2-one derivatives as inhibitors of glutaminyl cyclase for the treatment of ulcer, cancer and other diseases |
ATE554085T1 (en) | 2006-11-30 | 2012-05-15 | Probiodrug Ag | NEW INHIBITORS OF GLUTAMINYL CYCLASE |
EP2117540A1 (en) | 2007-03-01 | 2009-11-18 | Probiodrug AG | New use of glutaminyl cyclase inhibitors |
EP3085367A3 (en) * | 2007-03-20 | 2017-01-25 | Brandeis University | Compositions for the diagnosis, treatment, and prevention of amyotrophic lateral sclerosis and related |
WO2008120655A1 (en) | 2007-03-30 | 2008-10-09 | Institute Of Medicinal Molecular Design, Inc. | Oxazolidinone derivative having inhibitory activity on 11β-hydroxysteroid dehydrogenase type i |
JP5667440B2 (en) | 2007-04-18 | 2015-02-12 | プロビオドルグ エージー | Thiourea derivatives as glutaminyl cyclase inhibitors |
CN103058957A (en) | 2007-06-29 | 2013-04-24 | 埃莫里大学 | NMDA receptor antagonists for neuroprotection |
AU2008323877A1 (en) * | 2007-11-06 | 2009-05-14 | Emory University | Methods of identifying safe NMDA receptor antagonists |
BRPI0912362A2 (en) * | 2008-05-09 | 2015-10-06 | Univ Emory | nmda receptor antagonist for the treatment of neuropsychiatric disorders |
SG178953A1 (en) | 2009-09-11 | 2012-04-27 | Probiodrug Ag | Heterocylcic derivatives as inhibitors of glutaminyl cyclase |
CN102762554A (en) | 2010-02-16 | 2012-10-31 | 辉瑞大药厂 | (r)-4-((4-((4-(tetrahydrofuran-3-yloxy)benzo[d]isoxazol-3-yloxy)methyl)piperidin-1-yl)methyl)tetrahydro-2h-pyran-4-ol, a partial agonist of 5-ht4 receptors |
US9181233B2 (en) | 2010-03-03 | 2015-11-10 | Probiodrug Ag | Inhibitors of glutaminyl cyclase |
AU2011226074B2 (en) | 2010-03-10 | 2015-01-22 | Vivoryon Therapeutics N.V. | Heterocyclic inhibitors of glutaminyl cyclase (QC, EC 2.3.2.5) |
US8541596B2 (en) | 2010-04-21 | 2013-09-24 | Probiodrug Ag | Inhibitors |
ES2570167T3 (en) | 2011-03-16 | 2016-05-17 | Probiodrug Ag | Benzimidazole derivatives as glutaminyl cyclase inhibitors |
CN104490872A (en) * | 2014-12-11 | 2015-04-08 | 温州医科大学附属第一医院 | Application of 2-(2-benzofuranyl)-2-imidazoline in treatment of mitochondrial injury disease of nervous system |
US10583171B2 (en) | 2015-11-30 | 2020-03-10 | INSERM (Institut National de la Santé et de la Recherche Médicale) | NMDAR antagonists for the treatment of diseases associated with angiogenesis |
ES2812698T3 (en) | 2017-09-29 | 2021-03-18 | Probiodrug Ag | Glutaminyl cyclase inhibitors |
JP2022542310A (en) * | 2019-07-31 | 2022-09-30 | シー4アス-ビオテクノロジア エ レクルソス マリーニョス,エリデーアー. | KV1.3 antagonists for use in treating chronic and acute pain |
Citations (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US509009A (en) * | 1893-11-21 | Hermann wecker | ||
US4906779A (en) * | 1986-07-10 | 1990-03-06 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University | N,N'-disubstituted guanidines and their use as excitatory amino acid antagonists |
US4924008A (en) * | 1989-05-04 | 1990-05-08 | American Home Products Corporation | Benzobicycloalkane derivatives as anticonvulsant neuroprotective agents |
US4957909A (en) * | 1989-05-04 | 1990-09-18 | American Home Products Corporation | Benzobicycloalkane derivatives as anticonvulsant neuroprotective agents |
US4959366A (en) * | 1986-05-01 | 1990-09-25 | Pfizer Inc. | Anti-arrhythmic agents |
US4994467A (en) * | 1989-05-31 | 1991-02-19 | Zimmerman Andrew W | Treating autism and other developmental disorders in children with NMDA receptor antagonists |
US5013540A (en) * | 1989-11-30 | 1991-05-07 | Board Of Regents, The University Of Texas System | Using NMDA receptor antagonists to reduce damage due to laser treatment |
US5034400A (en) * | 1989-10-20 | 1991-07-23 | Olney John W | Method for preventing neurotoxic side effects of NMDA antagonists |
US5039528A (en) * | 1989-12-11 | 1991-08-13 | Olney John W | EAA antagonists as anti-emetic drugs |
US5093525A (en) * | 1986-07-10 | 1992-03-03 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University | N,N'-disubstituted guanidines and their use as excitatory amino acid antagonists |
US5106847A (en) * | 1990-07-16 | 1992-04-21 | Merrell Dow Pharmaceuticals Inc. | Excitatory amino acid antagonists, compositions and use |
US5118675A (en) * | 1991-02-15 | 1992-06-02 | American Home Products Corporation | Quinoxaline phosphono-amino acids |
US5124319A (en) * | 1991-10-11 | 1992-06-23 | American Home Products Corporation | Benzimidazole phosphono-amino acids |
US5132313A (en) * | 1989-10-26 | 1992-07-21 | University Of Pittsburgh | Non-competitive NMDA receptor antagonists and methods for their use |
US5179085A (en) * | 1989-03-15 | 1993-01-12 | Warner-Lambert Company | N-substituted α-amino acids and derivatives thereof having pharmaceutical activity |
US5189054A (en) * | 1990-11-02 | 1993-02-23 | Merrell Dow Pharmaceuticals Inc. | 3-amidoindolyl derivatives and pharmaceutical compositions thereof |
US5190976A (en) * | 1986-07-10 | 1993-03-02 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And University Of Oregon | N,N'-disubstituted guanidines and their use as excitatory amino acid antagonists |
US5192751A (en) * | 1992-07-24 | 1993-03-09 | Eli Lilly And Company | Use of competitive NMDA receptor antagonists in the treatment of urinary incontinence |
US5194430A (en) * | 1990-05-17 | 1993-03-16 | Merrell Dow Pharmaceuticals Inc. | Heterocyclic-nmda antagonists |
US5262568A (en) * | 1990-03-02 | 1993-11-16 | State Of Oregon | Tri- and tetra-substituted guanidines and their use as excitatory amino acid antagonists |
US5318985A (en) * | 1991-12-20 | 1994-06-07 | Merrell Dow Pharmaceuticals Inc. | Potentiation of NMDA antagonists |
US5321012A (en) * | 1993-01-28 | 1994-06-14 | Virginia Commonwealth University Medical College | Inhibiting the development of tolerance to and/or dependence on a narcotic addictive substance |
US5326756A (en) * | 1989-09-19 | 1994-07-05 | Merrell Dow Pharmaceuticals Inc. | R-4-oxo-5 phosphononorvaline used as NMDA antagonists |
US5336689A (en) * | 1990-03-02 | 1994-08-09 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon | Tri- and tetra-substituted guanidines and their use as excitatory amino acid antagonists |
US5385903A (en) * | 1991-07-09 | 1995-01-31 | Schering Aktiengesellschaft | Pharmaceutical agent for treatment of withdrawal symptoms |
US5385947A (en) * | 1993-01-15 | 1995-01-31 | Hoffmann-La Roche Inc. | Octahydrophenanthrene derivatives |
US5395822A (en) * | 1993-09-20 | 1995-03-07 | Izumi; Yukitoshi | Use of pyruvate to prevent neuronal degeneration associated with ischemia |
US5441963A (en) * | 1991-12-20 | 1995-08-15 | Merrell Dow Pharmaceuticals | Potentiation of NMDA antagonists |
US5498610A (en) * | 1992-11-06 | 1996-03-12 | Pfizer Inc. | Neuroprotective indolone and related derivatives |
US5502058A (en) * | 1993-03-05 | 1996-03-26 | Virginia Commonwealth University | Method for the treatment of pain |
US5519048A (en) * | 1993-05-27 | 1996-05-21 | Merrell Pharmaceuticals Inc. | 3-(indol-3-yl)-propenoic acid derivatives and pharmaceutical compositions thereof |
US5538958A (en) * | 1989-09-19 | 1996-07-23 | Merrell Pharmaceuticals Inc. | NMDA antagonists |
US5563157A (en) * | 1994-10-31 | 1996-10-08 | Hoechst Marion Roussel Inc. | Heterocycle substituted propenoic acid derivatives and pharmaceutical compositions thereof |
US5594007A (en) * | 1991-04-18 | 1997-01-14 | Pfizer Inc. | Method for treating spinal cord trauma with phenolic 2-piperidino-1-alkanols |
US5606063A (en) * | 1991-02-27 | 1997-02-25 | Merrell Pharmaceuticals Inc. | NMDA antagonists |
US5605911A (en) * | 1995-01-31 | 1997-02-25 | Washington University | Use of alpha-2 adrenergic drugs to prevent adverse effects of NMDA receptor hypofunction (NRH) |
US5614509A (en) * | 1992-07-09 | 1997-03-25 | Schering Aktiengesellschaft | Pharmaceutical agents for preventing the development of tolerance during the treatment with benzodiazepine-receptor-binding active ingredients |
US5629307A (en) * | 1989-10-20 | 1997-05-13 | Olney; John W. | Use of ibogaine in reducing excitotoxic brain damage |
US5633379A (en) * | 1994-06-02 | 1997-05-27 | Ciba-Geigy Corporation | 3-heteroaliphatyl- and 3-hetero(aryl)aliphatyl-2(1H)-quinolone derivatives |
US5710168A (en) * | 1991-10-23 | 1998-01-20 | Pfizer Inc. | 2-piperidino-1-alkanol derivatives as neuroprotective agents |
US5710139A (en) * | 1993-12-22 | 1998-01-20 | Astra Ab | Heterocyclic compounds |
US5714500A (en) * | 1990-10-15 | 1998-02-03 | Astra Ab | 2-phenyl- and 2-thienyl-(2)-piperidine derivatives having neuroprotective properties |
US5753657A (en) * | 1993-07-16 | 1998-05-19 | Rhone-Poulenc Rorer S.A. | Imidazo 1,2-A! pyrazine-4-one, preparation thereof and drugs containing same |
US5767130A (en) * | 1989-10-20 | 1998-06-16 | Olney; John W. | Use of kainic acid antagonists to prevent toxic side effects of NMDA antagonists |
US5777114A (en) * | 1994-11-02 | 1998-07-07 | Rhone-Poulenc Rorer S.A. | Spiro heterocycle-imidazo 1,2-a!indeno 1,2-e!pyrazine!-4'-ones, preparation thereof and drugs containing same |
US5783700A (en) * | 1997-07-03 | 1998-07-21 | Nichols; Alfred C. | Quinolic acid derivatives |
US5783572A (en) * | 1994-09-13 | 1998-07-21 | Pfizer Inc. | Quinoxalinedione NMDA receptor antagonists |
US5796390A (en) * | 1991-02-28 | 1998-08-18 | Thomson, S.A. | Redundant shift registers for scanning circuits in liquid crystal display devices |
US5834479A (en) * | 1993-03-05 | 1998-11-10 | Mayer; David J. | Method and composition for alleviating pain |
US5834465A (en) * | 1989-10-20 | 1998-11-10 | Washington University | Treatment with combined NMDA and non-NMDA antagonists to reduce excitotoxic CNS damage |
US5863922A (en) * | 1995-08-02 | 1999-01-26 | Virginia Commonwealth University | Pain-alleviating drug composition and method for alleviating pain |
US5866585A (en) * | 1997-05-22 | 1999-02-02 | Synchroneuron, Llc | Methods of treating tardive dyskinesia using NMDA receptor antagonists |
US5888996A (en) * | 1995-07-26 | 1999-03-30 | Trustees Of Boston University | Inhibition of NMDA receptor activity and modulation of glutamate-mediated synaptic activity |
US5889026A (en) * | 1996-07-19 | 1999-03-30 | Hoffmann-La Roche Inc. | 4-hydroxy-piperodine derivatives |
US5902815A (en) * | 1996-09-03 | 1999-05-11 | Washington University | Use of 5HT-2A serotonin agonists to prevent adverse effects of NMDA receptor hypofunction |
US5919826A (en) * | 1996-10-24 | 1999-07-06 | Algos Pharmaceutical Corporation | Method of alleviating pain |
US5922716A (en) * | 1994-03-28 | 1999-07-13 | Rhone-Poulenc Rorer S.A. | 5H-indeno 1,2-b!pyrazine-2,3-dione derivatives, their preparation and medicinal products containing them |
US5952344A (en) * | 1996-02-03 | 1999-09-14 | Hoffmann-La Roche Inc. | Tetrahydroisoquinoline derivatives |
US5958919A (en) * | 1996-09-20 | 1999-09-28 | Washington University | Treatment of presymptomatic alzheimer's disease to prevent neuronal degeneration |
US5962472A (en) * | 1996-03-08 | 1999-10-05 | Hoffmann-La Roche Inc. | Use of 4-phenyl-3,6-dihydro-2H-pyridyl derivatives |
US6025369A (en) * | 1996-05-03 | 2000-02-15 | The Board Of Regents Of The University Nebraska | N-methyl-D-aspartate (NMDA) receptor blockers for the prevention of atherosclerosis |
US6034134A (en) * | 1997-06-30 | 2000-03-07 | Merz + Co. Gmbh & Co. | 1-Amino-alkylcyclohexane NMDA receptor antagonists |
US6054451A (en) * | 1998-04-21 | 2000-04-25 | Algos Pharmaceutical Corporation | Analgesic composition and method for alleviating pain |
US6057358A (en) * | 1994-08-04 | 2000-05-02 | C&C Research Labs. | Amine derivatives, processes for producing them and a use of them as antiarrhythmic drugs |
US6057373A (en) * | 1997-05-22 | 2000-05-02 | Synchroneuron, Llc | Methods of treating tardive dyskinesia and other movement disorders using NMDA receptor antagonists |
US6071966A (en) * | 1997-06-30 | 2000-06-06 | Merz + Co. Gmbh & Co. | 1-amino-alkylcyclohexane NMDA receptor antagonists |
US6080743A (en) * | 1995-08-31 | 2000-06-27 | Novartis Ag | 2,3-dioxo-1,2,3,4-tetrahydro-quinoxalinyl derivatives |
US6083941A (en) * | 1995-07-24 | 2000-07-04 | Trustees Of Boston University | Inhibition of NMDA receptor activity by pregnenolone sulfate derivatives |
US6096743A (en) * | 1994-09-27 | 2000-08-01 | Yamanouchi Pharmaceuticals Co., Ltd. | 1,2,3,4-tetrahydroquinoxalinedione derivative |
US6177434B1 (en) * | 1997-12-16 | 2001-01-23 | The United States Of America As Represented By The Secretary Of The Navy | Prevention or reversal of sensorineural hearing loss (SNHL) through biologic mechanisms |
US6184236B1 (en) * | 1998-08-18 | 2001-02-06 | Hoffmann-La Roche Inc. | Method of treating a neurodegenerative disease by administering an aryl-cyclohexylamine derivative |
US6187338B1 (en) * | 1996-08-23 | 2001-02-13 | Algos Pharmaceutical Corporation | Anticonvulsant containing composition for treating neuropathic pain |
US6194000B1 (en) * | 1995-10-19 | 2001-02-27 | F.H. Faulding & Co., Limited | Analgesic immediate and controlled release pharmaceutical composition |
US6197820B1 (en) * | 1998-04-06 | 2001-03-06 | Uab Research Foundation | Use of phenylglycine derivatives to decrease neuronal death caused by brain tumors and brain lesions |
US6200990B1 (en) * | 1998-12-21 | 2001-03-13 | Alcon Laboratories, Inc. | Neuroprotective agents having antioxidant and NMDA antagonist activity |
US6242456B1 (en) * | 1998-03-09 | 2001-06-05 | Trustees Of Tufts College | Treatment of stereotypic, self-injurious and compulsive behaviors in man and animals using antagonists of NMDA receptors |
US6251948B1 (en) * | 1990-03-02 | 2001-06-26 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon | Tri-and tetra-substituted guanidines and their use as excitatory amino acid antagonists |
US6258827B1 (en) * | 1995-05-26 | 2001-07-10 | Pfizer Inc. | Combinations for the treatment of parkinsonism containing selective NMDA antagonists |
US6265426B1 (en) * | 1999-07-21 | 2001-07-24 | Hoffmann-La Roche Inc. | Triazole derivatives |
US6274633B1 (en) * | 1999-07-29 | 2001-08-14 | Imperial College Of Science, Technology, And Medicine | NMDA antagonist |
US6284776B1 (en) * | 1997-10-24 | 2001-09-04 | Leonard T. Meltzer | Method for treating diseased-related or drug-induced dyskinesias |
US6284774B1 (en) * | 1998-06-26 | 2001-09-04 | Warner-Lambert Company | 4-Benzyl piperidine alkylsulfoxide heterocycles and their use as subtype-selective NMDA receptor antagonists |
US6294583B1 (en) * | 1998-01-13 | 2001-09-25 | Synchroneuron, Llc | Methods of treating tardive dyskinesia and other movement disorders |
US6339093B1 (en) * | 1999-10-08 | 2002-01-15 | Hoffmann-La Roche Inc. | Isoquinoline derivatives |
US7375136B2 (en) * | 2001-03-08 | 2008-05-20 | Emory University | pH-dependent NMDA receptor antagonists |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5095009A (en) | 1990-04-11 | 1992-03-10 | Merrell Dow Pharmaceuticals Inc. | NMDA antagonists |
US5474990A (en) | 1989-10-20 | 1995-12-12 | Olney; John W. | Barbiturates as safening agents in conjunction with NMDA antagonists |
GB9005318D0 (en) * | 1990-03-09 | 1990-05-02 | Isis Innovation | Antiarrhythmic agents |
US5587384A (en) | 1994-02-04 | 1996-12-24 | The Johns Hopkins University | Inhibitors of poly(ADP-ribose) synthetase and use thereof to treat NMDA neurotoxicity |
DE69809827D1 (en) | 1997-03-31 | 2003-01-16 | Korea Res Inst Chem Tech | Quinolinic sulfide derivatives as NMDA receptor antagonists and process for their preparation |
US6007841A (en) | 1998-03-13 | 1999-12-28 | Algos Pharmaceutical Corporation | Analgesic composition and method for treating pain |
WO2001002406A1 (en) * | 1999-06-29 | 2001-01-11 | Neurosearch A/S | Potassium channel blocking agents |
-
2002
- 2002-03-08 JP JP2002571458A patent/JP2005506292A/en active Pending
- 2002-03-08 AU AU2002250256A patent/AU2002250256B2/en not_active Ceased
- 2002-03-08 WO PCT/US2002/007033 patent/WO2002072542A2/en active Application Filing
- 2002-03-08 CA CA002440284A patent/CA2440284A1/en not_active Abandoned
- 2002-03-08 EP EP02719157A patent/EP1436258A4/en not_active Withdrawn
- 2002-03-08 US US10/469,824 patent/US7375136B2/en not_active Expired - Fee Related
-
2008
- 2008-05-08 US US12/151,633 patent/US20090023791A1/en not_active Abandoned
Patent Citations (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US509009A (en) * | 1893-11-21 | Hermann wecker | ||
US4959366A (en) * | 1986-05-01 | 1990-09-25 | Pfizer Inc. | Anti-arrhythmic agents |
US5093525A (en) * | 1986-07-10 | 1992-03-03 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University | N,N'-disubstituted guanidines and their use as excitatory amino acid antagonists |
US4906779A (en) * | 1986-07-10 | 1990-03-06 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University | N,N'-disubstituted guanidines and their use as excitatory amino acid antagonists |
US5190976A (en) * | 1986-07-10 | 1993-03-02 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And University Of Oregon | N,N'-disubstituted guanidines and their use as excitatory amino acid antagonists |
US5179085A (en) * | 1989-03-15 | 1993-01-12 | Warner-Lambert Company | N-substituted α-amino acids and derivatives thereof having pharmaceutical activity |
US4924008A (en) * | 1989-05-04 | 1990-05-08 | American Home Products Corporation | Benzobicycloalkane derivatives as anticonvulsant neuroprotective agents |
US4957909A (en) * | 1989-05-04 | 1990-09-18 | American Home Products Corporation | Benzobicycloalkane derivatives as anticonvulsant neuroprotective agents |
US4994467A (en) * | 1989-05-31 | 1991-02-19 | Zimmerman Andrew W | Treating autism and other developmental disorders in children with NMDA receptor antagonists |
US5538958A (en) * | 1989-09-19 | 1996-07-23 | Merrell Pharmaceuticals Inc. | NMDA antagonists |
US5326756A (en) * | 1989-09-19 | 1994-07-05 | Merrell Dow Pharmaceuticals Inc. | R-4-oxo-5 phosphononorvaline used as NMDA antagonists |
US5925634A (en) * | 1989-10-20 | 1999-07-20 | Washington University | Use of ibogaine for treating neuropathic pain |
US5767130A (en) * | 1989-10-20 | 1998-06-16 | Olney; John W. | Use of kainic acid antagonists to prevent toxic side effects of NMDA antagonists |
US5834465A (en) * | 1989-10-20 | 1998-11-10 | Washington University | Treatment with combined NMDA and non-NMDA antagonists to reduce excitotoxic CNS damage |
US5616580A (en) * | 1989-10-20 | 1997-04-01 | Olney; John W. | Pharmacological composition for preventing neurotoxic side effects of NMDA antagonists |
US5034400A (en) * | 1989-10-20 | 1991-07-23 | Olney John W | Method for preventing neurotoxic side effects of NMDA antagonists |
US5629307A (en) * | 1989-10-20 | 1997-05-13 | Olney; John W. | Use of ibogaine in reducing excitotoxic brain damage |
US5132313A (en) * | 1989-10-26 | 1992-07-21 | University Of Pittsburgh | Non-competitive NMDA receptor antagonists and methods for their use |
US5013540A (en) * | 1989-11-30 | 1991-05-07 | Board Of Regents, The University Of Texas System | Using NMDA receptor antagonists to reduce damage due to laser treatment |
US5039528A (en) * | 1989-12-11 | 1991-08-13 | Olney John W | EAA antagonists as anti-emetic drugs |
US6251948B1 (en) * | 1990-03-02 | 2001-06-26 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon | Tri-and tetra-substituted guanidines and their use as excitatory amino acid antagonists |
US5767162A (en) * | 1990-03-02 | 1998-06-16 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon | Tri-and tetra-substituted guanidines and their use as excitatory amino acid antagonists |
US5262568A (en) * | 1990-03-02 | 1993-11-16 | State Of Oregon | Tri- and tetra-substituted guanidines and their use as excitatory amino acid antagonists |
US5336689A (en) * | 1990-03-02 | 1994-08-09 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon | Tri- and tetra-substituted guanidines and their use as excitatory amino acid antagonists |
US5637622A (en) * | 1990-03-02 | 1997-06-10 | State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University And The University Of Oregon | Tri- and tetra-substituted guanidines and their use as excitatory amino acid antagonists |
US5559154A (en) * | 1990-03-02 | 1996-09-24 | Oregon State Board Of Higher Education | Tri- and tetra-substituted guanidines and their use as excitatory amino acid antagonists |
US5470844A (en) * | 1990-05-17 | 1995-11-28 | Merrell Dow Pharmaceuticals Inc. | Heterocyclic-NMDA antagonists |
US5194430A (en) * | 1990-05-17 | 1993-03-16 | Merrell Dow Pharmaceuticals Inc. | Heterocyclic-nmda antagonists |
US5106847A (en) * | 1990-07-16 | 1992-04-21 | Merrell Dow Pharmaceuticals Inc. | Excitatory amino acid antagonists, compositions and use |
US5714500A (en) * | 1990-10-15 | 1998-02-03 | Astra Ab | 2-phenyl- and 2-thienyl-(2)-piperidine derivatives having neuroprotective properties |
US5491153A (en) * | 1990-11-02 | 1996-02-13 | Merrell Dow Pharmaceuticals Inc. | 3-amidoindolyl derivative |
US5675018A (en) * | 1990-11-02 | 1997-10-07 | Merrell Pharmaceuticals Inc. | 3-amidoindolyl derivatives |
US5189054A (en) * | 1990-11-02 | 1993-02-23 | Merrell Dow Pharmaceuticals Inc. | 3-amidoindolyl derivatives and pharmaceutical compositions thereof |
US5118675A (en) * | 1991-02-15 | 1992-06-02 | American Home Products Corporation | Quinoxaline phosphono-amino acids |
US5606063A (en) * | 1991-02-27 | 1997-02-25 | Merrell Pharmaceuticals Inc. | NMDA antagonists |
US5796390A (en) * | 1991-02-28 | 1998-08-18 | Thomson, S.A. | Redundant shift registers for scanning circuits in liquid crystal display devices |
US5594007A (en) * | 1991-04-18 | 1997-01-14 | Pfizer Inc. | Method for treating spinal cord trauma with phenolic 2-piperidino-1-alkanols |
US5385903A (en) * | 1991-07-09 | 1995-01-31 | Schering Aktiengesellschaft | Pharmaceutical agent for treatment of withdrawal symptoms |
US5124319A (en) * | 1991-10-11 | 1992-06-23 | American Home Products Corporation | Benzimidazole phosphono-amino acids |
US5710168A (en) * | 1991-10-23 | 1998-01-20 | Pfizer Inc. | 2-piperidino-1-alkanol derivatives as neuroprotective agents |
US5489579A (en) * | 1991-12-20 | 1996-02-06 | Merrell Dow Pharmaceuticals Inc. | Potentation of NMDA antagonists |
US5441963A (en) * | 1991-12-20 | 1995-08-15 | Merrell Dow Pharmaceuticals | Potentiation of NMDA antagonists |
US5318985A (en) * | 1991-12-20 | 1994-06-07 | Merrell Dow Pharmaceuticals Inc. | Potentiation of NMDA antagonists |
US5614509A (en) * | 1992-07-09 | 1997-03-25 | Schering Aktiengesellschaft | Pharmaceutical agents for preventing the development of tolerance during the treatment with benzodiazepine-receptor-binding active ingredients |
US5192751A (en) * | 1992-07-24 | 1993-03-09 | Eli Lilly And Company | Use of competitive NMDA receptor antagonists in the treatment of urinary incontinence |
US5498610A (en) * | 1992-11-06 | 1996-03-12 | Pfizer Inc. | Neuroprotective indolone and related derivatives |
US5385947A (en) * | 1993-01-15 | 1995-01-31 | Hoffmann-La Roche Inc. | Octahydrophenanthrene derivatives |
US5321012A (en) * | 1993-01-28 | 1994-06-14 | Virginia Commonwealth University Medical College | Inhibiting the development of tolerance to and/or dependence on a narcotic addictive substance |
US5654281A (en) * | 1993-01-28 | 1997-08-05 | Virginia Commonwealth University | Inhibiting the development of tolerance to and/or dependence on an addictive substance |
US5556838A (en) * | 1993-01-28 | 1996-09-17 | Virginia Commonwealth University | Inhibiting the development of tolerance to and/or dependence on an addictive substance |
US5834479A (en) * | 1993-03-05 | 1998-11-10 | Mayer; David J. | Method and composition for alleviating pain |
US5502058A (en) * | 1993-03-05 | 1996-03-26 | Virginia Commonwealth University | Method for the treatment of pain |
US5519048A (en) * | 1993-05-27 | 1996-05-21 | Merrell Pharmaceuticals Inc. | 3-(indol-3-yl)-propenoic acid derivatives and pharmaceutical compositions thereof |
US5753657A (en) * | 1993-07-16 | 1998-05-19 | Rhone-Poulenc Rorer S.A. | Imidazo 1,2-A! pyrazine-4-one, preparation thereof and drugs containing same |
US5395822A (en) * | 1993-09-20 | 1995-03-07 | Izumi; Yukitoshi | Use of pyruvate to prevent neuronal degeneration associated with ischemia |
US5710139A (en) * | 1993-12-22 | 1998-01-20 | Astra Ab | Heterocyclic compounds |
US5922716A (en) * | 1994-03-28 | 1999-07-13 | Rhone-Poulenc Rorer S.A. | 5H-indeno 1,2-b!pyrazine-2,3-dione derivatives, their preparation and medicinal products containing them |
US5633379A (en) * | 1994-06-02 | 1997-05-27 | Ciba-Geigy Corporation | 3-heteroaliphatyl- and 3-hetero(aryl)aliphatyl-2(1H)-quinolone derivatives |
US6057358A (en) * | 1994-08-04 | 2000-05-02 | C&C Research Labs. | Amine derivatives, processes for producing them and a use of them as antiarrhythmic drugs |
US5783572A (en) * | 1994-09-13 | 1998-07-21 | Pfizer Inc. | Quinoxalinedione NMDA receptor antagonists |
US6096743A (en) * | 1994-09-27 | 2000-08-01 | Yamanouchi Pharmaceuticals Co., Ltd. | 1,2,3,4-tetrahydroquinoxalinedione derivative |
US5563157B1 (en) * | 1994-10-31 | 1999-02-02 | Hoecst Marion Roussel Inc | Heterocycle substituted propenoic acid derivatives and pharmaceutical compositions thereof |
US6180786B1 (en) * | 1994-10-31 | 2001-01-30 | Hoechst Marion Roussel, Inc. | Heterocycle substituted propenoic acid derivatives as NMDA antagonist |
US5563157A (en) * | 1994-10-31 | 1996-10-08 | Hoechst Marion Roussel Inc. | Heterocycle substituted propenoic acid derivatives and pharmaceutical compositions thereof |
US5777114A (en) * | 1994-11-02 | 1998-07-07 | Rhone-Poulenc Rorer S.A. | Spiro heterocycle-imidazo 1,2-a!indeno 1,2-e!pyrazine!-4'-ones, preparation thereof and drugs containing same |
US5605911A (en) * | 1995-01-31 | 1997-02-25 | Washington University | Use of alpha-2 adrenergic drugs to prevent adverse effects of NMDA receptor hypofunction (NRH) |
US6258827B1 (en) * | 1995-05-26 | 2001-07-10 | Pfizer Inc. | Combinations for the treatment of parkinsonism containing selective NMDA antagonists |
US6083941A (en) * | 1995-07-24 | 2000-07-04 | Trustees Of Boston University | Inhibition of NMDA receptor activity by pregnenolone sulfate derivatives |
US5888996A (en) * | 1995-07-26 | 1999-03-30 | Trustees Of Boston University | Inhibition of NMDA receptor activity and modulation of glutamate-mediated synaptic activity |
US5863922A (en) * | 1995-08-02 | 1999-01-26 | Virginia Commonwealth University | Pain-alleviating drug composition and method for alleviating pain |
US5869498A (en) * | 1995-08-02 | 1999-02-09 | Virginia Commonwealth University | Pain alleviating drug composition and method for alleviating pain |
US6080743A (en) * | 1995-08-31 | 2000-06-27 | Novartis Ag | 2,3-dioxo-1,2,3,4-tetrahydro-quinoxalinyl derivatives |
US6194000B1 (en) * | 1995-10-19 | 2001-02-27 | F.H. Faulding & Co., Limited | Analgesic immediate and controlled release pharmaceutical composition |
US6071929A (en) * | 1996-02-03 | 2000-06-06 | Hoffman-La Roche Inc. | Octahydro phenanthridine derivatives useful as NMDA-R receptor subtype blockers |
US5952344A (en) * | 1996-02-03 | 1999-09-14 | Hoffmann-La Roche Inc. | Tetrahydroisoquinoline derivatives |
US5962472A (en) * | 1996-03-08 | 1999-10-05 | Hoffmann-La Roche Inc. | Use of 4-phenyl-3,6-dihydro-2H-pyridyl derivatives |
US6025369A (en) * | 1996-05-03 | 2000-02-15 | The Board Of Regents Of The University Nebraska | N-methyl-D-aspartate (NMDA) receptor blockers for the prevention of atherosclerosis |
US5889026A (en) * | 1996-07-19 | 1999-03-30 | Hoffmann-La Roche Inc. | 4-hydroxy-piperodine derivatives |
US6187338B1 (en) * | 1996-08-23 | 2001-02-13 | Algos Pharmaceutical Corporation | Anticonvulsant containing composition for treating neuropathic pain |
US5902815A (en) * | 1996-09-03 | 1999-05-11 | Washington University | Use of 5HT-2A serotonin agonists to prevent adverse effects of NMDA receptor hypofunction |
US5958919A (en) * | 1996-09-20 | 1999-09-28 | Washington University | Treatment of presymptomatic alzheimer's disease to prevent neuronal degeneration |
US5919826A (en) * | 1996-10-24 | 1999-07-06 | Algos Pharmaceutical Corporation | Method of alleviating pain |
US5866585A (en) * | 1997-05-22 | 1999-02-02 | Synchroneuron, Llc | Methods of treating tardive dyskinesia using NMDA receptor antagonists |
US6057373A (en) * | 1997-05-22 | 2000-05-02 | Synchroneuron, Llc | Methods of treating tardive dyskinesia and other movement disorders using NMDA receptor antagonists |
US6071966A (en) * | 1997-06-30 | 2000-06-06 | Merz + Co. Gmbh & Co. | 1-amino-alkylcyclohexane NMDA receptor antagonists |
US6034134A (en) * | 1997-06-30 | 2000-03-07 | Merz + Co. Gmbh & Co. | 1-Amino-alkylcyclohexane NMDA receptor antagonists |
US5783700A (en) * | 1997-07-03 | 1998-07-21 | Nichols; Alfred C. | Quinolic acid derivatives |
US6284776B1 (en) * | 1997-10-24 | 2001-09-04 | Leonard T. Meltzer | Method for treating diseased-related or drug-induced dyskinesias |
US6177434B1 (en) * | 1997-12-16 | 2001-01-23 | The United States Of America As Represented By The Secretary Of The Navy | Prevention or reversal of sensorineural hearing loss (SNHL) through biologic mechanisms |
US6294583B1 (en) * | 1998-01-13 | 2001-09-25 | Synchroneuron, Llc | Methods of treating tardive dyskinesia and other movement disorders |
US6242456B1 (en) * | 1998-03-09 | 2001-06-05 | Trustees Of Tufts College | Treatment of stereotypic, self-injurious and compulsive behaviors in man and animals using antagonists of NMDA receptors |
US6197820B1 (en) * | 1998-04-06 | 2001-03-06 | Uab Research Foundation | Use of phenylglycine derivatives to decrease neuronal death caused by brain tumors and brain lesions |
US6054451A (en) * | 1998-04-21 | 2000-04-25 | Algos Pharmaceutical Corporation | Analgesic composition and method for alleviating pain |
US6284774B1 (en) * | 1998-06-26 | 2001-09-04 | Warner-Lambert Company | 4-Benzyl piperidine alkylsulfoxide heterocycles and their use as subtype-selective NMDA receptor antagonists |
US6184236B1 (en) * | 1998-08-18 | 2001-02-06 | Hoffmann-La Roche Inc. | Method of treating a neurodegenerative disease by administering an aryl-cyclohexylamine derivative |
US6200990B1 (en) * | 1998-12-21 | 2001-03-13 | Alcon Laboratories, Inc. | Neuroprotective agents having antioxidant and NMDA antagonist activity |
US6265426B1 (en) * | 1999-07-21 | 2001-07-24 | Hoffmann-La Roche Inc. | Triazole derivatives |
US6274633B1 (en) * | 1999-07-29 | 2001-08-14 | Imperial College Of Science, Technology, And Medicine | NMDA antagonist |
US6339093B1 (en) * | 1999-10-08 | 2002-01-15 | Hoffmann-La Roche Inc. | Isoquinoline derivatives |
US7375136B2 (en) * | 2001-03-08 | 2008-05-20 | Emory University | pH-dependent NMDA receptor antagonists |
Also Published As
Publication number | Publication date |
---|---|
CA2440284A1 (en) | 2002-09-19 |
WO2002072542A3 (en) | 2003-02-27 |
US20040138502A1 (en) | 2004-07-15 |
WO2002072542A2 (en) | 2002-09-19 |
AU2002250256B2 (en) | 2008-04-03 |
EP1436258A4 (en) | 2005-03-23 |
US7375136B2 (en) | 2008-05-20 |
JP2005506292A (en) | 2005-03-03 |
EP1436258A2 (en) | 2004-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090023791A1 (en) | PH-dependent NMDA receptor antagonists | |
AU2002250256A1 (en) | pH-dependent NMDA receptor antagonists | |
JP2005506292A5 (en) | ||
AU2018200368B2 (en) | Compositions and methods of modulating 15-pgdh activity | |
JP4568113B2 (en) | Diaryl-substituted cyclic urea derivatives having MCH modulating action | |
NO174044B (en) | ANALOGY PROCEDURE FOR PREPARING A THERAPEUTIC ACTIVE AMID DERIVATE | |
JP5001150B2 (en) | 2,4-Diaminoquinazoline for spinal muscular atrophy | |
EP1753725B1 (en) | Tetrahydroisoquinoline sulfonamide derivatives, the preparation thereof, and the use of the same in therapeutics | |
HUT56543A (en) | Process for producing aromatic amines and pharmaceutical compositions comprising such compounds | |
US20240294493A1 (en) | GluN2C/D Subunit Selective Antagonists of the N-Methyl-D-Aspartate Receptor | |
US20220332695A1 (en) | Urea derivatives as cb1 allosteric modulators | |
US8933065B2 (en) | N-benzylamide substituted derivatives of 2-(acylamido)acetic acid and 2-(acylamido)propionic acids: potent neurological agents | |
US11261154B2 (en) | Benzene derivative | |
US7576129B2 (en) | Carboxylic acid compounds | |
US20190382335A1 (en) | Inhibitors of the n-terminal domain of the androgen receptor | |
US20140148432A1 (en) | Compounds for the Treatment of Neurological Disorders | |
EP0426804B1 (en) | 2-(2-hydroxy-3-phenoxypropylamino)-ethoxybenzene derivatives | |
US20060040931A1 (en) | Benzomorpholine derivatives | |
WO1999005095A1 (en) | Aminocycloalkane compounds | |
KR20150091163A (en) | Aminocyclobutane derivatives, method for preparing same and the use thereof as drugs | |
WO2022129047A2 (en) | Novel modulators of the nmda receptor | |
JP2022506378A (en) | Novel tetrahydropyrimid diazepines and tetrahydropyridodiazepine compounds for treating pain and pain-related conditions | |
AU2008201372A1 (en) | Ph-Dependent NMDA receptor antagonists | |
IE66056B1 (en) | Phenylacetonitrilealkylaminoalkyl-ortho-substituted aryl compounds as immunosuppressives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |