US20090018293A1 - Process for the preparation of a metaloorganic compound comprising at least one imine ligand - Google Patents

Process for the preparation of a metaloorganic compound comprising at least one imine ligand Download PDF

Info

Publication number
US20090018293A1
US20090018293A1 US12/230,991 US23099108A US2009018293A1 US 20090018293 A1 US20090018293 A1 US 20090018293A1 US 23099108 A US23099108 A US 23099108A US 2009018293 A1 US2009018293 A1 US 2009018293A1
Authority
US
United States
Prior art keywords
metal
group
formula
base
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/230,991
Inventor
Edwin Ijpeij
Arts Henricus
Gerardus Van Doremaele
Beijer Felix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DSM IP Assets BV
Original Assignee
DSM IP Assets BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DSM IP Assets BV filed Critical DSM IP Assets BV
Priority to US12/230,991 priority Critical patent/US20090018293A1/en
Publication of US20090018293A1 publication Critical patent/US20090018293A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/30Germanium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/535Organo-phosphoranes
    • C07F9/5355Phosphoranes containing the structure P=N-
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/04Cp or analog not bridged to a non-Cp X ancillary anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the invention relates to a process for the preparation of an metal-organic compound comprising at least one imine ligand according to formula 1.
  • Metal-organic compounds thus produced are typically used as precatalyst in the production of polyolefins.
  • Imine ligands for these precatalyst can be guanidine, iminoimidazoline, ketimine or phosphinimine, the manufacturing of which is described in WO 02070569, U.S. Pat. No. 6,114,481 and U.S. Pat. No. 6,063,879 respectively.
  • the known production processes for phosphinimine comprising metal-organic compounds require at least two steps: (i) the synthesis of a N-trialkylsilyl substituted imine ligand, followed by (ii) contacting this ligand with an metal-organic precursor.
  • azide chemistry is required in the one step process for the manufacturing of the imine ligand.
  • the most frequently used azide is azidotrimethylsilane, which is highly toxic and readily hydrolysable, releasing the highly toxic and both temperature and shock sensitive hydrazoic acid. Therefore, mixtures containing (partially) hydrolysed trimethylsilylazide may explosively decompose.
  • Purpose of the present invention is to provide a widely applicable method for the manufacturing of a metal-organic compound from an imine and a metal-organic precursor in one step
  • Y is selected from a substituted carbon, nitrogen or phosphorous atom and R represents a proton, a protic or an aprotic substituent, and:
  • M represents a group 4 or group 5 metal ion
  • V represents the valency of the metal ion, being 3, 4 or 5
  • L 1 , L 2 , L 3 , and L 4 represent ligands on M and may be equal or different
  • a base is understood to be an inorganic or metal-organic base.
  • CA 02243775 describes a similar preparation of an metal-organic compound in the presence of an inorganic base. Surprisingly it was found that this reaction could also be carried out in the presence of the cheaper inorganic base like potassium carbonate.
  • Another advantage is the formation of a precipitate which can be filtered off easier than the precipitate which is formed with the organic base used in CA 02243775.
  • Still another advantage is the fact that inorganic bases are environmentally friendly and allows a broader range of solvents used in the process of the invention.
  • An advantage of the metal-organic base is that with this base the hydrocarbylated metal-organic compound can be prepared in a one step process.
  • the metal-organic dichloride has to be hydrocarbylated in a second reaction step in case this is required for exampled to use the metal-organic compound in a polymerisation process using a boron comprising activator.
  • Another advantage of the process of the invention is the use of the HA adduct of the imine, which can be prepared easier than the imine of the state of the art.
  • a metal-organic compound suitable as precatalyst in olefin polymerisation, is prepared in one step.
  • An additional advantage of the method of the invention is, that during the process hardly any by-products are formed, so that further purification is not necessary (or very limited with respect to state of the art processes).
  • the metal-organic compound prepared by the method of the invention has a higher purity than a metal-organic compound prepared via known production processes and can be used as such in olefin polymerisation processes.
  • An additional advantage of the process of the invention is that the process can be carried out at room temperature, whereas the reaction of the N-trialkylsilyl substituted imine ligand with the metal-organic reagent has to be often carried out at elevated temperatures.
  • the imine derivative or its HA adduct, as represented in formula 1, is substituted by an Y- and an R group.
  • the Y group consists of a substituted carbon, nitrogen or phosphorous atom. If Y represents a substituted carbon atom, the number of substituents is 2. If Y represents a substituted nitrogen atom, the number of substituents is 1 and the number of substituents is 1 or 3 if Y represents a phosphorous atom, depending on the valency of the phosphorous atom.
  • Substituents on carbon, nitrogen or phosphorous may be equal or different, optionally linked with each other, optionally having heteroatoms.
  • Substituents may be protic or aprotic.
  • a protic substituent is defined here as a substituent, which has at least one, group 15 or group 16 atom containing at least one proton.
  • protic substituents include C 1 -C 20 linear, branched or cyclic hydrocarbyl radicals, substituted with a group 15 or 16 atom bearing at least one hydrogen atom.
  • Preferred protic substituents include phenolic radicals, pyrrolic radicals, indolic radicals, and imidazolic radicals.
  • the substituent is called aprotic if the substituent lacks a group containing a group 15 or group 16 atom bearing a proton.
  • An unsubstituted aprotic hydrocarbyl radical can be a C 1 -C 20 linear, branched or cyclic radical, a hydrogen atom, a halogen atom, a C 1-8 alkoxy radical, a C 6-10 aryl or aryloxy radical, an amido radical, or a C 1-20 hydrocarbyl radical unsubstituted or substituted by a halogen atom, a C 1-8 alkoxy radical, a C 6-10 aryl or aryloxy radical, an amido radical, a silyl radical of the formula 4, or a germanyl radical of the formula 5.
  • the substituent R can be H, or being equal as these for the substituent on Y.
  • imine ligands according to formula (I) thus include: guanidines, iminoimidazolines, phosphinimines, phenolimines, pyrroleimines, indoleimines and imidazoleimines.
  • R may be linked with Y, thus forming a ring system, optionally comprising heteroatoms, or optionally comprising functional groups.
  • ligands comprising such ring systems include: 8-hydroxyquinoline, 8-aminoquinoline, 8-phosphinoquinoline, 8-thioquinoline, 8-hydroxyquinaldine, 8-aminoquinaldine, 8-phosphinoquinaldine, 8-thioquinaldine and 7-azaindole or indazole.
  • R represents a hydrogen atom and Y is selected from the group consisting of:
  • each R 1j is independently selected from the group consisting of a hydrogen atom, a halogen atom, a C 1-8 alkoxy radical, a C 6-10 aryl or aryloxy radical, an amido radical, or a C 1-20 hydrocarbyl radical unsubstituted or substituted by a halogen atom, a C 1-8 alkoxy radical, a C 6-10 aryl or aryloxy radical, an amido radical, a silyl radical of the formula:
  • R 2j is independently selected from the group consisting of hydrogen, a C 1-8 alkyl or alkoxy radical, C 6-10 aryl or aryloxy radicals, each substituent R 1j or R 2j may be linked with another R 1j or R 2j respectively to form a ring system, ii) a substituent according to formula 6:
  • each of Sub 1 and Sub 2 is independently selected from the group consisting of hydrocarbyl radicals having from 1 to 30 carbon atoms; silyl radicals, (substituted) amido radicals and (substituted) phosphido radicals, and wherein Sub 1 and Sub 2 may be linked with each other to form a ring system.
  • Sub 1 and Sub 2 are each independently selected from the group of C1-C20 hydrocarbyl radicals, or substituted amido radicals optionally linked by a bridging moiety.
  • the metal-organic compound is contacted with the HA adduct of an imine ligand, with more preference a phosphinimine ligand in the presence of at least two equivalents of a base.
  • a process for a less dangerous azide-free preparation of phosphinimine ligands is described in Canadian patent application CA 2,261,518.
  • a trialkyl aminophosphoniumhalide (which is the HX adduct of trialkylphosphinimine) is reacted with a base to a trialkyl phosphinimide salt, where after this trialkyl phosphinimide salt is quenched with trimethyl silylchloride(TMSCl).
  • the thus formed trialkyl silyl substituted phosphinimine ligand is subsequently reacted in a third step with CpTiCl 3 to the metal organic compound.
  • a disadvantage of the 3 step method described in CA 2,261,518, is the use of harmful and costly reagents, such as n-butyllithium.
  • Another purpose of the present invention is therefore to provide a widely applicable method for the manufacturing of a metal-organic compound from an aminophosphoniumhalide and a metal-organic reagent in one step. This aim is achieved in a process wherein an HA adduct of a phosphinimine ligand (e.g.
  • aminophosphonium halide according to formula 1 is contacted with a metal-organic reagent of formula 2 in the presence of at least 2 equivalents of a base, wherein HA represents an acid, of which H represents its proton and A its conjugate base, with Y ⁇ NH being the ligand in formula 1, wherein Y is represented by formula 3.
  • HA represents an acid, of which H represents its proton and A its conjugate base.
  • A are halogenides, such as fluoride, chloride, bromide, or iodide, sulfate, hydrogensulfate, phosphate, hydrogenphosphate, dihydrogenphosphate, carbonate, hydrogencarbonate, aromatic or aliphatic carboxylates, cyanide, tetrafluoroborate, (substituted) tetraphenylborates, fluorinated tetraarylborates, alkyl or aryl sulfonates.
  • the “number of equivalents of a base” is understood to be the amount of equivalents with respect to the number of imine ligands, or functionalities in the event that one ligand comprises more than one imine functionality.
  • at least 1, respectively 2 equivalens of a base and lateron in the application “at least 3, respectively 4 equivalents of a base”, is meant that at least 1, respectively 3 equivalents of a base are required when the imine ligand as such is used, but that at least 2, respectively 4 equivalents are required, in case the HA adduct of the imine ligand is used.
  • the metal-organic reagent used in the method of the invention is a reagent according to formula 2.
  • L 1 to L 4 can independently be a monoanionic ligand or a group 17 halogen atom.
  • Examples of monoanionic ligands are: halides like a fluoride, chloride, bromide or iodide, (un)substituted aliphatic or aromatic hydrocarbyls, like C 1 -C 20 hydrocarbyl radicals, aryloxy or alkyloxy, cyclopentadienyls, indenyls, tetrahydroindenyls, fluorenyls, tetrahydrofluorenyls, and octahydrofluorenyls, amides, phosphides, sulfides, ketimides, guanidines, iminoimidazolines, phosphinimides, substituted imines, like (hetero)aryloxyimines, pyrroleimines, indoleimines, imidazoleimines or (hetero)aryloxides.
  • halides like a fluoride, chloride, bromide or iodide,
  • Preferred monoanionic ligands include: fluoride, chloride, bromide, iodide, C 1 -C 20 hydrocarbyl radicals, cyclopentadienyl, C 1 -C 20 hydrocarbyl substituted cyclopentadienyls, halogen substituted C 1 -C 20 hydrocarbyl substituted cyclopentadienyls, indenyl, C 1 -C 20 hydrocarbyl substituted indenyls, halogen substituted C 1 -C 20 hydrocarbyl substituted indenyls, fluorenyls, C 1 -C 20 hydrocarbyl substituted fluorenyls, halogen substituted C 1 -C 20 hydrocarbyl substituted fluorenyls, C 1 -C 45 substituted phosphinimides, C 1 -C 20 substituted ketimides, C 1 -C 30 substituted guanidines, C 1 -C 30 iminoimidazolines.
  • monoanionic ligands are selected from fluoride, chloride, bromide, iodide, cyclopentadienyl, C 1 -C 20 hydrocarbyl (optionally containing hetero- or group 17 halogen atoms), substituted cyclopentadienyls, indenyl, C 1 -C 20 hydrocarbyl substituted indenyls, and halogen substituted C 1 -C 20 hydrocarbyl substituted indenyls.
  • L 1 , L 2 , L 3 , or L 4 represents a group 17 atom.
  • V the valency of the metal
  • one or two ligands L may represent a group 17 atom.
  • Preferred group 17 atom ligands are fluoride, chloride, bromide or iodide atoms. The most preferred group 17 atom ligand is chloride.
  • At least one of the ligands L is chosen from cyclopentadienyl, C 1 -C 20 hydrocarbyl (optionally containing hetero- or group 17 halogen atoms), substituted cyclopentadienyls, indenyl, C 1 -C 20 hydrocarbyl substituted indenyls, and halogen substituted C 1 -C 20 hydrocarbyl substituted indenyls.
  • C 1 -C 20 hydrocarbyl (optionally containing hetero- or group 17 halogen atoms) also includes aryloxy or alkyloxy, octahydrofluorenyls, amides, phosphides, sulfides, ketimides, guanidines, iminoimidazolines, phosphinimides, substituted imines, like (hetero)aryloxyimines, pyrroleimines, indoleimines, imidazoleimines and (hetero)aryloxides.
  • an imine ligand or the HA adduct thereof according to formula 1 is contacted with a metal-organic reagent of formula 2 in the presence of at least 1, respectively 2, equivalents of a base.
  • a base is understood to be an inorganic base or a metal-organic base.
  • An inorganic base is a metal or a metal salt capable of accepting at least one proton.
  • a metal-organic base is a carbanion of an element of group 1,2, 12 or 13.
  • Examples of a base include, carboxylates (for example potassium acetate), fluorides, hydroxides, cyanides, amides and carbonates of Li, Na, K, Rb, Cs, ammonium and the group 2 metals Mg, Ca, & Ba, the alkali metal (Li, Na, K, Rb, Cs) phosphates and the phosphate esters (eg. C 6 H 5 OP(O)(ONa) 2 and related aryl and alkyl compounds) and their alkoxides and phenoxides, thallium hydroxide, alkylammonium hydroxides and fluorides.
  • carboxylates for example potassium acetate
  • fluorides for example potassium acetate
  • hydroxides for example potassium acetate
  • cyanides cyanides
  • amides and carbonates Li, Na, K, Rb, Cs, ammonium and the group 2 metals Mg, Ca, & Ba
  • bases may be used in conjunction with a phase transfer reagent, such as for example tetraalkylammonium-, tetraalkylphosphonium salts or crown ethers.
  • a phase transfer reagent such as for example tetraalkylammonium-, tetraalkylphosphonium salts or crown ethers.
  • stronger bases may be applied, like carbanions such as hydrocarbanions of group 1, group 2, group 12 or group 13 elements.
  • the metallic alkalimetals of group 1 may be applied as a base.
  • Preferred bases include, organolithium compounds, or organomagnesium compounds, alkali metals, group 1 hydrides or group 2 hydrides
  • More preferred bases are organolithium compounds, organomagnesium compound, sodium hydride or calciumhydride.
  • organomagnesium compounds are: methylmagnesiumhalides, phenylmagnesiumhalides, benzylmagnesiumhalides, biphenylmagnesiumhalides, naphtylmagnesiumhalides, tolylmagnesiumhalides, xylylmagnesiumhalides, mesitylmagnesiumhalides, dimethylresorcinolmagnesiumhalides, N,N-dimethylanilinemagnesiumhalides, dimethylmagnesium, diphenylmagnesium, dibenzylmagnesium, bis(biphenyl)magnesium, dinaphtylmagnesium, ditolylmagnesium, dixylylmagnesium, dimesitylmagnesium, bis(dimethylresorcinol)magnesium, bis(N,N-dimethylaniline)magnesium.
  • organolithium compounds are: methyllithium, phenyllithium, benzyllithium, biphenyllithium, naphtyllithium, dimethylresorcinollithium, N N-dimethylanilinelithium.
  • the halide groups of the metal-organic compound from the process of the invention have to be alkylated or arylated in an additional reaction step. This can be done for example with an organolithium compound or an organo magnesium compound.
  • an organolithium compound or an organo magnesium compound Surprisingly it has been found that such alkylated or arylated metal-organic compound can also be prepared in one step by the process of the invention by carrying out the process in the presence of at least 3, respectively 4 equivalents of an organomagnesium compound or an organolithium compound as a base.
  • a metal-organic reagent comprising 3 halogen ligands reacting with 1 imine functionality only.
  • metal-organic reagents with 4 or 5 halogen ligands will require at least 4 respectively 5 equivalents of a base in stead of at least 3, or 5 respectively 6 equivalents in stead of 4.
  • Suitable solvents are solvents that do not react with the metal-organic reagent or the metal-organic compound formed in the process of the invention.
  • suitable solvents include aromatic and aliphatic hydrocarbons, halogenated hydrocarbons, amides of the aliphatic carboxylic acids and primarily, or secondary amines, DMSO, nitromethane, acetone, acetonitrile, benzonitrile, ethers, polyethers, cyclic ethers, lower aromatic and aliphatic ethers, or esters, and mixtures thereof.
  • Preferred solvents include aromatic or aliphatic hydrocarbons or mixtures thereof.
  • the process of the invention can be carried out, by adding at least 1, respectively at least 2 equivalents of a base to a mixture of the imine ligand or its HA adduct and the metal-organic reagent thus forming a reaction mixture.
  • the desired metal-organic compound is often formed instantaneously. Excess of a base may be applied without negative effects on the reaction product.
  • a salt is formed.
  • the reaction mixture as obtained by contacting an imine or its HA adduct may be used as precatalyst in a polyolefin polymerisation without an additional filtration step if the salt formed during the reaction is compatible with the polymerisation process.
  • the salt can be removed by using a filtration.
  • the mixture may be heated and then filtered.
  • An advantage of the present invention is that the filtrate may be used as such without further purification in a following process, such as an alkylation or arylation step or the polymerisation process.
  • the metal-organic compound may be isolated by distillation of the solvent, by precipitation or by crystallisation from a suitable solvent.
  • the invention further relates to a process for the preparation of a polyolefin as described in claim 13 .
  • Such an olefin polymerisation can be carried out in solution, slurry or in the gas phase.
  • the (alkylated) metal-organic compound is formed in situ.
  • in situ preparation is meant in this context, that the metal-organic compound is made and subsequently activated in or anywhere before the reactor of the polymerisation equipment by contacting an imine or its HA adduct with an metal-organic reagent in the presence of an olefin polymerisation compatible base.
  • bases compatible with the olefin polymerisation process include, organomagnesium compound, organolithium reagents, organozinc reagents, organoaluminum reagents.
  • More preferred bases are: organomagnesium compound, organolithium reagents, organozinc reagents, organoaluminum reagents. Most preferred bases are dibutylmagnesium, n-butyllithium, C 1 -C 20 dihydrocarbylzinc derivatives, diisobutylaluminium hydride, C 1 -C 20 trihydrocarbyl aluminiums, or aluminoxanes. In the case where aluminoxanes are applied as a base, the base can be the activator.
  • R preferably represents a proton and Y is preferably selected from the group consisting of:
  • Advantages of the process of the invention are: mild conditions, higher yields, higher reaction rates and smaller amounts of by-products.
  • the (alkylated) metal-organic compounds as obtained by the invented process can be used without further purification in the olefin polymerisation resulting in more active catalysts.
  • Tri-ethylamine was distilled from calciumhydride before use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The invention relates to a process for the preparation of a metalorganic compound, comprising at least one imine ligand, characterized in that an imine ligand according to formula 1, or the HA adduct thereof, wherein HA represents an acid, of which H represents its proton and A its conjugate base, is contacted with a metal-organic reagent of formula 2 in the presence of at least 1, respectively 2 equivalents of an inorganic or metal-organic base, wherein Y═N—R (formula 1), Y is selected from a substituted carbon, nitrogen or phosphorous atom, R represents a proton, a protic or an aprotic substituent, and the metal organic compound is: Mv(L1)k(L2)I(L3)m(L4)nX (formula 2) wherein: M represents a group 4 or group 5 metal ion, V represents the valency of the metal ion, being 3, 4 or 5, L1, L2, L3, and L4 represent ligands on M and may be equal or different, X represents a group 17 halogen atom, and k, l, m, n=0, 1, 2, 3, 4 with k+l+m+n+1=V. The invention further relates to a process for the preparation of a polyolefin by making a metal-organic compound according to the process of the invention, wherein the base is an olefin polymerisation compatible base, which metal-organic compound is activated anywhere in, or before a polymerisation reactor.

Description

  • The invention relates to a process for the preparation of an metal-organic compound comprising at least one imine ligand according to formula 1. Metal-organic compounds thus produced are typically used as precatalyst in the production of polyolefins. Imine ligands for these precatalyst can be guanidine, iminoimidazoline, ketimine or phosphinimine, the manufacturing of which is described in WO 02070569, U.S. Pat. No. 6,114,481 and U.S. Pat. No. 6,063,879 respectively.
  • The known production processes for phosphinimine comprising metal-organic compounds require at least two steps: (i) the synthesis of a N-trialkylsilyl substituted imine ligand, followed by (ii) contacting this ligand with an metal-organic precursor. However, in the one step process for the manufacturing of the imine ligand, as described in Z. Naturforschung. 29b, 328 (1974) (the Staudinger reaction), azide chemistry is required. In this process, the most frequently used azide is azidotrimethylsilane, which is highly toxic and readily hydrolysable, releasing the highly toxic and both temperature and shock sensitive hydrazoic acid. Therefore, mixtures containing (partially) hydrolysed trimethylsilylazide may explosively decompose.
  • A process for an azide-free preparation of imine ligands (i.e. phosphinimine) is described in Canadian patent application CA 2,261,518. However, this procedure encompasses two reaction steps starting from aminophosphoniumhalides. Another disadvantage of the method described in CA 2,261,518, is the use of harmful and costly reagents, such as n-butyllithium. Finally, in this procedure the imine ligand is substituted with trimethylsilylchloride, which is removed as such in a subsequent reaction of the imine ligand with the metal-organic precursor. Known production processes for guanidine-, ketimine- and iminoimidazoline comprising metal-organic compounds are described in WO 2070569 and U.S. Pat. No. 6,114,481.They are carried out at low temperature and require in some cases a solvent change.
  • Disadvantage of the known less dangerous method is thus that at least two steps are required, when starting the process with an aminophosphoniumhalide. Purpose of the present invention is to provide a widely applicable method for the manufacturing of a metal-organic compound from an imine and a metal-organic precursor in one step
  • This aim is achieved in that an imine ligand according to formula 1, or the HA adduct thereof, wherein HA represents an acid, of which H represents its proton and A its conjugate base, is contacted with a metal-organic reagent of formula 2 in the presence of at least 1, respectively 2 equivalents of base, wherein

  • Y═N—R  (formula 1)
  • wherein Y is selected from a substituted carbon, nitrogen or phosphorous atom and R represents a proton, a protic or an aprotic substituent, and:

  • MV(L1)k(L2)l(L3)m(L4)nX  (formula 2)
  • wherein:
    M represents a group 4 or group 5 metal ion
    V represents the valency of the metal ion, being 3, 4 or 5
    L1, L2, L3, and L4 represent ligands on M and may be equal or different
    X represents a group 17 halogen atom
    k, l, m, n=0, 1, 2, 3, 4 with k+l+m+n+1=V
  • In this application a base is understood to be an inorganic or metal-organic base. CA 02243775 describes a similar preparation of an metal-organic compound in the presence of an inorganic base. Surprisingly it was found that this reaction could also be carried out in the presence of the cheaper inorganic base like potassium carbonate. Another advantage is the formation of a precipitate which can be filtered off easier than the precipitate which is formed with the organic base used in CA 02243775. Still another advantage is the fact that inorganic bases are environmentally friendly and allows a broader range of solvents used in the process of the invention. An advantage of the metal-organic base is that with this base the hydrocarbylated metal-organic compound can be prepared in a one step process. In the known process the metal-organic dichloride has to be hydrocarbylated in a second reaction step in case this is required for exampled to use the metal-organic compound in a polymerisation process using a boron comprising activator. Another advantage of the process of the invention is the use of the HA adduct of the imine, which can be prepared easier than the imine of the state of the art.
  • With the method of the invention a metal-organic compound, suitable as precatalyst in olefin polymerisation, is prepared in one step. An additional advantage of the method of the invention is, that during the process hardly any by-products are formed, so that further purification is not necessary (or very limited with respect to state of the art processes). The metal-organic compound prepared by the method of the invention has a higher purity than a metal-organic compound prepared via known production processes and can be used as such in olefin polymerisation processes. An additional advantage of the process of the invention is that the process can be carried out at room temperature, whereas the reaction of the N-trialkylsilyl substituted imine ligand with the metal-organic reagent has to be often carried out at elevated temperatures.
  • The imine derivative or its HA adduct, as represented in formula 1, is substituted by an Y- and an R group. In the method of the invention, the Y group consists of a substituted carbon, nitrogen or phosphorous atom. If Y represents a substituted carbon atom, the number of substituents is 2. If Y represents a substituted nitrogen atom, the number of substituents is 1 and the number of substituents is 1 or 3 if Y represents a phosphorous atom, depending on the valency of the phosphorous atom.
  • Substituents on carbon, nitrogen or phosphorous may be equal or different, optionally linked with each other, optionally having heteroatoms. Substituents may be protic or aprotic. A protic substituent is defined here as a substituent, which has at least one, group 15 or group 16 atom containing at least one proton.
  • Examples of protic substituents include C1-C20 linear, branched or cyclic hydrocarbyl radicals, substituted with a group 15 or 16 atom bearing at least one hydrogen atom. Preferred protic substituents include phenolic radicals, pyrrolic radicals, indolic radicals, and imidazolic radicals.
  • The substituent is called aprotic if the substituent lacks a group containing a group 15 or group 16 atom bearing a proton. An unsubstituted aprotic hydrocarbyl radical can be a C1-C20 linear, branched or cyclic radical, a hydrogen atom, a halogen atom, a C1-8alkoxy radical, a C6-10 aryl or aryloxy radical, an amido radical, or a C1-20 hydrocarbyl radical unsubstituted or substituted by a halogen atom, a C1-8 alkoxy radical, a C6-10 aryl or aryloxy radical, an amido radical, a silyl radical of the formula 4, or a germanyl radical of the formula 5.
  • The substituent R can be H, or being equal as these for the substituent on Y.
  • Examples of imine ligands according to formula (I) thus include: guanidines, iminoimidazolines, phosphinimines, phenolimines, pyrroleimines, indoleimines and imidazoleimines.
  • R may be linked with Y, thus forming a ring system, optionally comprising heteroatoms, or optionally comprising functional groups. Examples of ligands comprising such ring systems include: 8-hydroxyquinoline, 8-aminoquinoline, 8-phosphinoquinoline, 8-thioquinoline, 8-hydroxyquinaldine, 8-aminoquinaldine, 8-phosphinoquinaldine, 8-thioquinaldine and 7-azaindole or indazole.
  • In a preferred embodiment of the method of the invention, R represents a hydrogen atom and Y is selected from the group consisting of:
  • i) a phosphorus substituent according to the formula:
  • Figure US20090018293A1-20090115-C00001
  • wherein each R1j, with j=1-3 is independently selected from the group consisting of a hydrogen atom, a halogen atom, a C1-8 alkoxy radical, a C6-10 aryl or aryloxy radical, an amido radical, or a C1-20 hydrocarbyl radical unsubstituted or substituted by a halogen atom, a C1-8 alkoxy radical, a C6-10 aryl or aryloxy radical, an amido radical, a silyl radical of the formula:
  • Figure US20090018293A1-20090115-C00002
  • or a germanyl radical of the formula:
  • Figure US20090018293A1-20090115-C00003
  • wherein R2j, with j=1-3, is independently selected from the group consisting of hydrogen, a C1-8 alkyl or alkoxy radical, C6-10 aryl or aryloxy radicals, each substituent R1j or R2j may be linked with another R1j or R2j respectively to form a ring system,
    ii) a substituent according to formula 6:
  • Figure US20090018293A1-20090115-C00004
  • wherein each of Sub1 and Sub2 is independently selected from the group consisting of hydrocarbyl radicals having from 1 to 30 carbon atoms; silyl radicals, (substituted) amido radicals and (substituted) phosphido radicals, and wherein Sub1 and Sub2 may be linked with each other to form a ring system.
  • Preferably Sub1 and Sub2 are each independently selected from the group of C1-C20 hydrocarbyl radicals, or substituted amido radicals optionally linked by a bridging moiety.
  • Preferably the metal-organic compound is contacted with the HA adduct of an imine ligand, with more preference a phosphinimine ligand in the presence of at least two equivalents of a base. A process for a less dangerous azide-free preparation of phosphinimine ligands is described in Canadian patent application CA 2,261,518. In a first step a trialkyl aminophosphoniumhalide (which is the HX adduct of trialkylphosphinimine) is reacted with a base to a trialkyl phosphinimide salt, where after this trialkyl phosphinimide salt is quenched with trimethyl silylchloride(TMSCl). The thus formed trialkyl silyl substituted phosphinimine ligand is subsequently reacted in a third step with CpTiCl3 to the metal organic compound. A disadvantage of the 3 step method described in CA 2,261,518, is the use of harmful and costly reagents, such as n-butyllithium. Another purpose of the present invention is therefore to provide a widely applicable method for the manufacturing of a metal-organic compound from an aminophosphoniumhalide and a metal-organic reagent in one step. This aim is achieved in a process wherein an HA adduct of a phosphinimine ligand (e.g. aminophosphonium halide) according to formula 1 is contacted with a metal-organic reagent of formula 2 in the presence of at least 2 equivalents of a base, wherein HA represents an acid, of which H represents its proton and A its conjugate base, with Y═NH being the ligand in formula 1, wherein Y is represented by formula 3.
  • In the process of the invention, HA represents an acid, of which H represents its proton and A its conjugate base. Examples of A are halogenides, such as fluoride, chloride, bromide, or iodide, sulfate, hydrogensulfate, phosphate, hydrogenphosphate, dihydrogenphosphate, carbonate, hydrogencarbonate, aromatic or aliphatic carboxylates, cyanide, tetrafluoroborate, (substituted) tetraphenylborates, fluorinated tetraarylborates, alkyl or aryl sulfonates.
  • The “number of equivalents of a base” is understood to be the amount of equivalents with respect to the number of imine ligands, or functionalities in the event that one ligand comprises more than one imine functionality. With “at least 1, respectively 2 equivalens of a base”, and lateron in the application “at least 3, respectively 4 equivalents of a base”, is meant that at least 1, respectively 3 equivalents of a base are required when the imine ligand as such is used, but that at least 2, respectively 4 equivalents are required, in case the HA adduct of the imine ligand is used.
  • The metal-organic reagent used in the method of the invention is a reagent according to formula 2. In this formula L1 to L4 can independently be a monoanionic ligand or a group 17 halogen atom.
  • Examples of monoanionic ligands are: halides like a fluoride, chloride, bromide or iodide, (un)substituted aliphatic or aromatic hydrocarbyls, like C1-C20 hydrocarbyl radicals, aryloxy or alkyloxy, cyclopentadienyls, indenyls, tetrahydroindenyls, fluorenyls, tetrahydrofluorenyls, and octahydrofluorenyls, amides, phosphides, sulfides, ketimides, guanidines, iminoimidazolines, phosphinimides, substituted imines, like (hetero)aryloxyimines, pyrroleimines, indoleimines, imidazoleimines or (hetero)aryloxides.
  • Preferred monoanionic ligands include: fluoride, chloride, bromide, iodide, C1-C20 hydrocarbyl radicals, cyclopentadienyl, C1-C20 hydrocarbyl substituted cyclopentadienyls, halogen substituted C1-C20 hydrocarbyl substituted cyclopentadienyls, indenyl, C1-C20 hydrocarbyl substituted indenyls, halogen substituted C1-C20 hydrocarbyl substituted indenyls, fluorenyls, C1-C20 hydrocarbyl substituted fluorenyls, halogen substituted C1-C20 hydrocarbyl substituted fluorenyls, C1-C45 substituted phosphinimides, C1-C20 substituted ketimides, C1-C30 substituted guanidines, C1-C30 iminoimidazolines.
  • Most preferably monoanionic ligands are selected from fluoride, chloride, bromide, iodide, cyclopentadienyl, C1-C20 hydrocarbyl (optionally containing hetero- or group 17 halogen atoms), substituted cyclopentadienyls, indenyl, C1-C20 hydrocarbyl substituted indenyls, and halogen substituted C1-C20 hydrocarbyl substituted indenyls.
  • Depending on the valency of the metal of the metal-organic reagent, preferably at least one L1, L2, L3, or L4 represents a group 17 atom. If the valency of the metal V=3, one or two ligands L may represent a group 17 atom. If V=4, two or three ligands L may represent a group 17 atom. If V=5, two to four ligands L may represent a group 17 atom. Preferred group 17 atom ligands are fluoride, chloride, bromide or iodide atoms. The most preferred group 17 atom ligand is chloride. In a most preferred embodiment, at least one of the ligands L is chosen from cyclopentadienyl, C1-C20 hydrocarbyl (optionally containing hetero- or group 17 halogen atoms), substituted cyclopentadienyls, indenyl, C1-C20 hydrocarbyl substituted indenyls, and halogen substituted C1-C20 hydrocarbyl substituted indenyls. C1-C20 hydrocarbyl (optionally containing hetero- or group 17 halogen atoms) also includes aryloxy or alkyloxy, octahydrofluorenyls, amides, phosphides, sulfides, ketimides, guanidines, iminoimidazolines, phosphinimides, substituted imines, like (hetero)aryloxyimines, pyrroleimines, indoleimines, imidazoleimines and (hetero)aryloxides.
  • In the method of the invention an imine ligand or the HA adduct thereof according to formula 1, is contacted with a metal-organic reagent of formula 2 in the presence of at least 1, respectively 2, equivalents of a base. In this application a base is understood to be an inorganic base or a metal-organic base. An inorganic base is a metal or a metal salt capable of accepting at least one proton. A metal-organic base is a carbanion of an element of group 1,2, 12 or 13. Examples of a base include, carboxylates (for example potassium acetate), fluorides, hydroxides, cyanides, amides and carbonates of Li, Na, K, Rb, Cs, ammonium and the group 2 metals Mg, Ca, & Ba, the alkali metal (Li, Na, K, Rb, Cs) phosphates and the phosphate esters (eg. C6H5OP(O)(ONa)2 and related aryl and alkyl compounds) and their alkoxides and phenoxides, thallium hydroxide, alkylammonium hydroxides and fluorides. Some of these bases may be used in conjunction with a phase transfer reagent, such as for example tetraalkylammonium-, tetraalkylphosphonium salts or crown ethers. Also stronger bases may be applied, like carbanions such as hydrocarbanions of group 1, group 2, group 12 or group 13 elements. Also the metallic alkalimetals of group 1 may be applied as a base.
  • Preferred bases include, organolithium compounds, or organomagnesium compounds, alkali metals, group 1 hydrides or group 2 hydrides
  • More preferred bases are organolithium compounds, organomagnesium compound, sodium hydride or calciumhydride.
  • Examples of organomagnesium compounds are: methylmagnesiumhalides, phenylmagnesiumhalides, benzylmagnesiumhalides, biphenylmagnesiumhalides, naphtylmagnesiumhalides, tolylmagnesiumhalides, xylylmagnesiumhalides, mesitylmagnesiumhalides, dimethylresorcinolmagnesiumhalides, N,N-dimethylanilinemagnesiumhalides, dimethylmagnesium, diphenylmagnesium, dibenzylmagnesium, bis(biphenyl)magnesium, dinaphtylmagnesium, ditolylmagnesium, dixylylmagnesium, dimesitylmagnesium, bis(dimethylresorcinol)magnesium, bis(N,N-dimethylaniline)magnesium.
  • Examples of organolithium compounds are: methyllithium, phenyllithium, benzyllithium, biphenyllithium, naphtyllithium, dimethylresorcinollithium, N N-dimethylanilinelithium.
  • In order to make a polyolefin by a borane or borate activatable metal-organic compound, the halide groups of the metal-organic compound from the process of the invention have to be alkylated or arylated in an additional reaction step. This can be done for example with an organolithium compound or an organo magnesium compound. Surprisingly it has been found that such alkylated or arylated metal-organic compound can also be prepared in one step by the process of the invention by carrying out the process in the presence of at least 3, respectively 4 equivalents of an organomagnesium compound or an organolithium compound as a base. This holds for a metal-organic reagent comprising 3 halogen ligands reacting with 1 imine functionality only. One skilled in the art will understand that metal-organic reagents with 4 or 5 halogen ligands will require at least 4 respectively 5 equivalents of a base in stead of at least 3, or 5 respectively 6 equivalents in stead of 4.
  • The process of the invention is preferably carried out in a solvent. Suitable solvents are solvents that do not react with the metal-organic reagent or the metal-organic compound formed in the process of the invention. Examples of suitable solvents include aromatic and aliphatic hydrocarbons, halogenated hydrocarbons, amides of the aliphatic carboxylic acids and primarily, or secondary amines, DMSO, nitromethane, acetone, acetonitrile, benzonitrile, ethers, polyethers, cyclic ethers, lower aromatic and aliphatic ethers, or esters, and mixtures thereof. Preferred solvents include aromatic or aliphatic hydrocarbons or mixtures thereof.
  • The process of the invention can be carried out, by adding at least 1, respectively at least 2 equivalents of a base to a mixture of the imine ligand or its HA adduct and the metal-organic reagent thus forming a reaction mixture. The desired metal-organic compound is often formed instantaneously. Excess of a base may be applied without negative effects on the reaction product.
  • During the reaction, a salt is formed. The reaction mixture as obtained by contacting an imine or its HA adduct may be used as precatalyst in a polyolefin polymerisation without an additional filtration step if the salt formed during the reaction is compatible with the polymerisation process. If a salt free metal-organic compound is required, the salt can be removed by using a filtration. Depending on the solubility of the metal-organic compound, the mixture may be heated and then filtered. An advantage of the present invention is that the filtrate may be used as such without further purification in a following process, such as an alkylation or arylation step or the polymerisation process. If desired, the metal-organic compound may be isolated by distillation of the solvent, by precipitation or by crystallisation from a suitable solvent.
  • The invention further relates to a process for the preparation of a polyolefin as described in claim 13. Such an olefin polymerisation can be carried out in solution, slurry or in the gas phase.
  • In a preferred embodiment of the olefin polymerisation the (alkylated) metal-organic compound is formed in situ. By in situ preparation is meant in this context, that the metal-organic compound is made and subsequently activated in or anywhere before the reactor of the polymerisation equipment by contacting an imine or its HA adduct with an metal-organic reagent in the presence of an olefin polymerisation compatible base. Examples of bases compatible with the olefin polymerisation process include, organomagnesium compound, organolithium reagents, organozinc reagents, organoaluminum reagents. More preferred bases are: organomagnesium compound, organolithium reagents, organozinc reagents, organoaluminum reagents. Most preferred bases are dibutylmagnesium, n-butyllithium, C1-C20 dihydrocarbylzinc derivatives, diisobutylaluminium hydride, C1-C20 trihydrocarbyl aluminiums, or aluminoxanes. In the case where aluminoxanes are applied as a base, the base can be the activator.
  • In the olefin polymerisation according to the invention, R preferably represents a proton and Y is preferably selected from the group consisting of:
  • i) a phosphorus substituent according to formula 3 of claim 2 or:
    ii) a substituent according to formula 6 of claim 2.
  • Advantages of the process of the invention are: mild conditions, higher yields, higher reaction rates and smaller amounts of by-products. The (alkylated) metal-organic compounds as obtained by the invented process can be used without further purification in the olefin polymerisation resulting in more active catalysts.
  • The invention will be elucidated with some non-limiting examples:
  • General Part
  • Experiments were performed under a dry and oxygen-free nitrogen atmosphere using Schlenk-line techniques. 1H-NMR, 13C-NMR-spectra and 31P-NMR-spectra were measured on a Bruker Avance 300 spectrometer. Diethyl ether and ligroin were distilled from sodium/potassium alloy; THF and toluene from potassium and sodium, respectively, all having benzophenone as indicator.
  • Tri-ethylamine was distilled from calciumhydride before use.
  • Other starting materials were used as obtained.
  • EXAMPLE 1 One-Step Preparation of (Cp-C8F5)Ti(NP(t-Bu)3)Me2 from Tri-tert-butyl Aminophosphonium Chloride (tBu3PCINH2) and Cp(C8F5)TiCl3 Using Methylmagnesiumbromide as Base
  • To an orange mixture of C6F5 CpTiCl3 (1.00 g, 2.59 mmol) and t-Bu3PCINH2 (0.68 g, 2.59 mmol) in toluene (60 mL) and THF (20 mL) was added a MeMgBr solution in ether (3.0M, 4.0 mL, 12 mmol) at −20° C. The reaction mixture was stirred for 45 minutes and subsequently dried in vacuo. The residue was extracted with boiling ligroin (20 and 40 mL respectively). The solvents were removed in vacuo resulting in 1.33 g (98%) of (Cp-C6F5)Ti(NP(t-Bu)3)Me2 with no detectable amounts of by-product.
  • EXAMPLE II Synthesis of 1,3-bis(2,6-dimethylphenyl)-iminoimidazoline cyclopentadienyl titanium dimethyl Using methylmagnesium bromide as Base
  • To a suspension of 1,3-bis(2,6-dimethylphenyl)-iminoimidazoline (2.93 g, 10.0 mmol) and cyclopentadienyltitanium trichloride (2.19 g, 10.0 mmol) in toluene (100 mL) was added methylmagnesiumbromide (11 mL of a 3.0 M solution in diethyl ether, 33 mmol) at −80° C. during 10 minutes. The mixture was allowed to warm to ambient temperature to give a yellow suspension. THF (30 mL) was added, and the mixture was stirred for 15 hours. The light yellow suspension was evaporated to dryness. The residue was extracted with boiling ligroin (100 mL). The resulting suspension was filtered hot. The cake was extracted further with hot ligroin (Three times with 60 mL until the filtrate became colourless). The combined yellow filtrates were partially evaporated under reduced pressure to 50 mL. Cooling to approx. 4° C. afforded yellow crystals, which were filtered and washed with cold ligroin to give 2.05 g (47% yield) of NMR pure 1,3-bis(2,6-dimethylphenyl)-iminoimidazoline cyclopentadienyl titanium dimethyl.
  • EXAMPLE III Synthesis of tris(N,N-dimethylamido)Dhosphoraneimido cyclopentadienyl titanium(IV) dichloride
  • To a solution of cyclopentadienyltitanium trichloride (0.51 g, 2.3 mmol) in toluene (40 mL) was added N,N,N′,N′,N″,N″-hexamethylphosphorimidic triamide (0.41 g, 2.3 mmol). Then, dry K2CO3 (0.5 g, 3.6 mmol) was added. 31P-NMR reaction monitoring showed that the desired product was formed without any detectable amount of by-product. The reaction mixture was filtered in order to remove the salts which were subsequently extracted with an extra portion of toluene (25 mL). The combined solvents of the filtrate were removed in vacuo to give 0.79 g (yield: 94%) of a yellow crystalline product, which was characterized by 31P-NMR to be pure tris(N,N-dimethylamido)phosphoraneimido cyclopentadienyl titanium(IV) dichloride.
  • EXAMPLE IV Synthesis of tris(N,N-dimethylamido)phosphoraneimido cyclopentadienyl titanium(IV) dimethyl
  • To a solution of cyclopentadienyltitanium trichloride (0.51 g, 2.3 mmol) and N,N,N′,N′,N″,N″-hexamethylphosphorimidic triamide (0.44 g, 2.5 mmol) in toluene (40 mL) and THF (10 mL) was added a solution of methylmagnesium bromide in ether (2.3 mL, 3.0 M, 6.9 mmol) at room temperature. The reaction was exothermal under gas evolution and the colour changed to light yellow. 31P-NMR reaction monitoring showed that the desired product was formed without any detectable amount of by-product. The solvents were removed in vacuo and the product was extracted from the residue with n-hexane twice (50 mL each). The solvents were removed in vacuo to give 0.59 g (yield: 79%) of a yellow powder, which was characterized by 1H- and 31P-NMR to be tris(N,N-dimethylamido)phosphoraneimido cyclopentadienyl titanium(IV) dimethyl.

Claims (10)

1. A process for the preparation of a metal-organic compound, comprising contacting the HA adduct of at least one imine ligand according to formula 1, wherein HA represents an acid, of which H represents its proton and A its conjugate base, is contacted with a metal-organic reagent of formula 2 in the presence of at least 1, respectively 2 equivalents of an inorganic or metal-organic base, wherein

Y═N—R  (formula 1)
wherein Y is selected from a substituted phosphorous atom and R represents a proton, a protic or an aprotic substituent, and:

MV(L1)k(L2)l(L3)m(L4)nX  (formula 2)
wherein:
M represents a group 4 or group 5 metal ion
V represents the valency of the metal ion, being 3, 4 or 5
L1, L2, L3, and L4 represent ligands on M and may be equal or different
X represents a group 17 halogen atom
k, l, m, n=0, 1, 2, 3, 4 with k+l+m+n+1=V
2. A process according to claim 1 wherein R represents a hydrogen atom and wherein Y is:
a phosphorus substituent defined by the formula:
Figure US20090018293A1-20090115-C00005
wherein each R1j, with j=1-3 is independently selected from the group consisting of a hydrogen atom, a halogen atom, a C1-8 alkoxy radical, a C6-10 aryl or aryloxy radical, an amido radical, a C1-20 hydrocarbyl radical unsubstituted or substituted by a halogen atom, a C1-8 alkoxy radical, a C6-10 aryl or aryloxy radical, an amido radical, a silyl radical of the formula:
Figure US20090018293A1-20090115-C00006
and a germanyl radical of the formula:
Figure US20090018293A1-20090115-C00007
wherein R2j is independently selected from the group consisting of hydrogen, a C1-8 alkyl or alkoxy radical, C6-10 aryl or aryloxy radicals, provided
each substituent R1j or R2j may be linked with another R1 or R2 to form a ring system.
3. A process according to claim 1, wherein the inorganic base is a carboxylate, or a fluoride, or a hydroxide, or a cyanide, or an amide, or a carbonate of Li, Na, K, Rb, Cs, or a group 2 metal salt selected from Mg, Ca, or Ba, or an alkali metal selected from Li, Na, K, Rb, or Cs of phosphate or a phosphate ester alkoxide of Li, Na, K, Rb or Cs, or phenoxide of Li, Na, K, Rb or Cs, or thallium hydroxide, or a hydrocarbanion of any of the group 1, group 2, group 12 or group 13 elements, or an alkali metal, group 1 hydride or group 2 hydride.
4. A process according to claim 3, wherein the inorganic base is selected from sodium hydride, or calciumhydride.
5. A process according to claim 1, wherein the metal-organic base is selected from organolithium compounds, or organomagnesium compounds.
6. A process according to claim 1, wherein the reaction is carried out in an aprotic solvent.
7. A process according to claim 1, wherein the process is carried out in the presence of a phase transfer reagent.
8. Process for the preparation of a polyolefin by making a metal-organic compound according to the process of claim 1, wherein the base is an olefin polymerisation compatible base, which metal-organic compound is activated anywhere in, or before a polymerisation reactor.
9. Process according to claim 8, wherein the metal-organic compound is formed used without purification.
10. Process according to claim 8, wherein the metal-organic compound is formed in the polymerisation equipment.
US12/230,991 2003-08-04 2008-09-09 Process for the preparation of a metaloorganic compound comprising at least one imine ligand Abandoned US20090018293A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/230,991 US20090018293A1 (en) 2003-08-04 2008-09-09 Process for the preparation of a metaloorganic compound comprising at least one imine ligand

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP03077434A EP1506974A1 (en) 2003-08-04 2003-08-04 Process for the preparation of a metalloorganic compound comprising at least one imine ligand
EP03077434.3 2003-08-04
PCT/EP2004/008714 WO2005014665A1 (en) 2003-08-04 2004-08-03 Process for the preparation of a metalloorganic compound comprising at least one imine ligand
US10/566,979 US7524906B2 (en) 2003-08-04 2004-08-03 Process for the preparation of a metal-organic compound comprising at least one imine ligand
US12/230,991 US20090018293A1 (en) 2003-08-04 2008-09-09 Process for the preparation of a metaloorganic compound comprising at least one imine ligand

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2004/008714 Division WO2005014665A1 (en) 2003-08-04 2004-08-03 Process for the preparation of a metalloorganic compound comprising at least one imine ligand
US11/566,979 Division US20070128076A1 (en) 2005-12-05 2006-12-05 Electrical test apparatus

Publications (1)

Publication Number Publication Date
US20090018293A1 true US20090018293A1 (en) 2009-01-15

Family

ID=33560825

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/567,098 Active 2025-07-30 US7655592B2 (en) 2003-08-04 2004-08-03 Process for the preparation of a metal-organic compound comprising at least one imine ligand
US10/567,156 Active 2026-05-20 US7737070B2 (en) 2003-08-04 2004-08-03 Process for the preparation of a metal-organic compound comprising at least one imine ligand
US10/566,839 Active 2025-08-07 US7674867B2 (en) 2003-08-04 2004-08-03 Process for the preparation of an metal-organic compound comprising at least one imine ligand
US10/566,979 Expired - Lifetime US7524906B2 (en) 2003-08-04 2004-08-03 Process for the preparation of a metal-organic compound comprising at least one imine ligand
US12/230,991 Abandoned US20090018293A1 (en) 2003-08-04 2008-09-09 Process for the preparation of a metaloorganic compound comprising at least one imine ligand

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US10/567,098 Active 2025-07-30 US7655592B2 (en) 2003-08-04 2004-08-03 Process for the preparation of a metal-organic compound comprising at least one imine ligand
US10/567,156 Active 2026-05-20 US7737070B2 (en) 2003-08-04 2004-08-03 Process for the preparation of a metal-organic compound comprising at least one imine ligand
US10/566,839 Active 2025-08-07 US7674867B2 (en) 2003-08-04 2004-08-03 Process for the preparation of an metal-organic compound comprising at least one imine ligand
US10/566,979 Expired - Lifetime US7524906B2 (en) 2003-08-04 2004-08-03 Process for the preparation of a metal-organic compound comprising at least one imine ligand

Country Status (6)

Country Link
US (5) US7655592B2 (en)
EP (5) EP1506974A1 (en)
CN (6) CN1863823B (en)
AT (4) ATE466888T1 (en)
DE (4) DE602004026876D1 (en)
WO (4) WO2005014666A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10800863B2 (en) 2015-10-21 2020-10-13 Lg Chem, Ltd. Transition metal complexes, catalyst compositions including the same, and method for preparing polyolefins therewith

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1764376A1 (en) 2005-09-16 2007-03-21 DSM IP Assets B.V. Process for the preparation of a metal-organic compound comprising a spectator ligand
CA2820501C (en) * 2013-06-27 2021-01-26 Nova Chemicals Corporation Synthesis of phosphinimide coordination compounds
EP3083048B1 (en) 2013-12-19 2021-04-07 Dow Global Technologies LLC Metal-ligand complex, olefin polymerization catalyst derived therefrom, and olefin polymerization method utilizing the catalyst
CN105148598B (en) * 2015-07-20 2017-01-11 中广核研究院有限公司 Connecting module for containment recycling filter
JP6806806B2 (en) * 2016-07-13 2021-01-06 ダウ シリコーンズ コーポレーション Metal aprotic organosilanoxide compound
CN107868152B (en) * 2016-09-23 2020-09-15 中国石油化工股份有限公司 Catalyst component for olefin polymerization, catalyst and application thereof
CN108250341B (en) * 2016-12-28 2020-12-11 北京引发科技有限公司 Catalyst system containing metallocene compound and method for catalyzing olefin polymerization by using catalyst system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114481A (en) * 1997-09-15 2000-09-05 Nova Chemicals (International) S.A. Catalyst having a ketimide ligand
US6355744B1 (en) * 1998-07-21 2002-03-12 Nova Chemicals (International) S.A. Cyclopentadienyl/phosphinimine catalyst with one and only one activatable ligand
US20040010142A1 (en) * 2000-12-21 2004-01-15 Nielsen Flemming Elmelund Novel process

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA243775A (en) 1924-10-21 N. Mcgaughey Henry Window
CA2206944C (en) 1997-05-30 2006-08-29 Douglas W. Stephan High temperature solution polymerization process
CA2210131C (en) * 1997-07-09 2005-08-02 Douglas W. Stephan Supported phosphinimine-cp catalysts
CA2243775C (en) * 1998-07-21 2007-06-12 Nova Chemicals Ltd. Phosphinimine/heteroatom catalyst component
CA2243783C (en) * 1998-07-21 2007-06-05 Nova Chemicals Ltd. Bis-phosphinimine catalyst
CA2261518A1 (en) * 1999-02-12 2000-08-12 Rupert Edward Von Haken Spence Synthetic method
ATE277092T1 (en) * 2001-03-05 2004-10-15 Stichting Dutch Polymer Inst CATALYST COMPONENT FOR OLEFIN POLYMERIZATION AND CATALYST SYSTEM AND POLYMERIZATION PROCESS USING SUCH A CATALYST SYSTEM
BE1014196A3 (en) * 2001-05-23 2003-06-03 Solvay Catalyst complex and use for the polymerization of alpha-olefins.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6114481A (en) * 1997-09-15 2000-09-05 Nova Chemicals (International) S.A. Catalyst having a ketimide ligand
US6355744B1 (en) * 1998-07-21 2002-03-12 Nova Chemicals (International) S.A. Cyclopentadienyl/phosphinimine catalyst with one and only one activatable ligand
US20040010142A1 (en) * 2000-12-21 2004-01-15 Nielsen Flemming Elmelund Novel process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10800863B2 (en) 2015-10-21 2020-10-13 Lg Chem, Ltd. Transition metal complexes, catalyst compositions including the same, and method for preparing polyolefins therewith

Also Published As

Publication number Publication date
CN1863823B (en) 2010-05-26
CN100569806C (en) 2009-12-16
CN100551936C (en) 2009-10-21
EP1506974A1 (en) 2005-02-16
US20080045719A1 (en) 2008-02-21
DE602004026876D1 (en) 2010-06-10
EP1654292A1 (en) 2006-05-10
CN1860137A (en) 2006-11-08
EP1651682A1 (en) 2006-05-03
WO2005014663A1 (en) 2005-02-17
EP1651681B1 (en) 2010-04-28
WO2005014664A1 (en) 2005-02-17
EP1651681A1 (en) 2006-05-03
CN100558768C (en) 2009-11-11
CN1863824A (en) 2006-11-15
ATE466036T1 (en) 2010-05-15
CN100569807C (en) 2009-12-16
US7674867B2 (en) 2010-03-09
US7655592B2 (en) 2010-02-02
ATE466035T1 (en) 2010-05-15
US20070219376A1 (en) 2007-09-20
EP1656395B1 (en) 2010-04-28
CN1860141A (en) 2006-11-08
ATE466034T1 (en) 2010-05-15
EP1654292B1 (en) 2010-04-28
CN1863825A (en) 2006-11-15
DE602004026882D1 (en) 2010-06-10
DE602004027051D1 (en) 2010-06-17
US7737070B2 (en) 2010-06-15
CN1863823A (en) 2006-11-15
US20060247438A1 (en) 2006-11-02
CN1863826A (en) 2006-11-15
US7524906B2 (en) 2009-04-28
DE602004026880D1 (en) 2010-06-10
EP1656395A1 (en) 2006-05-17
WO2005014666A1 (en) 2005-02-17
EP1651682B1 (en) 2010-05-05
ATE466888T1 (en) 2010-05-15
US20080027195A1 (en) 2008-01-31
WO2005014665A1 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US20090018293A1 (en) Process for the preparation of a metaloorganic compound comprising at least one imine ligand
PL186697B1 (en) Catalyst carrier supported components of a catalyst, supported catalyst, method of obtaining the both, polimerising process, complex compounds and production of them
CA2228802C (en) Solution polymerization of ethylene
EP0740670B1 (en) Process for preparation of reduced metal titanium complexes
US7816548B2 (en) Method of preparing a hydrocarbylated metal-organic compound
WO2007071320A1 (en) Zwitterionic phosphinimine catalyst
EP1535936A1 (en) Improved method of preparing a hydrocarbylated metal-organic compound
CN117866002A (en) Phosphine-phenol transition metal complex and preparation method and application thereof
WO2007071319A1 (en) Zwitterionic catalyst comprising a monoanionic bidentate imine ligand
WO2007059881A1 (en) Zwitterionic amidine catalyst
EP1801131A1 (en) Zwitterionic cyclopentadienyl catalyst
WO2007071317A1 (en) Zwitterionic guanidine catalyst
WO2007071318A1 (en) Zwitterionic ketimine catalyst

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION