US20090005185A1 - Tool for the Chipless Shaping Threads, in Particular for the Forming of Internal Threads - Google Patents

Tool for the Chipless Shaping Threads, in Particular for the Forming of Internal Threads Download PDF

Info

Publication number
US20090005185A1
US20090005185A1 US12/097,048 US9704806A US2009005185A1 US 20090005185 A1 US20090005185 A1 US 20090005185A1 US 9704806 A US9704806 A US 9704806A US 2009005185 A1 US2009005185 A1 US 2009005185A1
Authority
US
United States
Prior art keywords
tool according
clamping shaft
working part
fastening area
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/097,048
Inventor
Karl-Heinz Edelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jel Precision Tools GmbH and Co KG
Original Assignee
Jel Precision Tools GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jel Precision Tools GmbH and Co KG filed Critical Jel Precision Tools GmbH and Co KG
Assigned to JEL PRECISION TOOLS GMBH & CO. KG reassignment JEL PRECISION TOOLS GMBH & CO. KG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EDELMANN, KARL-HEINZ
Publication of US20090005185A1 publication Critical patent/US20090005185A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G7/00Forming thread by means of tools similar both in form and in manner of use to thread-cutting tools, but without removing any material
    • B23G7/02Tools for this purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G2200/00Details of threading tools
    • B23G2200/02Tools in which the shank and the cutting part are made from different materials or from separate components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G2200/00Details of threading tools
    • B23G2200/06Connections between parts of threading tools
    • B23G2200/062Brazed connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G2200/00Details of threading tools
    • B23G2200/06Connections between parts of threading tools
    • B23G2200/065Glued connections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G2200/00Details of threading tools
    • B23G2200/46Tools having a section of polygonal form, e.g. for the transmission of torque

Definitions

  • the invention concerns a tool for the chipless shaping of threads, in particular for shaping internal threads, according to the preamble of claim 1 .
  • Tools for chipless shaping of threads are known in which the free end of the clamping shaft is shaped like a working part in the form of a shaping area with thread grooves.
  • the shaping area has a polygonal cross-section. In the area of the corners of the cross-section there are cylindrical bars of hard and wear-resistant material that are soldered into axially extending grooves of this shaping area.
  • Such tools are difficult to manufacture.
  • the common profile grinding for producing the thread grooves in the shaping area and in the inserted bars causes difficulties because the grinding wheels adjusted for this purpose will clog easily.
  • the invention has the object to configure the tool of the aforementioned kind in such a way that it can be produced in a simple and inexpensive way.
  • the working part is a component that is nonpositively secured on the clamping shaft in the axial direction, wherein the component can be a sleeve or a solid head.
  • the thread grooves can be produced without problems by means of a grinding wheel.
  • the working part can be attached in a simple way to the clamping shaft, for example, by gluing soldering or by shrink-fitting.
  • FIG. 1 a side view of the tool according to the present invention for chipless shaping of threads
  • FIG. 2 an end view of the tool according to FIG. 1 ;
  • FIG. 5 detail views of the shaping area of further embodiments of tools according to the invention.
  • the tool according to FIGS. 1 and 2 has a preferably cylindrical clamping shaft 1 with which the tool is received in a tool receptacle.
  • the clamping shaft 1 is comprised advantageously of steel or a ductile hard metal.
  • the left end 2 of the clamping shaft 1 shown in FIG. 1 has a tapering shape with regard to its cross-section.
  • On this shaft end 2 a sleeve 3 is mounted that can be soldered, glued or shrink-fitted onto the shaft end 2 .
  • the sleeve 3 is advantageously comprised of hard metal and has at the free end a lead part 4 whose axial length is smaller than half the length of the sleeve 3 .
  • the lead part 4 tapers in the direction toward its free end.
  • the area 5 adjoining the lead part 4 is shaped like a polygon ( FIG. 2 ) and has on its circumference thread grooves that extend in a radial plane.
  • the area 5 of the sleeve 3 that serves as a guide thread has four axially extending edges 6 to 9 that are positioned at an angular spacing of 90° relative to one another.
  • the wall section of the area 5 is convexly shaped, respectively. In these convex wall sections there are thread grooves (not illustrated) that are preferably ground into the wall sections.
  • the sleeve area 5 can also have any other polygonal cross-section. A cross-section of the sleeve area 5 deviating from a polygonal shape is possible also.
  • the manufacture of the tool is simple because the annular sleeve 3 can be attached without problems on the shaft end 2 .
  • the thread grooves can be ground without problems into the sleeve 3 . Since the grinding wheel during grinding comes into contact only with the material of the sleeve 3 , the risk of clogging of the grinding wheel is minimal.
  • FIG. 2 shows a variant of the connection between the shaft end 2 and the sleeve 3 .
  • the inner wall 10 of the sleeve 3 defines a cylinder envelope.
  • the shaft end 2 extends to the planar end face 11 of the sleeve 3 .
  • FIG. 2 shows a variant in which the inner wall 10 of the sleeve 3 is of a polygonal shape.
  • the inner wall 10 of the sleeve 3 and accordingly also the outer wall of the shaft end 2 have three axially extending edges 12 to 14 that are positioned at an angular spacing of 120° to one another. In the area between the edges 12 to 14 the wall sections are convexly shaped.
  • edges 12 and 13 are positioned angularly staggered relative to the edges 6 , 7 , 9 of the sleeve 3 while the edge 14 of the inner wall 10 is positioned in the same plane as the edges 6 and 8 of the sleeve 3 .
  • the inner wall 10 of the sleeve 3 can also have any other cross-section that deviates from a circular shape.
  • the tool according to FIG. 2 is designed identical to the embodiment of FIG. 1 .
  • FIG. 3 shows an embodiment in which the shaft end 2 has a stepped outer contour.
  • the shaft section 15 adjoining the clamping shaft 1 has a smaller cross-sectional surface area than the part of the cylindrical clamping shaft 1 positioned outside of the sleeve 3 .
  • the shaft section 16 adjoining the shaft section 15 is longer than the shaft section 15 in this embodiment and has, in turn, a smaller cross-section than the shaft section 15 .
  • Across the axial length the shaft sections 15 and 16 each have a constant cross-section.
  • the shaft sections 15 , 16 can be designed cylindrically as in the embodiment of FIG. 1 but can also have a polygonal shape in accordance with the embodiment of FIG. 2 . It is also possible to design the two shaft sections 15 and 16 differently with regard to their cross-sectional shape.
  • the stepped contour of the shaft end 2 increases the stability of the sleeve 3 in the lead part 4 .
  • the sleeve 3 is seated on the radial annular step 17 that is provided at the transition from the clamping shaft 1 to the shaft section 15 .
  • the inner wall 10 of the sleeve 3 is matched to the contour of the shaft sections 15 , 16 .
  • the sleeve 3 can be attached to the shaft sections 15 , 16 by soldering, gluing or shrink-fitting.
  • the shaft section 16 extends to the end face 11 of the lead part 4 so that the sleeve 3 is seated safely on the shaft sections 15 , 16 .
  • the sleeve 3 with its shaping area 5 that is provided with the thread grooves projects radially past the clamping shaft 1 so that a proper chipless manufacture of the thread is ensured.
  • the shaft end 2 is designed so as to taper continuously in the direction toward its free end.
  • the shaft end 2 can be designed to taper conically.
  • the tapering of the shaft end 2 can also be provided, for example, in case of a polygonal design or a different shape that deviates in cross-section from a circular shape.
  • the sleeve 3 projects radially past the clamping shaft 1 .
  • it is embodied identical to the preceding embodiments.
  • FIG. 5 shows the possibility that instead of a sleeve a solid head 18 is to be used that is provided with the lead part 4 and the area 5 that is provided with the thread grooves.
  • the solid head 18 is embodied in the same way as the sleeve 3 .
  • the solid head 18 has in one end face 19 a blind bore into which the shaft end 2 projects.
  • the blind bore 20 extends in an exemplary way only to about half the axial length of the area 5 of the solid head 18 where the thread grooves are.
  • the shaft end 2 can have a cylindrical, a polygonal or any other suitable outer contour.
  • the inner wall 10 of the blind bore 20 has a matching shape.
  • the solid head 18 is comprised advantageously of hard metal and is attached to the shaft end 2 by soldering, gluing or shrink-fitting.
  • the blind bore 20 has in the illustrated embodiment a constant cross-section across its axial length. It is also possible that the blind bore 20 is designed such that its cross-section decreases axially inwardly, preferably continuously.
  • the solid head 18 projects radially past the clamping shaft 1 and rests with its end face 19 on the annular section 17 of the clamping shaft 1 .
  • FIG. 2 shows in an exemplary manner the possibility to provide the tool with an inner cooling medium supply 21 . It is in the form of at least one cooling medium bore that extends axially through the clamping shaft 1 as well as the shaft end 2 and the shaft sections 15 , 16 and opens at the face 11 of the lead part 4 .
  • transitional bevel At the transition from the cylindrical clamping shaft 2 to the shaft end 2 reduced with regard to its cross-sectional surface area or the shaft sections 15 , 16 , there is advantageously a transitional bevel, a transitional radius or a comparable contour in order to reduce the notching effect in this area. Between the shaft sections 15 , 16 there is also advantageously such a transitional bevel, transitional radius and the like.
  • the described tools can be produced in a very simple and inexpensive way.
  • highly loadable threads can be produced without a chipping process.
  • the thread in the tool is produced by an embossing process.
  • the radially oriented pressure forces occurring during manufacture are diverted from the sleeve 3 or the solid head 18 into the shaft end 2 or the shaft sections 15 , 16 and from there into the clamping shaft 1 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

A tool for chipless shaping of threads has a working part having an exterior side provided with thread grooves. A clamping shaft having a fastening area is provided and the working part is secured on the fastening area. The working part is a component that is nonpositively secured in an axial direction of the clamping shaft on the fastening area of the clamping shaft. The fastening area of the clamping shaft has a cross-section that is smaller than a cross-section of a remainder of the clamping shaft.

Description

  • The invention concerns a tool for the chipless shaping of threads, in particular for shaping internal threads, according to the preamble of claim 1.
  • Tools for chipless shaping of threads are known in which the free end of the clamping shaft is shaped like a working part in the form of a shaping area with thread grooves. The shaping area has a polygonal cross-section. In the area of the corners of the cross-section there are cylindrical bars of hard and wear-resistant material that are soldered into axially extending grooves of this shaping area. Such tools are difficult to manufacture. In particular, the common profile grinding for producing the thread grooves in the shaping area and in the inserted bars causes difficulties because the grinding wheels adjusted for this purpose will clog easily.
  • The invention has the object to configure the tool of the aforementioned kind in such a way that it can be produced in a simple and inexpensive way.
  • This object is solved for the tool of the aforementioned kind with the characterizing features of claim 1.
  • In the tool according to the invention the working part is a component that is nonpositively secured on the clamping shaft in the axial direction, wherein the component can be a sleeve or a solid head. In this working part, the thread grooves can be produced without problems by means of a grinding wheel. The working part can be attached in a simple way to the clamping shaft, for example, by gluing soldering or by shrink-fitting.
  • Further features of the invention result from the additional claims, the description, and the drawings.
  • The invention will be explained in more detail with the aid of the embodiments illustrated in the drawings. It is shown in:
  • FIG. 1 a side view of the tool according to the present invention for chipless shaping of threads;
  • FIG. 2 an end view of the tool according to FIG. 1;
  • FIG. 3
  • to
  • FIG. 5 detail views of the shaping area of further embodiments of tools according to the invention.
  • With the tools described in the following, threads, in particular, internal threads, are produced by chipless shaping. The tool according to FIGS. 1 and 2 has a preferably cylindrical clamping shaft 1 with which the tool is received in a tool receptacle. The clamping shaft 1 is comprised advantageously of steel or a ductile hard metal. The left end 2 of the clamping shaft 1 shown in FIG. 1 has a tapering shape with regard to its cross-section. On this shaft end 2 a sleeve 3 is mounted that can be soldered, glued or shrink-fitted onto the shaft end 2. The sleeve 3 is advantageously comprised of hard metal and has at the free end a lead part 4 whose axial length is smaller than half the length of the sleeve 3. The lead part 4 tapers in the direction toward its free end. The area 5 adjoining the lead part 4 is shaped like a polygon (FIG. 2) and has on its circumference thread grooves that extend in a radial plane. In the embodiment, the area 5 of the sleeve 3 that serves as a guide thread has four axially extending edges 6 to 9 that are positioned at an angular spacing of 90° relative to one another. In the area between neighboring edges 6 to 9 the wall section of the area 5 is convexly shaped, respectively. In these convex wall sections there are thread grooves (not illustrated) that are preferably ground into the wall sections.
  • The sleeve area 5 can also have any other polygonal cross-section. A cross-section of the sleeve area 5 deviating from a polygonal shape is possible also.
  • The manufacture of the tool is simple because the annular sleeve 3 can be attached without problems on the shaft end 2. The thread grooves can be ground without problems into the sleeve 3. Since the grinding wheel during grinding comes into contact only with the material of the sleeve 3, the risk of clogging of the grinding wheel is minimal.
  • FIG. 2 shows a variant of the connection between the shaft end 2 and the sleeve 3. In the embodiment according to FIG. 1 the inner wall 10 of the sleeve 3 defines a cylinder envelope. The shaft end 2 extends to the planar end face 11 of the sleeve 3.
  • FIG. 2 shows a variant in which the inner wall 10 of the sleeve 3 is of a polygonal shape. In this way, between the shaft end 2 and the sleeve 3, in the direction of rotation of the tool, a positive locking connection is achieved. In this embodiment, the inner wall 10 of the sleeve 3 and accordingly also the outer wall of the shaft end 2 have three axially extending edges 12 to 14 that are positioned at an angular spacing of 120° to one another. In the area between the edges 12 to 14 the wall sections are convexly shaped. The edges 12 and 13 are positioned angularly staggered relative to the edges 6, 7, 9 of the sleeve 3 while the edge 14 of the inner wall 10 is positioned in the same plane as the edges 6 and 8 of the sleeve 3. For obtaining a positive connection with the shaft end 2, the inner wall 10 of the sleeve 3 can also have any other cross-section that deviates from a circular shape. In other respects, the tool according to FIG. 2 is designed identical to the embodiment of FIG. 1.
  • FIG. 3 shows an embodiment in which the shaft end 2 has a stepped outer contour. The shaft section 15 adjoining the clamping shaft 1 has a smaller cross-sectional surface area than the part of the cylindrical clamping shaft 1 positioned outside of the sleeve 3. The shaft section 16 adjoining the shaft section 15 is longer than the shaft section 15 in this embodiment and has, in turn, a smaller cross-section than the shaft section 15. Across the axial length the shaft sections 15 and 16 each have a constant cross-section. The shaft sections 15, 16 can be designed cylindrically as in the embodiment of FIG. 1 but can also have a polygonal shape in accordance with the embodiment of FIG. 2. It is also possible to design the two shaft sections 15 and 16 differently with regard to their cross-sectional shape. The stepped contour of the shaft end 2 increases the stability of the sleeve 3 in the lead part 4.
  • As in the preceding embodiments, the sleeve 3 is seated on the radial annular step 17 that is provided at the transition from the clamping shaft 1 to the shaft section 15. The inner wall 10 of the sleeve 3 is matched to the contour of the shaft sections 15, 16. As in the preceding embodiments, the sleeve 3 can be attached to the shaft sections 15, 16 by soldering, gluing or shrink-fitting. The shaft section 16 extends to the end face 11 of the lead part 4 so that the sleeve 3 is seated safely on the shaft sections 15, 16. In accordance with the preceding embodiments, the sleeve 3 with its shaping area 5 that is provided with the thread grooves projects radially past the clamping shaft 1 so that a proper chipless manufacture of the thread is ensured.
  • In the embodiment according to FIG. 4 the shaft end 2 is designed so as to taper continuously in the direction toward its free end. The shaft end 2 can be designed to taper conically. The tapering of the shaft end 2 can also be provided, for example, in case of a polygonal design or a different shape that deviates in cross-section from a circular shape. By means of this configuration of the shaft end 2 the stability of the sleeve 3 in the area of the lead part 4 is increased also. The inner wall 10 of the sleeve 3 is matched to the contour of the shaft end 2 so that a safe connection between the shaft end 2 and the sleeve 3 is ensured.
  • The sleeve 3 projects radially past the clamping shaft 1. In other respects, it is embodied identical to the preceding embodiments.
  • FIG. 5 shows the possibility that instead of a sleeve a solid head 18 is to be used that is provided with the lead part 4 and the area 5 that is provided with the thread grooves. With regard to the outer shape, the solid head 18 is embodied in the same way as the sleeve 3. The solid head 18 has in one end face 19 a blind bore into which the shaft end 2 projects. The blind bore 20 extends in an exemplary way only to about half the axial length of the area 5 of the solid head 18 where the thread grooves are. The shaft end 2 can have a cylindrical, a polygonal or any other suitable outer contour. The inner wall 10 of the blind bore 20 has a matching shape. The solid head 18 is comprised advantageously of hard metal and is attached to the shaft end 2 by soldering, gluing or shrink-fitting. The blind bore 20 has in the illustrated embodiment a constant cross-section across its axial length. It is also possible that the blind bore 20 is designed such that its cross-section decreases axially inwardly, preferably continuously.
  • The solid head 18 projects radially past the clamping shaft 1 and rests with its end face 19 on the annular section 17 of the clamping shaft 1.
  • FIG. 2 shows in an exemplary manner the possibility to provide the tool with an inner cooling medium supply 21. It is in the form of at least one cooling medium bore that extends axially through the clamping shaft 1 as well as the shaft end 2 and the shaft sections 15, 16 and opens at the face 11 of the lead part 4.
  • At the transition from the cylindrical clamping shaft 2 to the shaft end 2 reduced with regard to its cross-sectional surface area or the shaft sections 15, 16, there is advantageously a transitional bevel, a transitional radius or a comparable contour in order to reduce the notching effect in this area. Between the shaft sections 15, 16 there is also advantageously such a transitional bevel, transitional radius and the like.
  • The described tools can be produced in a very simple and inexpensive way. By means of the tools highly loadable threads can be produced without a chipping process. By means of the thread grooves provided in the area 5 of the sleeve 3 or the solid head 18, the thread in the tool is produced by an embossing process. With the described configuration of the tools, the high loads that occur in the chipless thread production as a result of material displacement in the workpiece are reliably absorbed. The radially oriented pressure forces occurring during manufacture are diverted from the sleeve 3 or the solid head 18 into the shaft end 2 or the shaft sections 15, 16 and from there into the clamping shaft 1.

Claims (22)

1-21. (canceled)
22. A tool for chipless shaping of threads, the tool comprising:
a working part having an exterior side provided with thread grooves;
a clamping shaft having a fastening area on which the working part is secured;
wherein the working part is a component that is nonpositively secured in an axial direction of the clamping shaft on said fastening area of the clamping shaft.
23. The tool according to claim 22, wherein said fastening area of the clamping shaft has a cross-section that is smaller than a cross-section of a remainder of the clamping shaft.
24. The tool according to claim 23, wherein said fastening area of the clamping shaft extends up to a free end of the working part.
25. The tool according to claim 22, wherein the working part is a sleeve that is attached to said fastening area in a circumferential direction of the clamping shaft nonpositively; positively; or nonpositively and positively.
26. The tool according to claim 22, wherein the working part is a solid head that has a blind bore for receiving said fastening area of the clamping shaft.
27. The tool according to claim 22, wherein said fastening area of the clamping shaft has a round cross-section.
28. The tool according to claim 22, wherein said fastening area of the clamping shaft has a non-round cross-section.
29. The tool according to claim 28, wherein said fastening area of the clamping shaft has a polygonal shape.
30. The tool according to claim 29, wherein the working part has a larger cross-section than the clamping shaft at least in an area of the thread grooves.
31. The tool according to claim 29, wherein the clamping shaft has a transition where said fastening area passes into a remainder of the clamping shaft and said transition is a bevel or a rounded portion.
32. The tool according to claim 22, wherein said fastening area of the clamping shaft has a stepped configuration.
33. The tool according to claim 22, wherein said fastening area has a tapering cross-section.
34. The tool according to claim 22, wherein the area of the working part provided with the thread grooves has a polygonal shape.
35. The tool according to claim 22, wherein the working part comprises a a lead part.
36. The tool according to claim 22, wherein the working part is soldered onto said fastening area.
37. The tool according to claim 22, wherein the working part is glued onto said fastening area.
38. The tool according to claim 22, wherein the working part is shrink-fitted onto said fastening area.
39. The tool according to claim 22, wherein the working part consists of hard metal.
40. The tool according to claim 22, wherein the clamping shaft is provided with at least one inner cooling medium supply.
41. The tool according to claim 22, wherein the cooling medium supply opens at an end face of the clamping shaft.
42. The tool according to claim 22, wherein the working part rests against an annular section of the clamping shaft.
US12/097,048 2005-12-15 2006-12-09 Tool for the Chipless Shaping Threads, in Particular for the Forming of Internal Threads Abandoned US20090005185A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005062519A DE102005062519A1 (en) 2005-12-15 2005-12-15 Inner thread forming tool, has clamping shank, sleeve and massive head provided with thread grooves at exterior of shank, where sleeve and head are provided as component held on shank in axial direction in force-fit manner
DE102005062519.3 2005-12-15
PCT/EP2006/011875 WO2007073850A1 (en) 2005-12-15 2006-12-09 Tool for the chipless shaping of threads, in particular for the forming of internal threads

Publications (1)

Publication Number Publication Date
US20090005185A1 true US20090005185A1 (en) 2009-01-01

Family

ID=37944385

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/097,048 Abandoned US20090005185A1 (en) 2005-12-15 2006-12-09 Tool for the Chipless Shaping Threads, in Particular for the Forming of Internal Threads

Country Status (4)

Country Link
US (1) US20090005185A1 (en)
EP (1) EP1960146A1 (en)
DE (1) DE102005062519A1 (en)
WO (1) WO2007073850A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008053772A1 (en) * 2008-10-22 2010-04-29 Komet Jel Precision Tools thread former

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2240840A (en) * 1939-10-13 1941-05-06 Gordon H Fischer Tap construction
US5980166A (en) * 1995-10-05 1999-11-09 Kanefusa Corporation Rotary tool with shank
US6012882A (en) * 1995-09-12 2000-01-11 Turchan; Manuel C. Combined hole making, threading, and chamfering tool with staggered thread cutting teeth
US6524034B2 (en) * 1999-12-21 2003-02-25 Sandvik Ab Tool tip and tool body assembly
US7112143B2 (en) * 2001-07-25 2006-09-26 Fette Gmbh Thread former or tap

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9708596D0 (en) * 1997-04-29 1997-06-18 Richard Lloyd Limited Tap tools
DE10114240A1 (en) * 2001-03-22 2003-01-30 Johne & Co Praez Swerkzeuge Gm rotary tool
DE10338754C5 (en) * 2003-08-23 2016-01-14 EMUGE-Werk Richard Glimpel GmbH & Co. KG Fabrik für Präzisionswerkzeuge Tool for chipless production of a thread and method for producing a tool for chipless thread production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2240840A (en) * 1939-10-13 1941-05-06 Gordon H Fischer Tap construction
US6012882A (en) * 1995-09-12 2000-01-11 Turchan; Manuel C. Combined hole making, threading, and chamfering tool with staggered thread cutting teeth
US5980166A (en) * 1995-10-05 1999-11-09 Kanefusa Corporation Rotary tool with shank
US6524034B2 (en) * 1999-12-21 2003-02-25 Sandvik Ab Tool tip and tool body assembly
US7112143B2 (en) * 2001-07-25 2006-09-26 Fette Gmbh Thread former or tap

Also Published As

Publication number Publication date
EP1960146A1 (en) 2008-08-27
WO2007073850A1 (en) 2007-07-05
DE102005062519A1 (en) 2007-06-21

Similar Documents

Publication Publication Date Title
US6485220B2 (en) Tool joint
US8858125B2 (en) Tool assembly for removing material from a work-piece
EP2754519B1 (en) Exchangeable head cutting tool
CN102164700B (en) Is furnished with the thread forming device of moulded parts
EP2164666B1 (en) Multi-piece tool assembly and cutting tool
EP1346787A1 (en) Rotary tool and cutting part comprised in the tool
US20060188328A1 (en) Shaft/hub connection with securing system
US7648316B2 (en) Forstner drill bit
US7153071B2 (en) Device for chip forming machining
CN102712051B (en) Machinery tools and the cutting head for machinery tools
CN107000472B (en) Method for manufacturing a wheel having a coupling between the rim and the disc
CN102310214A (en) Rotary cutting tool
KR20100075897A (en) Rotary tool, in particular a drill
US20180297128A1 (en) End mill
US10343223B2 (en) Rotary tool and method for manufacturing a rotary tool
CN105142833A (en) Milling tool
CN103097061B (en) Slip-proof clamping system
GB2324752A (en) Tap tools
US6416245B1 (en) Device comprising a shaft and at least one hub which is attached to said shaft, and a method for producing this device
US20150298224A1 (en) Rotating tool and tool head
US7905024B2 (en) Drive wheel
US20130031782A1 (en) Method for producing a piston for an internal combustion engine
US20090005185A1 (en) Tool for the Chipless Shaping Threads, in Particular for the Forming of Internal Threads
US20020164226A1 (en) Connecting element with eccentric disks
US10576552B2 (en) Rotary tool

Legal Events

Date Code Title Description
AS Assignment

Owner name: JEL PRECISION TOOLS GMBH & CO. KG, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EDELMANN, KARL-HEINZ;REEL/FRAME:021083/0080

Effective date: 20080610

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION