US20080307860A1 - Detector for Distinguishing Phases in a Multiphase Fluid Mixture - Google Patents
Detector for Distinguishing Phases in a Multiphase Fluid Mixture Download PDFInfo
- Publication number
- US20080307860A1 US20080307860A1 US11/572,055 US57205505A US2008307860A1 US 20080307860 A1 US20080307860 A1 US 20080307860A1 US 57205505 A US57205505 A US 57205505A US 2008307860 A1 US2008307860 A1 US 2008307860A1
- Authority
- US
- United States
- Prior art keywords
- detector
- fluid mixture
- multiphase fluid
- line
- optical probe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 108
- 239000000203 mixture Substances 0.000 title claims abstract description 84
- 239000000523 sample Substances 0.000 claims abstract description 78
- 230000003287 optical effect Effects 0.000 claims abstract description 73
- 230000000694 effects Effects 0.000 claims abstract description 13
- 238000005070 sampling Methods 0.000 claims description 23
- 238000005259 measurement Methods 0.000 claims description 17
- 239000004215 Carbon black (E152) Substances 0.000 claims description 11
- 229930195733 hydrocarbon Natural products 0.000 claims description 11
- 150000002430 hydrocarbons Chemical class 0.000 claims description 11
- 239000013307 optical fiber Substances 0.000 claims description 11
- 238000012360 testing method Methods 0.000 claims description 10
- 238000009795 derivation Methods 0.000 claims description 8
- 229910052594 sapphire Inorganic materials 0.000 claims description 8
- 239000010980 sapphire Substances 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 238000005086 pumping Methods 0.000 claims description 2
- 239000012071 phase Substances 0.000 description 71
- 239000003921 oil Substances 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 238000012546 transfer Methods 0.000 description 8
- 230000000007 visual effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000003129 oil well Substances 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005501 phase interface Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000003189 isokinetic effect Effects 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/26—Oils; Viscous liquids; Paints; Inks
- G01N33/28—Oils, i.e. hydrocarbon liquids
- G01N33/2823—Raw oil, drilling fluid or polyphasic mixtures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/704—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow using marked regions or existing inhomogeneities within the fluid stream, e.g. statistically occurring variations in a fluid parameter
- G01F1/708—Measuring the time taken to traverse a fixed distance
- G01F1/7086—Measuring the time taken to traverse a fixed distance using optical detecting arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/74—Devices for measuring flow of a fluid or flow of a fluent solid material in suspension in another fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F5/00—Measuring a proportion of the volume flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/43—Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
- G01N21/431—Dip refractometers, e.g. using optical fibres
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N21/8507—Probe photometers, i.e. with optical measuring part dipped into fluid sample
Definitions
- the invention relates to a detector for distinguishing a phase from a multiphase fluid mixture.
- the detector comprises an optical probe for optically distinguishing one of the phases from the multiphase fluid mixture based on the refractive index of the phases.
- a particular application of the invention relates to the detection of the various phases of a multiphase fluid mixture from a hydrocarbon well.
- a multiphase fluid mixture typically comprises three phases: an aqueous phase, a liquid hydrocarbon phase and a gaseous hydrocarbon phase.
- the invention also relates to particular applications and arrangements of the detector to measurement in the oil industry.
- a well testing operation is generally carried out for a short period of time.
- the well testing operation serves to characterize the various components of the effluent flowing out of well, and to estimate the production capacities of the well.
- a well producing operation is carried out as long as the oil produced is satisfactory in term of quality, flowing rate, etc. . . .
- the composition of the effluent varies considerably.
- the well is initially filled with aqueous residues from the well construction operation such as drilling fluid and completion fluid.
- the effluent that is initially collected is essentially made up of water. Subsequently, the percentage of aqueous residue decreases gradually, and the composition of the effluent becomes enriched with oil and with gas. Thus, the effluent is a multiphase fluid mixture.
- a visual observation can be performed by way of a universal fluid phase detector.
- the universal fluid phase detector mainly comprises sight-glass disposed on the well flowing line.
- a visual observation can be performed through the glass directly by an operator or recorded by a video camera for subsequent interpretation.
- the phase sensing can also be performed using an optical probe based on light attenuation.
- specific fluid detectors are known for sensing a particular component of a phase using a specific physical property (conductivity, specific light absorption, etc. . . . ). These detectors are limited to one phase amongst the others.
- U.S. Pat. No. 5,956,132 describes an apparatus comprising an optical probe for discriminating between the three phases of a moving fluid comprising gas, oil and water.
- the optical probe comprises a detector block having a sensitive zone in contact with the moving fluid.
- An incident light beam injected in the detector block enables to discriminate between the three phases by using a measurement technique based on the reflection of light induced by the specific refractive indices of each phase.
- the apparatus in particular the detector block is placed in the moving three-phase fluid flowing along the oil well line.
- the oil well line has an internal diameter of a few centimeters. Because of the oil well line dimension, a plurality of detectors is placed at different distances from the axis of the well and at different azimuths, so as to obtain a three-dimensional image of the phases in the flowing fluid. Besides, because of the internal diameter of the oil well line and the position of the optical probe in the line, wettability issues and dirt deposit on the probe are a source of inaccuracy.
- One goal of the invention is to propose a detector for distinguishing a phase from a multiphase fluid mixture based on optical measurement that has a better accuracy than the prior art measurement apparatus and system.
- a detector comprising an optical probe coupled to a detector cell is designed in such a way that each phase of the multiphase fluid mixture circulates around a probe tip.
- the present invention relates to a detector for distinguishing a phase from a multiphase fluid mixture, the detector comprising:
- the detector cell further comprises:
- the internal flowing line is dimensioned so that the phases of the multiphase fluid mixture flowing in the internal flowing line are driven-on by capillarity effect. Due to the capillarity effect, the fluid mixture will either flows as plugs and rings or as a biphasic emulsion (in case the fluid mixture is an emulsion of water and oil, of oil and gas, etc. . . . ).
- the internal flowing line has an internal diameter substantially corresponding to a capillary tube diameter.
- the capillary tube diameter may range from 0.5 mm to 20 mm. However, this range typically varies depending on the fluid mixture properties.
- the optical probe is coupled to the bore of the detector cell through a compression fitting and connected to an electronic module though an optical fiber.
- the multiphase fluid mixture is driven-on by capillarity effects and is forced to circulate around the optical probe (typically at a flowrate around a few cm/s, e.g. 3 cm/s to 15 cm/s).
- the detector according to the invention is compact, light, safe and accurate.
- the detector constitutes a compact hand-held equipment that can be used in full autonomy or connected to an acquisition system.
- the detector can withstand high-pressure (higher than 700 bar) and high temperatures (higher than 150° C.) that are expected in oil and gas field surface, down-hole and subsea operations.
- the detector is advantageously compliant with the safety regulation for being operated in hazardous area.
- the detector according to the invention is used as an in-line phase detector allowing sensing gas, oil/condensate and water during sampling or bottle transfer down-hole or in sub-sea operations.
- the detector according to the invention enables to ensure that the sampled phase is the expected one, and enables to sense the interface between the various phases during fluid transfer operations from vessel to vessel (a vessel being a generic terminology for e.g. sampler, shipping cylinder, PVT cell, pycnometer, flash apparatus, etc. . . . ).
- the detector is integrated in an arrangement for transferring a single phase from a sampling bottle comprising a multiphase fluid mixture to a shipping bottle.
- the transferring arrangement comprises a flow line coupling the sampling bottle to the shipping bottle, a pumping arrangement for transferring a fluid from the sampling bottle to the shipping bottle, and a detector according to the invention.
- the detector according to the invention is used as an in-line phase ratios monitoring application.
- the detector according to the invention enables to accurately measure the fractions of each phase in the multiphase fluid mixture. This is also advantageous for improving measurement made by other oil-water-gas fraction measuring apparatus.
- the detector according to the invention is used as a redundancy device or as a recalibration device.
- the detector is integrated in an arrangement for testing a well that produces a multiphase fluid mixture flowing through a main line.
- the arrangement comprises a derivation line coupled to the main line for deriving a part of the multiphase fluid mixture, a detector according to the invention and an acquisition device connected to the detector.
- the detector according to the invention is used as a flow rate measuring apparatus.
- the arrangement for measuring a flowrate of a phase of a multiphase fluid mixture flowing though a main line of a hydrocarbon well comprises a derivation line coupled to the main line for deriving a part of the multiphase fluid mixture, at least two detectors according to the invention, each detector being connected in serial along the derivation line and an acquisition device connected to the detectors.
- the acquisition device receives from each detector a signal which level is characteristic of the phase flowing around the tip, performs a cross correlation of the received signals, determines a transit time of each phase from one detector to the other, and computes a measurement representative of the flow rate in the main line.
- FIG. 1 schematically illustrates a detector for distinguishing a phase from a multiphase fluid mixture according to the invention
- FIGS. 2.A , 2 .B and 2 .C schematically illustrate various embodiments of the detector cell of the invention
- FIG. 3 schematically illustrates the preferred embodiments of the detector cell of the invention comprising an optical probe
- FIG. 4 schematically illustrates the known operation principle of the optical probe
- FIG. 5 schematically illustrates a first application of the invention, namely a stand-alone phase interface sensing application
- FIG. 6 schematically illustrates a second application of the invention, namely an in-line phase ratios monitoring application
- FIG. 7 shows a typical signal over time graphic obtained in the second application of the invention shown in FIG. 6 .
- FIG. 1 shows a detector 1 for distinguishing a phase from a multiphase fluid mixture.
- the detector comprises a detector cell 3 connected to an electronic module 10 .
- the detector cell 3 comprises an input connection 7 and an output connection 8 that are connectable to a flow line (not shown) in which the multiphase fluid mixture FM flows.
- the input 7 and output connections 8 are high-pressure connection.
- the detector cell 3 further comprises an optical probe 2 coupled to an optical fiber 11 by an optical connector 12 A.
- the optical fiber 11 connects the optical probe 2 to the electronic module 10 .
- the optical fiber 11 is an armored optical fiber.
- the detector cell will be described in greater details here below.
- the electronic module 10 has the form of a hand-held housing.
- the electronic module 10 comprises an optical connector 12 B for optically connecting the module to the optical fiber 11 .
- the electronic module 10 further comprises a circuit board 13 .
- the circuit board 13 comprises electronic elements, in particular an emitting diode 15 A and detecting diode 15 B, and other electronic elements (not shown) for ensuring the functionality of the detector.
- the emitting and detecting diodes are connected to the optical fiber 11 via an optical coupling 14 .
- the optical coupling 14 is an optical fiber assembly having a Y shape that connects the optical probe to both emitting and detecting diodes.
- the emitting diode is advantageously a laser type diode.
- the detecting diode is advantageously a photo-transistor.
- the electronic module 10 also comprises a display 16 , a power switch 19 , and a power supply connection 17 .
- the electronic module 10 may also comprise an input/output connector 18 . All these elements are connected to the circuit board 13 .
- the circuit board 13 controls the light emission by the emitting diode 15 A, the light detection by the detecting diode 15 B, the display and eventually the signal input/output via the input/output connector 18 .
- the display 16 can comprise 3 LEDs, each LEDs indicating which phase is currently in contact with the optical probe.
- the display 16 can also be of a more sophisticated type, e.g. LCD display, giving further information about the detector status, information related to measurement performed and/or graphical evolution of measurements versus time.
- the electronic module 10 comprises an internal power supply under the form of a battery (not shown) which enables a full autonomous mode.
- the alimentation connection 17 can be used as a direct power supply or as a battery charging input.
- the input/output connector 18 can be designed for connection to various peripheral (e.g. computer, printer, etc. . . . ).
- the input/output connector 18 can deliver an output signal (for example a 4 mA to 20 mA signal) for allowing the acquisition of the detector response versus time on a computer, or any other acquisition devices.
- the electronic module is advantageously designed and built according to safety standards for being used in explosive area.
- FIGS. 2.A , 2 .B and 2 .C schematically illustrate various embodiments of the detector cell of the invention.
- the detector cell is represented without an optical probe for sake of clarity.
- the detector cell has substantially the form of a parallelepiped bloc.
- the detector cell can be incorporated in a manifold of valves.
- the detector cell 3 is arranged to be coupled to the multiphase fluid mixture flowing line (not shown) by means of input connection 7 and output connection 8 .
- the detector cell 3 is also arranged to be coupled to the optical probe (not shown on FIG. 2 ).
- the input connection 7 and output connection 8 can be inverted, the detector being able to perform measurements on a fluid mixture flowing from the input connection 7 towards the output connection 8 and vice versa.
- the input connection 7 and output connection 8 of the detector cell are designed for coupling to a flowing line having an internal diameter similar to the typical diameter used in surface sampling and/or PVT (Pressure Volume Temperature) laboratory tubing. Such diameter is typically in the order of one to several millimeters.
- PVT Pressure Volume Temperature
- the coupling between the connection and the flowing line is made by means of high-pressure fittings.
- the detector cell further comprises an internal flowing line 4 .
- the internal flowing line is arranged so that each phase of the multiphase fluid mixture, penetrating into the detector cell 3 from the flowing line through the input connection 7 , flowing in the internal flowing line 4 are driven-on by capillarity effect.
- the internal flowing line has an internal diameter ID substantially corresponding to a capillary tube diameter.
- the internal flowing line 4 has an internal diameter ID ranging from 0.5 mm to 20 mm. However, this range can vary because of the fluid properties.
- the detector cell further comprises a bore 5 coupled to the internal flowing line 4 . The bore enables the positioning of the optical probe in the detector cell.
- the internal flowing line 4 and the bore 5 of the detector cell 3 has the shape of a Y.
- the Y has a first branch 4 A, a second branch 4 B and a third branch 4 C branch, each branch being connected to the two other branches by one extremity.
- the first branch 4 A and second branch 4 B are constituted by the internal flowing line 4 .
- the third branch 4 C is constituted by the bore 5 .
- FIG. 2.A shows a first embodiment of the detector cell according to which the first branch 4 A is perpendicular to the second branch 4 B.
- the third branch 4 C is perpendicular to the second branch 4 B.
- FIG. 2.B shows a second embodiment of the detector cell according to which the first branch 4 A and the second branch 4 B are in-line.
- the third branch 4 C is perpendicular to the second branch 4 B.
- FIG. 2.C shows a third embodiment of the detector cell according to which the first branch 4 A forms an angle ⁇ respectively to the second branch 4 B.
- the angle ⁇ can take a value between 90° (corresponding to the first embodiment) to 180° (corresponding to the second embodiment).
- the third branch 4 C forms an angle ⁇ respectively to the second branch 4 B.
- the angle ⁇ can take a value between 0° to 360° ⁇ , with some restrictions due to the space occupied by the internal flowing line.
- FIG. 3 schematically illustrates the preferred embodiments of the detector cell of the invention comprising an optical probe.
- the preferred embodiment corresponds to the first embodiment illustrated in FIG. 2.A .
- the first branch 4 A is perpendicular to the second branch 4 B.
- the third branch 4 C is perpendicular to the second branch 4 B or in-line with the first branch 4 A.
- the optical probe 2 comprises a rod.
- the rod made of sapphire has a bi-cone shaped tip 20 .
- the sapphire rod is inserted in a sleeve 2 A.
- the sleeve 2 A is advantageously made of stainless steel.
- the optical probe is connected to the optical fiber 11 through an optical connector 12 B for handling light coming into the rod and light coming back from the rod after reflection in the tip.
- the optical probe 2 is coupled to the bore 5 of the detector cell through a compression fitting 6 .
- the bore 5 and the compression fitting 6 enable the positioning of the optical probe in the detector cell so that the multiphase fluid mixture flowing in the internal flowing line 4 , flows substantially around the tip 20 of the optical probe.
- the compression fitting also ensures a good sealing between high-pressure fluids flowing into the internal flowing line of the detector cell and the external pressure (for example the atmosphere pressure).
- the preferred embodiment enables an efficient auto-cleaning of the tip 20 of the optical probe rod.
- the risk for the tip 20 to be subject of dirt deposit (e.g. due to heavy oil phase) during a long time is very limited.
- all the elements in contact with fluid are made of materials like stainless steel and sapphire that are acknowledged being compliant with the pressure (higher than 700 bar) and temperature (higher than 150° C.) involved, and chemically compatible with the various components expected in the multiphase fluid mixture.
- FIG. 4 is a longitudinal section view in a part of the optical probe that schematically illustrates the measurement principle of the optical probe.
- the optical probe is described in U.S. Pat. No. 5,956,132, which is herein incorporated by reference.
- the sapphire rod is inserted in a sleeve 2 A and maintained together by means of a bounding material 2 B.
- the rod is advantageously made of sapphire and the sleeve 2 A of stainless steel.
- the measurement principle of the probe is based on the differences in refractive index between water, oil and gas phases.
- the optical refractive index of multiphase fluid flowing out of a hydrocarbon well is as follows:
- the sapphire refractive index is 1.77, which ensures a sufficient contrast with the various phase refractive indices.
- the rod has a bi-cone shaped tip 20 .
- the bi-cone shaped tip 20 comprises a sensitive zone 20 A and a total reflection zone 20 B.
- the sensitive zone 20 A and the total reflection zone 20 B are adjacent and coaxial relatively to the rod longitudinal axis.
- the sensitive zone 20 A forms a first angle ⁇ 1 (for example 100°) relatively to the rod longitudinal axis, so that an incident light beam IR is reflected when the probe tip 20 is surrounded with gas and refracted when the probe tip is surrounded with liquid.
- the total reflection zone 20 B forms a second angle ⁇ 2 (for example 10°) relatively to the rod longitudinal axis, in order to discriminate between oil and water.
- the reflected fraction RR of the incident light beam varies as a function of the refractive index of the phase of the multiphase fluid mixture in which the tip is surrounded.
- the optical probe 2 is connected by means of optical fiber 11 to the electronic module 10 comprising the emitting and detection circuits.
- the detector provides a signal which level is specific to the fluid phase in contact with the optical probe tip.
- the probe When the probe is surrounded by gas, typically 36% of the incident light beam is reflected in the sapphire tip. The reflected light beam is detected as a high level signal by the electronic module 10 .
- the probe When the probe is surrounded by oil or gasoline, typically more than 99% of the incident light beam is refracted in the surrounding liquid. The reflected light beam is detected as a low level signal (less than 1%).
- FIG. 5 schematically illustrates a first application of the invention.
- Identifying phases during sampling operation is a constant concern during oilfield operations. In effect, for economical reasons, it is necessary to take a sample of the desired fluid phase before any future fluid comprehensive laboratory analysis is performed. Further, it is desirable that each sampled phase is not polluted with another. Pollution can easily occur:
- the detector of the invention is used as a stand-alone phase interface sensing detector.
- the detector is operated in full autonomy (battery operation) and the operator uses visual signal to differentiate between the phase.
- a multiphase fluid mixture is transferred from a sampling bottle 30 or a down hole sampler into a shipping bottle 32 .
- the shipping bottle is subsequently shipped to a laboratory for a detailed analysis of the fluid properties.
- it is important to ensure that the fluid, generally the one containing hydrocarbon, transferred into the shipping bottle is in a single phase (gas or liquid) and to avoid transferring water.
- the sampling bottle 30 is coupled to the shipping bottle 32 by means of a flow line L.
- the sampling 30 and the shipping 32 bottles comprise respective pistons 31 and 33 .
- the shipping bottle is initially filled with a hydraulic media HM (e.g. water with glycol).
- a transfer pump 34 draw up the hydraulic media HM from a hydraulic media tank 35 to the sampling bottle 30 , thereby pushing the piston 31 and transferring a phase (e.g. gas G) to the shipping bottle.
- the phase (e.g. gas G) flowing into the shipping bottle pushes the piston 33 , causing the hydraulic media HM to flow into a test tube 36 .
- the test tube is graduated for volume measurement.
- the detector 1 in particular the detector cell 3 is inserted into a flow line L using the high-pressure connections 7 and 8 .
- the detector is used for sensing the interface between gas G and liquid (condensate/oil O or water W) or between oil/condensate and water W, in order to stop transfer before a second phase enters the shipping bottle 32 .
- the first application was described by detailing a particular transfer between a sampling and a shipping bottle.
- the detector can be used for any transfer between any vessel (for example PVT laboratories, pycnometer, flash apparatus, etc. . . . ).
- FIG. 6 schematically illustrates a second application of the invention.
- phase ratios during oilfield operations is an important concern.
- the accurate measurement of the phase ratios in the main pipe is difficult to perform when one main phase is present in the pipe (e.g. high gas volume fraction, wet gas flow or the opposite).
- the detector 1 is used for determining the different combinations of gas, water, oil/condensate ratios at line conditions in a flow line L, which is derived from a main flow line (not shown).
- the in-line phase detector is used for the continuous monitoring of the fluid phases flowing through the line, by logging the signal versus time.
- the detector 1 in particular the detector cell 3 is inserted into a flow line L using the high-pressure connections 7 and 8 .
- the detector 1 in particular the electronic module 10 , is connected to an acquisition device 41 (e.g. a computer) for recording the signal during a flow period.
- an acquisition device 41 e.g. a computer
- FIG. 7 shows a typical signal S(V) over time t(s) graphic obtained in the second application of the invention illustrated in FIG. 6 . Further, the signal amplitude ratio enables to calculate the relevant volumetric fraction of each phase.
- the signal S(V) In the case of a very strong emulsion (typically oil and water), the signal S(V) have an intermediate level between the two possible value. An estimate based on the signal amplitude ratio could give the relevant volumetric fraction of each phase.
- the signal S(V) is proportional to the water-oil ratio.
- the detector could be used for measuring the water-oil ratio.
- the in-line phase detector could be used to calibrate, recalibrate or compensate any instruments on line measuring oil/condensate, gas, water or any combination fractions which could be affected by some of the fluid properties (e.g. a dual gamma ray measurement apparatus is affected water salinity changes) or by ageing electronics providing a different response versus time to any measuring or main acquisition device.
- a dual gamma ray measurement apparatus is affected water salinity changes
- ageing electronics providing a different response versus time to any measuring or main acquisition device.
- the detector according to the invention is used to perform flow rate measurements.
- the detector may be coupled with an isokinetic sampling device to give in real time the flow rate of each phase flowing in the sampling pipe.
- two or more detectors may be mounted in series in order to measure a volumetric flow rate, providing that there are more than one phase present in the flow line.
- the detectors are connected to a computer or any other acquisition device which can perform a cross correlation of the detectors signals and determine the transit time of each phase from one detector to the other. These data are subsequently computed to give a measurement of the volumetric flow rate in the sampling line.
- main line use in the present description has a broad meaning, and covers line having a dimension of a few centimeters, for example pipeline, sub-sea line, down-hole line, sampling line, etc. . . .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Fluid Mechanics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EPEP04291832.6 | 2004-07-13 | ||
EP04291832A EP1617202B1 (en) | 2004-07-13 | 2004-07-13 | Detector for distinguishing phases in a multiphase fluid mixture |
PCT/EP2005/007602 WO2006005600A1 (en) | 2004-07-13 | 2005-07-11 | Detector for distinguishing phases in a multiphase fluid mixture |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080307860A1 true US20080307860A1 (en) | 2008-12-18 |
Family
ID=34931259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/572,055 Abandoned US20080307860A1 (en) | 2004-07-13 | 2005-07-11 | Detector for Distinguishing Phases in a Multiphase Fluid Mixture |
Country Status (9)
Country | Link |
---|---|
US (1) | US20080307860A1 (es) |
EP (1) | EP1617202B1 (es) |
AT (1) | ATE443855T1 (es) |
AU (1) | AU2005261858B2 (es) |
CA (1) | CA2573665A1 (es) |
DE (1) | DE602004023283D1 (es) |
MX (1) | MX2007000537A (es) |
NO (1) | NO20070783L (es) |
WO (1) | WO2006005600A1 (es) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100145634A1 (en) * | 2007-03-27 | 2010-06-10 | Schlumberger Technology Corporation | System and method for spot check analysis or spot sampling of a multiphase mixture flowing in a pipeline |
US20100265492A1 (en) * | 2009-04-17 | 2010-10-21 | Schlumberger Technology Corporation | High pressure and high temperature optical spectroscopy cell |
US20110088894A1 (en) * | 2009-10-19 | 2011-04-21 | Keith Atwood | Methods, apparatus and articles of manufacture to measure gas reservoir formation pressures |
WO2012005844A3 (en) * | 2010-07-08 | 2012-04-05 | Baker Hughes Incorporated | Optical method for determining fouling of crude and heavy fuels |
US20150346117A1 (en) * | 2013-02-05 | 2015-12-03 | Roxar Flow Measurement As | Conductivity measurements |
CN105866182A (zh) * | 2016-04-11 | 2016-08-17 | 中国石油天然气股份有限公司 | 基于抽油机井的在线观察测量装置 |
US20160327683A1 (en) * | 2015-05-04 | 2016-11-10 | Openfield | Downhole fluid properties analysis device and tools comprising such a device |
US10215705B2 (en) * | 2009-11-19 | 2019-02-26 | Petroliam Nasional Berhad | Fiber optic system for measuring a multiphase flow |
US10809192B2 (en) * | 2016-12-28 | 2020-10-20 | Vito Nv | Optical methods for phase change materials |
US11415446B2 (en) | 2017-03-28 | 2022-08-16 | Roxar Flow Measurement As | Flow measuring system |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2466405B (en) * | 2007-10-12 | 2013-05-01 | Schlumberger Holdings | Measure of quantities of oil and water in multiphase flows |
DK2075403T3 (da) | 2007-12-27 | 2011-03-21 | Schlumberger Technology Bv | Realtidsmåling af resevoirfluiders egenskaber |
FR2930342A1 (fr) * | 2008-04-17 | 2009-10-23 | R B I Sarl | Sonde optique pour la determination de grandeurs d'un ecoulement biphasique. |
US20110185809A1 (en) * | 2008-08-22 | 2011-08-04 | Paul Guieze | Universal flash system and apparatus for petroleum reservoir fluids study |
US8218133B2 (en) * | 2010-09-16 | 2012-07-10 | Sondex Limited | Refractive index tool and method |
US9632071B2 (en) | 2013-07-25 | 2017-04-25 | General Electric Company | Systems and methods for analyzing a multiphase fluid |
US10739519B2 (en) | 2015-07-16 | 2020-08-11 | CommScope Connectivity Belgium BVBA | Optical fiber and waveguide devices having expanded beam coupling |
GB2542855B (en) * | 2015-10-02 | 2017-10-11 | Smart Fibres Ltd | Monitoring probe |
RU2610548C1 (ru) | 2015-10-20 | 2017-02-13 | Шлюмберже Текнолоджи Б.В. | Способ определения расходов фаз двухфазной смеси в трубопроводе |
GB2586649B (en) * | 2019-09-02 | 2022-09-28 | Schlumberger Technology Bv | Pressure cell systems for use with drilling fluid |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4703664A (en) * | 1983-03-09 | 1987-11-03 | Kirkpatrick Lloyd V | Fluid flow measurement system sensor mounting block |
US4978863A (en) * | 1988-09-06 | 1990-12-18 | The Dow Chemical Company | Method and apparatus for fiber optic backscattered light measurement to determine flow rates of multi-phase streams |
US5456120A (en) * | 1992-05-12 | 1995-10-10 | Schlumberger Technology Corporation | Method and apparatus for measuring the rate of flow of the continuous phase of a multiphase fluid |
US5831743A (en) * | 1994-08-06 | 1998-11-03 | Schlumberger Technology Corporation | Optical probes |
US5956132A (en) * | 1996-05-22 | 1999-09-21 | Intellectual Property Law Dept. Schlumberger-Doll Research | Method and apparatus for optically discriminating between the phases of a three-phase fluid |
US20060242853A1 (en) * | 2001-01-23 | 2006-11-02 | Xu Wu | Optical Probes and Probe Systems for Monitoring Fluid Flow in a Well |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3898637A (en) * | 1973-07-27 | 1975-08-05 | Eugene B Wolstenholme | Detection means for gas entering human blood system from extra-corporeal tubing |
US4210809A (en) * | 1979-03-16 | 1980-07-01 | Technicon Instruments Corporation | Method and apparatus for the non-invasive determination of the characteristics of a segmented fluid stream |
US4659218A (en) * | 1985-05-23 | 1987-04-21 | Canadian Patents & Development Corporation | Multi-probe system for measuring bubble characteristics gas hold-up, liquid hold-up and solid hold-up in a three-phase fluidized bed |
NL8703139A (nl) * | 1987-12-28 | 1989-07-17 | Gerardus Johannes Jozef Beukev | Detectorcel voor het met behulp van licht identificeren en kwantificeren van stoffen, en analyse-inrichting voorzien van een dergelijke detectorcel. |
US5046854A (en) | 1990-02-01 | 1991-09-10 | The Dow Chemical Company | Photometric cell and probe having windows fusion sealed to a metallic body |
CA2125546A1 (en) * | 1993-08-13 | 1995-02-14 | David Kleinschmitt | Method and apparatus for discriminating between liquids and gases |
US5455423A (en) * | 1993-08-25 | 1995-10-03 | Orbital Sciences Corporation | Gas bubble detector |
-
2004
- 2004-07-13 EP EP04291832A patent/EP1617202B1/en not_active Expired - Lifetime
- 2004-07-13 DE DE602004023283T patent/DE602004023283D1/de not_active Expired - Lifetime
- 2004-07-13 AT AT04291832T patent/ATE443855T1/de not_active IP Right Cessation
-
2005
- 2005-07-11 AU AU2005261858A patent/AU2005261858B2/en not_active Ceased
- 2005-07-11 WO PCT/EP2005/007602 patent/WO2006005600A1/en active Application Filing
- 2005-07-11 US US11/572,055 patent/US20080307860A1/en not_active Abandoned
- 2005-07-11 CA CA002573665A patent/CA2573665A1/en not_active Abandoned
- 2005-07-11 MX MX2007000537A patent/MX2007000537A/es active IP Right Grant
-
2007
- 2007-02-09 NO NO20070783A patent/NO20070783L/no not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4703664A (en) * | 1983-03-09 | 1987-11-03 | Kirkpatrick Lloyd V | Fluid flow measurement system sensor mounting block |
US4978863A (en) * | 1988-09-06 | 1990-12-18 | The Dow Chemical Company | Method and apparatus for fiber optic backscattered light measurement to determine flow rates of multi-phase streams |
US5456120A (en) * | 1992-05-12 | 1995-10-10 | Schlumberger Technology Corporation | Method and apparatus for measuring the rate of flow of the continuous phase of a multiphase fluid |
US5831743A (en) * | 1994-08-06 | 1998-11-03 | Schlumberger Technology Corporation | Optical probes |
US5956132A (en) * | 1996-05-22 | 1999-09-21 | Intellectual Property Law Dept. Schlumberger-Doll Research | Method and apparatus for optically discriminating between the phases of a three-phase fluid |
US20060242853A1 (en) * | 2001-01-23 | 2006-11-02 | Xu Wu | Optical Probes and Probe Systems for Monitoring Fluid Flow in a Well |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8606531B2 (en) | 2007-03-27 | 2013-12-10 | Schlumberger Technology Corporation | System and method for spot check analysis or spot sampling of a multiphase mixture flowing in a pipeline |
US20100145634A1 (en) * | 2007-03-27 | 2010-06-10 | Schlumberger Technology Corporation | System and method for spot check analysis or spot sampling of a multiphase mixture flowing in a pipeline |
US20100265492A1 (en) * | 2009-04-17 | 2010-10-21 | Schlumberger Technology Corporation | High pressure and high temperature optical spectroscopy cell |
EP2419711A2 (en) * | 2009-04-17 | 2012-02-22 | Services Pétroliers Schlumberger | A high pressure and high temperature optical spectroscopy cell |
EP2419711A4 (en) * | 2009-04-17 | 2012-09-26 | Schlumberger Services Petrol | HIGH-PRESSURE AND HIGH-TEMPERATURE CELL FOR OPTICAL SPECTROSCOPY |
US8564768B2 (en) | 2009-04-17 | 2013-10-22 | Schlumberger Technology Corporation | High pressure and high temperature optical spectroscopy cell using spherical surfaced lenses in direct contact with a fluid pathway |
US20110088894A1 (en) * | 2009-10-19 | 2011-04-21 | Keith Atwood | Methods, apparatus and articles of manufacture to measure gas reservoir formation pressures |
US8360148B2 (en) | 2009-10-19 | 2013-01-29 | Schlumberger Technology Corporation | Methods, apparatus and articles of manufacture to measure gas reservoir formation pressures |
US10215705B2 (en) * | 2009-11-19 | 2019-02-26 | Petroliam Nasional Berhad | Fiber optic system for measuring a multiphase flow |
US9038451B2 (en) * | 2010-07-08 | 2015-05-26 | Baker Hughes Incorporated | Optical method for determining fouling of crude and heavy fuels |
US20120125087A1 (en) * | 2010-07-08 | 2012-05-24 | Baker Hughes Incorporated | Optical method for determining fouling of crude and heavy fuels |
EP2591352A4 (en) * | 2010-07-08 | 2016-04-20 | Baker Hughes Inc | OPTICAL METHOD FOR DETERMINING THE RADIATION GRADE OF RAW AND HEAVY FUELS |
WO2012005844A3 (en) * | 2010-07-08 | 2012-04-05 | Baker Hughes Incorporated | Optical method for determining fouling of crude and heavy fuels |
US20150346117A1 (en) * | 2013-02-05 | 2015-12-03 | Roxar Flow Measurement As | Conductivity measurements |
US10359372B2 (en) * | 2013-02-05 | 2019-07-23 | Roxar Flow Measurement As | Conductivity measurements |
US20160327683A1 (en) * | 2015-05-04 | 2016-11-10 | Openfield | Downhole fluid properties analysis device and tools comprising such a device |
US9651710B2 (en) * | 2015-05-04 | 2017-05-16 | Openfield | Downhole fluid properties analysis device and tools comprising such a device |
CN105866182A (zh) * | 2016-04-11 | 2016-08-17 | 中国石油天然气股份有限公司 | 基于抽油机井的在线观察测量装置 |
US10809192B2 (en) * | 2016-12-28 | 2020-10-20 | Vito Nv | Optical methods for phase change materials |
US11415446B2 (en) | 2017-03-28 | 2022-08-16 | Roxar Flow Measurement As | Flow measuring system |
Also Published As
Publication number | Publication date |
---|---|
ATE443855T1 (de) | 2009-10-15 |
AU2005261858A1 (en) | 2006-01-19 |
CA2573665A1 (en) | 2006-01-19 |
EP1617202B1 (en) | 2009-09-23 |
WO2006005600A1 (en) | 2006-01-19 |
AU2005261858B2 (en) | 2011-11-17 |
NO20070783L (no) | 2007-04-12 |
DE602004023283D1 (de) | 2009-11-05 |
EP1617202A1 (en) | 2006-01-18 |
MX2007000537A (es) | 2007-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2005261858B2 (en) | Detector for distinguishing phases in a multiphase fluid mixture | |
US8256283B2 (en) | Method of downhole characterization of formation fluids, measurement controller for downhole characterization of formation fluids, and apparatus for downhole characterization of formation fluids | |
EP0475791B1 (en) | Apparatus and method for detecting the presence of gas in a borehole flow stream | |
US9651710B2 (en) | Downhole fluid properties analysis device and tools comprising such a device | |
US9863244B2 (en) | Downhole fluid properties analysis probe, tool and method | |
US7461547B2 (en) | Methods and apparatus of downhole fluid analysis | |
US5201220A (en) | Apparatus and method for detecting the presence of gas in a borehole flow stream | |
GB2391620A (en) | Determining dew precipitation and onset pressure in oilfield retrograde condensate | |
US4656869A (en) | Method of measuring the amount of water flowing in a crude oil pipeline | |
US20140300889A1 (en) | Apparatus and Method for Determining a Fluid Property Downhole Using a Bulk Reading Refractometer | |
EP3479098A1 (en) | Apparatus and method for analyzing composition in oil and gas production well | |
CN101460841A (zh) | 使用折射率估计地层流体样品中的滤液污染的系统和方法 | |
Hamad et al. | A dual optical probe for volume fraction, drop velocity and drop size measurements in liquid-liquid two-phase flow | |
WO2006054054A1 (en) | Systems and methods for determining the location of a pig in a pipeline | |
AU671235B2 (en) | Apparatus for measuring thermodynamic characteristics of a hydrocarbon sample | |
Yang | Sensors and instrumentation for monitoring and control of multi-phase separation | |
EP3025155B1 (en) | Systems and methods for analyzing a multiphase fluid | |
CN106932317A (zh) | 一种喷气燃料非溶解水含量在线检测装置及检测方法 | |
CN117782264A (zh) | 一种确定两相界面的方法及其装置 | |
RU195059U1 (ru) | Комплексное скважинное фотометрическое устройство | |
RU146226U1 (ru) | Устройство для исследования показателей преломления и дисперсии нефти на устье добывающей скважины | |
Provides et al. | Featured Products | |
Wyckoff | Procedure for Flow Tests of Pipelines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUIEZE, PAUL;PINGUET, BRUNO;REEL/FRAME:021297/0188 Effective date: 20070118 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |