US20080258198A1 - Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for cmos - Google Patents

Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for cmos Download PDF

Info

Publication number
US20080258198A1
US20080258198A1 US12/166,690 US16669008A US2008258198A1 US 20080258198 A1 US20080258198 A1 US 20080258198A1 US 16669008 A US16669008 A US 16669008A US 2008258198 A1 US2008258198 A1 US 2008258198A1
Authority
US
United States
Prior art keywords
hafnium
based dielectric
mosfet
material stack
containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/166,690
Inventor
Nestor A. Bojarczuk
Michael P. Chudzik
Matthew W. Copel
Supratik Guha
Rajarao Jammy
Vijay Narayanan
Vamsi K. Paruchuri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Auriga Innovations Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/118,521 priority Critical patent/US7446380B2/en
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US12/166,690 priority patent/US20080258198A1/en
Publication of US20080258198A1 publication Critical patent/US20080258198A1/en
Assigned to GLOBALFOUNDRIES U.S. 2 LLC reassignment GLOBALFOUNDRIES U.S. 2 LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Assigned to GLOBALFOUNDRIES INC. reassignment GLOBALFOUNDRIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOBALFOUNDRIES U.S. 2 LLC, GLOBALFOUNDRIES U.S. INC.
Assigned to AURIGA INNOVATIONS, INC. reassignment AURIGA INNOVATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOBALFOUNDRIES INC.
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Abstract

The present invention provides a metal stack structure that stabilizes the flatband voltage and threshold voltages of material stacks that include a Si-containing conductor and a Hf-based dielectric. This present invention stabilizes the flatband voltages and the threshold voltages by introducing a rare earth metal-containing layer into the material stack that introduces, via electronegativity differences, a shift in the threshold voltage to the desired voltage. Specifically, the present invention provides a metal stack comprising:
    • a hafnium-based dielectric; a rare earth metal-containing layer located atop of, or within, said hafnium-based dielectric; an electrically conductive capping layer located above said hafnium-based dielectric; and a Si-containing conductor.

Description

    RELATED APPLICATION
  • This application is a continuation application of U.S. Ser. No. 11/118,521, filed Apr. 29, 2005.
  • FIELD OF THE INVENTION
  • The present invention generally relates to a semiconductor structure, and more particularly to a material stack useful in metal oxide semiconductor capacitors (MOSCAPs) and metal oxide semiconductor field effect transistors (MOSFETs) that includes a rare earth metal (or rare earth-like)-containing layer present on top of, or within, a dielectric layer which is capable of stabilizing the threshold voltage and flatband voltage of a Si-containing conductor. Specifically, the presence of the rare earth metal (or rare earth-like)-containing layer induces a band bending in a semiconductor substrate so as to shift the threshold voltage to more negative values than when such a layer is not used.
  • BACKGROUND OF THE INVENTION
  • In standard silicon complementary metal oxide semiconductor (CMOS) technology, n-type field effect transistors (pFET) use an As (or other donor) doped n-type polysilicon layer as a gate electrode that is deposited on top of a silicon dioxide or silicon oxynitride gate dielectric layer. The gate voltage is applied through this polysilicon layer to create an inversion channel in the p-type silicon underneath the gate oxide layer.
  • In future technology, silicon dioxide or silicon oxynitride dielectrics will be replaced with a gate material that has a higher dielectric constant. These materials are known as “high k” materials with the term “high k” denoting an insulating material whose dielectric constant is greater than 4.0, preferably greater than about 7.0. The dielectric constants mentioned herein are relative to a vacuum unless otherwise specified. Of the various possibilities, hafnium oxide, hafnium silicate, or hafnium silicon oxynitride may be the most suitable replacement candidates for conventional gate dielectrics due to their excellent thermal stability at high temperatures.
  • Silicon metal oxide semiconductor field effect transistors (MOSFETs) fabricated with a hafnium-based dielectric as the gate dielectric suffer from a non-ideal threshold voltage when n-MOSFETs are fabricated. To date, there is no known viable solution that can be used to solve the aforementioned problem that exists with Si MOSFETs that include a Hf-based dielectric.
  • In view of the above-mentioned problem with prior art Si MOSFETs that include a Hf-based dielectric, there is a need for providing a method and structure that is capable of stabilizing the flatband voltages and threshold voltages in MOSFETs that contain a Hf-based gate dielectric.
  • SUMMARY OF THE INVENTION
  • The present invention provides a metal stack structure that stabilizes the flatband voltages and threshold voltages of material stacks that include a Si-containing conductor and a Hf-based dielectric. It is emphasized that prior art Si MOSFETs fabricated with hafnium oxide as the gate dielectric suffers from a non-ideal threshold voltage when n-MOSFETs are fabricated. This present invention solves this problem by introducing a rare earth metal-containing layer into the material stack that introduces, via electronegativity differences, a shift in the threshold voltage to the desired voltage.
  • In broad terms, the present invention provides a material stack comprising:
  • a hafnium-based dielectric;
  • a rare earth metal-containing layer located atop of, or within, said hafnium-based dielectric;
  • an electrically conducting capping layer located above said hafnium-based dielectric; and
  • a Si-containing conductor.
  • In some embodiments of the present invention, an optional chemox layer can be located beneath the Hf-based dielectric. As used throughout the instant application, the term “chemox layer” denotes an optional interfacial dielectric that is formed on the surface of a semiconductor substrate prior to forming the Hf-based dielectric. It is noted that the term “rare earth metal-containing layer” is used herein to denote rare earth materials as well as materials that behave as a rare earth material.
  • In yet another embodiment of the present invention, a material stack including an optional chemox layer, HfO2 or Hf silicate as said Hf-based dielectric, a metal nitride layer including at least one rare earth metal or rare earth-like material, and polySi as the Si-containing gate conductor, wherein said metal nitride layer is used as both said rare earth-containing layer and said electrically conducting capping layer is provided.
  • It is noted that the presence of the rare earth metal-containing layer in the inventive material stack introduces a charge center into the Hf-based dielectric which has an electronegativity and/or valence that is different from the Hf-based dielectric layer. Specifically, the presence of the rare earth metal-containing layer in the inventive material stack introduces foreign atoms into the Hf-based dielectric that may residue either at substitutional or interstitial sites on the Hf-based dielectric. By altering the defect chemistry, the charge centers alter the electrostatic profile in the material stack, and the effective alignments of the potential in the dielectric and the vicinity of the interfaces between the Hf-based dielectric and the silicon and electrode sandwiching the dielectric. It is noted that the rare earth metal-containing layer may remain as a separate layer or it may interdiffuse within the Hf-based dielectric. The location of the rare earth metal-containing layer within the Hf-based dielectric is not critical so long as there is a concentration gradient of the rare earth metal-containing layer present in, or on, the Hf-based dielectric. The concentration gradient may be abrupt or non-abrupt.
  • In addition to the material stack described above, the present invention also provides MOSCAP and MOSFET structures which include the inventive material stack as a component. Specifically, and in broad terms, the present invention provides a semiconductor structure that comprises:
  • a patterned material stack located on a surface of a semiconductor substrate, said patterned material stack comprising a hafnium-based dielectric; a rare earth metal-containing layer located atop of, or within, said hafnium-based dielectric; an electrically conductive capping layer located above said hafnium-based dielectric; and a Si-containing conductor.
  • The present invention also relates to a method of fabricating the inventive material stack as well as methods of fabricating a semiconductor structure that includes the same.
  • It is observed that the inventive material stack provides a negative shift in the flatband voltage (as compared to a standard material stack that does not include the rare earth metal-containing layer) such that the flatband voltage is now appropriate for the fabrication of an nMOSFET. In an ideal n-channel MOSFET, the electrode is such that its Fermi level is aligned with the conduction band of the Si substrate. In the past, the problem has been that a practical semiconductor device could not be built with such an alignment and consequently the flatband voltage was greater than +0.1 V instead of −0.2 V, which is typical of such flatband voltages for Si substrates with standard doping. Using the above described material stack, the flatband voltage is about −0.15 V to about 0.05 V. Such a flatband voltage translates to a threshold voltage (the voltage at which the transistor turns on) to about 0.1 V for an n-channel MOSFET, which is the desired value. The prior material stack not including the rare earth metal-containing layer results in high electron channel mobilities (on the order of about 200 cm2/Vs at an electric field of 1 MV/cm) at low inversion electrical thickness (on the order of about 14-15 Å). However, the prior art material stack does not deliver the necessary threshold voltages for nMOSFETs. The desired threshold voltage, without compromising the other specifications, is achieved using the inventive material stack.
  • There are several unique aspects of the inventive material stack that should be briefly discussed. First, the presence of the rare earth metal-containing layer introduces a dipole into the dielectric stack. The origin of the dipole is due to the strongly electropositive nature of the rare earth metal atom. The sheet of rare earth metal atoms draws a positive charge towards it, resulting in a dipole. Without wishing to be bound by any theory, it is believed that this dipole creates the desired shift in flatband voltage and threshold voltage. Thermal processes diffuse the rare earth metal atoms across the gate stack. However, such a dipole will result as long as there is a non-symmetrical distribution in the rare earth metal composition across the stack, regardless of whether the rare earth metal composition in the stack is atomically abrupt or diffused, Second, the presence of the rare earth metal atoms in the Hf-based dielectric (due to interdiffusion) will result in a charge compensated dielectric. It is known that positively charged oxygen vacancies play a role in flatband voltage determination in an ionic oxide such as hafnium oxide.
  • If a small quantity of rare earth metal is present, the rare earth metal ion substituting for Hf ion acts as a negatively charged defect (REHf - ). Due to needs for charge neutrality, the presence of the rare earth metal substitutional defect can raise the concentration of the charged oxygen vacancies, thereby promoting the necessary flatband voltage shift. Thirdly, via its strong electropositive nature, the rare earth metal atom will modify the interface chemistry at the semiconductor/chemox/Hf-based dielectric interfacial region and the top Hf-based dielectric/rare earth metal-containing/electrically conductive capping layer region altering the effective alignment of the workfunctions of the material stack. In essence, all three of the aforementioned phenomena are the consequence of insertion of a highly electropositive element as a distinct layer in the stack sequence. This distinct layer then can interdiffuse, but the presence of a composition profile for this electropositive element ensures the flatband/threshold voltage.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-1D are pictorial representations (through cross sectional views) illustrating the basic processing steps that are employed in the present invention for forming a material stack of the present invention.
  • FIG. 2A is a pictorial representation (through a cross sectional view) illustrating a MOSCAP structure that can be formed from the inventive material stack; and FIG. 2B is a pictorial representation (through a cross sectional view) illustrating a MOSFET structure that can be formed from the inventive material stack.
  • FIG. 3 is a graph including CV (capacitance vs. voltage) curves comparing HfO2/La2O3/TiN/PolySi stacks with typical HfO2/TiN/PolySi stacks after 1000° C.+500° forming gas anneal.
  • FIG. 4 is a graph plotting the CV of the inventive material stack as compared to ideal bandedge position.
  • FIG. 5 is the IV curve of the inventive material stack showing that the inventive stack can be used in providing a low leakage nMOSCAP device.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention, which provides a material stack useful in MOSCAPs and MOSFETs that includes a rare earth metal-containing layer present on top of, or in, a dielectric layer which is capable of stabilizing the threshold voltage and flatband voltage of a Si-containing conductor, will now be described in greater detail by referring to the following discussion and drawings that accompany the present application. It is noted that the drawings of the present application are provided for illustrative purposes and thus they are not drawn to scale.
  • It is again emphasized that prior art Si MOSFETs fabricated with hafnium oxide as the gate dielectric suffer from a non-ideal threshold voltage when n-MOSFETs are fabricated. This present invention solves this problem by introducing a rare earth metal-containing layer into the material stack that introduces, via electronegativity differences, a shift in the threshold voltage to the desired voltage. Although Hf-based dielectrics are specifically described and illustrated, the present invention can also be used when the Hf-based dielectric is replaced, or used in communication, with another dielectric material having a dielectric constant of greater than about 4.0.
  • The material stack of the present invention together with the processing steps that are used in forming the same will be described first followed by a description of the same as a component of a MOSCAP and a MOSFET. It is noted that although the MOSCAP and the MOSFET are shown as separate structures, the present invention also contemplates structures which include both the MOSCAP and the MOSFET on a surface of a single semiconductor substrate.
  • Reference is first made to FIGS. 1A-1D which are pictorial representations (through cross sectional views) depicting the basic processing steps that are used in forming the inventive material stack on the surface of a semiconductor substrate. FIG. 1A shows an initial structure that is formed in the present invention that includes a semiconductor substrate 10, an optional chemox layer 12 on a surface of the semiconductor substrate 10 and a Hf-based dielectric 14 that is located on the optional chemox layer 12. When the chemox layer 12 is not present, the Hf-based dielectric 14 is located on a surface of the semiconductor substrate 10.
  • The semiconductor substrate 10 of the structure shown in FIG. 1A comprises any semiconducting material including, but not limited to: Si, Ge, SiGe, SiC, SiGeC, Ge, GaAs, GaN, InAs, InP and all other III/V or II/VI compound semiconductors. Semiconductor substrate 10 may also comprise an organic semiconductor or a layered semiconductor such as Si/SiGe, a silicon-on-insulator (SOI), a SiGe-on-insulator (SGOI) or germanium-on-insulator (GOI). In some embodiments of the present invention, it is preferred that the semiconductor substrate 10 be composed of a Si-containing semiconductor material, i.e., a semiconductor material that includes silicon. The semiconductor substrate 10 may be doped, undoped or contain doped and undoped regions therein. The semiconductor substrate 10 may include a single crystal orientation or it may include at least two coplanar surface regions that have different crystal orientations (the latter substrate is referred to in the art as a hybrid substrate). When a hybrid substrate is employed, the nFET is typically formed on a (100) crystal surface, while the pFET is typically formed on a (110) crystal plane. The hybrid substrate can be formed by techniques that are well known in the art.
  • The semiconductor substrate 10 may also include a first doped (n- or p-) region, and a second doped (n- or p-) region. For clarity, the doped regions are not specifically shown in the drawing of the present application. The first doped region and the second doped region may be the same, or they may have different conductivities and/or doping concentrations. These doped regions are known as “wells” and they are formed utilizing conventional ion implantation processes.
  • At least one isolation region (not shown) is then typically formed into the semiconductor substrate 10. The isolation region may be a trench isolation region or a field oxide isolation region. The trench isolation region is formed utilizing a conventional trench isolation process well known to those skilled in the art. For example, lithography, etching and filling of the trench with a trench dielectric may be used in forming the trench isolation region. Optionally, a liner may be formed in the trench prior to trench fill, a densification step may be performed after the trench fill and a planarization process may follow the trench fill as well. The field oxide may be formed utilizing a so-called local oxidation of silicon process. Note that the at least one isolation region provides isolation between neighboring gate regions, typically required when the neighboring gates have opposite conductivities, i.e., nFETs and pFETs. The neighboring gate regions can have the same conductivity (i.e., both n- or p-type), or alternatively they can have different conductivities (i.e., one n-type and the other p-type).
  • After processing the semiconductor substrate 10, a chemox layer 12 is optionally formed on the surface of the semiconductor substrate 10. The optional chemox layer 12 is formed utilizing a conventional growing technique that is well known to those skilled in the art including, for example, oxidation or oxynitridation. The chemox layer 12 is comprised of silicon oxide, silicon oxynitride or a nitrided silicon oxide. The thickness of the chemox layer 12 is typically from about 0.5 to about 1.2 nm, with a thickness from about 0.8 to about 1 nm being more typical.
  • In accordance with an embodiment of the present invention, the chemox layer 12 is a silicon oxide layer having a thickness from about 0.6 to about 0.8 nm that is formed by wet chemical oxidation. The process step for this wet chemical oxidation includes treating a cleaned semiconductor surface (such as a HF-last semiconductor surface) with a mixture of ammonium hydroxide, hydrogen peroxide and water (in a 1:1:5 ratio) at 65° C.
  • Next, a Hf-based dielectric 14 can be formed on the surface of the chemox layer 12, if present, or the surface of the semiconductor substrate 10 by a deposition process such as, for example, chemical vapor deposition (CVD), plasma-assisted CVD, physical vapor deposition (PVD), metalorganic chemical vapor deposition (MOCVD), atomic layer deposition (ALD), evaporation, reactive sputtering, chemical solution deposition and other like deposition processes. The Hf-based dielectric 14 may also be formed utilizing any combination of the above processes.
  • The Hf-based dielectric 14 is comprised of hafnium oxide (HfO2), hafnium silicate (HfSiOx) Hf silicon oxynitride (HfSiON) or multilayers thereof. In some embodiments, the Hf-based dielectric 14 comprises a mixture of HfO2 and ZrO2. In other embodiments, the Hf-based dielectric 14 can be replaced, or used in conjunction with, another dielectric material having a dielectric constant of greater than about 4.0, typically greater than about 7.0. The other dielectrics are metal oxides or mixed metal oxides that are well known to those skilled in the art and they can be formed utilizing any of the techniques described herein in forming the Hf-based dielectric 14. Typically, the Hf-based dielectric 14 is hafnium oxide or hafnium silicate. The Hf-based dielectric 14 is a “high k” material whose dielectric constant is greater than about 10.0.
  • The physical thickness of the Hf-based dielectric 14 may vary, but typically, the Hf-based dielectric 14 has a thickness from about 0.5 to about 10 nm, with a thickness from about 0.5 to about 3 nm being more typical.
  • In one embodiment of the present invention, the Hf-based dielectric 14 is hafnium oxide that is formed by MOCVD were a flow rate of about 70 to about 90 mgm of hafnium-tetrabutoxide (a Hf-precursor) and a flow rate of O2 of about 250 to about 350 sccm are used. The deposition of Hf oxide occurs using a chamber pressure between 0.3 and 0.5 Torr and a substrate temperature of between 400° and 500° C.
  • In another embodiment of the present invention, the Hf-based dielectric 14 is hafnium silicate which is formed by MOCVD using the following conditions (i) a flow rate of the precursor Hf-tetrabutoxide of between 70 and 90 mg/m, a flow rate of O2 between 25 and 100 sccm, and a flow rate of SiH4 of between 20 and 60 sccm; (ii) a chamber pressure between 0.3 and 0.5 Torr, and (iii) a substrate temperature between 400° and 500° C.
  • Once the structure shown in FIG. 1A is formed (with or without the optional chemox layer 12), a rare earth metal-containing layer 16 is then formed on the Hf-based dielectric 14 providing the structure shown in FIG. 1B. The rare earth metal-containing layer 16 comprises an oxide or nitride of at least one element from Group III of the Periodic Table of Elements including, for example, La, Ce, Pr, Nd, Pm, Sm, Eu, Ga, Tb, Dy, Ho, Er, Tm, Yb, Lu or mixtures thereof. Preferably, the rare earth metal-containing layer 16 comprises an oxide of La, Ce, Y, Sm, Er, and/or Tb, with La2O3 or LaN being most preferred.
  • The rare earth metal-containing layer 16 is formed utilizing a conventional deposition process including, for example, evaporation, molecular beam deposition, MOCVD, ALD, PVD and other like deposition processes.
  • In one embodiment of the present invention, the rare earth metal-containing layer 16 is formed by placing the structure shown in FIG. 1A into the load-lock of a molecular beam deposition chamber, followed by pumping this chamber down to the range of 10−5 to 10−8 Torr. After these steps, the structure is inserted, without breaking vacuum into the growth chamber where the rare earth metal-containing layer 16 such as La oxide is deposited by directing atomic/molecular beams of the rare earth metal and oxygen or nitrogen onto the structure's surface. Specifically, because of the low pressure of the chamber, the released atomic/molecular species are beamlike and are not scattered prior to arriving at the structure. A substrate temperature of about 300° C. is used. In the case of La2O3 deposition, the La evaporation cell is held in the temperature range of 1400° to 1700° C., and a flow rate of 1 to 3 sccm of molecular oxygen is used. Alternatively, atomic or excited oxygen may be used as well, and this can be created by passing the oxygen through a radio frequency source excited in the range of 50 to 600 Watts. During the deposition, the pressure within the chamber can be in the range from 1×10−5 to 8×10−5 Torr, and the La oxide growth rate can be in the range from 0.1 to 2 nm per minute, with a range from 0.5 to 1.5 nm being more typical.
  • The rare earth metal-containing layer 16 typically has a thickness from about 0.1 nm to about 3.0 nm, with a thickness from about 0.3 nm to about 1.6 nm being more typical.
  • Next, and as shown in FIG. 1C, an electrically conducting capping layer 18 is formed on the surface of the rare earth metal-containing layer 16 utilizing a conventional deposition process. Examples of conventional depositions that can be used in forming the electrically conductive capping layer 18 include CVD, PVD, ALD, sputtering or evaporation. The electrically conductive capping layer 18 is formed on the surface of the rare earth metal-containing layer 16 utilizing a conventional deposition process in which the vacuum between depositions may or may not be broken. The electrically conductive capping layer 18 comprises a metallic material and/or a semimetallic material that is capable of conducting electrons. Specifically, the capping layer 18 is a metallic capping layer such as a metal nitride or a metal silicon nitride. The electrically conductive capping layer 18 provides the functions of (a) protecting the rare earth metal-containing layer from the ambient, (b) acts a diffusion barrier to ambient oxygen, and (c) prevents reaction of the rare earth metal-containing layer with the Si-containing conductor. In the embodiment when the capping layer includes a metal, the metal component of the capping layer 18 may comprise a metal from Group IVB or VB of the Periodic Table of Elements. Hence, the electrically conductive capping layer 18 may include Ti, Zr, Hf, V, Nb or Ta, with Ti or Ta being highly preferred. By way of example, the electrically conductive capping layer 18 preferably comprises TiN or TaN. In addition to the aforementioned electrically conductive capping layer materials, the present invention also includes a ternary alloy of Ti—La—N, a ternary alloy of Ta—La—N or a stack of a ternary alloy of Ti—La—N or Ta—La—N that is mixed with La2O3 or another one of the above mentioned rare earth metal-containing materials. If the later is used, it may be possible to replace the separate rare earth metal-containing layer 16 and the electrically conductive capping layer, with a single layer including both components.
  • For example and in yet another embodiment of the present invention, a material stack including an optional chemox layer, HfO2 or Hf silicate as said Hf-based dielectric, a metal nitride layer including at least one rare earth metal or rare earth-like material, and polySi as the Si-containing gate conductor, wherein said metal nitride layer is used as both said rare earth-containing layer and said electrically conducting capping layer is provided.
  • The physical thickness of the electrically conductive capping layer 18 may vary, but typically, the electrically conductive capping layer 18 has a thickness from about 0.5 to about 200 nm, with a thickness from about 5 to about 80 nm being more typical.
  • In one embodiment of the present invention, the electrically conductive capping layer 18 is TiN that is deposited by evaporating Ti from an effusion cell held in the range of 1550° to 1900° C., typically 1600° to 1750° C., and using an atomic/excited beam of nitrogen that is passed through a remote radio frequency source. The substrate temperature can be around 300° C. and the nitrogen flow rate can be between 0.5 sccm and 3.0 sccm. These ranges are exemplary and by no way limit the present invention. The nitrogen flow rate depends upon the specifics of the deposition chamber, in particularly, the pumping rate on the chamber. The TiN may be deposited, in other ways, as well, such as chemical vapor deposition or sputtering and the technique is not critical.
  • Following the formation of the electrically conductive capping layer 18 as shown in FIG. 1C, a Si-containing conductor 20 is formed atop the electrically conductive capping layer 18. The resultant structure including the Si-containing conductor 20 is shown in FIG. 1D. Specifically, a blanket layer of a Si-containing material is formed on the electrically conductive capping layer 18 utilizing a known deposition process such as, for example, physical vapor deposition, CVD or evaporation. The Si-containing material used in forming the conductor 20 includes Si or a SiGe alloy layer in either single crystal, polycrystalline or amorphous form. Combinations of the aforementioned Si-containing materials are also contemplated herein. The blanket layer of Si-containing material 20 may be doped or undoped. If doped, an in-situ doping deposition process may be employed in forming the same. Alternatively, a doped Si-containing layer can be formed by deposition, ion implantation and annealing. The ion implantation and annealing can occur prior to or after a subsequent etching step that patterns the material stack. The doping of the Si-containing layer will shift the workfunction of the gate conductor formed. Illustrative examples of dopant ions for nMOSFETs include elements from Group VA of the Periodic Table of Elements (Group IIIA elements can be used when pMOSFETs are formed). The thickness, i.e., height, of the Si-containing layer 20 deposited at this point of the present invention may vary depending on the deposition process employed. Typically, the Si-containing conductor 20 has a vertical thickness from about 20 to about 180 nm, with a thickness from about 40 to about 150 nm being more typical.
  • The gate stack structure shown in FIG. 1D can then be fabricated into a MOSCAP 50 as shown in FIG. 2A or a MOSFET 52 as shown in FIG. 2B utilizing conventional processes that are well known in the art. Each of the illustrated structures includes a material stack such as shown in FIG. 1D which has been at least patterned by lithography and etching.
  • The MOSCAP formation includes forming a thermal sacrificial oxide (not shown) on the surface of the semiconductor substrate. Using lithography, the active areas of the capacitor structure are opened in the field oxide by etching. Following the removal of the oxide, the material stack as shown in FIG. 1D is formed as described above. Specifically, the material stack was provided, patterned by lithography and etching, and then the dopants are introduced into the Si-containing conductor 20. The dopants are typically P (implant dose of 5E15 ions/cm2 using an implant energy of 12 keV). The dopants are activated using an activation anneal that is performed at 950° C. to 1000° C. for about 5 seconds. In some cases, a forming gas anneal (5-10% hydrogen) can follow which is performed between 500° to 550° C. for chemox layer/semiconductor substrate interface state passivation.
  • The MOSFET formation includes first forming isolation regions within the substrate as described above. Similar to the MOSCAP and after removing the sacrificial oxide, a material stack as described above is formed. Following patterning of the material stack, at least one spacer 24 is typically, but not always, formed on exposed sidewalls of each patterned material stack. The at least one spacer 24 is comprised of an insulator such as an oxide, nitride, oxynitride and/or any combination thereof. The at least one spacer 24 is formed by deposition and etching.
  • The width of the at least one spacer 24 must be sufficiently wide such that the source and drain silicide contacts (to be subsequently formed) do not encroach underneath the edges of the patterned material stack. Typically, the source/drain silicide does not encroach underneath the edges of the patterned material stack when the at least one spacer 24 has a width, as measured at the bottom, from about 20 to about 80 nm.
  • The patterned material stack can also be passivated at this point of the present invention by subjecting the same to a thermal oxidation, nitridation or oxynitridation process. The passivation step forms a thin layer of passivating material about the material stack. This step may be used instead or in conjunction with the previous step of spacer formation. When used with the spacer formation step, spacer formation occurs after the material stack passivation process.
  • Source/drain diffusion regions 26 are then formed into the substrate. The source/drain diffusion regions 26 are formed utilizing ion implantation and an annealing step. The annealing step serves to activate the dopants that were implanted by the previous implant step. The conditions for the ion implantation and annealing are well known to those skilled in the art. The source/drain diffusion regions 26 may also include extension implant regions which are formed prior to source/drain implantation using a conventional extension implant. The extension implant may be followed by an activation anneal, or alternatively the dopants implanted during the extension implant and the source/drain implant can be activated using the same activation anneal cycle. Halo implants are also contemplated herein.
  • In some cases, a forming gas anneal (5-10% hydrogen) can follow which is performed between 500° to 550° C. for chemox layer/semiconductor substrate interface state passivation.
  • The above processing steps form the structure shown in FIG. 2B. Further CMOS processing such as formation of silicided contacts (source/drain and gate) as well as formation of BEOL (back-end-of-the-line) interconnect levels with metal interconnects can be formed utilizing processing steps that are well known to those skilled in the art.
  • The following example is provided for illustrative purposes and thus it should not be construed to limit the scope of the present application in any way.
  • EXAMPLE
  • In this example, an nMOSCAP was prepared utilizing a material stack of the present invention and it was compared with a prior art nMOSCAP which did not include the inventive material stack. Specifically, a material stack comprising SiO2/HfO2/0.8 nm La2O3/30 nm TiN/PolySi stack (Inventive) was prepared utilizing the processing steps mentioned above and that material stack was used as a component of an nMOSCAP. A prior art material stack, not including La oxide was prepared and was used a component for a prior art nMOSCAP (Prior Art). Each material stack after processing on a Si substrate was subjected to a 1000° C. rapid thermal anneal in nitrogen, followed by a 500° C. forming gas anneal.
  • FIG. 3 shows the CV curves of the two nMOSCAP. The CET (Capacitance Equivalent Thickness) and the EOT (Equivalent Oxide Thickness) of the Inventive material stack were 10.2 Å and 6.5 Å, respectively. The CET and the EOT of the Prior Art material stack were 14.7 Å and 10.5 Å, respectively.
  • The flatband voltage, which is characteristic of the threshold voltage, for the Inventive material stack is about 50-100 mV from ideal bandedge position for an n-doped polySi gate. For comparison, the Prior Art material stack, which does not include the rare earth metal-containing layer, was about 350 mV from ideal bandedge position. Another notable attribute was that extremely aggressive scaling obtained in the inventive devices (sub 1 nm EOTs) after high temperature annealing.
  • FIG. 4 shows a fit of the experimental CV of the Inventive material stack to the ideal CV showing that the nMOSCAP including the material stack of the present invention are well behaved. FIG. 5 shows the IV curve of the inventive material stack showing that nMOSFETs including the same are well behaved devices that have low leakage.
  • While the present invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in forms and details may be made without departing from the spirit and scope of the present invention. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated, but fall within the scope of the appended claims.

Claims (25)

1. An n-metal oxide semiconductor field effect transistor (n-MOSFET) material stack comprising:
a hafnium-based dielectric;
a rare earth-containing layer comprising an oxide or nitride of at least one element from Group IIIB of the Periodic Table of Elements located atop of; or within, said hafnium-based dielectric;
an electrically conducting capping layer located above said hafnium-based dielectric; and
a Si-containing conductor located above said electrically conducting capping layer, wherein said rare-earth-containing layer introduces via electronegativity differences a negative shift in threshold voltage.
2. The n-MOSFET material stack of claim 1 further comprising a chemox layer located beneath said Hf-based dielectric.
3. The n-MOSFET material stack of claim 1 wherein said Hf-based dielectric comprises hafnium oxide, hafnium silicate, hafnium silicon oxynitride, a mixture of hafnium oxide and zirconium oxide or multilayers thereof.
4. The n-MOSFET material stack of claim 3 wherein said Hf-based dielectric comprises hafnium oxide.
5. The n-MOSFET material stack of claim 1 wherein said Group IIIB element is one of La, Ce, Y, Sm, Er and Tb.
6. The n-MOSFET material stack of claim 5 wherein said Group IIIB element is La and said rare earth metal-containing layer is La2O3 or LaN.
7. The n-MOSFET material stack of claim 1 wherein said electrically conductive capping layer comprises a metal nitride or metal silicon nitride, wherein said metal is from Group IVB or VB of the Periodic Table of Elements.
8. The n-MOSFET material stack of claim 8 wherein said electrically conductive capping layer comprises TiN, TaN, a ternary alloy of Ti—La—N, a ternary alloy of Ta—La—N or a stack with a ternary alloy of Ti—La—N or Ta—La—N wherein said rare earth metal-containing layer is present in said electrically conductive capping layer.
9. The n-MOSFET material stack of claim 1 comprising an optional chemox layer, HfO2 or Hf silicate as said Hf-based dielectric, a metal nitride layer including at least one rare earth metal or rare earth-like material, and polySi as the Si-containing gate conductor, wherein said metal nitride layer is used as both said rare earth-containing layer and said electrically conducting capping layer.
10. The n-MOSFET material stack of claim 1 comprising optionally a SiO2 chemox layer, HfO2 or Hf silicate as said Hf-based dielectric, a La containing material as the rare earth metal-containing layer, TiN as the electrically conductive capping layer, and n-doped Si as the Si-containing conductor.
11. An n-MOSFET material stack comprising:
a hafnium-based dielectric containing a concentration gradient of a rare earth metal comprising at least one element from Group IIIB of the Periodic Table of Elements located atop of, or within, said hafnium-based dielectric;
an electrically conductive capping layer located above said hafnium-based dielectric; and
a Si-containing conductor, wherein said rare-earth-containing metal introduces via electronegativity differences a negative shift in threshold voltage.
12. The n-MOSFET material stack of claim 11 further comprising a chemox layer located beneath said Hf-based dielectric.
13. The n-MOSFET material stack of claim 11 wherein said Hf-based dielectric comprises hafnium oxide, hafnium silicate, hafnium silicon oxynitride, a mixture of hafnium oxide and zirconium oxide or multilayers thereof.
14. The n-MOSFET material stack of claim 13 wherein said Hf-based dielectric comprises hafnium oxide.
15. The n-MOSFET material stack of claim 11 wherein said Group IIIB element is one of La, Ce, Y, Sm, Er and Tb.
16. The n-MOSFET material stack of claim 15 wherein said Group IIIB element is La.
17. The n-MOSFET material stack of claim 11 wherein said electrically conductive capping layer comprises a metal nitride or metal silicon nitride, wherein said metal is from Group IVB or VB of the Periodic Table of Elements.
18. The n-MOSFET material stack of claim 11 comprising an optional chemox layer, HfO2 or Hf silicate as said Hf-based dielectric, a metal nitride layer including at least one rare earth metal or rare earth-like metal, and polySi as the Si-containing gate conductor, wherein said metal nitride layer is used as both said rare earth-containing metal and said electrically conducting capping layer.
19. The n-MOSFET material stack of claim 11 comprising optionally a SiO2 chemox layer, HfO2 or Hf silicate as said Hf-based dielectric, a La containing material as the rare earth metal-containing metal, TiN as the electrically conductive capping layer, and n-doped Si as the Si-containing conductor.
20. An n-MOSFET material stack comprising:
a hafnium-based dielectric containing foreign atoms having a valence and electronegativity different from hafnium located atop of, or within, said hafnium-based dielectric, said foreign atoms comprising a rare earth metal from Group IIIB of the Periodic Table of Elements;
an electrically capping layer located above said hafnium-based dielectric; and
a Si-containing conductor, wherein said foreign atoms provide a negative shift in threshold voltage.
21. The n-MOSFET material stack of claim 20 wherein said Hf-based dielectric comprises hafnium oxide, hafnium silicate, hafnium silicon oxynitride, a mixture of hafnium oxide and zirconium oxide or multilayers thereof.
22. The n-MOSFET material stack of claim 20 wherein said Hf-based dielectric comprises hafnium oxide.
23. The n-MOSFET material stack of claim 20 wherein said Group IIIB element is one of La, Ce, Y, Sm, Er and Tb.
24. The n-MOSFET material stack of claim 23 wherein said Group IIIB element is La.
25. A semiconductor structure comprising:
a patterned n-MOSFET material stack located on a surface of a semiconductor substrate, said patterned n-MOSFET material stack comprising a hafnium-based dielectric; a rare earth-containing layer located on atop of, or within, said hafnium-based dielectric; an electrically conductive capping layer located above said hafnium-based dielectric; and a Si-containing conductor, wherein said rare-earth-containing layer introduces electronegativity into said hafnium-based dielectric to provide a negative shift in threshold voltage, and an alignment of a Fermi level of the Si-containing electrode with a conduction band of said semiconductor substrate.
US12/166,690 2005-04-29 2008-07-02 Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for cmos Abandoned US20080258198A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/118,521 US7446380B2 (en) 2005-04-29 2005-04-29 Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for CMOS
US12/166,690 US20080258198A1 (en) 2005-04-29 2008-07-02 Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for cmos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/166,690 US20080258198A1 (en) 2005-04-29 2008-07-02 Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for cmos

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/118,521 Continuation US7446380B2 (en) 2005-04-29 2005-04-29 Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for CMOS

Publications (1)

Publication Number Publication Date
US20080258198A1 true US20080258198A1 (en) 2008-10-23

Family

ID=37233615

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/118,521 Active 2026-02-09 US7446380B2 (en) 2005-04-29 2005-04-29 Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for CMOS
US12/166,690 Abandoned US20080258198A1 (en) 2005-04-29 2008-07-02 Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for cmos

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/118,521 Active 2026-02-09 US7446380B2 (en) 2005-04-29 2005-04-29 Stabilization of flatband voltages and threshold voltages in hafnium oxide based silicon transistors for CMOS

Country Status (2)

Country Link
US (2) US7446380B2 (en)
CN (1) CN1870289A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090085082A1 (en) * 2007-09-27 2009-04-02 Gilbert Dewey Controlled intermixing of hfo2 and zro2 dielectrics enabling higher dielectric constant and reduced gate leakage
US20100187612A1 (en) * 2009-01-27 2010-07-29 Daisuke Ikeno Semiconductor device and method of manufacturing the same
WO2011103318A1 (en) * 2010-02-18 2011-08-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8377783B2 (en) 2010-09-30 2013-02-19 Suvolta, Inc. Method for reducing punch-through in a transistor device
US8400219B2 (en) 2011-03-24 2013-03-19 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8541842B2 (en) 2010-01-20 2013-09-24 International Business Machines Corporation High-k transistors with low threshold voltage
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
US9054219B1 (en) 2011-08-05 2015-06-09 Mie Fujitsu Semiconductor Limited Semiconductor devices having fin structures and fabrication methods thereof
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9112495B1 (en) 2013-03-15 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US9431068B2 (en) 2012-10-31 2016-08-30 Mie Fujitsu Semiconductor Limited Dynamic random access memory (DRAM) with low variation transistor peripheral circuits
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119210B2 (en) 2004-05-21 2012-02-21 Applied Materials, Inc. Formation of a silicon oxynitride layer on a high-k dielectric material
JP2007174335A (en) * 2005-12-22 2007-07-05 Fuji Xerox Co Ltd Image reading apparatus, electronic document creation method in image reading apparatus, and electronic document creation program
US7425497B2 (en) 2006-01-20 2008-09-16 International Business Machines Corporation Introduction of metal impurity to change workfunction of conductive electrodes
US7678710B2 (en) 2006-03-09 2010-03-16 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US7837838B2 (en) 2006-03-09 2010-11-23 Applied Materials, Inc. Method of fabricating a high dielectric constant transistor gate using a low energy plasma apparatus
US7645710B2 (en) 2006-03-09 2010-01-12 Applied Materials, Inc. Method and apparatus for fabricating a high dielectric constant transistor gate using a low energy plasma system
US20080017936A1 (en) * 2006-06-29 2008-01-24 International Business Machines Corporation Semiconductor device structures (gate stacks) with charge compositions
US7902018B2 (en) 2006-09-26 2011-03-08 Applied Materials, Inc. Fluorine plasma treatment of high-k gate stack for defect passivation
US7611972B2 (en) * 2006-11-29 2009-11-03 Qimonda North America Corp. Semiconductor devices and methods of manufacture thereof
US7611979B2 (en) * 2007-02-12 2009-11-03 International Business Machines Corporation Metal gates with low charge trapping and enhanced dielectric reliability characteristics for high-k gate dielectric stacks
US7820552B2 (en) * 2007-03-13 2010-10-26 International Business Machines Corporation Advanced high-k gate stack patterning and structure containing a patterned high-k gate stack
US20090008725A1 (en) * 2007-07-03 2009-01-08 International Business Machines Corporation Method for deposition of an ultra-thin electropositive metal-containing cap layer
US7772073B2 (en) * 2007-09-28 2010-08-10 Tokyo Electron Limited Semiconductor device containing a buried threshold voltage adjustment layer and method of forming
JP2009105315A (en) * 2007-10-25 2009-05-14 Shin Etsu Chem Co Ltd Method of manufacturing semiconductor substrate
US7718496B2 (en) * 2007-10-30 2010-05-18 International Business Machines Corporation Techniques for enabling multiple Vt devices using high-K metal gate stacks
US8058122B2 (en) * 2007-12-28 2011-11-15 Texas Instruments Incorporated Formation of metal gate electrode using rare earth alloy incorporated into mid gap metal
US8034678B2 (en) * 2008-01-17 2011-10-11 Kabushiki Kaisha Toshiba Complementary metal oxide semiconductor device fabrication method
US8148249B2 (en) 2008-09-12 2012-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Methods of fabricating high-k metal gate devices
US20100102393A1 (en) * 2008-10-29 2010-04-29 Chartered Semiconductor Manufacturing, Ltd. Metal gate transistors
CN101752237B (en) 2008-12-16 2012-08-08 国际商业机器公司 Formation of high-K gate stacks in semiconductor devices
US7943460B2 (en) * 2009-04-20 2011-05-17 International Business Machines Corporation High-K metal gate CMOS
US8680629B2 (en) * 2009-06-03 2014-03-25 International Business Machines Corporation Control of flatband voltages and threshold voltages in high-k metal gate stacks and structures for CMOS devices
CN102473720A (en) * 2009-07-13 2012-05-23 康奈尔大学 High performance power switch
US8274116B2 (en) 2009-11-16 2012-09-25 International Business Machines Corporation Control of threshold voltages in high-k metal gate stack and structures for CMOS devices
JP2011176173A (en) * 2010-02-25 2011-09-08 Renesas Electronics Corp Semiconductor device and method of manufacturing the same
GB2497257B (en) 2010-09-28 2013-11-06 Ibm Semiconductor device with a gate stack
US8440520B2 (en) 2011-08-23 2013-05-14 Tokyo Electron Limited Diffused cap layers for modifying high-k gate dielectrics and interface layers
US8633118B2 (en) 2012-02-01 2014-01-21 Tokyo Electron Limited Method of forming thin metal and semi-metal layers by thermal remote oxygen scavenging
US8865538B2 (en) 2012-03-30 2014-10-21 Tokyo Electron Limited Method of integrating buried threshold voltage adjustment layers for CMOS processing
US8865581B2 (en) 2012-10-19 2014-10-21 Tokyo Electron Limited Hybrid gate last integration scheme for multi-layer high-k gate stacks
JP6253886B2 (en) * 2013-01-09 2017-12-27 トランスフォーム・ジャパン株式会社 Semiconductor device and manufacturing method of semiconductor device
US9806299B2 (en) 2014-04-08 2017-10-31 International Business Machines Corporation Cathode for thin film microbattery
US9508566B2 (en) 2014-08-15 2016-11-29 International Business Machines Corporation Wafer level overmold for three dimensional surfaces
US10105082B2 (en) 2014-08-15 2018-10-23 International Business Machines Corporation Metal-oxide-semiconductor capacitor based sensor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531354B2 (en) * 2000-01-19 2003-03-11 North Carolina State University Lanthanum oxide-based gate dielectrics for integrated circuit field effect transistors
US20040108575A1 (en) * 2002-12-02 2004-06-10 Tadahiro Ohmi Semiconductor device and method of manufacturing the same
US6790791B2 (en) * 2002-08-15 2004-09-14 Micron Technology, Inc. Lanthanide doped TiOx dielectric films
US6844203B2 (en) * 2001-08-30 2005-01-18 Micron Technology, Inc. Gate oxides, and methods of forming
US20050064690A1 (en) * 2003-09-18 2005-03-24 International Business Machines Corporation Process options of forming silicided metal gates for advanced cmos devices
US20050173755A1 (en) * 2004-02-10 2005-08-11 Micron Technology, Inc. NROM flash memory with a high-permittivity gate dielectric
US20050253173A1 (en) * 2004-04-27 2005-11-17 Chih-Hao Wang Dual work-function metal gates
US20060125026A1 (en) * 2004-09-14 2006-06-15 Infineon Technologies North America Corp. Semiconductor device with high-k dielectric layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6320213B1 (en) * 1997-12-19 2001-11-20 Advanced Technology Materials, Inc. Diffusion barriers between noble metal electrodes and metallization layers, and integrated circuit and semiconductor devices comprising same
US7199015B2 (en) * 2000-08-08 2007-04-03 Translucent Photonics, Inc. Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
US6960538B2 (en) 2002-08-21 2005-11-01 Micron Technology, Inc. Composite dielectric forming methods and composite dielectrics
US6858524B2 (en) * 2002-12-03 2005-02-22 Asm International, Nv Method of depositing barrier layer for metal gates
US6890807B2 (en) 2003-05-06 2005-05-10 Intel Corporation Method for making a semiconductor device having a metal gate electrode
US7364974B2 (en) * 2005-03-18 2008-04-29 Translucent Inc. Double gate FET and fabrication process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531354B2 (en) * 2000-01-19 2003-03-11 North Carolina State University Lanthanum oxide-based gate dielectrics for integrated circuit field effect transistors
US6753567B2 (en) * 2000-01-19 2004-06-22 North Carolina State University Lanthanum oxide-based dielectrics for integrated circuit capacitors
US6844203B2 (en) * 2001-08-30 2005-01-18 Micron Technology, Inc. Gate oxides, and methods of forming
US6790791B2 (en) * 2002-08-15 2004-09-14 Micron Technology, Inc. Lanthanide doped TiOx dielectric films
US20040108575A1 (en) * 2002-12-02 2004-06-10 Tadahiro Ohmi Semiconductor device and method of manufacturing the same
US20050064690A1 (en) * 2003-09-18 2005-03-24 International Business Machines Corporation Process options of forming silicided metal gates for advanced cmos devices
US20050173755A1 (en) * 2004-02-10 2005-08-11 Micron Technology, Inc. NROM flash memory with a high-permittivity gate dielectric
US7221018B2 (en) * 2004-02-10 2007-05-22 Micron Technology, Inc. NROM flash memory with a high-permittivity gate dielectric
US20050253173A1 (en) * 2004-04-27 2005-11-17 Chih-Hao Wang Dual work-function metal gates
US20060125026A1 (en) * 2004-09-14 2006-06-15 Infineon Technologies North America Corp. Semiconductor device with high-k dielectric layer

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090085082A1 (en) * 2007-09-27 2009-04-02 Gilbert Dewey Controlled intermixing of hfo2 and zro2 dielectrics enabling higher dielectric constant and reduced gate leakage
US8198155B2 (en) * 2009-01-27 2012-06-12 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US20100187612A1 (en) * 2009-01-27 2010-07-29 Daisuke Ikeno Semiconductor device and method of manufacturing the same
US8604527B2 (en) 2009-09-30 2013-12-10 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8273617B2 (en) 2009-09-30 2012-09-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8975128B2 (en) 2009-09-30 2015-03-10 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US10325986B2 (en) 2009-09-30 2019-06-18 Mie Fujitsu Semiconductor Limited Advanced transistors with punch through suppression
US10074568B2 (en) 2009-09-30 2018-09-11 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using same
US8421162B2 (en) 2009-09-30 2013-04-16 Suvolta, Inc. Advanced transistors with punch through suppression
US9263523B2 (en) 2009-09-30 2016-02-16 Mie Fujitsu Semiconductor Limited Advanced transistors with punch through suppression
US9508800B2 (en) 2009-09-30 2016-11-29 Mie Fujitsu Semiconductor Limited Advanced transistors with punch through suppression
US10217668B2 (en) 2009-09-30 2019-02-26 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using the same
US10224244B2 (en) 2009-09-30 2019-03-05 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using the same
US8541824B2 (en) 2009-09-30 2013-09-24 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8604530B2 (en) 2009-09-30 2013-12-10 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8927409B2 (en) 2010-01-20 2015-01-06 International Business Machines Corporation High-k transistors with low threshold voltage
US8541842B2 (en) 2010-01-20 2013-09-24 International Business Machines Corporation High-k transistors with low threshold voltage
US8674456B2 (en) 2010-01-20 2014-03-18 International Business Machines Corporation High-K transistors with low threshold voltage
WO2011103318A1 (en) * 2010-02-18 2011-08-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US9865596B2 (en) 2010-04-12 2018-01-09 Mie Fujitsu Semiconductor Limited Low power semiconductor transistor structure and method of fabrication thereof
US9496261B2 (en) 2010-04-12 2016-11-15 Mie Fujitsu Semiconductor Limited Low power semiconductor transistor structure and method of fabrication thereof
US8530286B2 (en) 2010-04-12 2013-09-10 Suvolta, Inc. Low power semiconductor transistor structure and method of fabrication thereof
US8569128B2 (en) 2010-06-21 2013-10-29 Suvolta, Inc. Semiconductor structure and method of fabrication thereof with mixed metal types
US9224733B2 (en) 2010-06-21 2015-12-29 Mie Fujitsu Semiconductor Limited Semiconductor structure and method of fabrication thereof with mixed metal types
US8759872B2 (en) 2010-06-22 2014-06-24 Suvolta, Inc. Transistor with threshold voltage set notch and method of fabrication thereof
US9922977B2 (en) 2010-06-22 2018-03-20 Mie Fujitsu Semiconductor Limited Transistor with threshold voltage set notch and method of fabrication thereof
US9418987B2 (en) 2010-06-22 2016-08-16 Mie Fujitsu Semiconductor Limited Transistor with threshold voltage set notch and method of fabrication thereof
US8377783B2 (en) 2010-09-30 2013-02-19 Suvolta, Inc. Method for reducing punch-through in a transistor device
US8686511B2 (en) 2010-12-03 2014-04-01 Suvolta, Inc. Source/drain extension control for advanced transistors
US8563384B2 (en) 2010-12-03 2013-10-22 Suvolta, Inc. Source/drain extension control for advanced transistors
US8404551B2 (en) 2010-12-03 2013-03-26 Suvolta, Inc. Source/drain extension control for advanced transistors
US9006843B2 (en) 2010-12-03 2015-04-14 Suvolta, Inc. Source/drain extension control for advanced transistors
US9184750B1 (en) 2011-02-18 2015-11-10 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US10250257B2 (en) 2011-02-18 2019-04-02 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9985631B2 (en) 2011-02-18 2018-05-29 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9680470B2 (en) 2011-02-18 2017-06-13 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US8461875B1 (en) 2011-02-18 2013-06-11 Suvolta, Inc. Digital circuits having improved transistors, and methods therefor
US9838012B2 (en) 2011-02-18 2017-12-05 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US8525271B2 (en) 2011-03-03 2013-09-03 Suvolta, Inc. Semiconductor structure with improved channel stack and method for fabrication thereof
US9111785B2 (en) 2011-03-03 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor structure with improved channel stack and method for fabrication thereof
US8847684B2 (en) 2011-03-24 2014-09-30 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US9231541B2 (en) 2011-03-24 2016-01-05 Mie Fujitsu Semiconductor Limited Analog circuits having improved transistors, and methods therefor
US8400219B2 (en) 2011-03-24 2013-03-19 Suvolta, Inc. Analog circuits having improved transistors, and methods therefor
US8748270B1 (en) 2011-03-30 2014-06-10 Suvolta, Inc. Process for manufacturing an improved analog transistor
US9093469B2 (en) 2011-03-30 2015-07-28 Mie Fujitsu Semiconductor Limited Analog transistor
US8796048B1 (en) 2011-05-11 2014-08-05 Suvolta, Inc. Monitoring and measurement of thin film layers
US8999861B1 (en) 2011-05-11 2015-04-07 Suvolta, Inc. Semiconductor structure with substitutional boron and method for fabrication thereof
US9966130B2 (en) 2011-05-13 2018-05-08 Mie Fujitsu Semiconductor Limited Integrated circuit devices and methods
US9362291B1 (en) 2011-05-13 2016-06-07 Mie Fujitsu Semiconductor Limited Integrated circuit devices and methods
US9741428B2 (en) 2011-05-13 2017-08-22 Mie Fujitsu Semiconductor Limited Integrated circuit devices and methods
US8811068B1 (en) 2011-05-13 2014-08-19 Suvolta, Inc. Integrated circuit devices and methods
US9793172B2 (en) 2011-05-16 2017-10-17 Mie Fujitsu Semiconductor Limited Reducing or eliminating pre-amorphization in transistor manufacture
US8937005B2 (en) 2011-05-16 2015-01-20 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US9514940B2 (en) 2011-05-16 2016-12-06 Mie Fujitsu Semiconductor Limited Reducing or eliminating pre-amorphization in transistor manufacture
US8569156B1 (en) 2011-05-16 2013-10-29 Suvolta, Inc. Reducing or eliminating pre-amorphization in transistor manufacture
US8735987B1 (en) 2011-06-06 2014-05-27 Suvolta, Inc. CMOS gate stack structures and processes
US9508728B2 (en) 2011-06-06 2016-11-29 Mie Fujitsu Semiconductor Limited CMOS gate stack structures and processes
US9281248B1 (en) 2011-06-06 2016-03-08 Mie Fujitsu Semiconductor Limited CMOS gate stack structures and processes
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US8629016B1 (en) 2011-07-26 2014-01-14 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8653604B1 (en) 2011-07-26 2014-02-18 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8916937B1 (en) 2011-07-26 2014-12-23 Suvolta, Inc. Multiple transistor types formed in a common epitaxial layer by differential out-diffusion from a doped underlayer
US8748986B1 (en) 2011-08-05 2014-06-10 Suvolta, Inc. Electronic device with controlled threshold voltage
US8963249B1 (en) 2011-08-05 2015-02-24 Suvolta, Inc. Electronic device with controlled threshold voltage
US9054219B1 (en) 2011-08-05 2015-06-09 Mie Fujitsu Semiconductor Limited Semiconductor devices having fin structures and fabrication methods thereof
US9391076B1 (en) 2011-08-23 2016-07-12 Mie Fujitsu Semiconductor Limited CMOS structures and processes based on selective thinning
US9117746B1 (en) 2011-08-23 2015-08-25 Mie Fujitsu Semiconductor Limited Porting a circuit design from a first semiconductor process to a second semiconductor process
US8806395B1 (en) 2011-08-23 2014-08-12 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8614128B1 (en) 2011-08-23 2013-12-24 Suvolta, Inc. CMOS structures and processes based on selective thinning
US8645878B1 (en) 2011-08-23 2014-02-04 Suvolta, Inc. Porting a circuit design from a first semiconductor process to a second semiconductor process
US8713511B1 (en) 2011-09-16 2014-04-29 Suvolta, Inc. Tools and methods for yield-aware semiconductor manufacturing process target generation
US9236466B1 (en) 2011-10-07 2016-01-12 Mie Fujitsu Semiconductor Limited Analog circuits having improved insulated gate transistors, and methods therefor
US9953974B2 (en) 2011-12-09 2018-04-24 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US9583484B2 (en) 2011-12-09 2017-02-28 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US9385121B1 (en) 2011-12-09 2016-07-05 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8819603B1 (en) 2011-12-15 2014-08-26 Suvolta, Inc. Memory circuits and methods of making and designing the same
US9368624B2 (en) 2011-12-22 2016-06-14 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor with reduced junction leakage current
US8883600B1 (en) 2011-12-22 2014-11-11 Suvolta, Inc. Transistor having reduced junction leakage and methods of forming thereof
US9196727B2 (en) 2011-12-22 2015-11-24 Mie Fujitsu Semiconductor Limited High uniformity screen and epitaxial layers for CMOS devices
US9297850B1 (en) 2011-12-23 2016-03-29 Mie Fujitsu Semiconductor Limited Circuits and methods for measuring circuit elements in an integrated circuit device
US8599623B1 (en) 2011-12-23 2013-12-03 Suvolta, Inc. Circuits and methods for measuring circuit elements in an integrated circuit device
US8970289B1 (en) 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US8877619B1 (en) 2012-01-23 2014-11-04 Suvolta, Inc. Process for manufacture of integrated circuits with different channel doping transistor architectures and devices therefrom
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9385047B2 (en) 2012-01-31 2016-07-05 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9406567B1 (en) 2012-02-28 2016-08-02 Mie Fujitsu Semiconductor Limited Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
US8863064B1 (en) 2012-03-23 2014-10-14 Suvolta, Inc. SRAM cell layout structure and devices therefrom
US9424385B1 (en) 2012-03-23 2016-08-23 Mie Fujitsu Semiconductor Limited SRAM cell layout structure and devices therefrom
US10014387B2 (en) 2012-06-27 2018-07-03 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9299698B2 (en) 2012-06-27 2016-03-29 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9812550B2 (en) 2012-06-27 2017-11-07 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US10217838B2 (en) 2012-06-27 2019-02-26 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9105711B2 (en) 2012-08-31 2015-08-11 Mie Fujitsu Semiconductor Limited Semiconductor structure with reduced junction leakage and method of fabrication thereof
US8637955B1 (en) 2012-08-31 2014-01-28 Suvolta, Inc. Semiconductor structure with reduced junction leakage and method of fabrication thereof
US9112057B1 (en) 2012-09-18 2015-08-18 Mie Fujitsu Semiconductor Limited Semiconductor devices with dopant migration suppression and method of fabrication thereof
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
US9431068B2 (en) 2012-10-31 2016-08-30 Mie Fujitsu Semiconductor Limited Dynamic random access memory (DRAM) with low variation transistor peripheral circuits
US8816754B1 (en) 2012-11-02 2014-08-26 Suvolta, Inc. Body bias circuits and methods
US9154123B1 (en) 2012-11-02 2015-10-06 Mie Fujitsu Semiconductor Limited Body bias circuits and methods
US9319034B2 (en) 2012-11-15 2016-04-19 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US9276561B2 (en) 2012-12-20 2016-03-01 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9112484B1 (en) 2012-12-20 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit process and bias monitors and related methods
US9268885B1 (en) 2013-02-28 2016-02-23 Mie Fujitsu Semiconductor Limited Integrated circuit device methods and models with predicted device metric variations
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US9577041B2 (en) 2013-03-14 2017-02-21 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9893148B2 (en) 2013-03-14 2018-02-13 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9299801B1 (en) 2013-03-14 2016-03-29 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9853019B2 (en) 2013-03-15 2017-12-26 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9112495B1 (en) 2013-03-15 2015-08-18 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9548086B2 (en) 2013-03-15 2017-01-17 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9991300B2 (en) 2013-05-24 2018-06-05 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US9478571B1 (en) 2013-05-24 2016-10-25 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US9786703B2 (en) 2013-05-24 2017-10-10 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9319013B2 (en) 2014-08-19 2016-04-19 Mie Fujitsu Semiconductor Limited Operational amplifier input offset correction with transistor threshold voltage adjustment

Also Published As

Publication number Publication date
US7446380B2 (en) 2008-11-04
US20060244035A1 (en) 2006-11-02
CN1870289A (en) 2006-11-29

Similar Documents

Publication Publication Date Title
US7407850B2 (en) N+ poly on high-k dielectric for semiconductor devices
US7488656B2 (en) Removal of charged defects from metal oxide-gate stacks
US7172955B2 (en) Silicon composition in CMOS gates
US6207589B1 (en) Method of forming a doped metal oxide dielectric film
US6717226B2 (en) Transistor with layered high-K gate dielectric and method therefor
US6787451B2 (en) Semiconductor device and manufacturing method thereof
US6563182B2 (en) Semiconductor device and manufacturing method thereof
US5629221A (en) Process for suppressing boron penetration in BF2 + -implanted P+ -poly-Si gate using inductively-coupled nitrogen plasma
Lee et al. MOS characteristics of ultra thin rapid thermal CVD ZrO/sub 2/and Zr silicate gate dielectrics
US7683418B2 (en) High-temperature stable gate structure with metallic electrode
US6506676B2 (en) Method of manufacturing semiconductor devices with titanium aluminum nitride work function
US5930617A (en) Method of forming deep sub-micron CMOS transistors with self-aligned silicided contact and extended S/D junction
CN100517601C (en) Method of forming dielectric layer with high dielectric constant, semiconductor device and manufacturing method thereof
US8035173B2 (en) CMOS transistors with differential oxygen content high-K dielectrics
US7317229B2 (en) Gate electrode structures and methods of manufacture
JP4711444B2 (en) Barrier layer to achieve the threshold voltage control in a CMOS device formed by the method (high-k dielectrics that form a complementary metal oxide semiconductor (CMOS) structure having a stability of improved threshold voltage and flat band voltage selective implementation of)
US7141858B2 (en) Dual work function CMOS gate technology based on metal interdiffusion
US20060234433A1 (en) Transistors and methods of manufacture thereof
US20060081939A1 (en) Semiconductor device having misfet using high dielectric constant gate insulation film and method for fabricating the same
US8383483B2 (en) High performance CMOS circuits, and methods for fabricating same
US9252229B2 (en) Inversion thickness reduction in high-k gate stacks formed by replacement gate processes
EP1635398A2 (en) Semiconductor devices having an interfacial dielectric layer and related methods
JP5089576B2 (en) Gate electrode metal / metal nitride double layer CMOS and semiconductor structures in self-aligned and positively scaled CMOS devices
US7547951B2 (en) Semiconductor devices having nitrogen-incorporated active region and methods of fabricating the same
CN100428474C (en) Semiconductor device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: GLOBALFOUNDRIES U.S. 2 LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:036550/0001

Effective date: 20150629

AS Assignment

Owner name: GLOBALFOUNDRIES INC., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GLOBALFOUNDRIES U.S. 2 LLC;GLOBALFOUNDRIES U.S. INC.;REEL/FRAME:036779/0001

Effective date: 20150910

AS Assignment

Owner name: AURIGA INNOVATIONS, INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GLOBALFOUNDRIES INC.;REEL/FRAME:041804/0940

Effective date: 20161207