US20080239783A1 - Semiconductor memory devices having strapping contacts - Google Patents

Semiconductor memory devices having strapping contacts Download PDF

Info

Publication number
US20080239783A1
US20080239783A1 US12/073,661 US7366108A US2008239783A1 US 20080239783 A1 US20080239783 A1 US 20080239783A1 US 7366108 A US7366108 A US 7366108A US 2008239783 A1 US2008239783 A1 US 2008239783A1
Authority
US
United States
Prior art keywords
strapping
regions
semiconductor memory
memory device
contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/073,661
Inventor
Jung-In Kim
Jae-hee Oh
Jun-Hyok Kong
Sung-ho Eun
Yong-Tae OH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EUN, SUNG-HO, KIM, JUNG-IN, OH, YONG-TAE, KONG, JUN-HYOK, OH, JAE-HEE
Publication of US20080239783A1 publication Critical patent/US20080239783A1/en
Priority to US13/630,505 priority Critical patent/US8791448B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/10Decoders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Example embodiments relate to semiconductor memory devices.
  • Other example embodiments relate to semiconductor memory devices having strapping contacts in a strapping region with an increased pitch.
  • Non-volatile memory devices include a magnetic random access memory (MRAM), a ferroelectric random access memory (FRAM), a phase-change random access memory (PRAM), a resistor random access memory (RRAM) and the like.
  • MRAM magnetic random access memory
  • FRAM ferroelectric random access memory
  • PRAM phase-change random access memory
  • RRAM resistor random access memory
  • the PRAM is a memory device using a phase-change material.
  • the phase-change material refers to a material (e.g., chalcogenide) in which a phase varies with temperature and resistance varies with the phase.
  • An alloy material e.g., Ge x Sb y Te z (GST)
  • GST Ge x Sb y Te z
  • the phase-change material may rapidly transform (or change) into one of two types of phases (e.g., amorphous and crystalline states) depending on a temperature.
  • the phase-change material is in a high-resistance state in the amorphous state and in a low-resistance state in the crystalline state.
  • the phase-change material may be used as a semiconductor memory device, for example, by defining the high-resistance state as “reset” or logic “ 1 ” and defining the low-resistance state as “set” or logic “0.”
  • Memory cells constituting PRAM may be classified into memory cells having transistor and diode structures.
  • the memory cell having a transistor structure may be a memory cell in which a phase-change material layer and a transistor are connected in series to each other.
  • the memory cell having a diode structure may be a memory cell in which a phase-change material layer and a diode are connected in series to each other.
  • the memory cell having a diode structure may have higher integration, higher speed and/or lower power characteristics compared with the memory cell having a transistor structure.
  • the cross section of a word line gradually decreases and the length of the word line gradually increases, increasing the resistance of the word line.
  • a delay exists on a word line when the word line is selected.
  • a method of applying a uniform voltage to memory cells array on a word line having strapping contacts to prevent a voltage drop due to the increased resistance of the word line has been acknowledged.
  • a contact margin (or pitch) between adjacent strapping contacts may be reduced as the integration density of a memory device is increased. As such, a bridge or the like may occur.
  • FIG. 1 is a photograph showing a bridge phenomenon between strapping contacts arrayed in a strapping region of a conventional semiconductor memory device.
  • a bridge is formed between adjacent strapping contacts 11 in the strapping region.
  • Example embodiments relate to semiconductor memory devices.
  • Other example embodiments relate to semiconductor memory devices having strapping contacts in a strapping region with an increased pitch.
  • Example embodiments provide semiconductor memory devices wherein a pitch of strapping contacts in a strapping region is increased such that the likelihood of a bridge forming between adjacent strapping contacts is reduced (or prevented).
  • a semiconductor memory device including a plurality of cell regions and a plurality of strapping regions arranged between adjacent cell regions in a first direction on a semiconductor substrate.
  • a plurality of active patterns extend in the first direction throughout the cell regions and strapping regions. The plurality of active patterns may be spaced apart from one another in a second direction intersecting the first direction.
  • a plurality of first interconnection lines extend in the first direction throughout the cell regions and the strapping regions. The plurality of first interconnection lines may be spaced apart from one another in the second direction while overlapping with the active patterns.
  • a plurality of second interconnection lines extend in the second direction to intersect the active patterns and the first interconnection lines above the cell regions.
  • the plurality of second interconnection lines may be spaced apart from one another in the first direction.
  • a plurality of memory cells may each be positioned at intersection portions of the first and second interconnection lines in the cell regions.
  • a plurality of strapping contacts may be arranged in the strapping regions.
  • the active patterns may contact the first interconnection lines through the strapping contacts.
  • the plurality of strapping contacts may be in a zigzag form in the strapping regions.
  • the strapping contacts in each strapping regions may be on the active patterns in a zigzag form in the second direction.
  • the strapping contacts within adjacent strapping regions may be arranged on the active patterns in a zigzag form in the second direction.
  • the first interconnection lines may include word lines.
  • the second interconnection lines include bit lines.
  • the active patterns may include impurity regions doped with predetermined conductive type impurities in the semiconductor substrate.
  • the memory cells may include phase-change random access memory (PRAM) cells.
  • a semiconductor memory device including a plurality of cell regions and a plurality of strapping regions between adjacent cell regions in a first direction on a semiconductor substrate.
  • a plurality of active patterns extend in the first direction throughout the cell regions and strapping regions. The plurality of active patterns may be spaced apart from one another in a second direction intersecting the first direction.
  • a plurality of first interconnection lines extend in the first direction throughout the cell regions and the strapping regions. The plurality of first interconnection lines may be spaced apart from one another in the second direction while overlapping with the active patterns.
  • a plurality of second interconnection lines extend in the second direction to intersect the active patterns and the first interconnection lines above the cell regions. The plurality of second interconnection lines may be spaced apart from one another in the first direction.
  • a plurality of memory cells may each be positioned at intersection portions of the first and second interconnection lines of the cell regions.
  • a plurality of unit cell groups each having i ⁇ j memory cells in the first and second directions may be provided, wherein i represents a number of the second interconnection lines and j represents a number of the active patterns in an unit cell group.
  • a plurality of strapping contacts may be in the strapping regions such that the active patterns to contact the first interconnection lines through the strapping contacts. The strapping contacts on each active pattern may be in at least one of the strapping regions.
  • the strapping contacts on each active pattern may be positioned in every other strapping region in the first direction.
  • the strapping contacts may be arranged along every 2 ⁇ memory cells in each active pattern in the first direction, wherein x represents the number of bit lines between the strapping contacts in each active pattern.
  • the strapping contacts in each strapping region may be positioned on every other active pattern in the second direction.
  • At least two of the strapping contacts in each strapping region may be arranged on a same line.
  • the strapping contacts on each active pattern may be positioned in each strapping region in the first direction.
  • the strapping contacts may be arranged every x memory cells in each active pattern in the first direction, wherein x represents the number of bit lines between the strapping contacts in each active pattern.
  • the strapping contacts in each strapping region may cross each other in adjacent active patterns in the second direction.
  • a first isolation layer may isolate adjacent first interconnection lines of adjacent unit cell groups in the second direction.
  • a second isolation layer having a size smaller than the first isolation layer may isolate adjacent first interconnection lines in the second direction within each of the unit cell groups.
  • FIGS. 1-6B represent non-limiting, example embodiments as described herein.
  • FIG. 1 is a photograph showing a bridge phenomenon between strapping contacts arranged in a strapping region of a conventional semiconductor memory device
  • FIG. 2 is a block diagram illustrating a memory cell array 100 in a semiconductor memory device according to examples embodiments
  • FIG. 3 is a diagram illustrating a plan view of the memory cell array in a semiconductor memory device according to examples embodiments
  • FIG. 4A is a diagram illustrating a cross-sectional view of the memory cell array taken along line IIIA-IIIA in FIG. 3 ;
  • FIG. 4B is a diagram illustrating a cross-sectional view of the memory cell array taken along line IIIB-IIIB in FIG. 3 ;
  • FIG. 5 is a diagram illustrating a plan view of a memory cell array in a semiconductor memory device according to example embodiments
  • FIG. 6A is a diagram illustrating a cross-sectional view of the memory cell array taken along line VA-VA in FIG. 5 ;
  • FIG. 6B is a diagram illustrating a cross-sectional view of the memory cell array taken along line VB-VB in FIG. 5 .
  • first, second, third etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the scope of example embodiments.
  • spatially relative terms such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or a relationship between a feature and another element or feature as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the Figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, for example, the term “below” can encompass both an orientation, which is above as well as below. The device may be otherwise oriented (rotated 90 degrees or viewed or referenced at other orientations) and the spatially relative descriptors used herein should be interpreted accordingly.
  • Example embodiments are described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized embodiments (and intermediate structures). As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, may be expected. Thus, example embodiments should not be construed as limited to the particular shapes of regions illustrated herein but may include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle may have rounded or curved features and/or a gradient (e.g., of implant concentration) at its edges rather than an abrupt change from an implanted region to a non-implanted region.
  • a gradient e.g., of implant concentration
  • a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation may take place.
  • the regions illustrated in the figures are schematic in nature and their shapes do not necessarily illustrate the actual shape of a region of a device and do not limit the scope.
  • Example embodiments relate to semiconductor memory devices.
  • Other example embodiments relate to semiconductor memory devices having strapping contacts in a strapping region with an increased pitch.
  • FIG. 2 is a block diagram illustrating a memory cell array 100 in a semiconductor memory device according to example embodiments wherein each memory cell in the memory cell array 100 has a diode structure.
  • a memory cell array 100 may be formed in a cell array region of the semiconductor memory device.
  • Word line drivers 130 and bit line drivers 150 may be arranged in a peripheral circuit region.
  • the memory cell array 100 includes a plurality of word lines WL 1 to WLm and a plurality of bit lines BL 1 to BLn.
  • the word lines WL 1 to WLm and bit lines BL 1 to BLn may intersect each other.
  • a plurality of memory cells 160 may be arranged in a matrix form.
  • the memory cells 160 may be connected to the word lines WL 1 to WLm and the bit lines BL 1 to BLn.
  • the word lines WL 1 to WLm and the bit lines BL 1 to BLn are each connected to the word and bit line drivers 130 and 150 arranged in the peripheral circuit region.
  • the memory cells 160 may include PRAM cells. Each of the memory cells 160 may include a phase-change storage element R and a cell diode D connected in series.
  • the phase-change storage element R may include a phase-change material layer (layer 230 of FIGS. 4A and 4B ).
  • the phase-change storage elements R of the memory cells 160 may be connected to the bit lines BL 1 to BLn.
  • the cell diodes D of the memory cells 160 may be connected to the word lines WL 1 to WLm.
  • phase-change material layer 230 of the phase-change storage element R in each of the memory cells 160 exhibits a phase change to a high-resistance reset state or low-resistance set state.
  • data is read by detecting a current flowing through each of the memory cells 160 depending on a state thereof (e.g., a set or reset state). If the memory cell 160 is in a low-resistance set state, a current flowing through the memory cell 160 may be substantially large and the memory cell 160 is read as data “0.” If the memory cell 160 is in a high-resistance reset state, a current flowing through the memory cell 160 may be substantially small and the memory cell 160 is read as data “1.”
  • a state thereof e.g., a set or reset state
  • the word line driver 130 selects one of the word lines WL 1 to WLn while the memory cells 160 are in a read or program mode.
  • the bit line driver 150 selects at least one of the bit lines BL 1 to BLn.
  • the number of bit lines selected by the bit line driver 150 may be determined depending on an amount of data output from a memory device at a time. For example, assuming that 8-bit data are output, the bit line driver 150 simultaneously selects 8-bit lines in the bit lines BL 1 to BLn.
  • FIG. 3 is a diagram illustrating a plan view of a memory cell array in a semiconductor memory device according to examples embodiments.
  • FIG. 4A is a diagram illustrating a cross-sectional view of the memory cell array taken along line IIIA-IIIA in FIG. 3 .
  • FIG. 4B is a diagram illustrating a cross-sectional view of the semiconductor memory device taken along line IIIB-IIIB in FIG. 3 .
  • the semiconductor memory device includes cell regions 101 a , 101 b and 101 c and a plurality of strapping regions 105 a , 105 b and 105 c .
  • the cell regions 101 a , 101 b and 101 c may each include a plurality memory cells 161 , 162 and 168 arranged therein.
  • the plurality of strapping regions 105 a , 105 b and 105 c may each include strapping contacts 171 and 175 arranged therein.
  • the strapping regions 105 a , 105 b and 105 c may be arranged between adjacent cell regions in the cell regions 101 a , 101 b and 101 c.
  • a plurality of active patterns 111 , 112 , 113 , 114 , 125 and 126 may be arranged in a first direction.
  • the active patterns 111 , 112 , 113 , 114 , 125 and 126 may be shaped in long stripes.
  • the active patterns may be spaced apart from one another in a second direction intersecting the first direction.
  • a plurality of word lines 131 , 132 , 133 , 134 , 145 and 146 may be arranged in the first direction.
  • the word lines 131 , 132 , 133 , 134 , 145 and 146 may overlap with the active patterns 111 , 112 , 113 , 114 , 125 and 126 .
  • the word lines 131 , 132 , 133 , 134 , 145 and 146 may be spaced apart from one another in the second direction along the active patterns 111 , 112 , 113 , 114 , 125 and 126 .
  • a plurality of bit lines 151 , 152 and 158 may extend in the second direction.
  • the bit lines 151 , 152 and 158 may intersect the word lines 131 , 132 , 133 , 134 , 145 and 146 and the active patterns 111 , 112 , 113 , 114 , 125 and 126 .
  • the bit lines 151 , 152 and 158 may be spaced apart from one another in the first direction.
  • the plurality of memory cells 161 , 162 and 168 may be arranged on top surfaces of the active patterns 111 , 112 , 113 , 114 , 125 and 126 where the word lines 131 , 132 , 133 , 134 , 145 and 146 intersect the bit lines 151 , 152 and 158 .
  • the memory cells 161 , 162 and 168 may be included in each unit cell group 160 a , 160 b and 160 c .
  • Each of the unit cell groups 160 a , 160 b and 160 c includes i ⁇ j memory cells, wherein i represents the number of bit lines and j represents the number of active patterns in each unit cell.
  • each of the unit cell groups 160 a , 160 b and 160 c may include 8 ⁇ 16 memory cells, wherein there are 8 bit lines and 16 active patterns in the unit cell.
  • the strapping regions 105 a , 105 b and 105 c may be arranged between the unit cell groups 160 a , 160 b and 160 c in a parallel (or lateral) direction as the word line (e.g., along the first direction).
  • the active patterns 111 , 112 , 113 , 114 , 125 and 126 may contact the word lines 131 , 132 , 133 , 134 , 145 and 146 via the strapping contacts 171 and 175 arranged in the strapping regions 105 a , 105 b and 105 c .
  • the strapping contacts 171 and 175 may be arranged in a zigzag form in adjacent strapping regions 105 a , 105 b and 105 c.
  • the strapping contacts 171 and 175 in each of the strapping regions 150 a , 150 b and 150 c may be arranged in a straight line along a parallel (or lateral) direction as the bit lines 151 , 152 and 158 .
  • Each of the strapping contacts 171 and 175 may be positioned on every other of the active patterns 111 , 112 , 113 , 114 , 125 and 126 .
  • Each of the strapping contacts 171 and 175 may be positioned on every other unit cell group 160 a , 160 b and 160 c along the parallel (or lateral) direction of the word lines 131 , 132 , 133 , 134 , 145 and 146 .
  • Each of the strapping contacts 171 and 175 may be positioned along every 2 ⁇ memory cells, wherein x represents the number of bit lines between the strapping contacts in each active pattern. For example, if there are 8 bit lines between the strapping contacts, there are 16 memory cells between each strapping contacts in an active pattern.
  • a pitch of the strapping contacts in the lateral direction of the bit line may be increased by two times.
  • a space between adjacent strapping contacts in the lateral direction of the bit line may be increased by three times compared to the memory device of FIG. 1 , in which the strapping contacts in a strapping region are positioned on every other active pattern in the lateral direction of the bit line. As such, a contact margin of the strapping contacts in the semiconductor device increases.
  • Each of the active patterns 111 , 112 , 113 , 114 , 125 and 126 may include an active pattern doped with high-density impurities (e.g., n-type impurities).
  • a first isolation layer 106 may isolate the active patterns 126 and 111 within adjacent unit cell groups in the unit cell groups 160 a , 160 b and 160 c in the lateral direction of the bit lines 151 , 152 and 158 , which are along the second direction.
  • the active patterns 111 , 112 , 113 , 114 , 125 and 126 within each of the unit cell groups 160 a , 160 b and 160 c may be isolated from one another by a second isolation layer 107 .
  • Each of the first and second isolation layers 106 and 107 may have a shallow trench isolation structure. Each of the first and second isolation layers 106 and 107 may have a LOCOS isolation structure or the like. The first isolation layer 106 may have a size larger than the second isolation layer 107 .
  • the memory cells 161 , 162 and 168 may be isolated from one another in a multi-layered insulating layer 180 .
  • the multi-layered insulating layer 180 may include an interlayer dielectric layer (not shown).
  • each of the memory cells 161 , 162 and 168 may include a cell diode D and a phase-change storage element R.
  • the cell diode D may include a cathode pattern 211 positioned on the substrate 200 and an anode pattern 215 positioned on the cathode pattern 211 .
  • the cathode pattern 211 and the anode pattern 215 may include n-type and p-type semiconductor patterns.
  • the cathode pattern 211 may have an impurity density lower than the anode pattern 215 .
  • the cathode pattern 211 may have an impurity density lower than the active patterns 111 , 112 , 113 , 114 , 125 and 126 .
  • the cathode pattern 211 and the anode pattern 215 may be formed through a selective epitaxial growth method.
  • the cell diode D may include a diode electrode layer (not shown) formed of a metal silicide layer (not shown), which is positioned on the anode pattern 215 .
  • the phase-change storage element R may be positioned above the cell diode D.
  • the phase-change storage element R may include a phase-change material layer 230 .
  • the phase-change material layer 230 may include a chalcogenide layer (e.g., a germanium stibium tellurium (GeSbTe) layer).
  • the phase-change storage element R may include upper and lower electrodes (not shown) arranged above and below the phase-change material layer 230 , respectively. Each of the upper and lower electrodes may include a material that does not react to the phase-change material layer 230 (e.g., TiN or TiAlN).
  • the anode pattern 215 of the cell diode D and the phase-change material layer 230 of the phase-change storage element R may be connected to each other through a contact plug 220 .
  • the contact plug 220 may include a conductive plug (e.g., a metal plug). A process of forming the contact plug 220 may be omitted.
  • Each of the bit lines 151 , 152 and 158 may be positioned above the phase-change storage element R.
  • Each of the bit lines 151 , 152 and 158 may include a metal with desirable conductivity.
  • Each of the bit lines 151 , 152 and 158 may contact the phase-change material layer 230 through a contact plug 240 .
  • the contact plug 240 may include a conductive plug (e.g., a metal plug). A process of forming the contact plug 240 may be omitted.
  • the multi-layer insulating layer 180 includes strapping contacts 171 and 175 and exposes portions of the active patterns 111 , 112 , 113 , 114 , 125 and 126 in the strapping regions 105 a , 105 b and 105 c .
  • Conductive plugs 172 and 176 may be formed in the strapping contacts 171 and 175 , respectively.
  • Each of the strapping contacts 171 and 175 may be positioned in every other of the strapping regions 105 a , 105 b and 105 c.
  • the word lines 131 , 132 , 133 , 134 , 145 and 146 electrically connected to the active patterns 111 , 112 , 113 , 114 , 125 and 126 through the conductive plugs 172 and 176 formed in the strapping contacts 171 and 175 may be arranged along the active patterns 111 , 112 , 113 , 114 , 125 and 126 .
  • each of the active patterns 111 , 112 , 113 , 114 , 125 and 126 which function as a word line, has a substantially large resistance
  • the word lines 131 , 132 , 133 , 134 , 145 and 146 may be connected to the active patterns 111 , 112 , 113 , 114 , 125 and 126 through the strapping contacts 171 and 175 to prevent a delay.
  • the semiconductor device may have a higher operating speed.
  • FIG. 5 is a diagram illustrating a plan view of a memory cell array in a semiconductor memory device according to example embodiments.
  • FIG. 6A is a diagram illustrating a cross-sectional view of the memory cell array taken along line VA-VA in FIG. 5 .
  • FIG. 6B is a diagram illustrating a cross-sectional view of the memory cell array taken along line VB-VB in FIG. 5 .
  • the memory cell array in the semiconductor memory device shown in FIGS. 5 , 6 A and 6 B is similar to the memory array in the semiconductor memory device shown in FIGS. 3 , 4 A and 4 B, except that the strapping contacts are in another arrangement according to example embodiments. Thus, a description of like elements will be omitted for the sake of brevity.
  • Strapping regions 105 a , 105 b and 105 c may be arranged between cell regions 101 a , 101 b and 101 c in a parallel (or lateral) direction as word lines 131 , 132 , 133 , 134 , 145 and 146 , which extend in a first direction.
  • Unit cell groups 160 a , 160 b and 160 c each having i ⁇ j memory cells 161 , 162 to 168 are positioned in the cell regions 101 a , 101 b and 101 c , respectively.
  • Strapping contacts 173 and 177 are arranged in each of the strapping regions 105 a , 105 b and 105 c .
  • the active patterns 111 , 112 , 113 , 114 , 125 and 126 contact the word lines 131 , 132 , 133 , 134 , 145 and 146 through the strapping contacts 173 and 177 .
  • the strapping contacts 173 and 177 in each of the strapping regions 105 a , 105 b and 105 c may be arranged in a zigzag form.
  • the strapping contacts 173 and 177 in each of the strapping regions 105 a , 105 b and 105 c may cross (or traverse) each other in a parallel (or lateral) direction of the bit lines 151 , 152 and 158 .
  • One of the strapping contacts 173 and 177 in each of the strapping regions 105 a , 105 b and 105 c may be positioned on each active pattern 111 , 112 , 113 , 114 , 125 and 126 .
  • the strapping patterns 177 positioned on odd-numbered active patterns 111 , 113 , . . . and 125 may be arranged in a line.
  • the strapping contacts 173 positioned on even-numbered active patterns 112 , 114 , . . . and 126 may be arranged in another line.
  • Each of the strapping contacts 173 and 177 may be positioned on each unit cell group 160 a , 160 b and 160 c in the parallel (or lateral) direction as the word lines 131 , 132 , 133 , 134 , 145 and 146 .
  • Each of the strapping contacts 173 and 177 may be positioned on every x memory cells, wherein x represents the number of bit lines between the strapping contacts in each active pattern. For example, if there are 8 bit lines between the strapping contacts in an active pattern, there are 8 memory cells between the strapping contacts in the lateral direction of word lines.
  • a pitch of the strapping contacts 173 and 177 in the lateral direction of the bit lines increases by two times.
  • a space between adjacent strapping contacts 173 and 177 increases by three times as compared with the memory device shown in FIG. 1 , in which strapping contacts in each of the strapping regions are positioned on every active pattern in the lateral direction of the bit line. As such, a contact margin of the strapping contacts 173 and 177 of the semiconductor device increases.
  • the strapping contacts 173 and 177 may be included in an interlayer dielectric layer 180 .
  • the interlayer dielectric layer 180 may expose portions of the active patterns 111 , 112 , 113 , 114 , 125 and 126 in the strapping regions 105 a , 105 b and 105 c .
  • Each of the strapping contacts 173 and 177 may be positioned in each strapping region 105 a , 105 b and 105 c .
  • Conductive plugs 174 and 178 may each be formed in the strapping contacts 173 and 177 , respectively.
  • the word lines 131 , 132 , 133 , 134 , 145 and 146 may overlap with the active patterns 111 , 112 , 113 , 114 , 125 and 126 .
  • the word lines 131 , 132 , 133 , 134 , 145 and 146 may be electrically connected to the active patterns 111 , 112 , 113 , 114 , 125 and 126 through the strapping contacts 173 and 177 .
  • Example embodiments may be used in a PRAM cell including a transistor and a phase-change storage element.
  • Example embodiments may be used in a device where bit lines are strapped.
  • a PRAM has been described in the above examples embodiments, example embodiments are not limited thereto.
  • examples embodiments may be used in a non-volatile memory device (e.g., magnetic random access memory (MRAM) or ferroelectric random access memory (FRAM)) or a volatile memory device (e.g., DRAM) where the memory device has a strapping region positioned in each memory cell group or the like.
  • MRAM magnetic random access memory
  • FRAM ferroelectric random access memory
  • DRAM volatile memory device
  • an arrangement structure of strapping contacts in a strapping region may be modified such that the formation of contact bridges may be prevented (or reduced).

Abstract

Semiconductor memory devices having strapping contacts with an increased pitch are provided. The semiconductor memory devices include cell regions and strapping regions between adjacent cell regions in a first direction on a semiconductor substrate. Active patterns extend in the first direction throughout the cell regions and strapping regions and are spaced apart from one another in a second direction intersecting the first direction. First interconnection lines extend in the first direction throughout the cell regions and the strapping regions and are spaced apart from one another in the second direction while overlapping with the active patterns. Second interconnection lines extend in the second direction to intersect the active patterns and the first interconnection lines in the cell regions. The second interconnection lines are spaced apart from one another in the first direction. Memory cells are positioned at intersection portions of the first and second interconnection lines in the cell regions. Strapping contacts are in the strapping regions and configured such that the active patterns contact with the first interconnection lines through the strapping contacts.

Description

    PRIORITY STATEMENT
  • This application claims the benefit of priority under 35 U.S.C. §119 from Korean Patent Application No. 10-2007-0030045, filed on Mar. 27, 2007, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
  • BACKGROUND
  • 1. Field
  • Example embodiments relate to semiconductor memory devices. Other example embodiments relate to semiconductor memory devices having strapping contacts in a strapping region with an increased pitch.
  • 2. Description of the Related Art
  • Semiconductor memory devices may be classified as volatile memory devices (e.g., DRAM), in which all data stored in a memory cell is erased if a power source is turned off, or as non-volatile memory devices, in which data is preserved after a power source is turned off. Non-volatile memory devices include a magnetic random access memory (MRAM), a ferroelectric random access memory (FRAM), a phase-change random access memory (PRAM), a resistor random access memory (RRAM) and the like.
  • Among the non-volatile memory devices, the PRAM is a memory device using a phase-change material. The phase-change material refers to a material (e.g., chalcogenide) in which a phase varies with temperature and resistance varies with the phase. An alloy material (e.g., GexSbyTez(GST)) may be used as the phase-change material. The phase-change material may rapidly transform (or change) into one of two types of phases (e.g., amorphous and crystalline states) depending on a temperature. The phase-change material is in a high-resistance state in the amorphous state and in a low-resistance state in the crystalline state. As such, the phase-change material may be used as a semiconductor memory device, for example, by defining the high-resistance state as “reset” or logic “1” and defining the low-resistance state as “set” or logic “0.”
  • Memory cells constituting PRAM may be classified into memory cells having transistor and diode structures. The memory cell having a transistor structure may be a memory cell in which a phase-change material layer and a transistor are connected in series to each other. The memory cell having a diode structure may be a memory cell in which a phase-change material layer and a diode are connected in series to each other. The memory cell having a diode structure may have higher integration, higher speed and/or lower power characteristics compared with the memory cell having a transistor structure.
  • As the integration density of a memory device increases, the cross section of a word line gradually decreases and the length of the word line gradually increases, increasing the resistance of the word line. As such, in a PRAM, a delay exists on a word line when the word line is selected.
  • A method of applying a uniform voltage to memory cells array on a word line having strapping contacts to prevent a voltage drop due to the increased resistance of the word line has been acknowledged. In the method, a contact margin (or pitch) between adjacent strapping contacts may be reduced as the integration density of a memory device is increased. As such, a bridge or the like may occur.
  • FIG. 1 is a photograph showing a bridge phenomenon between strapping contacts arrayed in a strapping region of a conventional semiconductor memory device.
  • As shown in FIG. 1, a bridge is formed between adjacent strapping contacts 11 in the strapping region.
  • SUMMARY
  • Example embodiments relate to semiconductor memory devices. Other example embodiments relate to semiconductor memory devices having strapping contacts in a strapping region with an increased pitch.
  • Example embodiments provide semiconductor memory devices wherein a pitch of strapping contacts in a strapping region is increased such that the likelihood of a bridge forming between adjacent strapping contacts is reduced (or prevented).
  • According to example embodiments, there is provided a semiconductor memory device including a plurality of cell regions and a plurality of strapping regions arranged between adjacent cell regions in a first direction on a semiconductor substrate. A plurality of active patterns extend in the first direction throughout the cell regions and strapping regions. The plurality of active patterns may be spaced apart from one another in a second direction intersecting the first direction. A plurality of first interconnection lines extend in the first direction throughout the cell regions and the strapping regions. The plurality of first interconnection lines may be spaced apart from one another in the second direction while overlapping with the active patterns. A plurality of second interconnection lines extend in the second direction to intersect the active patterns and the first interconnection lines above the cell regions. The plurality of second interconnection lines may be spaced apart from one another in the first direction. A plurality of memory cells may each be positioned at intersection portions of the first and second interconnection lines in the cell regions. A plurality of strapping contacts may be arranged in the strapping regions. The active patterns may contact the first interconnection lines through the strapping contacts. The plurality of strapping contacts may be in a zigzag form in the strapping regions.
  • The strapping contacts in each strapping regions may be on the active patterns in a zigzag form in the second direction. The strapping contacts within adjacent strapping regions may be arranged on the active patterns in a zigzag form in the second direction. The first interconnection lines may include word lines. The second interconnection lines include bit lines. The active patterns may include impurity regions doped with predetermined conductive type impurities in the semiconductor substrate. The memory cells may include phase-change random access memory (PRAM) cells.
  • According to example embodiments, there is provided a semiconductor memory device including a plurality of cell regions and a plurality of strapping regions between adjacent cell regions in a first direction on a semiconductor substrate. A plurality of active patterns extend in the first direction throughout the cell regions and strapping regions. The plurality of active patterns may be spaced apart from one another in a second direction intersecting the first direction. A plurality of first interconnection lines extend in the first direction throughout the cell regions and the strapping regions. The plurality of first interconnection lines may be spaced apart from one another in the second direction while overlapping with the active patterns. A plurality of second interconnection lines extend in the second direction to intersect the active patterns and the first interconnection lines above the cell regions. The plurality of second interconnection lines may be spaced apart from one another in the first direction. A plurality of memory cells may each be positioned at intersection portions of the first and second interconnection lines of the cell regions. A plurality of unit cell groups each having i×j memory cells in the first and second directions may be provided, wherein i represents a number of the second interconnection lines and j represents a number of the active patterns in an unit cell group. A plurality of strapping contacts may be in the strapping regions such that the active patterns to contact the first interconnection lines through the strapping contacts. The strapping contacts on each active pattern may be in at least one of the strapping regions.
  • The strapping contacts on each active pattern may be positioned in every other strapping region in the first direction. The strapping contacts may be arranged along every 2× memory cells in each active pattern in the first direction, wherein x represents the number of bit lines between the strapping contacts in each active pattern. The strapping contacts in each strapping region may be positioned on every other active pattern in the second direction.
  • At least two of the strapping contacts in each strapping region may be arranged on a same line. The strapping contacts on each active pattern may be positioned in each strapping region in the first direction. The strapping contacts may be arranged every x memory cells in each active pattern in the first direction, wherein x represents the number of bit lines between the strapping contacts in each active pattern. The strapping contacts in each strapping region may cross each other in adjacent active patterns in the second direction.
  • A first isolation layer may isolate adjacent first interconnection lines of adjacent unit cell groups in the second direction. A second isolation layer having a size smaller than the first isolation layer may isolate adjacent first interconnection lines in the second direction within each of the unit cell groups.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Example embodiments will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings. FIGS. 1-6B represent non-limiting, example embodiments as described herein.
  • FIG. 1 is a photograph showing a bridge phenomenon between strapping contacts arranged in a strapping region of a conventional semiconductor memory device;
  • FIG. 2 is a block diagram illustrating a memory cell array 100 in a semiconductor memory device according to examples embodiments;
  • FIG. 3 is a diagram illustrating a plan view of the memory cell array in a semiconductor memory device according to examples embodiments;
  • FIG. 4A is a diagram illustrating a cross-sectional view of the memory cell array taken along line IIIA-IIIA in FIG. 3;
  • FIG. 4B is a diagram illustrating a cross-sectional view of the memory cell array taken along line IIIB-IIIB in FIG. 3;
  • FIG. 5 is a diagram illustrating a plan view of a memory cell array in a semiconductor memory device according to example embodiments;
  • FIG. 6A is a diagram illustrating a cross-sectional view of the memory cell array taken along line VA-VA in FIG. 5; and
  • FIG. 6B is a diagram illustrating a cross-sectional view of the memory cell array taken along line VB-VB in FIG. 5.
  • DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS
  • Various example embodiments will now be described more fully with reference to the accompanying drawings in which some example embodiments are shown. In the drawings, the thicknesses of layers and regions may be exaggerated for clarity.
  • Detailed illustrative embodiments are disclosed herein. However, specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments. This invention may, however, may be embodied in many alternate forms and should not be construed as limited to only example embodiments set forth herein.
  • Accordingly, while example embodiments are capable of various modifications and alternative forms, embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit example embodiments to the particular forms disclosed, but on the contrary, example embodiments are to cover all modifications, equivalents, and alternatives falling within the scope of the invention. Like numbers refer to like elements throughout the description of the figures.
  • It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.).
  • The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes” and/or “including,” when used herein, specify the presence of stated features, integers, steps, operations, elements and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
  • It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the scope of example embodiments.
  • Spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or a relationship between a feature and another element or feature as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the Figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, for example, the term “below” can encompass both an orientation, which is above as well as below. The device may be otherwise oriented (rotated 90 degrees or viewed or referenced at other orientations) and the spatially relative descriptors used herein should be interpreted accordingly.
  • Example embodiments are described herein with reference to cross-sectional illustrations that are schematic illustrations of idealized embodiments (and intermediate structures). As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, may be expected. Thus, example embodiments should not be construed as limited to the particular shapes of regions illustrated herein but may include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle may have rounded or curved features and/or a gradient (e.g., of implant concentration) at its edges rather than an abrupt change from an implanted region to a non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation may take place. Thus, the regions illustrated in the figures are schematic in nature and their shapes do not necessarily illustrate the actual shape of a region of a device and do not limit the scope.
  • It should also be noted that in some alternative implementations, the functions/acts noted might occur out of the order noted in the figures. For example, two figures shown in succession may in fact be executed substantially concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
  • Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments belong. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
  • In order to more specifically describe example embodiments, various aspects will be described in detail with reference to the attached drawings. However, the present invention is not limited to example embodiments described.
  • Example embodiments relate to semiconductor memory devices. Other example embodiments relate to semiconductor memory devices having strapping contacts in a strapping region with an increased pitch.
  • FIG. 2 is a block diagram illustrating a memory cell array 100 in a semiconductor memory device according to example embodiments wherein each memory cell in the memory cell array 100 has a diode structure.
  • Referring to FIG. 2, a memory cell array 100 may be formed in a cell array region of the semiconductor memory device. Word line drivers 130 and bit line drivers 150 may be arranged in a peripheral circuit region. The memory cell array 100 includes a plurality of word lines WL1 to WLm and a plurality of bit lines BL1 to BLn. The word lines WL1 to WLm and bit lines BL1 to BLn may intersect each other. A plurality of memory cells 160 may be arranged in a matrix form. The memory cells 160 may be connected to the word lines WL1 to WLm and the bit lines BL1 to BLn. The word lines WL1 to WLm and the bit lines BL1 to BLn are each connected to the word and bit line drivers 130 and 150 arranged in the peripheral circuit region.
  • The memory cells 160 may include PRAM cells. Each of the memory cells 160 may include a phase-change storage element R and a cell diode D connected in series. The phase-change storage element R may include a phase-change material layer (layer 230 of FIGS. 4A and 4B). The phase-change storage elements R of the memory cells 160 may be connected to the bit lines BL1 to BLn. The cell diodes D of the memory cells 160 may be connected to the word lines WL1 to WLm.
  • In a program operation, if a current is applied to the memory cells 160 through the bit lines BL1 to BLn and the word lines WL1 to WLm are transited to a low or ground level, a forward current flows in the cell diodes D from the bit lines BL1 to BLn to the word lines WL1 to WLm. As such, the phase-change material layer 230 of the phase-change storage element R in each of the memory cells 160 exhibits a phase change to a high-resistance reset state or low-resistance set state.
  • In a read operation, data is read by detecting a current flowing through each of the memory cells 160 depending on a state thereof (e.g., a set or reset state). If the memory cell 160 is in a low-resistance set state, a current flowing through the memory cell 160 may be substantially large and the memory cell 160 is read as data “0.” If the memory cell 160 is in a high-resistance reset state, a current flowing through the memory cell 160 may be substantially small and the memory cell 160 is read as data “1.”
  • The word line driver 130 selects one of the word lines WL1 to WLn while the memory cells 160 are in a read or program mode. The bit line driver 150 selects at least one of the bit lines BL1 to BLn. The number of bit lines selected by the bit line driver 150 may be determined depending on an amount of data output from a memory device at a time. For example, assuming that 8-bit data are output, the bit line driver 150 simultaneously selects 8-bit lines in the bit lines BL1 to BLn.
  • FIG. 3 is a diagram illustrating a plan view of a memory cell array in a semiconductor memory device according to examples embodiments. FIG. 4A is a diagram illustrating a cross-sectional view of the memory cell array taken along line IIIA-IIIA in FIG. 3. FIG. 4B is a diagram illustrating a cross-sectional view of the semiconductor memory device taken along line IIIB-IIIB in FIG. 3.
  • Referring to FIGS. 3, 4A and 4B, the semiconductor memory device includes cell regions 101 a, 101 b and 101 c and a plurality of strapping regions 105 a, 105 b and 105 c. The cell regions 101 a, 101 b and 101 c may each include a plurality memory cells 161, 162 and 168 arranged therein. The plurality of strapping regions 105 a, 105 b and 105 c may each include strapping contacts 171 and 175 arranged therein. The strapping regions 105 a, 105 b and 105 c may be arranged between adjacent cell regions in the cell regions 101 a, 101 b and 101 c.
  • A plurality of active patterns 111, 112, 113, 114, 125 and 126 may be arranged in a first direction. The active patterns 111, 112, 113, 114, 125 and 126 may be shaped in long stripes. The active patterns may be spaced apart from one another in a second direction intersecting the first direction.
  • A plurality of word lines 131, 132, 133, 134, 145 and 146 may be arranged in the first direction. The word lines 131, 132, 133, 134, 145 and 146 may overlap with the active patterns 111, 112, 113, 114, 125 and 126. The word lines 131, 132, 133, 134, 145 and 146 may be spaced apart from one another in the second direction along the active patterns 111, 112, 113, 114, 125 and 126.
  • A plurality of bit lines 151, 152 and 158 may extend in the second direction. The bit lines 151, 152 and 158 may intersect the word lines 131, 132, 133, 134, 145 and 146 and the active patterns 111, 112, 113, 114, 125 and 126. The bit lines 151, 152 and 158 may be spaced apart from one another in the first direction.
  • In cell regions 101 a, 101 b and 101 c, the plurality of memory cells 161, 162 and 168 may be arranged on top surfaces of the active patterns 111, 112, 113, 114, 125 and 126 where the word lines 131, 132, 133, 134, 145 and 146 intersect the bit lines 151, 152 and 158. The memory cells 161, 162 and 168 may be included in each unit cell group 160 a, 160 b and 160 c. Each of the unit cell groups 160 a, 160 b and 160 c includes i×j memory cells, wherein i represents the number of bit lines and j represents the number of active patterns in each unit cell. For example, each of the unit cell groups 160 a, 160 b and 160 c may include 8×16 memory cells, wherein there are 8 bit lines and 16 active patterns in the unit cell.
  • The strapping regions 105 a, 105 b and 105 c may be arranged between the unit cell groups 160 a, 160 b and 160 c in a parallel (or lateral) direction as the word line (e.g., along the first direction). The active patterns 111, 112, 113, 114, 125 and 126 may contact the word lines 131, 132, 133, 134, 145 and 146 via the strapping contacts 171 and 175 arranged in the strapping regions 105 a, 105 b and 105 c. The strapping contacts 171 and 175 may be arranged in a zigzag form in adjacent strapping regions 105 a, 105 b and 105 c.
  • The strapping contacts 171 and 175 in each of the strapping regions 150 a, 150 b and 150 c may be arranged in a straight line along a parallel (or lateral) direction as the bit lines 151, 152 and 158. Each of the strapping contacts 171 and 175 may be positioned on every other of the active patterns 111, 112, 113, 114, 125 and 126. Each of the strapping contacts 171 and 175 may be positioned on every other unit cell group 160 a, 160 b and 160 c along the parallel (or lateral) direction of the word lines 131, 132, 133, 134, 145 and 146. Each of the strapping contacts 171 and 175 may be positioned along every 2× memory cells, wherein x represents the number of bit lines between the strapping contacts in each active pattern. For example, if there are 8 bit lines between the strapping contacts, there are 16 memory cells between each strapping contacts in an active pattern.
  • In example embodiments, because strapping contacts in each of the strapping regions are positioned on every other active pattern in the lateral direction of the bit line, a pitch of the strapping contacts in the lateral direction of the bit line may be increased by two times. A space between adjacent strapping contacts in the lateral direction of the bit line may be increased by three times compared to the memory device of FIG. 1, in which the strapping contacts in a strapping region are positioned on every other active pattern in the lateral direction of the bit line. As such, a contact margin of the strapping contacts in the semiconductor device increases.
  • Each of the active patterns 111, 112, 113, 114, 125 and 126 may include an active pattern doped with high-density impurities (e.g., n-type impurities). A first isolation layer 106 may isolate the active patterns 126 and 111 within adjacent unit cell groups in the unit cell groups 160 a, 160 b and 160 c in the lateral direction of the bit lines 151, 152 and 158, which are along the second direction. The active patterns 111, 112, 113, 114, 125 and 126 within each of the unit cell groups 160 a, 160 b and 160 c may be isolated from one another by a second isolation layer 107. Each of the first and second isolation layers 106 and 107 may have a shallow trench isolation structure. Each of the first and second isolation layers 106 and 107 may have a LOCOS isolation structure or the like. The first isolation layer 106 may have a size larger than the second isolation layer 107.
  • The memory cells 161, 162 and 168 may be isolated from one another in a multi-layered insulating layer 180. The multi-layered insulating layer 180 may include an interlayer dielectric layer (not shown). For example, each of the memory cells 161, 162 and 168 may include a cell diode D and a phase-change storage element R. The cell diode D may include a cathode pattern 211 positioned on the substrate 200 and an anode pattern 215 positioned on the cathode pattern 211. The cathode pattern 211 and the anode pattern 215 may include n-type and p-type semiconductor patterns.
  • The cathode pattern 211 may have an impurity density lower than the anode pattern 215. The cathode pattern 211 may have an impurity density lower than the active patterns 111, 112, 113, 114, 125 and 126. The cathode pattern 211 and the anode pattern 215 may be formed through a selective epitaxial growth method.
  • The cell diode D may include a diode electrode layer (not shown) formed of a metal silicide layer (not shown), which is positioned on the anode pattern 215.
  • The phase-change storage element R may be positioned above the cell diode D. The phase-change storage element R may include a phase-change material layer 230. The phase-change material layer 230 may include a chalcogenide layer (e.g., a germanium stibium tellurium (GeSbTe) layer). The phase-change storage element R may include upper and lower electrodes (not shown) arranged above and below the phase-change material layer 230, respectively. Each of the upper and lower electrodes may include a material that does not react to the phase-change material layer 230 (e.g., TiN or TiAlN). The anode pattern 215 of the cell diode D and the phase-change material layer 230 of the phase-change storage element R may be connected to each other through a contact plug 220. The contact plug 220 may include a conductive plug (e.g., a metal plug). A process of forming the contact plug 220 may be omitted.
  • Each of the bit lines 151, 152 and 158 may be positioned above the phase-change storage element R. Each of the bit lines 151, 152 and 158 may include a metal with desirable conductivity. Each of the bit lines 151, 152 and 158 may contact the phase-change material layer 230 through a contact plug 240. The contact plug 240 may include a conductive plug (e.g., a metal plug). A process of forming the contact plug 240 may be omitted.
  • The multi-layer insulating layer 180 includes strapping contacts 171 and 175 and exposes portions of the active patterns 111, 112, 113, 114, 125 and 126 in the strapping regions 105 a, 105 b and 105 c. Conductive plugs 172 and 176 (e.g., metal plugs) may be formed in the strapping contacts 171 and 175, respectively. Each of the strapping contacts 171 and 175 may be positioned in every other of the strapping regions 105 a, 105 b and 105 c.
  • The word lines 131, 132, 133, 134, 145 and 146 electrically connected to the active patterns 111, 112, 113, 114, 125 and 126 through the conductive plugs 172 and 176 formed in the strapping contacts 171 and 175 may be arranged along the active patterns 111, 112, 113, 114, 125 and 126. Because each of the active patterns 111, 112, 113, 114, 125 and 126, which function as a word line, has a substantially large resistance, the word lines 131, 132, 133, 134, 145 and 146 may be connected to the active patterns 111, 112, 113, 114, 125 and 126 through the strapping contacts 171 and 175 to prevent a delay. As such, the semiconductor device may have a higher operating speed.
  • FIG. 5 is a diagram illustrating a plan view of a memory cell array in a semiconductor memory device according to example embodiments. FIG. 6A is a diagram illustrating a cross-sectional view of the memory cell array taken along line VA-VA in FIG. 5. FIG. 6B is a diagram illustrating a cross-sectional view of the memory cell array taken along line VB-VB in FIG. 5.
  • The memory cell array in the semiconductor memory device shown in FIGS. 5, 6A and 6B is similar to the memory array in the semiconductor memory device shown in FIGS. 3, 4A and 4B, except that the strapping contacts are in another arrangement according to example embodiments. Thus, a description of like elements will be omitted for the sake of brevity.
  • Strapping regions 105 a, 105 b and 105 c may be arranged between cell regions 101 a, 101 b and 101 c in a parallel (or lateral) direction as word lines 131, 132, 133, 134, 145 and 146, which extend in a first direction. Unit cell groups 160 a, 160 b and 160 c each having i× j memory cells 161, 162 to 168 are positioned in the cell regions 101 a, 101 b and 101 c, respectively. Strapping contacts 173 and 177 are arranged in each of the strapping regions 105 a, 105 b and 105 c. The active patterns 111, 112, 113, 114, 125 and 126 contact the word lines 131, 132, 133, 134, 145 and 146 through the strapping contacts 173 and 177. The strapping contacts 173 and 177 in each of the strapping regions 105 a, 105 b and 105 c may be arranged in a zigzag form.
  • The strapping contacts 173 and 177 in each of the strapping regions 105 a, 105 b and 105 c may cross (or traverse) each other in a parallel (or lateral) direction of the bit lines 151, 152 and 158. One of the strapping contacts 173 and 177 in each of the strapping regions 105 a, 105 b and 105 c may be positioned on each active pattern 111, 112, 113, 114, 125 and 126. The strapping patterns 177 positioned on odd-numbered active patterns 111, 113, . . . and 125 may be arranged in a line. The strapping contacts 173 positioned on even-numbered active patterns 112, 114, . . . and 126 may be arranged in another line. Each of the strapping contacts 173 and 177 may be positioned on each unit cell group 160 a, 160 b and 160 c in the parallel (or lateral) direction as the word lines 131, 132, 133, 134, 145 and 146. Each of the strapping contacts 173 and 177 may be positioned on every x memory cells, wherein x represents the number of bit lines between the strapping contacts in each active pattern. For example, if there are 8 bit lines between the strapping contacts in an active pattern, there are 8 memory cells between the strapping contacts in the lateral direction of word lines.
  • Because the strapping contacts 173 and 177 in each of the strapping regions 105 a, 105 b and 105 c cross each other in the lateral direction of the bit lines, a pitch of the strapping contacts 173 and 177 in the lateral direction of the bit lines increases by two times. A space between adjacent strapping contacts 173 and 177 increases by three times as compared with the memory device shown in FIG. 1, in which strapping contacts in each of the strapping regions are positioned on every active pattern in the lateral direction of the bit line. As such, a contact margin of the strapping contacts 173 and 177 of the semiconductor device increases.
  • The strapping contacts 173 and 177 may be included in an interlayer dielectric layer 180. The interlayer dielectric layer 180 may expose portions of the active patterns 111, 112, 113, 114, 125 and 126 in the strapping regions 105 a, 105 b and 105 c. Each of the strapping contacts 173 and 177 may be positioned in each strapping region 105 a, 105 b and 105 c. Conductive plugs 174 and 178 may each be formed in the strapping contacts 173 and 177, respectively. The word lines 131, 132, 133, 134, 145 and 146 may overlap with the active patterns 111, 112, 113, 114, 125 and 126. The word lines 131, 132, 133, 134, 145 and 146 may be electrically connected to the active patterns 111, 112, 113, 114, 125 and 126 through the strapping contacts 173 and 177.
  • The sectional structure of the PRAM cell according to example embodiments may be modified. Example embodiments may be used in a PRAM cell including a transistor and a phase-change storage element. Example embodiments may be used in a device where bit lines are strapped. Although a PRAM has been described in the above examples embodiments, example embodiments are not limited thereto. For example, examples embodiments may be used in a non-volatile memory device (e.g., magnetic random access memory (MRAM) or ferroelectric random access memory (FRAM)) or a volatile memory device (e.g., DRAM) where the memory device has a strapping region positioned in each memory cell group or the like.
  • As described above, in a semiconductor memory device according to example embodiments, an arrangement structure of strapping contacts in a strapping region may be modified such that the formation of contact bridges may be prevented (or reduced).
  • The foregoing is illustrative of example embodiments and is not to be construed as limiting thereof. Although a few example embodiments have been described, those skilled in the art will readily appreciate that many modifications are possible in example embodiments without materially departing from the novel teachings and advantages. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function, and not only structural equivalents but also equivalent structures. Therefore, it is to be understood that the foregoing is illustrative of various example embodiments and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the appended claims.

Claims (21)

1. A semiconductor memory device, comprising:
a plurality of cell regions and a plurality of strapping regions between adjacent cell regions on a semiconductor substrate, wherein the cell regions and strapping regions extend in a first direction;
a plurality of active patterns extending in the first direction throughout the cell regions and strapping regions, wherein the plurality of active patterns are spaced apart from one another in a second direction intersecting the first direction;
a plurality of first interconnection lines extending in the first direction throughout the cell regions and the strapping regions, wherein the plurality of first interconnection lines are spaced apart from one another in the second direction and overlap with the active patterns;
a plurality of second interconnection lines extending in the second direction and intersecting the active patterns and the first interconnection lines in the cell regions, wherein the plurality of second interconnection lines are spaced apart from one another in the first direction;
a plurality of memory cells each at intersection portions of the first and second interconnection lines in the cell regions; and
a plurality of strapping contacts in the strapping regions, wherein the active patterns contact the first interconnection lines through the strapping contacts and the strapping contacts in each of the strapping regions are on at least one of the active patterns.
2. The semiconductor memory device of claim 1, wherein the strapping contacts are in a zigzag form.
3. The semiconductor memory device of claim 2, wherein the first interconnection lines includes word lines and the second interconnection lines includes bit lines.
4. The semiconductor memory device of claim 2, wherein the strapping contacts in each of the strapping regions are on the active patterns in the zigzag form in the second direction.
5. The semiconductor memory device of claim 2, wherein the strapping contacts in adjacent strapping regions are on the active patterns in the zigzag form in the second direction.
6. The semiconductor memory device of claim 2, wherein the active patterns include impurity regions doped with predetermined conductive type impurities in the semiconductor substrate.
7. The semiconductor memory device of claim 2, wherein the memory cells include phase-change random access memory (PRAM) cells.
8. The semiconductor memory device of claim 1, further comprising a plurality of unit cell groups each having a number of the memory cells, i×j, in the first and second directions, wherein i represents a number of the second interconnection lines and j represents a number of the active patterns in each respective unit cell group.
9. The semiconductor memory device of claim 8, wherein the first interconnection lines includes word lines and the second interconnection lines includes bit lines.
10. The semiconductor memory device of claim 8, wherein the strapping contacts are in every other strapping region of each active pattern in the first direction.
11. The semiconductor memory device of claim 10, wherein the strapping contacts are along every 2× memory cells on each active pattern in the first direction, x representing a number of the bit lines between the strapping contacts in each active pattern.
12. The semiconductor memory device of claim 8, wherein the strapping contacts in each strapping region are on every other active pattern in the second direction.
13. The semiconductor memory device of claim 8, further comprising:
a first isolation layer that isolates adjacent first interconnection lines of adjacent unit cell groups in the second direction; and
a second isolation layer that isolates adjacent first interconnection lines in the second direction within each of the unit cell groups, wherein the second isolation layer has a size smaller than the first isolation layer.
14. The semiconductor memory device of claim 8, wherein the active patterns include impurity regions doped with predetermined conductive type impurities in the semiconductor substrate.
15. The semiconductor memory device of claim 8, wherein the memory cells include phase-change random access memory (PRAM) cells.
16. The semiconductor memory device of claim 8, wherein at least two of the strapping contacts in each of the strapping regions are on a same line.
17. The semiconductor memory device of claim 16, wherein the strapping contacts on each active pattern are in each strapping region in the first direction.
18. The semiconductor memory device of claim 17, wherein the strapping contacts are along every x memory cells in each of the active patterns in the first direction, x representing a number of the bit lines between the strapping contacts in each active pattern.
19. The semiconductor memory device of claim 16, wherein the strapping contacts in each strapping region cross each other in adjacent active patterns in the second direction.
20. The semiconductor memory device of claim 16, further comprising:
a first isolation layer that isolates adjacent first interconnection lines of adjacent unit cell groups in the second direction; and
a second isolation layer that isolates adjacent first interconnection lines in the second direction within each of the unit cell groups, wherein the second isolation layer has a size smaller than the first isolation layer.
21. The semiconductor memory device of claim 16, wherein the active patterns include impurity regions doped with predetermined conductive type impurities in the semiconductor substrate.
US12/073,661 2007-03-27 2008-03-07 Semiconductor memory devices having strapping contacts Abandoned US20080239783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/630,505 US8791448B2 (en) 2007-03-27 2012-09-28 Semiconductor memory devices having strapping contacts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020070030045A KR100809725B1 (en) 2007-03-27 2007-03-27 Semiconductor memory device with improved strapping contact pitch
KR10-2007-0030045 2007-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/630,505 Division US8791448B2 (en) 2007-03-27 2012-09-28 Semiconductor memory devices having strapping contacts

Publications (1)

Publication Number Publication Date
US20080239783A1 true US20080239783A1 (en) 2008-10-02

Family

ID=39397548

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/073,661 Abandoned US20080239783A1 (en) 2007-03-27 2008-03-07 Semiconductor memory devices having strapping contacts
US13/630,505 Active US8791448B2 (en) 2007-03-27 2012-09-28 Semiconductor memory devices having strapping contacts

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/630,505 Active US8791448B2 (en) 2007-03-27 2012-09-28 Semiconductor memory devices having strapping contacts

Country Status (3)

Country Link
US (2) US20080239783A1 (en)
KR (1) KR100809725B1 (en)
TW (1) TWI459541B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446236A (en) * 2019-01-16 2020-07-24 中芯国际集成电路制造(上海)有限公司 Banded unit layout, memory layout, banded unit structure and memory

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102067165B1 (en) * 2013-03-06 2020-02-11 에스케이하이닉스 주식회사 Semiconductor device and method for manufacturing the same, and micro processor, processor, system, data storage system and memory system including the semiconductor device
DE112016007504T5 (en) * 2016-12-07 2019-09-26 Intel Corporation Integrated circuit device with crenelated metal trace layout
JP2020119929A (en) * 2019-01-21 2020-08-06 キオクシア株式会社 Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416349A (en) * 1993-12-16 1995-05-16 National Semiconductor Corporation Increased-density flash EPROM that requires less area to form the metal bit line-to-drain contacts
US6795345B2 (en) * 2002-08-26 2004-09-21 Renesas Technology Corp. Non-volatile semiconductor memory device having an increased access speed while maintaining the production yield
US20060018181A1 (en) * 2004-06-14 2006-01-26 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory
US20060226459A1 (en) * 2005-04-08 2006-10-12 Hyung-Rok Oh Layout structure in semiconductor memory device and layout method therefor
US20080106922A1 (en) * 2006-11-02 2008-05-08 Joon-Min Park Semiconductor memory device and layout structure of word line contacts
US7808815B2 (en) * 2006-10-02 2010-10-05 Samsung Electronics Co., Ltd. Variable resistance memory device and method of manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0144417B1 (en) * 1994-03-31 1998-07-01 김주용 Semiconductor device having word line branching area
JP4771631B2 (en) 2001-09-21 2011-09-14 ルネサスエレクトロニクス株式会社 Thin film magnetic memory device
JP2003179162A (en) * 2001-12-12 2003-06-27 Matsushita Electric Ind Co Ltd Semiconductor storage device
KR100520228B1 (en) 2004-02-04 2005-10-11 삼성전자주식회사 Phase change memory device and data writing method therefore
KR100645040B1 (en) * 2004-02-09 2006-11-10 삼성전자주식회사 Cell array of flash memory device having source strappings
KR100604875B1 (en) * 2004-06-29 2006-07-31 삼성전자주식회사 Non-volatile semiconductor memory device having strap region and fabricating method thereof
US20060056233A1 (en) * 2004-09-10 2006-03-16 Parkinson Ward D Using a phase change memory as a replacement for a buffered flash memory
US7325374B2 (en) * 2004-11-02 2008-02-05 Shanklin Corporation Modular infeeds for automatic forms/fill/seal equipment
JP4591821B2 (en) 2005-02-09 2010-12-01 エルピーダメモリ株式会社 Semiconductor device
KR100663358B1 (en) 2005-02-24 2007-01-02 삼성전자주식회사 Phase change memory devices employing cell diodes and methods of fabricating the same
KR100684198B1 (en) 2005-09-16 2007-02-20 삼성전자주식회사 Semiconductor device having a source strapping line
US7638878B2 (en) * 2006-04-13 2009-12-29 Micron Technology, Inc. Devices and systems including the bit lines and bit line contacts

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416349A (en) * 1993-12-16 1995-05-16 National Semiconductor Corporation Increased-density flash EPROM that requires less area to form the metal bit line-to-drain contacts
US6795345B2 (en) * 2002-08-26 2004-09-21 Renesas Technology Corp. Non-volatile semiconductor memory device having an increased access speed while maintaining the production yield
US20060018181A1 (en) * 2004-06-14 2006-01-26 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory
US20060226459A1 (en) * 2005-04-08 2006-10-12 Hyung-Rok Oh Layout structure in semiconductor memory device and layout method therefor
US7808815B2 (en) * 2006-10-02 2010-10-05 Samsung Electronics Co., Ltd. Variable resistance memory device and method of manufacturing the same
US20080106922A1 (en) * 2006-11-02 2008-05-08 Joon-Min Park Semiconductor memory device and layout structure of word line contacts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446236A (en) * 2019-01-16 2020-07-24 中芯国际集成电路制造(上海)有限公司 Banded unit layout, memory layout, banded unit structure and memory

Also Published As

Publication number Publication date
KR100809725B1 (en) 2008-03-07
TW200845366A (en) 2008-11-16
US8791448B2 (en) 2014-07-29
US20130187119A1 (en) 2013-07-25
TWI459541B (en) 2014-11-01

Similar Documents

Publication Publication Date Title
US10522595B2 (en) Memory devices and methods of manufacturing the same
CN106992196B (en) Variable resistance memory device
US7259038B2 (en) Forming nonvolatile phase change memory cell having a reduced thermal contact area
US8030129B2 (en) Method of fabricating nonvolatile memory device
US7704788B2 (en) Methods of fabricating multi-bit phase-change memory devices and devices formed thereby
US8288752B2 (en) Phase change memory device capable of reducing disturbance and method of manufacturing the same
US20080191188A1 (en) Multi bit phase-change random access memory devices and methods of forming the same
US20050158950A1 (en) Non-volatile memory cell comprising a dielectric layer and a phase change material in series
US8168479B2 (en) Resistance variable memory device and method of fabricating the same
US8021966B2 (en) Method fabricating nonvolatile memory device
US7528402B2 (en) Electrically rewritable non-volatile memory element
CN102820299A (en) Semiconductor device
JP2011199035A (en) Semiconductor memory device
US8592790B2 (en) Phase-change random access memory device and method of manufacturing the same
KR101741069B1 (en) Fabrication method of nonvolatile memory device
US8791448B2 (en) Semiconductor memory devices having strapping contacts
JP5634002B2 (en) Phase change nonvolatile memory and semiconductor device
US7977661B2 (en) Memory having shared storage material
US20220271091A1 (en) Variable resistance memory device
US11895850B2 (en) Variable resistance memory device
US11616197B2 (en) Variable resistance memory device
KR20100034240A (en) Variable resistor memory device and method for fabricating the same
KR102660633B1 (en) Resistance variable memory device having selection device layer treated by high pressure hydrogen annealing and method for fabricating the same
KR102659941B1 (en) Resistance variable memory device and method for fabricating the same
US11362141B2 (en) Variable resistance memory device

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, JUNG-IN;OH, JAE-HEE;KONG, JUN-HYOK;AND OTHERS;REEL/FRAME:020659/0556;SIGNING DATES FROM 20080229 TO 20080303

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION