US20080203373A1 - 3D fences made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum - Google Patents

3D fences made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum Download PDF

Info

Publication number
US20080203373A1
US20080203373A1 US12/002,965 US296507A US2008203373A1 US 20080203373 A1 US20080203373 A1 US 20080203373A1 US 296507 A US296507 A US 296507A US 2008203373 A1 US2008203373 A1 US 2008203373A1
Authority
US
United States
Prior art keywords
chosen
fence
thick
pattern
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/002,965
Inventor
Daniel-Ioan Becherete
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US12/002,965 priority Critical patent/US20080203373A1/en
Publication of US20080203373A1 publication Critical patent/US20080203373A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H17/00Fencing, e.g. fences, enclosures, corrals
    • E04H17/14Fences constructed of rigid elements, e.g. with additional wire fillings or with posts
    • E04H17/16Fences constructed of rigid elements, e.g. with additional wire fillings or with posts using prefabricated panel-like elements, e.g. wired frames
    • E04H17/165Fences constructed of rigid elements, e.g. with additional wire fillings or with posts using prefabricated panel-like elements, e.g. wired frames using panels with rigid filling and frame
    • E04H17/166Fences constructed of rigid elements, e.g. with additional wire fillings or with posts using prefabricated panel-like elements, e.g. wired frames using panels with rigid filling and frame with cross-members

Definitions

  • a provisional application for this invention was filled on Feb. 26, 2007, having the application No. 60/903,375. A copy of the first page of confirmation No. 6454 of the filing receipt is attached.
  • My present invention is about introducing the third geometrical dimensional element of the fence (made in rods or tubes), besides length and height, the depth, making my fence, a fence with a spatial geometry, a 3D fence.
  • 3D fence for “3D fences made from rods or tubes, with square, rectangular or circular sections, made from metal, plastic or aluminum” during the description part of the invention, and on the drawings.
  • Sequence is a succession of chosen line segments, curves, circles, semicircles, which aligned together, one after another, following a direction (y axis), will create a simple artistic geometrical model.
  • This artistic geometrical model can be contained within an imaginary rectangle (a planar surface).
  • FIG. 1 There are represented examples of Sequences, made using chosen elements (line segments and semicircles) as well the imaginary rectangles in which they are included.
  • Sequence a) is included in the imaginary rectangle marked thru the points 1 , 2 , 3 , 4 .
  • Sequence b) is included in the imaginary rectangle marked thru the points 5 , 6 , 7 , 8 .
  • Sequence c) is included in the imaginary rectangle marked thru the points 9 , 10 , 11 , 12 .
  • Sequence d is included in the imaginary rectangle marked thru the points 13 , 14 , 15 , 16 .
  • Sequence e) is included in the imaginary rectangle marked thru the points 12 , 18 , 19 , 20 .
  • Pattern is a succession of two or more identical chosen Sequences, aligned one after another, which follow a direction (y axis).
  • Each Pattern can be contained within an imaginary rectangle (a planar surface)
  • FIG. 2 There are represented examples of Patterns in which I used a succession of 2 identical chosen Sequences, (for each of them), some of the sequences being illustrated in FIG. 1 , reduced by scale, as well the imaginary rectangles in which they are included.
  • Pattern a) is included in the imaginary rectangle marked thru the points 1 , 2 , 3 , 4 .
  • Pattern b) is included in the imaginary rectangle marked thru the points 5 , 6 , 7 , 8 .
  • Pattern c) is included in the imaginary rectangle marked thru the points 9 , 10 , 11 , 12 .
  • the Base Model itself is included in an imaginary rectangle.
  • One side of this imaginary rectangle represents the height of The Base Model (y axis) the other side of the imaginary rectangle represents the width (length) of The Base Model (x axis).
  • the Base model is a two dimensional geometrical figure, 2D.
  • FIG. 3 There is an example of a Base Model.
  • FIG. 3 A the chosen Pattern formed from three identical Sequences(s)
  • FIG. 3 B the mirrored image of the chosen Pattern.
  • FIG. 3 C The resulted Base Model which is included in the imaginary rectangle marked thru the points 1 , 2 , 3 , 4 , and its height (y axis) is equal to the side of the imaginary rectangle marked by points 1 , 4 , or points 2 , 3 , and has the width (length) (X axis) equal to the width of the imaginary rectangle marked thru the points 1 , 2 , or points 3 , 4 .
  • This invention is constituted from the creation of an artistic ensemble (fence made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum) which is to be perceived in three dimensions (3D), to have volume.
  • FIG. 4 There is represented in perspective view a example of a Thick (solid) Base Model, which is included in a “thick” imaginary rectangle, marked by points 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 .
  • Thick (solid) Base Model is represented by the ensemble of points 1 , 2 , 6 , 5 , or 4 , 3 , 7 , 8 .
  • Thick (solid) Base Model was created using the chosen Base Model illustrated in FIG. 3C ).
  • 3D Pattern is the arrangement of a finite number of identical Thick (solid) Base Models (each being included in a thick imaginary rectangle) which touches or intersects on the length of theirs sides “h” (height), in a way in which the whole ensemble will be perceived in 3 dimensions, 3D.
  • Thick (solid) Base Models are represented by theirs thick imaginary rectangle, in which each of them is included (to simplify the representations). The representations are drawn in perspective views, for a better visualization.
  • 3D Patterns A few possible variants of 3D Patterns are showed in FIG. 6 . a), b), c).
  • the Thick (solid) Base Models are represented by theirs thick imaginary rectangle (in which they are included). For simplification purposes, each thick imaginary rectangle is represented by a simple rectangle.
  • the whole 3 D Patterns representations are in perspective views. 3D Patterns will look as the created ensemble has volume.
  • the imaginary rectangles containing the chosen Thick (solid) Base Model are marked thru the points: 1 , 2 , 6 , 5 ; 2 , 3 , 7 , 6 ; 3 , 4 , 8 , 7 ; 9 , 12 , 18 , 15 ; 10 , 13 , 19 , 16 ; and 11 , 14 , 20 , 17 .
  • the imaginary rectangles containing the chosen Thick (solid) Base Model are marked thru the points: 1 , 2 , 10 , 9 ; 2 , 3 , 11 , 10 ; 3 , 4 , 12 , 11 ; 1 , 9 , 13 , 5 ; 2 , 10 , 14 , 6 ; 3 , 11 , 15 , 7 ; 8 , 4 , 12 , 16 ; 5 , 6 , 14 , 13 ; 6 , 7 , 15 , 14 ; 7 , 8 , 16 , 15 .
  • the imaginary rectangles containing the chosen Thick (solid) Base Model are marked thru the points: 1 , 2 , 15 , 11 ; 2 , 3 , 12 , 15 ; 3 , 4 , 16 , 12 ; 4 , 5 , 13 , 16 ; 5 , 10 , 17 , 13 ; 6 , 1 , 11 , 14 ; 6 , 7 , 18 , 14 ; 7 , 2 , 15 , 18 ; 2 , 8 , 19 , 15 ; 8 , 4 , 16 , 19 ; 4 , 9 , 20 , 16 ; 9 , 10 , 17 , 20 .
  • 3D Fences will be realized using 3D Patterns. There a multitude of possibilities to arrange a finite number of identical Thick (solid) Base Model using 3D Patterns.
  • FIG. 7 One example of a part of a 3D Fence is represented thru perspective view, in FIG. 7
  • I have chosen to use a Thick (solid) Base Model, represented in FIG. 4 , and for assembling it I have chosen to use the 3D Pattern illustrated in FIG. 6B ).
  • the material used as guide in creating this specific illustrated partial 3D Fence is a 3 ⁇ 4 inch square tube.
  • the representation is not affected in any way, if the tube is made in metal, plastic or aluminum.
  • Step 1 Choosing the characteristics of the material that will be used to make the 3D fence:
  • Step 2 A) choose the 3D Pattern shape.
  • Step 1 and Step 2 . Will show how I want the 3D Fence to be and to look like.
  • Step 3 Choose the height of the 3D fence. Knowing the length and the height of a Sequence (from the chosen Base Model) I will find out how many Sequences it will take to make the chosen Pattern, and implicit the characteristics of the Base Model.
  • Step 4 Knowing the Pattern's characteristics (implicit the Base Model characteristics) and everything from Step 1 . and Step 2 ., I will know all the Thick (solid) Base Model's characteristics, (including dimensions).
  • Step 5 Knowing the Thick (solid) Base Model's characteristics, the height of the 3D fence and the 3D Pattern I will choose the length of the 3D fence placed between two consecutive fence's posts.
  • Step 6 I choose the fence's posts (as material and shape, dimensions).
  • Step 7 On the chosen material I will perform all necessarily operations (cutting, bending, soldering, casting, molding, blow molding, etc.) to obtain halves of the Thick (solid) Base Model.
  • Step 8 I assemble the Thick (solid) Base Model from his two identical (mirrored shape) halves, obtained in Step 7 . I will assemble as many as I need to respect and realize the chosen length and the chosen 3D Pattern.
  • Step 9 I assemble a 3D Fence Module (contained within two consecutive posts) using the already made-up Thick (solid) Base Models and theirs arrangement according to the chosen 3D Pattern. I will assemble as many 3D Fence Modules as I need.
  • Step 10 The assembly of the 3D fences itself:
  • Assembling the 3D Fence Modules will be done using the help of screws and/or soldering, depending on the nature of the 3D fence itself. If it is the case, a specific kind of frame for each individual 3D Fence Module will surround each 3D Fence Module, and it will be fixated with the help of screws and/or soldering around the 3D fence Module.
  • the left and right pieces of the Frame will be fixated on the corresponding posts using 2 assembly kits (their location can be seen in FIG. 8 ) for each post.
  • the assembly kit will be fixated directly on an element pertaining to the 3D Fence Module.

Abstract

The novelty brought by the “3D fences made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum” in to the world of fences made from rods or tubes, consist in the fact that those “3D fences made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum” have a spatial geometry, have depth, spatial geometry which is realized by assembling the 3 D fence's components using the original concept of a “3D Pattern”.

Description

  • A provisional application for this invention was filled on Feb. 26, 2007, having the application No. 60/903,375. A copy of the first page of confirmation No. 6454 of the filing receipt is attached.
  • Fences made using rods or tubes, with different sections, from different materials, (aluminum, plastic, metal) are fabricated and mounted everyday. Usually they have plain straight vertical composing elements assembled together using one or two horizontal U shape profiles on each top side and bottom side of the assemble witch constitute a fence panel. This fence panel is attached to the fence's posts using an “assembling kit”, specific to each fence. Screws and/or soldering are used to form and mount this kind of fence. In rare occasions besides the straight composing elements (vertical and horizontal), as a decorative element is added an element with a simple geometrical shape (circle).
  • With or without any geometrical element included, today's fences made from rods or tubes, they all have just two dimensions, length and height.
  • My present invention is about introducing the third geometrical dimensional element of the fence (made in rods or tubes), besides length and height, the depth, making my fence, a fence with a spatial geometry, a 3D fence.
  • For easy to read purposes, I will use the short term “3D fence” for “3D fences made from rods or tubes, with square, rectangular or circular sections, made from metal, plastic or aluminum” during the description part of the invention, and on the drawings.
  • DESCRIPTION Definition no. 1. Sequence
  • Sequence is a succession of chosen line segments, curves, circles, semicircles, which aligned together, one after another, following a direction (y axis), will create a simple artistic geometrical model.
  • This artistic geometrical model can be contained within an imaginary rectangle (a planar surface).
  • Note: These Sequences were used since the beginning of civilization, and they are still used to this day.
  • FIG. 1. There are represented examples of Sequences, made using chosen elements (line segments and semicircles) as well the imaginary rectangles in which they are included.
  • Sequence a) is included in the imaginary rectangle marked thru the points 1, 2, 3, 4.
  • Sequence b) is included in the imaginary rectangle marked thru the points 5, 6, 7, 8.
  • Sequence c) is included in the imaginary rectangle marked thru the points 9, 10, 11, 12.
  • Sequence d) is included in the imaginary rectangle marked thru the points 13, 14, 15, 16.
  • Sequence e) is included in the imaginary rectangle marked thru the points 12, 18, 19, 20.
  • Definition no. 2. Pattern
  • Pattern is a succession of two or more identical chosen Sequences, aligned one after another, which follow a direction (y axis).
  • Each Pattern can be contained within an imaginary rectangle (a planar surface)
  • In FIG. 2. There are represented examples of Patterns in which I used a succession of 2 identical chosen Sequences, (for each of them), some of the sequences being illustrated in FIG. 1, reduced by scale, as well the imaginary rectangles in which they are included.
  • Pattern a) is included in the imaginary rectangle marked thru the points 1, 2, 3, 4.
  • Pattern b) is included in the imaginary rectangle marked thru the points 5, 6, 7, 8.
  • Pattern c) is included in the imaginary rectangle marked thru the points 9, 10, 11, 12.
  • The Base Model:
  • Is made of two symmetrical mirrored parts:
      • The first part (half) is a chosen Pattern, a Pattern formed from a finite chosen number of identical chosen Sequences.
      • The second part (half) is the symmetrically mirrored image of the chosen Pattern, and is “glued” to the first half along theirs mirror symmetry axis.
  • The Base Model itself is included in an imaginary rectangle. One side of this imaginary rectangle represents the height of The Base Model (y axis) the other side of the imaginary rectangle represents the width (length) of The Base Model (x axis). The Base model is a two dimensional geometrical figure, 2D.
  • In FIG. 3. There is an example of a Base Model.
  • FIG. 3A).—the chosen Pattern formed from three identical Sequences(s)
  • FIG. 3B).—the mirrored image of the chosen Pattern.
  • FIG. 3C).—The resulted Base Model which is included in the imaginary rectangle marked thru the points 1, 2, 3, 4, and its height (y axis) is equal to the side of the imaginary rectangle marked by points 1, 4, or points 2, 3, and has the width (length) (X axis) equal to the width of the imaginary rectangle marked thru the points 1, 2, or points 3,4.
  • This invention is constituted from the creation of an artistic ensemble (fence made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum) which is to be perceived in three dimensions (3D), to have volume.
  • Definition No. 3. Thick (solid) Base Model
  • It is a physical realization made from a circular, square, rectangular, or multisided section tube or rod (made from metal, plastic or aluminum), using as model a Base Model, and figurative it is included in a “Thick” (solid) imaginary rectangle.
  • In FIG. 4. There is represented in perspective view a example of a Thick (solid) Base Model, which is included in a “thick” imaginary rectangle, marked by points 1, 2, 3, 4, 5, 6, 7, 8.
  • Side “h” (height) of this Thick (solid) Base Model is represented by the ensemble of points 1, 2, 6, 5, or 4, 3, 7, 8.
  • This shown Thick (solid) Base Model was created using the chosen Base Model illustrated in FIG. 3C). This shown Thick (solid) Base Model (as drawn) is supposedly made from a rod, (made in metal, plastic or aluminum) with square section, who's side dimension (thickness of the rod) has the value “t”. All other dimensions are functions of “t”. As illustrated, H=16t; L=12t; R=2.5t.
  • Definition No. 4. 3D Pattern
  • 3D Pattern is the arrangement of a finite number of identical Thick (solid) Base Models (each being included in a thick imaginary rectangle) which touches or intersects on the length of theirs sides “h” (height), in a way in which the whole ensemble will be perceived in 3 dimensions, 3D.
  • Some types of possibilities of touching or intersection between two Thick (solid) Base Models as result of theirs arrangements for creation of a 3D Pattern, are represented in FIG. 5. a), b), c), d). Thick (solid) Base Models are represented by theirs thick imaginary rectangle, in which each of them is included (to simplify the representations). The representations are drawn in perspective views, for a better visualization.
  • A few possible variants of 3D Patterns are showed in FIG. 6. a), b), c). The Thick (solid) Base Models are represented by theirs thick imaginary rectangle (in which they are included). For simplification purposes, each thick imaginary rectangle is represented by a simple rectangle. The whole 3 D Patterns representations are in perspective views. 3D Patterns will look as the created ensemble has volume.
  • In FIG. 6.A), the imaginary rectangles containing the chosen Thick (solid) Base Model, and represented thru a simple rectangle, are marked thru the points: 1, 2, 6, 5; 2, 3, 7, 6; 3, 4, 8, 7; 9, 12, 18, 15; 10, 13, 19, 16; and 11, 14, 20, 17.
  • In FIG. 6.B), the imaginary rectangles containing the chosen Thick (solid) Base Model, and represented thru a simple rectangle, are marked thru the points: 1, 2, 10, 9; 2, 3, 11, 10; 3, 4, 12, 11; 1, 9, 13, 5; 2, 10, 14, 6; 3, 11, 15, 7; 8, 4, 12, 16; 5, 6, 14, 13; 6, 7, 15, 14; 7, 8, 16, 15.
  • In FIG. 6.C), the imaginary rectangles containing the chosen Thick (solid) Base Model, and represented thru a simple rectangle, are marked thru the points: 1, 2, 15, 11; 2, 3, 12, 15; 3, 4, 16, 12; 4, 5, 13, 16; 5, 10, 17, 13; 6, 1, 11, 14; 6, 7, 18, 14; 7, 2, 15, 18; 2, 8, 19, 15; 8, 4, 16, 19; 4, 9, 20, 16; 9, 10, 17, 20.
  • 3D Fences will be realized using 3D Patterns. There a multitude of possibilities to arrange a finite number of identical Thick (solid) Base Model using 3D Patterns.
  • One example of a part of a 3D Fence is represented thru perspective view, in FIG. 7 In creating of this represented part of 3D Fence I have chosen to use a Thick (solid) Base Model, represented in FIG. 4, and for assembling it I have chosen to use the 3D Pattern illustrated in FIG. 6B).
  • The material used as guide in creating this specific illustrated partial 3D Fence is a ¾ inch square tube.
  • The representation is not affected in any way, if the tube is made in metal, plastic or aluminum.
  • The practical realization of a 3D fence made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum:
  • Step 1. Choosing the characteristics of the material that will be used to make the 3D fence:
      • choose between rods or tubes
      • choose between square, rectangular, multisided or circular sections
      • choose between metal, plastic or aluminum
  • Example: ¾ inch square aluminum tube
  • Step 2. A) choose the 3D Pattern shape.
  • B) choose the Base Model—implicit I will know the chosen Pattern characteristics, and the
      • composing chosen Pattern's Sequence characteristics.
  • Step 1. and Step 2. Will show how I want the 3D Fence to be and to look like.
  • Step 3. Choose the height of the 3D fence. Knowing the length and the height of a Sequence (from the chosen Base Model) I will find out how many Sequences it will take to make the chosen Pattern, and implicit the characteristics of the Base Model.
  • Step 4. Knowing the Pattern's characteristics (implicit the Base Model characteristics) and everything from Step 1. and Step 2., I will know all the Thick (solid) Base Model's characteristics, (including dimensions).
  • Step 5. Knowing the Thick (solid) Base Model's characteristics, the height of the 3D fence and the 3D Pattern I will choose the length of the 3D fence placed between two consecutive fence's posts.
  • Step 6. I choose the fence's posts (as material and shape, dimensions).
  • Step 7. On the chosen material I will perform all necessarily operations (cutting, bending, soldering, casting, molding, blow molding, etc.) to obtain halves of the Thick (solid) Base Model.
  • Step 8. I assemble the Thick (solid) Base Model from his two identical (mirrored shape) halves, obtained in Step 7. I will assemble as many as I need to respect and realize the chosen length and the chosen 3D Pattern.
  • Step 9. I assemble a 3D Fence Module (contained within two consecutive posts) using the already made-up Thick (solid) Base Models and theirs arrangement according to the chosen 3D Pattern. I will assemble as many 3D Fence Modules as I need.
  • Step 10. The assembly of the 3D fences itself:
      • mounting the posts
      • Framing the 3D Fence Modules—if necessarily (see FIG. 8. a)
      • using assembling kits (found on the market) will attach the 3D Fence Module (framed or not) to the posts (see FIG. 8 b).
  • Assembling the 3D Fence Modules will be done using the help of screws and/or soldering, depending on the nature of the 3D fence itself. If it is the case, a specific kind of frame for each individual 3D Fence Module will surround each 3D Fence Module, and it will be fixated with the help of screws and/or soldering around the 3D fence Module.
  • The left and right pieces of the Frame will be fixated on the corresponding posts using 2 assembly kits (their location can be seen in FIG. 8) for each post.
  • Note: From case to case, the use of the Frames which hold the 3D Fence Modules can be either used or not.
  • In case that it is not used, the assembly kit will be fixated directly on an element pertaining to the 3D Fence Module.

Claims (1)

1. I claim “3D fences made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum”, as being a fence made from rods or tubes, with square, rectangular, multisided or circular sections made from metal, plastic or aluminum, a fence who's one chosen form is shown partially in FIG. 7, a fence created using all the principles:
Sequence, defined as a succession of chosen line segments, curves, circles, semicircles, which aligned together, one after another, following a direction (y axis), will create a simple artistic geometrical model, and illustrated in FIG. 1 a), b), c), d), e).
Pattern, defined as a succession of two or more identical chosen Sequences, aligned one after another, which follow a direction (y axis), and illustrated in FIG. 2 a), b), c).
Base Model, being made of two symmetrical mirrored parts, first part being a chosen Pattern formed from a finite chosen number of identical chosen Sequence, the second part being the symmetrically mirrored image of the first part, and “glued” to the first part along theirs mirror symmetry axis, Base model represented in a chosen form in FIG. 3 a), b), c).
Thick (solid) Base Model, defined as the physical realization made from a circular, square, rectangular or multisided section tube or rod (made in metal, plastic or aluminum), using as model a Base Model, figuratively being included in a “thick” (solid) imaginary rectangle, and which's related characteristics and views are represented in FIG. 4., FIG. 5 a), b), c), d).
3D pattern, defined as being the arrangement of a finite number of identical chosen Thick (solid) Base Models (each of them being included in a thick imaginary rectangle) which touches or intersects on the whole length of their s sides “h” (height), in a way in which the whole ensemble will be perceived in three dimensions, 3D, 3D pattern illustrated in FIG. 6A), B), C).
US12/002,965 2007-02-26 2007-12-19 3D fences made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum Abandoned US20080203373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/002,965 US20080203373A1 (en) 2007-02-26 2007-12-19 3D fences made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US90337507P 2007-02-26 2007-02-26
US12/002,965 US20080203373A1 (en) 2007-02-26 2007-12-19 3D fences made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum

Publications (1)

Publication Number Publication Date
US20080203373A1 true US20080203373A1 (en) 2008-08-28

Family

ID=39714847

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/002,965 Abandoned US20080203373A1 (en) 2007-02-26 2007-12-19 3D fences made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum

Country Status (1)

Country Link
US (1) US20080203373A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8149A (en) * 1851-06-10 Railing
USD274006S (en) * 1982-01-08 1984-05-29 John Djurina Fencing
USD338072S (en) * 1991-09-04 1993-08-03 Nozicka Edward S Fence panel
USD449383S1 (en) * 2000-12-06 2001-10-16 Erwin Industries, Inc. Combined fencing and railing with insert
US6478287B2 (en) * 2000-06-02 2002-11-12 U.S. Fence, Llc Plastic fence panel
USD480152S1 (en) * 2002-12-20 2003-09-30 Suncast Corporation Scroll fence
US6719277B2 (en) * 2001-08-10 2004-04-13 Viken Ohanesian Thermoformed wall and fencing assemblies
US7246792B2 (en) * 2004-04-02 2007-07-24 Iron Eagle Industries Inc. Ornamental fence insert

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8149A (en) * 1851-06-10 Railing
USD274006S (en) * 1982-01-08 1984-05-29 John Djurina Fencing
USD338072S (en) * 1991-09-04 1993-08-03 Nozicka Edward S Fence panel
US6478287B2 (en) * 2000-06-02 2002-11-12 U.S. Fence, Llc Plastic fence panel
USD449383S1 (en) * 2000-12-06 2001-10-16 Erwin Industries, Inc. Combined fencing and railing with insert
US6719277B2 (en) * 2001-08-10 2004-04-13 Viken Ohanesian Thermoformed wall and fencing assemblies
USD480152S1 (en) * 2002-12-20 2003-09-30 Suncast Corporation Scroll fence
US7246792B2 (en) * 2004-04-02 2007-07-24 Iron Eagle Industries Inc. Ornamental fence insert

Similar Documents

Publication Publication Date Title
US20100310811A1 (en) Single-layer plastic composite panel
US20080203373A1 (en) 3D fences made from rods or tubes, with square, rectangular, multisided or circular sections, made from metal, plastic or aluminum
KR100893898B1 (en) Signboard frame assembly structure
CN113572928B (en) Driving assembly, camera module and electronic equipment
KR101727021B1 (en) Decorative leaf support of garland
CN202627641U (en) Fence column connector
KR200283746Y1 (en) Duplex glass interior decoration
JP3096942U (en) Advertising media installation table
GB2471670A (en) Interlocking toy building blocks
JP3135950U (en) Billboard
JP3209726B2 (en) Fence body pillar structure
KR102245097B1 (en) Folding screen type image display device
JP3221591U (en) Pedestrian information sign
CN217553565U (en) Three-view picture structure
KR200466099Y1 (en) Assembly Frame
CN211189119U (en) Simple plasticine mold
KR20170073867A (en) Decorative stereoscopic card
CN203852121U (en) Combined exhibition frame
KR101369063B1 (en) Frame structure assembly
JP3145547U (en) Round bamboo panel unit
CN110675779A (en) Detachable billboard convenient to mount
CN209712363U (en) Table screen with husky drawing board
KR200400542Y1 (en) Combination structure of fence
JP3169244U (en) Corner face wood
JP2015124581A (en) Nameplate

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION