US20080159891A1 - Pumping Device for Nuclear Facility - Google Patents

Pumping Device for Nuclear Facility Download PDF

Info

Publication number
US20080159891A1
US20080159891A1 US11/966,520 US96652007A US2008159891A1 US 20080159891 A1 US20080159891 A1 US 20080159891A1 US 96652007 A US96652007 A US 96652007A US 2008159891 A1 US2008159891 A1 US 2008159891A1
Authority
US
United States
Prior art keywords
bearing
pumping device
bearings
water reactor
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/966,520
Inventor
Gunther Schulze
Heinz Kettl
Max Heller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Areva NP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva NP GmbH filed Critical Areva NP GmbH
Publication of US20080159891A1 publication Critical patent/US20080159891A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/04Pumping arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a pumping device for a nuclear facility, and especially to such a pumping device with a vertically aligned shaft.
  • oscillations appear as a rule that are known as half-frequency whirl, also commonly under the designation ⁇ /2 whirl.
  • Such periodic excitations cause operational instability that can also have a negative effect on adjoining welded seams of housing components or support structures.
  • a pumping device for a nuclear facility.
  • the pumping device contains at least one sliding bearing being a radial bearing and embodied as a spiral flute bearing; and a vertically directed shaft being guided by said at least one sliding bearing.
  • the task that is the basis of the present invention is to make available a pumping device for a nuclear facility with a vertically aligned shaft, that is guided by at least one sliding bearing, by which the problem named above that half-frequency whirl in the bearing appears, is avoided in simple fashion, or at least minimized.
  • the at least one sliding bearing is embodied according to the invention as a spiral flute bearing.
  • the spiral flute bearing which has previously found application exclusively in special cases of smaller bearings, is distinguished by various advantageous properties that according to the invention are to be also used in a large pumping device of a nuclear facility with a vertically directed shaft.
  • the properties of the spiral flute bearing result in the pump shaft being well centered and the half-frequency whirl being avoided or at least minimized, so that ultimately also the above-named material contacts in previous pumping devices can be avoided.
  • the sliding bearing embodied as a spiral flute bearing can also be used both as a radial bearing and as an axial bearing.
  • the invention-specifically embodied pumping device is used in advantageous fashion for example as a coolant pump of a pressurized water reactor or as a recirculation pump of a boiling water reactor.
  • FIGURE of the drawing is a schematic depiction of a configuration of a pressurized water reactor in which the present invention is used.
  • a pressurized water reactor 10 that uses normal “light” water simultaneously as the moderator and as a coolant. Therefore, it belongs to the class of light water reactors.
  • Pressurized water reactors 10 have two main coolant loops, the primary coolant loop and the secondary coolant loop.
  • the primary loop 14 is formed of a pressurized reactor vessel 12 with reactor core, a main coolant pump 16 and a steam generator 18 as well as the connecting pipes. Additionally, in a known manner, a pressurizer 20 is provided.
  • the main coolant pump 16 conveys the coolant, water prepared at about 290° C., into the thick-walled reactor pressurized reactor vessel 12 made of steel, and there initially downward in an annular channel. At the vessel bottom, the coolant is redirected and then flows back from below upwards around the fuel rods in pressurized reactor vessel 12 . The coolant cools the fuel rods, by which it itself is heated to about 325° C. The heat thus admitted is released in steam generator 18 to the secondary coolant loop 22 . The water is again cooled down to 290° C. and is brought back through main coolant pump 16 to the pressurized reactor vessel 12 . While this is occurring, the high operating pressure of about 160 bar prevents the formation of film boiling.
  • the thermal energy is radiated off via the heating pipes to the secondary cooling loop 22 and at about 70 bar leads to formation of 280° C. steam.
  • the steam transfers the thermal energy to the turbine 24 , where, by a connected generator 26 , electrical energy is generated.
  • a condenser 28 connected downstream the cooled steam condenses at about 30 to 35° C. into water, which is then pumped back again as feed water into steam generator 18 .
  • the condensation heat is normally released via an additional condenser coolant loop 30 into the environment via a cooling tower.
  • boiling water reactor An additional known type of nuclear reactor is the so-called boiling water reactor.
  • the water used as a coolant is already boiling at the fuel rods of fuel elements in the pressurized reactor vessel, so that the steam for the turbine-generator set is already produced in the reactor, and no separate steam generator is necessary.
  • the water fed into the pressurized reactor vessel is brought by suction through appropriate recirculation pumps into the annular channel, and fed into the lower part of the pressurized reactor vessel. From there, the water flows upwards through the reactor core, absorbs heat while doing so, and leaves the pressurized reactor vessel as a steam-and-water mixture.
  • sliding bearings are embodied as so-called spiral flute bearings according to the invention.
  • spiral flute bearings here mentioned are completely surrounded by a fluid like oil, grease or water, and therefore have no so-called “free surfaces.”
  • a pressure buildup occurs over only a part of the shaft circumference, but due to the flutes distributed over its entire circumference, in a spiral flute bearing, pressure likewise builds up over the entire circumference. Due to this, restoring forces form that are distributed largely uniformly over the entire circumference. These restoring forces distributed uniformly over the entire circumference cause the shaft to be well centered and the half-frequency whirl highly likely to be suppressed.
  • each spiral flute bearing is lubricated with water, so that free surfaces especially can be largely avoided.
  • spiral flute bearing possesses the properties of a normal sliding bearing in unlimited fashion, so that even in the event of total loss of lubricant, the emergency operating properties of the normal sliding bearing can be utilized with appropriate precautions.
  • bearing shells of the spiral flute bearing are preferably configured to be cylindrical and thus easy to produce. Thus for manufacture of the spiral flute bearing, no special tools or machinery is required.
  • the spiral flute bearing can be used both as a radial bearing and as an axial bearing.
  • the advantage is in a considerably higher carrying capacity as opposed to the customarily used Mitchel bearings.
  • spiral flute bearings are already known from the state of the art, but previously they have been used exclusively for relatively small-dimension precision bearings.
  • To be named here as an example is the rotary-motion support of polygonal mirrors of scanners in laser printers, for which see for example German patent DE 197 12 432 C2.

Abstract

A pump unit for a nuclear installation, for example a pressurized water reactor, contains a vertical shaft, which is guided through at least one journal bearing. The journal bearing or bearings is or are configured as a spiral groove bearing or bearings, to prevent shaft vibration caused by the bearings and to increase the service life of the pump unit. Preferred uses of the pump units include, for example, the coolant pump of a pressurized water reactor and the circulating pump of a boiling water reactor.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a continuing application, under 35 U.S.C. §120, of copending international application No. PCT/EP2006/006239, filed Jun. 28, 2006, which designated the United States; this application also claims the priority, under 35 U.S.C. §119, of German patent application No. DE 10 2005 030 485.0, filed Jun. 28, 2005; the prior applications are herewith incorporated by reference in their entirety.
  • BACKGROUND OF THE INVENTION Field of the Invention
  • The present invention relates to a pumping device for a nuclear facility, and especially to such a pumping device with a vertically aligned shaft.
  • Various pumping devices are necessary in nuclear facilities, as for example coolant pumps of a pressurized water reactor or the recirculation pump of a boiling water reactor. Such pumping devices are in general of large dimensions, possess a vertically aligned shaft, and, not lastly, for safety reasons must meet the toughest quality requirements regarding power capacity and durability.
  • In machines with vertically aligned shafts that are guided by sliding bearings and in which a small, radially-directed hydraulic force is present, as is generally the case in axial pumps and semiaxial pumps, oscillations appear as a rule that are known as half-frequency whirl, also commonly under the designation ω/2 whirl. Such periodic excitations cause operational instability that can also have a negative effect on adjoining welded seams of housing components or support structures.
  • In such pumping devices a danger also exists as well of punching through the lubricating film, also known as whip. This instance occurs when the residual imbalance is equal to the radially-directed force, and cannot in principle be precluded. Owing to punching through of the lubricating film, the shaft and bushing can come into material contact, which ultimately can lead to destruction of the sliding bearing. Only in individual instances can these material contacts be ameliorated by damping via the lubricant; the oscillatory behavior itself remains unaffected by this, however.
  • The problem named above can in principle be avoided by special configurations of sliding bearings as so-called multi-surface bearings, as multi-wedge bearings, as multi-wedge pocket bearings or as sliding bearings with multiple individually suspended bearing segments. However, these known types of bearings are very expensive to manufacture and thus cost-intensive. Therefore, generally it is the practice to dispense with such types of sliding bearings and efforts are made to check the condition of the sliding bearing using so-called shaft-path monitoring. This measure, however, does not eliminate the problem described.
  • BRIEF SUMMARY OF THE INVENTION
  • It is accordingly an object of the invention to provide a pumping device for a nuclear facility that overcomes the above-mentioned disadvantages of the prior art devices of this general type.
  • With the foregoing and other objects in view there is provided, in accordance with the invention, a pumping device for a nuclear facility. The pumping device contains at least one sliding bearing being a radial bearing and embodied as a spiral flute bearing; and a vertically directed shaft being guided by said at least one sliding bearing.
  • Therefore the task that is the basis of the present invention is to make available a pumping device for a nuclear facility with a vertically aligned shaft, that is guided by at least one sliding bearing, by which the problem named above that half-frequency whirl in the bearing appears, is avoided in simple fashion, or at least minimized.
  • In the pumping device for a nuclear facility with a vertically directed shaft that is guided by at least one sliding bearing, the at least one sliding bearing is embodied according to the invention as a spiral flute bearing.
  • The spiral flute bearing, which has previously found application exclusively in special cases of smaller bearings, is distinguished by various advantageous properties that according to the invention are to be also used in a large pumping device of a nuclear facility with a vertically directed shaft. In particular, the properties of the spiral flute bearing result in the pump shaft being well centered and the half-frequency whirl being avoided or at least minimized, so that ultimately also the above-named material contacts in previous pumping devices can be avoided.
  • The sliding bearing embodied as a spiral flute bearing can also be used both as a radial bearing and as an axial bearing.
  • The invention-specifically embodied pumping device is used in advantageous fashion for example as a coolant pump of a pressurized water reactor or as a recirculation pump of a boiling water reactor.
  • The above ones, as well as further tasks, features and advantages of the invention are made more understandable from the following specification of a preferred, non-limiting embodiment example, with reference to the appended drawing.
  • Other features which are considered as characteristic for the invention are set forth in the appended claims.
  • Although the invention is illustrated and described herein as embodied in a pumping device for a nuclear facility, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
  • The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWING
  • The single FIGURE of the drawing is a schematic depiction of a configuration of a pressurized water reactor in which the present invention is used.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to the single FIGURE of the drawing in detail, there is shown a pressurized water reactor 10 that uses normal “light” water simultaneously as the moderator and as a coolant. Therefore, it belongs to the class of light water reactors.
  • Pressurized water reactors 10 have two main coolant loops, the primary coolant loop and the secondary coolant loop. The primary loop 14 is formed of a pressurized reactor vessel 12 with reactor core, a main coolant pump 16 and a steam generator 18 as well as the connecting pipes. Additionally, in a known manner, a pressurizer 20 is provided.
  • The main coolant pump 16 conveys the coolant, water prepared at about 290° C., into the thick-walled reactor pressurized reactor vessel 12 made of steel, and there initially downward in an annular channel. At the vessel bottom, the coolant is redirected and then flows back from below upwards around the fuel rods in pressurized reactor vessel 12. The coolant cools the fuel rods, by which it itself is heated to about 325° C. The heat thus admitted is released in steam generator 18 to the secondary coolant loop 22. The water is again cooled down to 290° C. and is brought back through main coolant pump 16 to the pressurized reactor vessel 12. While this is occurring, the high operating pressure of about 160 bar prevents the formation of film boiling.
  • In steam generator 18, the thermal energy is radiated off via the heating pipes to the secondary cooling loop 22 and at about 70 bar leads to formation of 280° C. steam. The steam transfers the thermal energy to the turbine 24, where, by a connected generator 26, electrical energy is generated. In a condenser 28 connected downstream, the cooled steam condenses at about 30 to 35° C. into water, which is then pumped back again as feed water into steam generator 18. The condensation heat is normally released via an additional condenser coolant loop 30 into the environment via a cooling tower.
  • An additional known type of nuclear reactor is the so-called boiling water reactor. In a boiling water reactor, which is not depicted, the water used as a coolant is already boiling at the fuel rods of fuel elements in the pressurized reactor vessel, so that the steam for the turbine-generator set is already produced in the reactor, and no separate steam generator is necessary. The water fed into the pressurized reactor vessel is brought by suction through appropriate recirculation pumps into the annular channel, and fed into the lower part of the pressurized reactor vessel. From there, the water flows upwards through the reactor core, absorbs heat while doing so, and leaves the pressurized reactor vessel as a steam-and-water mixture.
  • Since a nuclear facility itself is not the subject of the present invention, we shall dispense with a detailed description of its design and method of functioning, and make reference to appropriate literature.
  • Both the above main coolant pumps of the pressurized water reactor and the recirculation pumps of the boiling water reactors—as well as other pumps, possibly—have vertically aligned shafts that are guided in sliding bearings—radial bearings and/or axial bearings. These sliding bearings are embodied as so-called spiral flute bearings according to the invention.
  • The spiral flute bearings here mentioned are completely surrounded by a fluid like oil, grease or water, and therefore have no so-called “free surfaces.” In a limited lubrication wedge, a pressure buildup occurs over only a part of the shaft circumference, but due to the flutes distributed over its entire circumference, in a spiral flute bearing, pressure likewise builds up over the entire circumference. Due to this, restoring forces form that are distributed largely uniformly over the entire circumference. These restoring forces distributed uniformly over the entire circumference cause the shaft to be well centered and the half-frequency whirl highly likely to be suppressed. By this measure, the equilibrium running of the shaft is improved, and the oscillatory behavior in previous sliding bearings described at the outset is totally avoided, which leads to improved power capacity of the particular pumping device and to a reduction in material loading and thus ultimately to this pumping device having a longer service life.
  • Additionally, through the pumping action of spiral flute bearings, the starting behavior of the pumping devices is improved, since the mixing range is gotten through very quickly.
  • Preferably, each spiral flute bearing is lubricated with water, so that free surfaces especially can be largely avoided.
  • An additional advantage is that the spiral flute bearing possesses the properties of a normal sliding bearing in unlimited fashion, so that even in the event of total loss of lubricant, the emergency operating properties of the normal sliding bearing can be utilized with appropriate precautions.
  • Additionally, the bearing shells of the spiral flute bearing are preferably configured to be cylindrical and thus easy to produce. Thus for manufacture of the spiral flute bearing, no special tools or machinery is required.
  • The spiral flute bearing can be used both as a radial bearing and as an axial bearing. In axial bearings, the advantage is in a considerably higher carrying capacity as opposed to the customarily used Mitchel bearings.
  • It is true that spiral flute bearings are already known from the state of the art, but previously they have been used exclusively for relatively small-dimension precision bearings. To be named here as an example is the rotary-motion support of polygonal mirrors of scanners in laser printers, for which see for example German patent DE 197 12 432 C2.
  • It is precisely in applying them in a nuclear facility that pumps equipped with spiral flute bearings have the following especially advantageous features:
      • a) the bearing is completely surrounding by cooling and lubricating fluid;
      • b) provision is made for axial flow-through of the bearing (radial or axial bearing); and
      • c) water is provided as the lubricant.
  • This can be applied especially for large-dimension, rapidly rotating shafts.

Claims (4)

1. A pumping device for a nuclear facility, the pumping device comprising:
at least one sliding bearing being a radial bearing and embodied as a spiral flute bearing; and
a vertically directed shaft being guided by said at least one sliding bearing.
2. The pumping device according to claim 1, wherein the pumping device is a coolant pump of a pressurized water reactor.
3. The pumping device according to claim 1, wherein the pumping device is a recirculation pump of a boiling water reactor.
4. The pumping device according to claim 1, wherein said at least one sliding bearing has an axial flow through it.
US11/966,520 2005-06-28 2007-12-28 Pumping Device for Nuclear Facility Abandoned US20080159891A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005030485A DE102005030485A1 (en) 2005-06-28 2005-06-28 Pumping device for nuclear installations
DE102005030485.0 2005-06-28
PCT/EP2006/006239 WO2007000331A2 (en) 2005-06-28 2006-06-28 Pump unit for nuclear installations

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/006239 Continuation WO2007000331A2 (en) 2005-06-28 2006-06-28 Pump unit for nuclear installations

Publications (1)

Publication Number Publication Date
US20080159891A1 true US20080159891A1 (en) 2008-07-03

Family

ID=37453174

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/966,520 Abandoned US20080159891A1 (en) 2005-06-28 2007-12-28 Pumping Device for Nuclear Facility

Country Status (8)

Country Link
US (1) US20080159891A1 (en)
EP (1) EP1899981B1 (en)
JP (1) JP2008544158A (en)
CN (1) CN101213615B (en)
AT (1) ATE482455T1 (en)
DE (2) DE102005030485A1 (en)
ES (1) ES2353248T3 (en)
WO (1) WO2007000331A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130127179A1 (en) * 2010-09-01 2013-05-23 Toshio Takahashi Waste heat power generator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5148523B2 (en) * 2009-02-02 2013-02-20 株式会社東芝 SiC sintered body ring for mechanical seal device, manufacturing method of SiC sintered body ring for mechanical seal device, mechanical seal device and light water reactor plant
CN101916596B (en) * 2010-07-28 2013-05-08 中科华核电技术研究院有限公司 Device and system for vacuum-pumping loop of pressurized water reactor of nuclear power station
CN104318963B (en) * 2014-09-09 2016-08-31 温州志杰机电科技有限公司 A kind of female thread evanohm carborundum nuclear reactor cooling equipment
CN105604985B (en) * 2016-02-18 2018-07-03 上海交通大学 The method for measuring temperature distribution of protected type core main pump cooling system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950220A (en) * 1973-03-23 1976-04-13 Klein, Schanzlin & Becker Aktiengesellschaft Internal primary recirculating pump for boiling water reactors
US4222822A (en) * 1977-01-19 1980-09-16 Westinghouse Electric Corp. Method for operating a nuclear reactor to accommodate load follow while maintaining a substantially constant axial power distribution
US4604539A (en) * 1984-05-23 1986-08-05 U.S. Philips Corporation Drive mechanism with a rotary drive motor
US4764085A (en) * 1986-01-04 1988-08-16 Fortuna-Werke Maschinenfabrik Gmbh Blower for circulating larger gas volumes, in particular for high-power laser systems operating according to the gas-transportation principle
US5076716A (en) * 1983-07-06 1991-12-31 Ebara Corporation Thrust bearing with spiral grooved face
US5356273A (en) * 1993-12-30 1994-10-18 Westinghouse Electric Corporation Radial bearing assembly for a high inertia flywheel of a canned pump
US5932946A (en) * 1995-08-11 1999-08-03 Hitachi Powdered Metals Co., Ltd Porous bearing system having internal grooves and electric motor provided with the same
US6769808B2 (en) * 2002-10-08 2004-08-03 Industrial Technology Research Institute Composite fluid dynamic bearing and its manufacturing method
US6935787B2 (en) * 2003-07-14 2005-08-30 Nien-Lun Li Oil-circulating structure for fan

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH536949A (en) * 1971-03-16 1973-05-15 Ludin Ludwig Hydrodynamic bearing
JPS63277888A (en) * 1987-05-08 1988-11-15 Ebara Corp Vertical type canned motor pump
US4913563A (en) * 1988-11-07 1990-04-03 Westinghouse Electric Corp. Hydrodynamic pivoted pad bearing assembly for a reactor coolant pump
JPH03157512A (en) * 1989-11-15 1991-07-05 Hitachi Ltd Tilting pad-shaped radial bearing
JPH04312210A (en) * 1991-04-05 1992-11-04 Mitsubishi Heavy Ind Ltd Thrust bearing of turbine expander
GB2274491B (en) * 1993-01-21 1996-09-04 Hamworthy Hydraulics Ltd Axial piston pump
DE29605578U1 (en) * 1996-03-26 1996-06-27 Fraunhofer Ges Forschung Bearing assembly
JPH1037892A (en) * 1996-07-25 1998-02-13 Hitachi Ltd Bearing
DE19924064B4 (en) * 1999-05-26 2007-07-05 Siemens Ag displacement
JP2002070780A (en) * 2000-09-01 2002-03-08 Toshiba Corp Axial flow pump and nuclear reactor provided with it
DE10208574A1 (en) * 2001-12-01 2003-06-12 Bosch Gmbh Robert Radial piston pump
JP2003322098A (en) * 2002-02-26 2003-11-14 Hitachi Ltd Uniaxial multistage pump
JP2004132187A (en) * 2002-10-08 2004-04-30 Hitachi Industries Co Ltd Feed water pump and bearing device therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3950220A (en) * 1973-03-23 1976-04-13 Klein, Schanzlin & Becker Aktiengesellschaft Internal primary recirculating pump for boiling water reactors
US4222822A (en) * 1977-01-19 1980-09-16 Westinghouse Electric Corp. Method for operating a nuclear reactor to accommodate load follow while maintaining a substantially constant axial power distribution
US5076716A (en) * 1983-07-06 1991-12-31 Ebara Corporation Thrust bearing with spiral grooved face
US4604539A (en) * 1984-05-23 1986-08-05 U.S. Philips Corporation Drive mechanism with a rotary drive motor
US4764085A (en) * 1986-01-04 1988-08-16 Fortuna-Werke Maschinenfabrik Gmbh Blower for circulating larger gas volumes, in particular for high-power laser systems operating according to the gas-transportation principle
US5356273A (en) * 1993-12-30 1994-10-18 Westinghouse Electric Corporation Radial bearing assembly for a high inertia flywheel of a canned pump
US5932946A (en) * 1995-08-11 1999-08-03 Hitachi Powdered Metals Co., Ltd Porous bearing system having internal grooves and electric motor provided with the same
US6769808B2 (en) * 2002-10-08 2004-08-03 Industrial Technology Research Institute Composite fluid dynamic bearing and its manufacturing method
US6935787B2 (en) * 2003-07-14 2005-08-30 Nien-Lun Li Oil-circulating structure for fan

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130127179A1 (en) * 2010-09-01 2013-05-23 Toshio Takahashi Waste heat power generator
US9219404B2 (en) * 2010-09-01 2015-12-22 Ihi Corporation Waste heat power generator

Also Published As

Publication number Publication date
CN101213615B (en) 2012-05-23
DE502006007924D1 (en) 2010-11-04
ES2353248T3 (en) 2011-02-28
JP2008544158A (en) 2008-12-04
WO2007000331A2 (en) 2007-01-04
EP1899981A2 (en) 2008-03-19
EP1899981B1 (en) 2010-09-22
WO2007000331A3 (en) 2007-03-15
ATE482455T1 (en) 2010-10-15
DE102005030485A1 (en) 2007-01-04
CN101213615A (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US8579608B2 (en) Fluid energy machine
US20080159891A1 (en) Pumping Device for Nuclear Facility
EP2199598B1 (en) A hydroelectric turbine comprising a passive brake and method of operation
US11353043B2 (en) Centrifugal pump for conveying a fluid
CN105765173A (en) Device for centring and guiding the rotation of a turbine engine shaft including improved means for retaining the external bearing ring
US11015615B2 (en) Reactor coolant pump set
US5549459A (en) Radial bearing assembly for a high intertia flywheel of a canned motor pump
US5356273A (en) Radial bearing assembly for a high inertia flywheel of a canned pump
CN101555889A (en) High-pressure safety injection pump for nuclear power station
CN205297940U (en) On fill pump
CN103542036A (en) Coming-off type nuclear power station main pump flywheel
JP5899917B2 (en) Spindle device
CN101432534B (en) Hydrodynamic plain bearing
Kepple et al. Experience in the use of flexure pivot tilt pad bearings in boiler feed water pumps
RU2719546C1 (en) Device for damage prevention of end seals of main circulating pump unit
Watterson Tribology: A Simple Guide to the Study of Friction
JP2012087878A (en) Rolling bearing device
Hydraulic Plant and Machinery Group Lubrication and Wear Group et al. The development of the water-lubricated feed pump
Hernandez A User's Engineering Review of Sealless Pump Design Limitations and Features
RU2308621C1 (en) Vertical shaft bearing support and method of its mounting
Leith et al. Paper 4: Advanced-Class Boiler Feed Pumps for 660-Mw Generators
Colker et al. Design and development of a canned-motor pump for NaK service
CN115434941A (en) Radial and thrust combined bearing device for nuclear power circulating water pump
KR20030078100A (en) A Segmented Pin Type Journal Bearing for Water Lubricated Canned Motor Pump
JP2013167449A (en) Internal pump

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION