US20080152690A1 - Biodegradable, anionic polymers derived from the amino acid l-tyrosine - Google Patents

Biodegradable, anionic polymers derived from the amino acid l-tyrosine Download PDF

Info

Publication number
US20080152690A1
US20080152690A1 US12/046,378 US4637808A US2008152690A1 US 20080152690 A1 US20080152690 A1 US 20080152690A1 US 4637808 A US4637808 A US 4637808A US 2008152690 A1 US2008152690 A1 US 2008152690A1
Authority
US
United States
Prior art keywords
polymer
group
carboxylic acid
pendent
biologically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/046,378
Inventor
Joachim B. Kohn
Durgadas Bolikal
Shuiyum Guan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rutgers State University of New Jersey
Original Assignee
Rutgers State University of New Jersey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rutgers State University of New Jersey filed Critical Rutgers State University of New Jersey
Priority to US12/046,378 priority Critical patent/US20080152690A1/en
Assigned to RUTGERS, THE STATE UNIVERSITY reassignment RUTGERS, THE STATE UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOLIKAL, DURGADAS, GUAN, SHUIYUN, KOHN, JOACHIM B.
Publication of US20080152690A1 publication Critical patent/US20080152690A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • A61L17/10At least partially resorbable materials containing macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P41/00Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6854Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6856Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6854Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6858Polycarboxylic acids and polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/045Aromatic polycarbonates containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/08Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
    • C08G64/12Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/16Aliphatic-aromatic or araliphatic polycarbonates
    • C08G64/1608Aliphatic-aromatic or araliphatic polycarbonates saturated
    • C08G64/1625Aliphatic-aromatic or araliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen
    • C08G64/1641Aliphatic-aromatic or araliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • A61K9/204Polyesters, e.g. poly(lactide-co-glycolide)

Definitions

  • the present invention relates to biodegradable anionic polycarbonates and polyarylates having pendent carboxylic acid groups, and to block copolymers thereof with poly (alkylene oxides).
  • the present invention further relates to species of the above-listed polymers having pendent carboxylic acid ester groups, and, more specifically, to pendent benzyl ester groups and the selective removal of such benzyl esters to form pendent carboxylic acid groups by palladium (Pd)-catalyzed hydrogenolysis of the benzyl esters.
  • the present invention further relates to polycarbonates, polyarylates, and poly (alkylene oxide) block copolymers thereof that are homopolymers and copolymers of tyrosine-derived diphenol monomers having pendent benzyl carboxylate groups.
  • Diphenols are monomeric starting materials for polycarbonates, polyiminocarbonates, polyarylates, polyurethanes, and the like.
  • Commonly owned U.S. Pat. Nos. 5,099,060 and 5,198,507 disclose amino acid-derived diphenol compounds, useful in the polymerization of polycarbonates and polyiminocarbonates.
  • the resulting polymers are useful as degradable polymers in general, and as tissue-compatible bioerodible materials for medical uses, in particular.
  • the suitability of these polymers for this end use application is the result of their polymerization from diphenols derived from the naturally occurring amino acid, L-tyrosine.
  • the disclosures of U.S. Pat. Nos. 5,099,060 and 5,198,507 are hereby incorporated by reference.
  • These previously-known polymers are strong, water-insoluble materials that can best be used as structural implants.
  • the polycarbonates, polyarylates and poly (alkylene oxide) block copolymers thereof cannot be prepared by conventional solution processes from monomers having free carboxylic acid groups. Therefore, one must selectively incorporate removable protecting groups that can be cleaved after the polymer is formed, without significant degradation of the polymer backbone.
  • the protecting groups are needed to prevent cross-reaction of these otherwise free carboxylic acid groups (i) with the phosgene used in the preparation of polycarbonates and (ii) with the carbodiimide reagents used in the preparation of polyarylates.
  • the resulting polymers with protected carboxylic acid groups are limited in application because of their slow rate of degradation and significant hydrophobicity.
  • the free acid form of the polymers, in which the ester protecting groups have been removed from the pendent carboxylic acid chains of the diphenols, would be less hydrophobic and thus would be expected to exhibit somewhat increased degradation rates.
  • polycarbonates polyarylates and poly (alkylene oxide) block copolymers thereof prepared from tyrosine-derived diphenol monomers
  • the backbone contains bonds that are designed to degrade in aqueous media (acidic, neutral, or basic).
  • carboxylic acid protecting groups are a challenge.
  • the ester protecting groups cannot be removed by conventional hydrolysis techniques without complete degradation of the polymer backbone.
  • the ester protecting groups cannot be removed by conventional hydrolysis techniques without massive degradation of the polymer backbone.
  • the present invention makes it possible to modulate the rates of degradation and resorption to such a surprising extent that rod-like devices can be formulated that resorb completely from about 5 hours all the way to 3 years post implantation-simply by modifying the percentage of pendent carboxylic acid pendent chains available along the polymer backbone.
  • the present invention makes it possible to create pendent carboxylic acid groups on the polymer surface without concomitant backbone cleavage. This is in important difference relative to conventionally used medical polymers such as poly (lactic acid), poly (glycolic acid), polycaprolactone and others where the polymer backbone has to be cleaved (with the associated reduction in molecular weight and physical strength) in order to create chemically reactive attachment sites at the polymer surface.
  • the present invention significantly improves the versatility and utility of the above mentioned polymer systems, specifically polycarbonates, polyarylates, and the respective poly (alkylene oxide) copolymers thereof.
  • benzyl esters of pendent polymer carboxylic acid groups may be selectively removed by palladium-catalyzed hydrogenolysis in N,N-dimethylformamide (DMF) or similar solvents such as N,N-dimethylacetamide (DMA) and N-methylpyrrolidone (NMP) to form pendent carboxylic acid groups.
  • DMF N,N-dimethylformamide
  • DMA N,N-dimethylacetamide
  • NMP N-methylpyrrolidone
  • the molar ratio of monomeric repeating subunits having pendent benzyl carboxylate groups to the monomeric repeating subunits having other alkyl or alkylaryl carboxylate groups within a polymer may be varied after completion of the selective removal of the benzyl carboxylate groups.
  • polymers having monomeric repeating units defined in Formula I as follows:
  • Formula I represents a diphenolic unit wherein R 9 is an alkyl, aryl or alkylaryl group with up to 18 carbons with the specific proviso that this group contains as part of its structure a carboxylic acid group or the benzyl ester thereof.
  • R 9 can also contain non-carbon atoms such as nitrogen and oxygen.
  • R 9 can have a structure related to derivatives of the natural amino acid tyrosine, cinnamic acid, or 3-(4-hydroxyphenyl) propionic acid. In these cases, R 9 assumes the specific structures shown in Formulae II and III.
  • the indicators a and b in Formulae II and III can be independently 0, 1, or 2.
  • R 2 is hydrogen or a benzyl group.
  • a second diphenolic subunit of the polymer is defined in Formula IV.
  • R 12 is an alkyl, aryl or alkylaryl group substituted with a carboxylic acid ester group, wherein the ester is selected from straight and branched alkyl and alkylaryl esters containing up to 18 carbon atoms, and ester derivatives of biologically and pharmaceutically active compounds covalently bonded to the polymer, provided that the ester group is not a benzyl group or any other chemical moiety that may potentially be cleaved by hydrogenolysis.
  • R 12 can also contain non-carbon atoms such as nitrogen and oxygen.
  • R 12 can have a structure related to derivatives of the natural amino acid tyrosine, cinnamic acid, or 3-(4-hydroxyphenyl) propionic acid.
  • R12 For derivatives of tyrosine, 3-(4-hydroxyphenyl) propionic acid and cinnamic acid, R12 assumes the specific structures shown in Formulae V and VI:
  • the indicators c and d can be independently 0, 1 or 2.
  • R 1 is selected from straight and branched alkyl and alkylaryl groups containing up to 18 carbon atoms, and ester derivatives of biologically active compounds covalently bonded to the diphenol, provided that R 1 is not a benzyl group.
  • Some polymers of this invention may also contain blocks of poly (alkylene oxide) as defined in Formula VII.
  • R 7 is independently an alkylene group containing up to 4 carbons and k is between about 5 and 3,000.
  • a linking bond, designated as “A” is defined to be either
  • the polymers do not contain any poly (alkylene oxide) blocks.
  • the frequency at which poly (alkylene oxide) blocks can be found within the polymer backbone increases as the value of f increases.
  • Benzyl group removal by hydrogenolysis in the present invention has been successfully performed upon polycarbonates, polyarylates and poly (alkylene oxide) block copolymers thereof when a benzyl ester protecting group was present.
  • the polymers may be homopolymers of the first repeating subunit of Formula I, or the polymers may be copolymers of the first repeating subunit of Formula I and a second repeating subunit having a structure of Formula IV.
  • the polymers may also contain poly (alkylene oxide) blocks as defined in Formula V and the linking bond “A” may be
  • R 8 is selected from saturated and unsaturated, substituted and unsubstituted alkyl, aryl and alkylaryl groups containing up to 18 carbon atoms.
  • the present invention incorporates the discovery that pure DMF, DMA, or NMP are necessary as the reaction solvent. It was a surprising and unexpected result that no reaction was observable in methylene chloride, methanol, or solvent mixtures containing various ratios of methylene chloride, methanol, and DMF. Another unexpected result was that the reaction medium has to be anhydrous and that the solvents have to be dried to ensure complete removal of all benzyl ester groups in the hydrogenolysis reaction.
  • the palladium catalyst is palladium on barium sulfate. This catalyst is recoverable and reusable, thereby dramatically reducing the cost of the hydrogenolysis.
  • Preferred methods in accordance with the present invention also use 1,4-cyclohexadiene, a transfer hydrogenolysis reagent, in combination with hydrogen gas as a hydrogen source. It has been unexpectedly discovered that at ambient pressure the hydrogenolysis can be accelerated dramatically by the exposure of the reaction mixture to a combination of 1,4-cyclohexadiene and hydrogen gas. If desired, the reaction can be performed at high pressure in a PARR hydrogenolysis apparatus. At high pressure conditions, the addition of 1,4-cyclohexadiene is not required to ensure complete removal of all benzyl ester groups from the polymers.
  • the benzyl carboxylate polycarbonate homopolymers and copolymers of the present invention are novel and non-obvious intermediate compounds having utility in the preparation of polycarbonates having pendent carboxylic acid groups.
  • the benzyl carboxylate polyarylate homopolymers and copolymers of the present invention are novel and non-obvious intermediate compounds having utility in the preparation of polyarylates having pendent carboxylic acid groups.
  • the present invention also includes implantable medical devices containing the polymers of the present invention having pendent carboxylic acid groups.
  • the polymers are combined with a quantity of a biologically or pharmaceutically active compound sufficient for effective site-specific or systemic drug delivery as described by Gutowska et al., J. Biomater. Res., 29, 811-21 (1995) and Hoffman, J. Controlled Release, 6, 297-305 (1987).
  • the biologically or pharmaceutically active compound may be physically admixed, embedded in or dispersed in the polymer matrix.
  • the polymer is in the form of a sheet or a coating applied to exposed injured tissue for use as a barrier for the prevention of surgical adhesions as described by Urry et al., Mat. Res. Soc. Symp. Proc., 292, 253-64 (1993).
  • Another aspect of the present invention provides a method for site-specific or systemic drug delivery by implanting in the body of a patient in need thereof an implantable drug delivery device containing atherapeutically effective amount of a biologically or pharmaceutically active compound in combination with a polymer of the present invention.
  • Yet another aspect of the present invention provides a method for preventing the formation of adhesions between injured tissues by inserting as a barrier between the injured tissues a sheet or a coating of a polymer of the present invention.
  • derivatives of biologically and pharmaceutically active compounds can be attached to the polymer backbone by covalent bonds linked to the carboxylic acid pendent chain. This provides for the sustained release of the biologically or pharmaceutically active compound by means of hydrolysis of the covalent bond between the drug and the polymer backbone.
  • the pendent carboxylic acid groups of the polymers in the present invention provide the polymers with a pH dependent dissolution rate. This further enables the polymers to be used as coatings in gastrointestinal drug release carriers to protect some biologically and pharmaceutically active compounds such as drugs from degrading in the acidic environment of the stomach.
  • the copolymers of the present invention having a relative high concentration of pendent carboxylic acid groups are stable and water insoluble in acidic environments but dissolve/degrade rapidly when exposed to neutral or basic environments. By contrast, copolymers of low acid to ester ratios are more hydrophobic and will not degrade/resorb rapidly in either basic or acidic environments. Therefore, another aspect of the present invention provides a controlled drug delivery system in which a biologically or pharmaceutically active agent is physically coated with a polymer of the present invention.
  • the polymers prepared from tyrosine-derived diphenol compounds having pendent carboxylic acid groups are more hydrophilic. Therefore, the polymers of the present invention having carboxylic acid groups will be more readily resorbable under physiological conditions than the previously known polycarbonates and polyarylates.
  • the polymers of the present invention because they are more hydrophilic, have a higher water uptake, and when the monomeric subunits having carboxylic acid groups predominate, they are more soluble in aqueous media. When the monomeric repeating subunits having pendent carboxylic acid groups do not predominate, the polymers may slowly dissolve in aqueous media with slower degradation. The dissolution/degradation rates are highly pH dependent.
  • the pendent carboxylic acid groups on the polymers of the present invention can function to regulate cell attachment, growth and migration on the polymer surfaces. Therefore, according to yet another aspect of the present invention, a method is provided for regulating cellular attachment, migration and proliferation on a polymeric substrate by contacting living cells, tissues or biological fluids containing living cells with the polymers of the present invention having pendent carboxylic acid groups.
  • the degree of copolymerization i.e., the ratio of pendent carboxylic acid groups to pendent ester groups, can be attenuated to provide polymers that promote cellular attachment, migration and proliferation, as well as polymers that inhibit attachment, migration and proliferation.
  • FIG. 1 depicts percent mass retention vs. time of poly (0.5DT-0.5DTE carbonate) poly (DT carbonate)(-*-) and poly (DTE carbonate) polymer compositions in vitro under physiological conditions.
  • the method of the present invention provides polycarbonates and polyarylates, as well as poly (alkylene oxide) block polymers thereof, having pendent carboxylic acid groups on some or all of their monomeric subunits.
  • the polymers having pendent carboxylic acid groups are prepared by the hydrogenolysis of polymeric starting materials having corresponding pendent benzyl carboxylate groups.
  • the benzyl carboxylate polymeric starting materials are polymerized from diphenol compounds having benzyl ester protected pendent carboxylic acid groups, alone, or in combination with diphenol compounds having other ester-protected carboxylic acid groups.
  • the benzyl carboxylate diphenols have the structure of Formula Ia:
  • R 9 is the same as described above with respect to Formula I, but limited to the species that contains as part of its structure a benzyl ester protected carboxylic acid group.
  • the benzyl carboxylate diphenols preferably have the structure of Formula Ia in which R 9 has the structure of Formula II or Formula III in which R 2 is a benzyl group.
  • the preferred diphenols are compounds in which Rg has the structure of Formula II in which a and b are independently one or two. Most preferably, a is two and b is one.
  • These most preferred compounds are tyrosine dipeptide analogues known as desaminotyrosyl-tyrosine alkyl or alkylaryl esters. In this preferred group the diphenols can be regarded as derivatives of tyrosyl-tyrosine dipeptides from which the N-terminal amino group has been removed.
  • R 12 is the same as described above with respect to Formula IV.
  • R 12 preferably has the structure of Formula V or Formula VI. More preferably, R 12 has the structure of Formula V in which c and d are preferably independently one or two. Most preferably, c is two and d is one.
  • desaminotyrosyl-tyrosine esters are the ethyl, butyl, hexyl, octyl and benzyl esters.
  • desaminotyrosyl-tyrosine ethyl ester is referred to as DTE
  • desaminotyrosyl-tyrosine benzyl ester is referred to as DTBn, and the like.
  • the desaminotyrosyl-tyrosine free acid is referred to as DT.
  • the polymers of the present invention may be homopolymers with each monomeric subunit having a pendent carboxylic acid group prepared by the hydrogenolysis of corresponding benzyl carboxylate homopolymers.
  • Copolymers of diphenol monomers having pendent carboxylic acid ester groups, and diphenol monomers having pendent carboxylic acid groups can also be incorporated into the basic backbone structure of the polymers by the hydrogenolysis of corresponding copolymers of benzyl ester monomers and monomers having pendent esters other than benzyl carboxylates.
  • poly (DT carbonates) are prepared by the hydrogenolysis of poly (DTBn carbonates)
  • poly (DT-DTE carbonate) copolymers are prepared by the hydrogenolysis of poly (DTBn-DTE carbonate) copolymers, and so forth.
  • Polymers in accordance with the present invention include homopolymers of a repeating unit having a pendent carboxylic acid group.
  • Such homopolymers have the structure of Formula VIII in which x and f are both zero and R 9 is the same as described above with respect to Formula I with the proviso that it is limited to species having pendent carboxylic acid groups.
  • the homopolymers are prepared by the hydrogenolysis of corresponding homopolymers having the structure of Formula VIII in which x and f are both zero and R 9 is the same as described above with respect to Formula I, with the proviso that it is limited to species having pendent benzyl carboxylate groups.
  • Polymers in accordance with the present invention also include copolymers having pendent carboxylic acid groups with the structure of Formula VIII in which f is zero, x is a number greater than zero but less than one, R 12 is the same as described above with respect to Formula IV and R 9 is the same as described above with respect to Formula I, with the proviso that it is limited to species with pendent carboxylic acid groups.
  • x is preferably between about 0.50 and about 0.90 and more preferably between about 0.60 and about 0.80.
  • Copolymers having pendent carboxylic acid groups are prepared by the hydrogenolysis of corresponding copolymers having the structure of Formula VIII in which f is zero, x is a number greater than zero but less than one, R 12 is the same as described above with respect to Formula IV and R 9 is the same as described above with respect to Formula I, with the proviso that it is limited to species with pendent benzyl carboxylate groups.
  • R 9 has the structure of either Formula II or Formula III and R 12 has the structure of either Formula V or Formula VI, in which R 1 , R 2 , a, b, c and d are the same as described above with respect to Formulae II, III, V and VI.
  • R 9 has the structure of Formula II and R 12 has the structure of Formula V in which a, b, c and d are independently one or two. Most preferably, a and c are two and b and d are one.
  • the polymers of the present invention are polycarbonates.
  • the polycarbonate homopolymer and copolymer starting materials having pendent benzyl carboxylate groups may be prepared by the method described by U.S. Pat. No. 5,099,060 and by U.S. patent application Ser. No. 08/884,108 filed Jun. 27, 1997, the disclosures of both of which are also incorporated herein by reference.
  • the described method is essentially the conventional method for polymerizing diphenols into polycarbonates. Suitable processes, associated catalysts and solvents are known in the art and are taught in Schnell, Chemistry and Physics of Polycarbonates , (Interscience, New York 1964), the teachings of which are incorporated herein by reference.
  • Polycarbonate homopolymers and copolymers in accordance with the present invention having pendent carboxylic acid groups, and the polycarbonates having pendent benzyl carboxylate groups from which they are prepared, have weight-average molecular weights ranging between about 20,000 to about 400,000 daltons, and preferably about 100,000 daltons, measured by gel permeation chromatography (GPC) relative to polystyrene standards without further correction.
  • GPC gel permeation chromatography
  • the polymers of the present invention are polyarylates.
  • the polyarylate homopolymer and copolymer starting materials having pendent benzyl carboxylate groups may be prepared by the method described by U.S. Pat. No. 5,216,115, in which diphenol compounds are reacted with aliphatic or aromatic dicarboxylic acids in carbodiimide mediated direct polyesterification using 4-(dimethylamino) pyridinium-p-toluene sulfonate (DPTS) as a catalyst to form aliphatic or aromatic polyarylates.
  • DPTS 4-(dimethylamino) pyridinium-p-toluene sulfonate
  • Dicarboxylic acids from which the polyarylate starting materials of the present invention may be polymerized have the structure of Formula IX:
  • R 8 is selected from saturated and unsaturated, substituted and unsubstituted alkyl groups containing up to 18 carbon atoms, and preferably from 4 to 12 carbon atoms.
  • R 8 is selected from aryl and alkylaryl groups containing up to 18 carbon atoms, but preferably from 8 to 14 carbon atoms. Again, R 8 should not be substituted with functional groups that would cross-react with the diphenols.
  • R 8 is even more preferably selected so that the dicarboxylic acids from which the polyarylate starting materials are polymerized are either important naturally-occurring metabolites or highly biocompatible compounds.
  • Preferred aliphatic dicarboxylic acids therefore include the intermediate dicarboxylic acids of the cellular respiration pathway known as the Krebs Cycle. These dicarboxylic acids include alpha-ketoglutaric acid, succinic acid, fumaric acid, maleic acid and oxalacetic acid.
  • Other preferred biocompatible aliphatic dicarboxylic acids include sebacic acid, adipic acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, suberic acid and azelaic acid.
  • R 8 is more preferably a moiety selected from —CH 2 —C( ⁇ O)—, —CH 2 —CH 2 —C( ⁇ O)—, —CH ⁇ CH— and (—CH 2 —) z , wherein z is an integer between two and eight, inclusive.
  • Polyarylate homopolymers and copolymers in accordance with the present invention having pendent carboxylic acid groups, and the corresponding polyarylates having pendent benzyl carboxylate groups from which they are prepared, have weight average molecular weights between about 20,000 and about 400,000 daltons, and preferably about 100,000 daltons, measured by GPC relative to polystyrene standards without further correction.
  • Polycarbonates and polyarylates in accordance with the present invention also include random block copolymers with a poly (alkylene oxide) having pendent carboxylic acid groups with the structure of Formula VIII, wherein f is greater than zero but less than one, R 12 is the same as described above with respect to Formula IV, k and R 7 are the same as described above with respect to Formula VII, and R 9 is the same as described above with respect to Formula I, with the proviso that it is limited to species having pendent carboxylic acid groups.
  • the value for x is less than one, but x may or may not be greater than zero.
  • the molar fraction of alkylene oxide in the block copolymer, f ranges between about 0.01 and about 0.99.
  • the block copolymers having pendent carboxylic acid groups are prepared by the hydrogenolysis of corresponding block copolymers having the structure of Formula VIII, wherein x is greater than zero but less than one, R 12 is the same as described above with respect to Formula IV, k and R 7 are the same as described above with respect to Formula VII, and R 9 is the same as described above with respect to Formula I, with the proviso that it is limited to species having pendent benzyl carboxylate groups.
  • the value for x is less than one, but may or may not be greater than zero.
  • R 7 is ethylene, k is between about 20 and about 200, and the molar fraction of alkylene oxide in the block copolymer, f, preferably ranges between about 0.05 and about 0.75.
  • R 7 may also represent two or more different alkylene groups within a polymer.
  • block copolymers of the present invention having pendent benzyl carboxylate groups may be prepared by the method described by U.S. Pat. No. 5,658,995, the disclosure of which is also incorporated herein by reference.
  • block copolymers of the present invention having either pendent carboxylic acid groups or pendent benzyl carboxylate groups in which x is greater than zero the molar fraction of alkylene oxide and block copolymer, f, will remain between about 0.01 and about 0.99.
  • the block copolymers in accordance with the present invention having pendent carboxylic acid groups, and the block copolymers having pendent benzyl carboxylate groups from which they are prepared have weight-average molecular weights between about 20,000 and about 400,000 daltons, and preferably about 100,000 daltons.
  • the number-average molecular weights of the block copolymers are preferably above about 50,000 daltons.
  • Molecular weight determinations are measured by GPC relative to polystyrene standards without further correction.
  • the pendent carboxylic acid ester group of R 12 can be an ester derivative of a biologically or pharmaceutically active compound covalently bonded to the polycarbonate or polyarylate copolymer.
  • the covalent bond is by means of an amide bond when in the underivatized biologically or pharmaceutically active compound a primary or secondary amine is present at the position of the amide bond in the derivative.
  • the covalent bond is by means of an ester bond when in the underivatized biologically or pharmaceutically active compound a primary hydroxyl is present at the position of the ester bond in the derivative.
  • the biologically or pharmaceutically active compounds may also be derivatized at a ketone, aldehyde or carboxylic acid group with a linkage moiety that is covalently bonded to the copolymer or diphenol by means of an amide or ester bond.
  • biologically or pharmaceutically active compounds suitable for use with the present invention include acyclovir, cephradine, malphalen, procaine, ephedrine, adriamycin, daunomycin, plumbagin, atropine, quinine, digoxin, quinidine, biologically active peptides, chlorin e6, cephradine, cephalothin, cis-hydroxy-L-proline, melphalan, penicillin V, aspirin, nicotinic acid, chemodeoxycholic acid, chlorambucil, and the like.
  • the compounds are covalently bonded to the polycarbonate or polyarylate copolymer by methods well understood by those of ordinary skill in the art.
  • Drug delivery compounds may also be formed by physically blending the biologically or pharmaceutically active compound to be delivered with the polymers of the present invention having pendent carboxylic acid groups using conventional techniques well-known to those of ordinary skill in the art.
  • biologically active compounds are also defined as including crosslinking moieties, such as molecules with double bonds (e.g., acrylic acid derivatives), which can be attached to the pendent carboxylic acid groups for crosslinking to increase the strength of the polymers.
  • crosslinking moieties such as molecules with double bonds (e.g., acrylic acid derivatives), which can be attached to the pendent carboxylic acid groups for crosslinking to increase the strength of the polymers.
  • Biologically active compounds for purposes of the present invention, are additionally defined as including cell attachment mediators, biologically active ligands and the like.
  • copolymers as defined above may contain from about 1 to about 99 mole percent of monomeric subunits having pendent carboxylic acid groups. Their properties are strongly affected by the mole fraction of free carboxylic acid groups present. Copolymers that have less than 20 molar percent of monomeric repeating subunits with pendent carboxylic acid groups are processible by compression molding and extrusion. As a general rule, copolymers with less than 20 molar percent of monomeric repeating subunits with pendent carboxylic acid groups are not soluble in water.
  • copolymers having more than 20 mole percent of monomeric subunits with pendent carboxylic acid groups some thermal degradation has been observed during conventional compression molding and extrusion at elevated temperatures.
  • Copolymers having more than 20 mole percent of monomeric subunits with pendent carboxylic acid groups tend to exhibit increased swelling (due to imbibition of water) during exposure to aqueous media and when more than about 50 mole percent of monomeric subunits carry free carboxylic acid groups, the copolymer tend to become water soluble and their behavior will be similar to the behavior of the corresponding homopolymers, which dissolve in pH 7.4 phosphate buffer to the extent of about 2 mg/mL.
  • Copolymers having less than about 70 mole percent of monomeric subunits with pendent carboxylic acid groups can be processed into porous foams by salt leaching techniques as described in Freed et al., J. Biomed. Mater. Res., 27, 11-23 (1993), or by phase separation techniques, as described in Schugens et al., J. Biomed. Meter. Res., 30, 449-462 (1996). The disclosure of these publications is incorporated herein by reference. Copolymers having more than about 70 mole percent of monomeric subunits with pendent carboxylic acid groups tend to be water soluble and must be processed into porous foams as described for the corresponding homopolymers.
  • polyalkylene oxide blocks decreases the adhesiveness of the polymeric surfaces.
  • Polymers for which f is greater than 5 mole percent according to Formula Vin are resistant to cell attachment and may be useful as non-thrombogenic coatings on surfaces in contact with blood. These polymers also resist bacterial adhesion.
  • the polymers of the present invention having pendent carboxylic acid groups may be prepared by the palladium-catalyzed hydrogenolysis of corresponding polymers having pendent benzyl carboxylate groups.
  • any palladium-based hydrogenolysis catalyst is suitable for use with the present invention. Palladium on barium sulfate is preferred because it has been found to be the easiest to separate from the polymer. This not only provides a polymer of high purity, it also permits the efficient recycling of this expensive catalyst.
  • a level of palladium on barium sulfate between about 5 and about 10 percent by weight is preferred. Lower levels either extend reaction time or reduce yield and higher levels represent an unnecessary expense.
  • dimethylformamide as the reaction solvent is critical.
  • the polymer starting material having pendent benzyl carboxylate groups should be dissolved in dimethylformamide at a solution concentration (w/v %) between about 5 and about 50 percent, and preferably between about 10 and about 20 percent.
  • any hydrogen source for palladium-catalyzed hydrogenolysis is suitable for use with the present invention.
  • the reaction mixture may be supplied with a hydrogen gas blanket.
  • a transfer hydrogenolysis reagent such as 1,4-cyclohexadiene may be used.
  • the use of a transfer hydrogenolysis reagent in combination with hydrogen gas blanketing is preferred. The reaction rate was found to accelerate dramatically when the two hydrogen sources were used together.
  • the progress of the reaction can be measured by monitoring the removal of the benzyl ester from the polymeric starting material in reaction aliquots by NMR spectroscopy.
  • the polymer is isolated by filtering off the solid palladium catalyst and the filtrate is added into water to precipitate the polymer.
  • the polymer can then be purified by dissolving in 9:1 methylene chloride-methanol (about 10 percent to about 20 percent w/w) and reprecipitating in ether.
  • the polymeric product may then be dried to constant weight under high vacuum.
  • the polymers of the present invention having pendent carboxylic acid groups are not limited to those polymers prepared by hydrogenolysis. Any other method that allows for the selective removal of a pendent carboxylate ester group is suitable for use in the preparation of the polymers of the present invention.
  • iodotrimethylsilane may be used to selectively remove methyl ester pendent chains in the presence of ethyl ester pendent chains.
  • the hydrogenolysis method of the present invention is preferred because it produces a higher reaction yield.
  • the polymers of the present invention can find application in areas where both solid materials and solvent-soluble materials are commonly employed. Such applications include polymeric scaffolds in tissue engineering applications and medical implant applications, including the use of the polycarbonates and polyarylates of the present invention to form shaped articles such as vascular grafts and stents, bone plates, sutures, implantable sensors, barriers for surgical adhesion prevention, implantable drug delivery devices, scaffolds for tissue regeneration, and other therapeutic agent articles that decompose harmlessly within a known period of time.
  • Controlled drug delivery systems may be prepared, in which a biologically or pharmaceutically active agent is physically embedded or dispersed within a polymeric matrix or physically admixed with a polycarbonate or polyarylate of the present invention. Because the polymers of the present invention have a pH dependent dissolution rate, they are useful as drug coatings for gastrointestinal release to protect some drugs from degrading in the acidic environment of the stomach because the polymers are stable and non-water soluble in acidic environments but dissolve and degrade rapidly when exposed to neutral or basic environments.
  • Molecular weights were determined by GPC on a chromatographic system consisting of a Perkin-Elmer Model 410 pump, a Waters Model 410 Refractive Index Detector and a Perkin-Elmer Model 2600 computerized data station.
  • Two PL-gel GPC columns (105 and 103 Angstrom pore size, 30 cm length) were operated in series at a flow rate of 1 mL/min tetrahydrofuran (THF).
  • Polymer solutions (5 mg/mL) were prepared, filtered (0.45 micron membrane filter) and allowed to equilibrate for 30 minutes prior to injection. The injection volume was 25 microliters.
  • Molecular weights were calculated relative to polystyrene standards (PolymerLaboratories, Inc.) without further corrections.
  • Determination of product purity was based on melting point depression measured with a TA Instruments 910 Differential Scanning Calorimeter (DSC) calibrated with indium. For determination of the melting temperature, a 2.0 mg sample was subjected to a single run at a heating rate of 1 C/min. over a 60 C range.
  • DSC Differential Scanning Calorimeter
  • Residual levels of the catalyst preparation were measured by atomic absorption by Quantitative Technologies Inc.
  • Desaminotyrosyl tyrosine free acid DT Desaminotyrosyl tyrosine ethyl ester DTE Desaminotyrosyl tyrosine benzyl ester DTBn
  • a high speed blender can also be used for the precipitation to obtain finely divided particles.
  • the precipitated product was isolated by filtration and washed with 750 mL of water in a high speed blender. The product was dried in a nitrogen stream for 16 h and then dried in a vacuum oven at room temperature for two days. For further purification, the product was dissolved in 150 mL of 9:1 methylene chloride-methanol and precipitated with 1.5 L of ether and then dried as above.
  • the hydrogenation can also be carried out in a PARR hydrogenator at high hydrogen pressures (60 psi).
  • a hydrogenator is used at high hydrogen pressures, the transfer hydrogen donor, 1,4-cyclohexadiene is not necessary.
  • the 1 H NMR spectrum of the product in DMSO-d 6 showed the following resonances (8, ppm relative to TMS): 8.40 (br s, 1H, NH of DTE), 8.25 (br s, 1H, NH of DT), 7.15-7.35 (m, 8H, aromatic H's), 4.50 (m, 1H, CH of tyrosine), 4.03 (q 1H, C H 2 , —CH 3 ), 2.20-3.20 (M, 6H, CH 2 's of DAT and Tyrosine), 1.11 (t., 1.5H, CH 2 , —C H 3 ).
  • the molecular weight of the product was determined by GPC using the THF as the mobile phase. A M w of 74 Kda and M n 47 Kda were obtained. The T g of the polymer was found to be 114° C. by DSC and the decomposition temperature (for 10 percent decomposition) was 309° C. Atomic absorption measurements showed a Pd concentration of 39 ppm and a barium concentration less than the detection limit (10 ppm).
  • the 1 H NMR spectrum of the product in DMSO-d 6 showed the following resonances ( ⁇ , ppm relative to TMS): 8.40 (br s, 0.95H, NH of DTE), 8.25 (br s, 0.05H, NH of DT), 7.15-7.35 (m, 8H, aromatic H's), 4.71 (m, 1H, CH of tyrosine), 4.03 (q, 1.9H, C H 2 —CH 3 ), 2.1-3.3 (m, 6H, CH 2 's of DAT and Tyrosine), 1.11 (t, 2.85H, CH 2 —C H 3 ).
  • the molecular weight of the product was determined by GPC using THF as the mobile phase. A M w of 125 Kda and M n 55 Kda were obtained. The T g of the polymer was found to be 96 C by DSC and the decomposition temperature (for 10% decomposition) was 334 C.
  • the 1 H NMR spectrum of the product in DMSO-d 6 showed the following resonances ( ⁇ , ppm relative to TMS): 8.40 (br s, 0.9H, NH of DTE), 8.25 (br, s, 0.1H, NH of DT), 7.15-7.35 (m, 8H, aromatic H's), 4.50 (m, 1H, CH of tyrosine), 4.03 (q, 1.8H, C H 2 , CH 3 ), 2.1-3.3 (m, 6H, CH 2 's of DAT and Tyrosine), 1.11 (t, 2.7H, C H 2 , —CH 3 ).
  • the 1 H NMR spectrum of the product in DMSO-d 6 showed the following resonances (5, ppm relative to TMS): 8.40 (br s, 0.75H, NH of DTE), 8.25 (br s, 0.25H, NH of DT), 7.15-7.35 (m, 8H, aromatic H's), 4.50 (m, 1H, CH of tyrosine), 4.03 (q, 1.5H, C H 2 —CH 3 ), 2.1-3.3 (m, 6H, CH 2 's of DAT and Tyrosine), 1.11 (t, 2.25H, CH 2 —C H 3 ).
  • the molecular weight of the product was determined by GPC using THF as the mobile phase. A M w of 115 Kda and M n 57 Kda were obtained. The T g of the polymer was found to be 106° C. by DSC and the decomposition temperature (for 10% decomposition) was 309° C.
  • Poly(DT-DTE carbonate) copolymers with DT contents of 20 percent, 40 percent, 60 percent and 100 percent were also prepared. Solvent casting films were made and pH-dependent dissolution and degradation studies were performed. Poly(100% DT carbonate) was found to be stable and insoluble in pH ⁇ 5 acidic buffer solution. However, 25 to 30 mg polymer film dissolved in 10 mL of PBS of pH 7.4 at 37° C. in several hours. Degradation of the dissolved polymer was followed by aqueous GPC using a UV detector at 220 nm. It was observed that the polymer dissolved without significant degradation. When the polymer solution in buffer was incubated at 37° C. the polymer degraded rapidly.
  • Dissolution and degradation rates of the copolymers decreased with decreasing DT content.
  • the copolymer with 20 percent DT content was not soluble in pH 7.4 PBS at 37° C.
  • the reaction was stopped and the reaction mixture was centrifuged. The supernatant was filtered using a celite bed on a sintered glassfunnel. The filtrate was added to 2.0 L of cooled deionized water in a high speed blender. The precipitated product was isolated by filtration and washed with 2.0 L of water. The product was dried in a stream of nitrogen for 16 h and then dried in vacuum oven at room temperature for 2 days.
  • the molecular weight of the product was determined by GPC using THF as the mobile phase. A M w of 36.2 Kda and M n 25.4 Kda were obtained. The T g of the polymer was found to be 106° C. by DSC and the decomposition temperature (for 10% decomposition) was 334° C.
  • Poly (DTE carbonate) is a solid, extremely hydrophobic polymer that absorbs less than 3% (by weight) of water and that exhibits no detectable mass loss due to resorption under physiological conditions. Upon incorporation of monomer units with free carboxylic acid groups, these material properties change to an unexpected extent. FIG.
  • the polymers with free carboxylic acid groups can be cast into films either by compression molding or by solvent casting and can be fabricated into sponges by salt leaching techniques or by phase separation techniques.
  • the homopolymers dissolve in phosphate buffer of pH 7.4 to the extent of 2 mg/mL.
  • phosphate buffer of pH 7.4 When examined by aqueous GPC using UV detection at 200 nm it was found that the polymer dissolved without significant backbone degradation. However, once in solution, backbone degradation to low molecular weight oligomers and eventually to monomer occurred. After 70 h of incubation the peak molecular weight decreased from 40,000 g/mole to about 4,000 g/mole and about 10% of the sample weight consisted of monomer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Materials For Medical Uses (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyamides (AREA)
  • Medicinal Preparation (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Polymers with a hydrolytically labile polymer backbones with non-toxic biocompatible diphenolic repeating units having the structure:
Figure US20080152690A1-20080626-C00001
    • wherein R9 is an alkyl, aryl or alkylaryl group with up to 18 carbon atoms having a pendent carboxylic acid group or the benzyl ester thereof; and
    • non-toxic biocompatible diphenolic repeating units having the structure:
Figure US20080152690A1-20080626-C00002
    • wherein R12 is an alkyl, aryl or alkylaryl group with up to 18 carbon atoms having a pendent carboxylic acid ester group selected from straight and branched alkyl and alkylaryl esters containing up to 18 carbon atoms and ester derivatives of biologically and pharmaceutically active compounds covalently bonded to the polymer, provided that said ester group is not a benzyl group or a group that is removed by hydrogenolysis. Implantable medical devices and treatment methods using the polymers are also disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a Continuation of U.S. patent application Ser. No. 09/350,423 filed Jul. 8, 1999, which, in turn, is a Continuation of U.S. patent application Ser. No. 09/056,050 filed Apr. 7, 1998, now U.S. Pat. No. 6,120,491, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/064,656 filed on Nov. 7, 1997. The disclosures of all three applications are incorporated herein by reference.
  • GOVERNMENT LICENSE RIGHTS
  • The U.S. government has a paid-up license in this invention and the right in limited circumstances to require the patent owner to license others on reasonable terms as required by the terms of Grant Nos. GM-39455 and GM-49849 awarded by the National Institutes of Health.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to biodegradable anionic polycarbonates and polyarylates having pendent carboxylic acid groups, and to block copolymers thereof with poly (alkylene oxides). The present invention further relates to species of the above-listed polymers having pendent carboxylic acid ester groups, and, more specifically, to pendent benzyl ester groups and the selective removal of such benzyl esters to form pendent carboxylic acid groups by palladium (Pd)-catalyzed hydrogenolysis of the benzyl esters. The present invention further relates to polycarbonates, polyarylates, and poly (alkylene oxide) block copolymers thereof that are homopolymers and copolymers of tyrosine-derived diphenol monomers having pendent benzyl carboxylate groups.
  • Diphenols are monomeric starting materials for polycarbonates, polyiminocarbonates, polyarylates, polyurethanes, and the like. Commonly owned U.S. Pat. Nos. 5,099,060 and 5,198,507 disclose amino acid-derived diphenol compounds, useful in the polymerization of polycarbonates and polyiminocarbonates. The resulting polymers are useful as degradable polymers in general, and as tissue-compatible bioerodible materials for medical uses, in particular. The suitability of these polymers for this end use application is the result of their polymerization from diphenols derived from the naturally occurring amino acid, L-tyrosine. The disclosures of U.S. Pat. Nos. 5,099,060 and 5,198,507 are hereby incorporated by reference. These previously-known polymers are strong, water-insoluble materials that can best be used as structural implants.
  • The same monomeric L-tyrosine derived diphenols were also used in the synthesis of polyarylates as described in commonly owned U.S. Pat. No. 5,216,115, and in the synthesis of poly (alkylene oxide) block copolymers with the aforementioned polycarbonates and polyarylates, which is disclosed in commonly owned U.S. Pat. No. 5,658,995. The disclosures of U.S. Pat. Nos. 5,216,115 and 5,658,995 are also hereby incorporated by reference.
  • The polycarbonates, polyarylates and poly (alkylene oxide) block copolymers thereof cannot be prepared by conventional solution processes from monomers having free carboxylic acid groups. Therefore, one must selectively incorporate removable protecting groups that can be cleaved after the polymer is formed, without significant degradation of the polymer backbone. The protecting groups are needed to prevent cross-reaction of these otherwise free carboxylic acid groups (i) with the phosgene used in the preparation of polycarbonates and (ii) with the carbodiimide reagents used in the preparation of polyarylates.
  • The resulting polymers with protected carboxylic acid groups are limited in application because of their slow rate of degradation and significant hydrophobicity. The free acid form of the polymers, in which the ester protecting groups have been removed from the pendent carboxylic acid chains of the diphenols, would be less hydrophobic and thus would be expected to exhibit somewhat increased degradation rates.
  • In polycarbonates, polyarylates and poly (alkylene oxide) block copolymers thereof prepared from tyrosine-derived diphenol monomers, the backbone contains bonds that are designed to degrade in aqueous media (acidic, neutral, or basic). Thus, the selective removal of any carboxylic acid protecting groups is a challenge. For polyarylates and poly (alkylene oxide) block copolymers thereof, the ester protecting groups cannot be removed by conventional hydrolysis techniques without complete degradation of the polymer backbone. For polycarbonates and poly (alkylene oxide) block copolymers thereof, the ester protecting groups cannot be removed by conventional hydrolysis techniques without massive degradation of the polymer backbone. Since cleavage of the pendent ester groups becomes slower (relative to backbone cleavage) as the bulkiness of the pendent group increases, conventional hydrolysis of methyl and ethyl ester pendent chains is accompanied by a dramatic loss of molecular weight, while attempts to remove bulkier ester pendent chains by either basic or acidic hydrolysis of polycarbonates results in total destruction of the polymer and the recovery of oligomeric species only. Thus, conventional hydrolysis of polycarbonates and poly (alkylene oxide) block copolymers thereof is of marginal value if applied to methyl or ethyl ester pendent chains and is entirely unsuitable for the removal of bulkier pendent chains.
  • There exist several needs that can be addressed by the incorporation of free carboxylic acid groups to the above mentioned polymer systems. First, the presence of free carboxylic acid groups on polymeric surfaces allows for the modification of the surface properties via the chemical attachment of selected pendent chains, the attachment of biologically active molecules, or the attachment of drugs moieties. Second, the presence of free carboxylic acid groups by itself is a strong regulator of cell attachment, growth and migration on polymeric surfaces. This is of particular importance in the design of medical implant materials that are used in tissue engineering applications where the exact control of cell attachment, spreading and proliferation is a key to the success of the tissue engineering implant.
  • There exists a need for degradable, biocompatible polymer systems whose design includes the convenient formation of a pendent carboxylic acid group at each monomeric repeat unit without significant backbone degradation. A second need is the need to control the polymer degradation rate through small changes in polymer composition.
  • SUMMARY OF THE INVENTION
  • These needs are met by the present invention. It has now been found that the incorporation of pendent carboxylic acid groups within the polymer bulk has a dramatic and previously unrecognized accelerating effect on the rate of polymer backbone degradation and resorption both in vitro and in vivo. Thus, the present invention makes it possible to modulate the rates of degradation and resorption to such a surprising extent that rod-like devices can be formulated that resorb completely from about 5 hours all the way to 3 years post implantation-simply by modifying the percentage of pendent carboxylic acid pendent chains available along the polymer backbone.
  • The present invention makes it possible to create pendent carboxylic acid groups on the polymer surface without concomitant backbone cleavage. This is in important difference relative to conventionally used medical polymers such as poly (lactic acid), poly (glycolic acid), polycaprolactone and others where the polymer backbone has to be cleaved (with the associated reduction in molecular weight and physical strength) in order to create chemically reactive attachment sites at the polymer surface. Thus, the present invention significantly improves the versatility and utility of the above mentioned polymer systems, specifically polycarbonates, polyarylates, and the respective poly (alkylene oxide) copolymers thereof.
  • Thus, a new method has now been discovered for preparing new polymeric materials in which the ester of pendent carboxylic acid groups is selectively removed from the polymer backbone. The resulting polymers contain pendent carboxylic acid groups on some or all of their monomeric repeating subunits. The pendent carboxylic acid groups impart increased hydrophilicity to the polymers and result in unexpected useful new properties. Polycarbonates, polyarylates, and poly (alkylene oxide) block copolymers thereof, with pendent carboxylic acid groups have been prepared.
  • In particular, it has now been discovered that benzyl esters of pendent polymer carboxylic acid groups may be selectively removed by palladium-catalyzed hydrogenolysis in N,N-dimethylformamide (DMF) or similar solvents such as N,N-dimethylacetamide (DMA) and N-methylpyrrolidone (NMP) to form pendent carboxylic acid groups. Although this reaction is very well known in the literature for the removal of benzyl esters from monomeric or low molecular weight compounds, the present application of this approach to the selective removal of benzyl ester groups from biodegradable polycarbonates and polyarylates is heretofore unknown. By varying the molar ratio of monomeric repeating subunits having pendent benzyl carboxylate groups to the monomeric repeating subunits having other alkyl or alkylaryl carboxylate groups within a polymer, the molar ratio of monomeric repeating subunits having pendent carboxylic acid groups within a polymer may be varied after completion of the selective removal of the benzyl carboxylate groups.
  • Therefore, according to one aspect of the present invention, polymers are provided having monomeric repeating units defined in Formula I as follows:
  • Figure US20080152690A1-20080626-C00003
  • Formula I represents a diphenolic unit wherein R9 is an alkyl, aryl or alkylaryl group with up to 18 carbons with the specific proviso that this group contains as part of its structure a carboxylic acid group or the benzyl ester thereof. R9 can also contain non-carbon atoms such as nitrogen and oxygen. In particular, R9 can have a structure related to derivatives of the natural amino acid tyrosine, cinnamic acid, or 3-(4-hydroxyphenyl) propionic acid. In these cases, R9 assumes the specific structures shown in Formulae II and III.
  • Figure US20080152690A1-20080626-C00004
  • The indicators a and b in Formulae II and III can be independently 0, 1, or 2. R2 is hydrogen or a benzyl group.
  • A second diphenolic subunit of the polymer is defined in Formula IV. In this second diphenolic subunit, R12 is an alkyl, aryl or alkylaryl group substituted with a carboxylic acid ester group, wherein the ester is selected from straight and branched alkyl and alkylaryl esters containing up to 18 carbon atoms, and ester derivatives of biologically and pharmaceutically active compounds covalently bonded to the polymer, provided that the ester group is not a benzyl group or any other chemical moiety that may potentially be cleaved by hydrogenolysis. R12 can also contain non-carbon atoms such as nitrogen and oxygen. In particular, R12 can have a structure related to derivatives of the natural amino acid tyrosine, cinnamic acid, or 3-(4-hydroxyphenyl) propionic acid.
  • Figure US20080152690A1-20080626-C00005
  • For derivatives of tyrosine, 3-(4-hydroxyphenyl) propionic acid and cinnamic acid, R12 assumes the specific structures shown in Formulae V and VI:
  • Figure US20080152690A1-20080626-C00006
  • The indicators c and d can be independently 0, 1 or 2. R1 is selected from straight and branched alkyl and alkylaryl groups containing up to 18 carbon atoms, and ester derivatives of biologically active compounds covalently bonded to the diphenol, provided that R1 is not a benzyl group.
  • Some polymers of this invention may also contain blocks of poly (alkylene oxide) as defined in Formula VII. In Formula VII, R7 is independently an alkylene group containing up to 4 carbons and k is between about 5 and 3,000.

  • —O—R7—(O—R7)k  Formula VII
  • A linking bond, designated as “A” is defined to be either
  • Figure US20080152690A1-20080626-C00007
  • where R8 is selected from saturated and unsaturated, substituted and unsubstituted alkyl, aryl and alkylaryl groups containing up to 18 carbon atoms. Thus, polymers in accordance with the present invention have the structure of Formula VIII:
  • Figure US20080152690A1-20080626-C00008
  • In formula VIII, x and f are the molar ratios of the various subunits. X and f can range from 0 to 0.99. It is understood that the presentation of Formula VIII is schematic and that the polymer structure presented by Formula VIII is a true random copolymer where the different subunits can occur in any random sequence throughout the polymer backbone. Formula VIII provides a general chemical description of polycarbonates when A is
  • Figure US20080152690A1-20080626-C00009
  • and of polyarylates when A is
  • Figure US20080152690A1-20080626-C00010
  • Furthermore, several limiting cases can be discerned: When x=0, the polymer contains only benzyl ester pendent chains which, after hydrogenolysis as described below, will provide pendent carboxylic acid groups at each diphenolic repeat unit. If x is any fraction greater than 0 but smaller than 1, a copolymer is obtained that contains a defined ratio of benzyl ester and non-benzyl ester carrying pendent chains. After hydrogenolysis, a copolymer is obtained that contains a defined ratio of carboxylic acid groups as pendent chains.
  • If f=0, the polymers do not contain any poly (alkylene oxide) blocks. The frequency at which poly (alkylene oxide) blocks can be found within the polymer backbone increases as the value of f increases.
  • According to another aspect of the invention, a method is provided for the preparation of the above-defined polymers by:
  • preparing a reaction mixture of a polymer having the structure of Formula VIII, in which R9 has a pendent benzyl-protected carboxylic acid group, in an anhydrous reaction solvent consisting essentially of one or more solvents selected from DMF, DMA and NMP;
  • and contacting the reaction mixture with a palladium catalyst in the presence of a hydrogen source so that the benzyl ester groups are selectively removed by hydrogenolysis.
  • Benzyl group removal by hydrogenolysis in the present invention has been successfully performed upon polycarbonates, polyarylates and poly (alkylene oxide) block copolymers thereof when a benzyl ester protecting group was present. The polymers may be homopolymers of the first repeating subunit of Formula I, or the polymers may be copolymers of the first repeating subunit of Formula I and a second repeating subunit having a structure of Formula IV. The polymers may also contain poly (alkylene oxide) blocks as defined in Formula V and the linking bond “A” may be
  • Figure US20080152690A1-20080626-C00011
  • where R8 is selected from saturated and unsaturated, substituted and unsubstituted alkyl, aryl and alkylaryl groups containing up to 18 carbon atoms.
  • The present invention incorporates the discovery that pure DMF, DMA, or NMP are necessary as the reaction solvent. It was a surprising and unexpected result that no reaction was observable in methylene chloride, methanol, or solvent mixtures containing various ratios of methylene chloride, methanol, and DMF. Another unexpected result was that the reaction medium has to be anhydrous and that the solvents have to be dried to ensure complete removal of all benzyl ester groups in the hydrogenolysis reaction. In preferred methods in accordance with the present invention, the palladium catalyst is palladium on barium sulfate. This catalyst is recoverable and reusable, thereby dramatically reducing the cost of the hydrogenolysis.
  • Preferred methods in accordance with the present invention also use 1,4-cyclohexadiene, a transfer hydrogenolysis reagent, in combination with hydrogen gas as a hydrogen source. It has been unexpectedly discovered that at ambient pressure the hydrogenolysis can be accelerated dramatically by the exposure of the reaction mixture to a combination of 1,4-cyclohexadiene and hydrogen gas. If desired, the reaction can be performed at high pressure in a PARR hydrogenolysis apparatus. At high pressure conditions, the addition of 1,4-cyclohexadiene is not required to ensure complete removal of all benzyl ester groups from the polymers.
  • The benzyl carboxylate polycarbonate homopolymers and copolymers of the present invention are novel and non-obvious intermediate compounds having utility in the preparation of polycarbonates having pendent carboxylic acid groups. Likewise, the benzyl carboxylate polyarylate homopolymers and copolymers of the present invention are novel and non-obvious intermediate compounds having utility in the preparation of polyarylates having pendent carboxylic acid groups.
  • The polymers of the present invention having pendent carboxylic acid groups meet the need for processible biocompatible biodegradable polymers. Therefore, the present invention also includes implantable medical devices containing the polymers of the present invention having pendent carboxylic acid groups. In one embodiment of the present invention, the polymers are combined with a quantity of a biologically or pharmaceutically active compound sufficient for effective site-specific or systemic drug delivery as described by Gutowska et al., J. Biomater. Res., 29, 811-21 (1995) and Hoffman, J. Controlled Release, 6, 297-305 (1987). The biologically or pharmaceutically active compound may be physically admixed, embedded in or dispersed in the polymer matrix. In another embodiment of the present invention, the polymer is in the form of a sheet or a coating applied to exposed injured tissue for use as a barrier for the prevention of surgical adhesions as described by Urry et al., Mat. Res. Soc. Symp. Proc., 292, 253-64 (1993).
  • Another aspect of the present invention provides a method for site-specific or systemic drug delivery by implanting in the body of a patient in need thereof an implantable drug delivery device containing atherapeutically effective amount of a biologically or pharmaceutically active compound in combination with a polymer of the present invention. Yet another aspect of the present invention provides a method for preventing the formation of adhesions between injured tissues by inserting as a barrier between the injured tissues a sheet or a coating of a polymer of the present invention.
  • As noted above, derivatives of biologically and pharmaceutically active compounds, including drugs, can be attached to the polymer backbone by covalent bonds linked to the carboxylic acid pendent chain. This provides for the sustained release of the biologically or pharmaceutically active compound by means of hydrolysis of the covalent bond between the drug and the polymer backbone.
  • In addition, the pendent carboxylic acid groups of the polymers in the present invention provide the polymers with a pH dependent dissolution rate. This further enables the polymers to be used as coatings in gastrointestinal drug release carriers to protect some biologically and pharmaceutically active compounds such as drugs from degrading in the acidic environment of the stomach. The copolymers of the present invention having a relative high concentration of pendent carboxylic acid groups are stable and water insoluble in acidic environments but dissolve/degrade rapidly when exposed to neutral or basic environments. By contrast, copolymers of low acid to ester ratios are more hydrophobic and will not degrade/resorb rapidly in either basic or acidic environments. Therefore, another aspect of the present invention provides a controlled drug delivery system in which a biologically or pharmaceutically active agent is physically coated with a polymer of the present invention.
  • The polymers prepared from tyrosine-derived diphenol compounds having pendent carboxylic acid groups are more hydrophilic. Therefore, the polymers of the present invention having carboxylic acid groups will be more readily resorbable under physiological conditions than the previously known polycarbonates and polyarylates. The polymers of the present invention, because they are more hydrophilic, have a higher water uptake, and when the monomeric subunits having carboxylic acid groups predominate, they are more soluble in aqueous media. When the monomeric repeating subunits having pendent carboxylic acid groups do not predominate, the polymers may slowly dissolve in aqueous media with slower degradation. The dissolution/degradation rates are highly pH dependent.
  • As noted above, the pendent carboxylic acid groups on the polymers of the present invention can function to regulate cell attachment, growth and migration on the polymer surfaces. Therefore, according to yet another aspect of the present invention, a method is provided for regulating cellular attachment, migration and proliferation on a polymeric substrate by contacting living cells, tissues or biological fluids containing living cells with the polymers of the present invention having pendent carboxylic acid groups. The degree of copolymerization, i.e., the ratio of pendent carboxylic acid groups to pendent ester groups, can be attenuated to provide polymers that promote cellular attachment, migration and proliferation, as well as polymers that inhibit attachment, migration and proliferation.
  • A more complete appreciation of the invention and many other intended advantages can be readily obtained by reference to the following detailed description of the preferred embodiment and claims, which disclose the principles of the invention and the best modes which are presently contemplated for carrying them out.
  • BRIEF DESCRIPTION OF THE DRAWING
  • FIG. 1 depicts percent mass retention vs. time of poly (0.5DT-0.5DTE carbonate) poly (DT carbonate)(-*-) and poly (DTE carbonate) polymer compositions in vitro under physiological conditions.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The method of the present invention provides polycarbonates and polyarylates, as well as poly (alkylene oxide) block polymers thereof, having pendent carboxylic acid groups on some or all of their monomeric subunits. The polymers having pendent carboxylic acid groups are prepared by the hydrogenolysis of polymeric starting materials having corresponding pendent benzyl carboxylate groups. The benzyl carboxylate polymeric starting materials are polymerized from diphenol compounds having benzyl ester protected pendent carboxylic acid groups, alone, or in combination with diphenol compounds having other ester-protected carboxylic acid groups. In particular, the benzyl carboxylate diphenols have the structure of Formula Ia:
  • Figure US20080152690A1-20080626-C00012
  • wherein R9 is the same as described above with respect to Formula I, but limited to the species that contains as part of its structure a benzyl ester protected carboxylic acid group. The benzyl carboxylate diphenols preferably have the structure of Formula Ia in which R9 has the structure of Formula II or Formula III in which R2 is a benzyl group. Among the preferred diphenols are compounds in which Rg has the structure of Formula II in which a and b are independently one or two. Most preferably, a is two and b is one. These most preferred compounds are tyrosine dipeptide analogues known as desaminotyrosyl-tyrosine alkyl or alkylaryl esters. In this preferred group the diphenols can be regarded as derivatives of tyrosyl-tyrosine dipeptides from which the N-terminal amino group has been removed.
  • Diphenol compounds having other ester-protected carboxylic acid groups have the structure of Formula IVa:
  • Figure US20080152690A1-20080626-C00013
  • wherein R12 is the same as described above with respect to Formula IV. R12 preferably has the structure of Formula V or Formula VI. More preferably, R12 has the structure of Formula V in which c and d are preferably independently one or two. Most preferably, c is two and d is one.
  • Methods for preparing the diphenol monomers are disclosed in commonly owned U.S. Pat. Nos. 5,587,507 and 5,670,602, the disclosures of both of which are hereby incorporated by reference. The preferred desaminotyrosyl-tyrosine esters are the ethyl, butyl, hexyl, octyl and benzyl esters. For purposes of the present invention, desaminotyrosyl-tyrosine ethyl ester is referred to as DTE, desaminotyrosyl-tyrosine benzyl ester is referred to as DTBn, and the like. For purposes of the present invention, the desaminotyrosyl-tyrosine free acid is referred to as DT.
  • The polymers of the present invention may be homopolymers with each monomeric subunit having a pendent carboxylic acid group prepared by the hydrogenolysis of corresponding benzyl carboxylate homopolymers. Copolymers of diphenol monomers having pendent carboxylic acid ester groups, and diphenol monomers having pendent carboxylic acid groups can also be incorporated into the basic backbone structure of the polymers by the hydrogenolysis of corresponding copolymers of benzyl ester monomers and monomers having pendent esters other than benzyl carboxylates.
  • Thus, for example, poly (DT carbonates) are prepared by the hydrogenolysis of poly (DTBn carbonates), poly (DT-DTE carbonate) copolymers are prepared by the hydrogenolysis of poly (DTBn-DTE carbonate) copolymers, and so forth. One can thus vary within polymers the molar ratios of the monomeric subunits having pendent alkyl and alkylaryl ester groups and the monomeric subunits having pendent carboxylic acid groups.
  • Polymers in accordance with the present invention include homopolymers of a repeating unit having a pendent carboxylic acid group. Such homopolymers have the structure of Formula VIII in which x and f are both zero and R9 is the same as described above with respect to Formula I with the proviso that it is limited to species having pendent carboxylic acid groups. The homopolymers are prepared by the hydrogenolysis of corresponding homopolymers having the structure of Formula VIII in which x and f are both zero and R9 is the same as described above with respect to Formula I, with the proviso that it is limited to species having pendent benzyl carboxylate groups.
  • Polymers in accordance with the present invention also include copolymers having pendent carboxylic acid groups with the structure of Formula VIII in which f is zero, x is a number greater than zero but less than one, R12 is the same as described above with respect to Formula IV and R9 is the same as described above with respect to Formula I, with the proviso that it is limited to species with pendent carboxylic acid groups. In copolymers in accordance with the present invention, x is preferably between about 0.50 and about 0.90 and more preferably between about 0.60 and about 0.80.
  • Copolymers having pendent carboxylic acid groups are prepared by the hydrogenolysis of corresponding copolymers having the structure of Formula VIII in which f is zero, x is a number greater than zero but less than one, R12 is the same as described above with respect to Formula IV and R9 is the same as described above with respect to Formula I, with the proviso that it is limited to species with pendent benzyl carboxylate groups. In preferred copolymers in accordance with the present invention, R9 has the structure of either Formula II or Formula III and R12 has the structure of either Formula V or Formula VI, in which R1, R2, a, b, c and d are the same as described above with respect to Formulae II, III, V and VI.
  • In more preferred copolymers, R9 has the structure of Formula II and R12 has the structure of Formula V in which a, b, c and d are independently one or two. Most preferably, a and c are two and b and d are one.
  • When A of Formula VIII is:
  • Figure US20080152690A1-20080626-C00014
  • the polymers of the present invention are polycarbonates. The polycarbonate homopolymer and copolymer starting materials having pendent benzyl carboxylate groups may be prepared by the method described by U.S. Pat. No. 5,099,060 and by U.S. patent application Ser. No. 08/884,108 filed Jun. 27, 1997, the disclosures of both of which are also incorporated herein by reference. The described method is essentially the conventional method for polymerizing diphenols into polycarbonates. Suitable processes, associated catalysts and solvents are known in the art and are taught in Schnell, Chemistry and Physics of Polycarbonates, (Interscience, New York 1964), the teachings of which are incorporated herein by reference.
  • Polycarbonate homopolymers and copolymers in accordance with the present invention having pendent carboxylic acid groups, and the polycarbonates having pendent benzyl carboxylate groups from which they are prepared, have weight-average molecular weights ranging between about 20,000 to about 400,000 daltons, and preferably about 100,000 daltons, measured by gel permeation chromatography (GPC) relative to polystyrene standards without further correction.
  • When A of Formula VIII is:
  • Figure US20080152690A1-20080626-C00015
  • the polymers of the present invention are polyarylates. The polyarylate homopolymer and copolymer starting materials having pendent benzyl carboxylate groups may be prepared by the method described by U.S. Pat. No. 5,216,115, in which diphenol compounds are reacted with aliphatic or aromatic dicarboxylic acids in carbodiimide mediated direct polyesterification using 4-(dimethylamino) pyridinium-p-toluene sulfonate (DPTS) as a catalyst to form aliphatic or aromatic polyarylates. The disclosure of this patent is also incorporated herein by reference. It should be noted that R should not be substituted with functional groups that would cross-react with the dicarboxylic acids.
  • Dicarboxylic acids from which the polyarylate starting materials of the present invention may be polymerized have the structure of Formula IX:
  • Figure US20080152690A1-20080626-C00016
  • in which, for the aliphatic polyarylates, R8 is selected from saturated and unsaturated, substituted and unsubstituted alkyl groups containing up to 18 carbon atoms, and preferably from 4 to 12 carbon atoms. For aromatic polyarylates, R8 is selected from aryl and alkylaryl groups containing up to 18 carbon atoms, but preferably from 8 to 14 carbon atoms. Again, R8 should not be substituted with functional groups that would cross-react with the diphenols.
  • R8 is even more preferably selected so that the dicarboxylic acids from which the polyarylate starting materials are polymerized are either important naturally-occurring metabolites or highly biocompatible compounds. Preferred aliphatic dicarboxylic acids therefore include the intermediate dicarboxylic acids of the cellular respiration pathway known as the Krebs Cycle. These dicarboxylic acids include alpha-ketoglutaric acid, succinic acid, fumaric acid, maleic acid and oxalacetic acid. Other preferred biocompatible aliphatic dicarboxylic acids include sebacic acid, adipic acid, oxalic acid, malonic acid, glutaric acid, pimelic acid, suberic acid and azelaic acid. Among the preferred aromatic dicarboxylic acids are terephthalic acid, isophthalic acid and bis(p-carboxyphenoxy) alkanes such as bis(p-carboxyphenoxy) propane. Stated another way, R8 is more preferably a moiety selected from —CH2—C(═O)—, —CH2—CH2—C(═O)—, —CH═CH— and (—CH2—)z, wherein z is an integer between two and eight, inclusive.
  • Polyarylate homopolymers and copolymers in accordance with the present invention having pendent carboxylic acid groups, and the corresponding polyarylates having pendent benzyl carboxylate groups from which they are prepared, have weight average molecular weights between about 20,000 and about 400,000 daltons, and preferably about 100,000 daltons, measured by GPC relative to polystyrene standards without further correction.
  • Polycarbonates and polyarylates in accordance with the present invention also include random block copolymers with a poly (alkylene oxide) having pendent carboxylic acid groups with the structure of Formula VIII, wherein f is greater than zero but less than one, R12 is the same as described above with respect to Formula IV, k and R7 are the same as described above with respect to Formula VII, and R9 is the same as described above with respect to Formula I, with the proviso that it is limited to species having pendent carboxylic acid groups. The value for x is less than one, but x may or may not be greater than zero.
  • The molar fraction of alkylene oxide in the block copolymer, f, ranges between about 0.01 and about 0.99. The block copolymers having pendent carboxylic acid groups are prepared by the hydrogenolysis of corresponding block copolymers having the structure of Formula VIII, wherein x is greater than zero but less than one, R12 is the same as described above with respect to Formula IV, k and R7 are the same as described above with respect to Formula VII, and R9 is the same as described above with respect to Formula I, with the proviso that it is limited to species having pendent benzyl carboxylate groups. Again, the value for x is less than one, but may or may not be greater than zero.
  • For preferred polymeric starting materials and the resulting free acid block copolymers, R7 is ethylene, k is between about 20 and about 200, and the molar fraction of alkylene oxide in the block copolymer, f, preferably ranges between about 0.05 and about 0.75. R7 may also represent two or more different alkylene groups within a polymer.
  • The block copolymers of the present invention having pendent benzyl carboxylate groups may be prepared by the method described by U.S. Pat. No. 5,658,995, the disclosure of which is also incorporated herein by reference. For block copolymers of the present invention having either pendent carboxylic acid groups or pendent benzyl carboxylate groups in which x is greater than zero, the molar fraction of alkylene oxide and block copolymer, f, will remain between about 0.01 and about 0.99.
  • The block copolymers in accordance with the present invention having pendent carboxylic acid groups, and the block copolymers having pendent benzyl carboxylate groups from which they are prepared, have weight-average molecular weights between about 20,000 and about 400,000 daltons, and preferably about 100,000 daltons. The number-average molecular weights of the block copolymers are preferably above about 50,000 daltons. Molecular weight determinations are measured by GPC relative to polystyrene standards without further correction.
  • For the copolymers of the present invention having the structure of Formula VIII in which x is greater than zero, the pendent carboxylic acid ester group of R12 can be an ester derivative of a biologically or pharmaceutically active compound covalently bonded to the polycarbonate or polyarylate copolymer. The covalent bond is by means of an amide bond when in the underivatized biologically or pharmaceutically active compound a primary or secondary amine is present at the position of the amide bond in the derivative. The covalent bond is by means of an ester bond when in the underivatized biologically or pharmaceutically active compound a primary hydroxyl is present at the position of the ester bond in the derivative. The biologically or pharmaceutically active compounds may also be derivatized at a ketone, aldehyde or carboxylic acid group with a linkage moiety that is covalently bonded to the copolymer or diphenol by means of an amide or ester bond.
  • Detailed chemical procedures for the attachment of various drugs and ligands to polymer bound free carboxylic acid groups have been described in the literature. See, for example, Nathan et al., Bio. Cong. Chem., 4, 54-62 (1993). The disclosure of this publication is incorporated herein by reference.
  • Examples of biologically or pharmaceutically active compounds suitable for use with the present invention include acyclovir, cephradine, malphalen, procaine, ephedrine, adriamycin, daunomycin, plumbagin, atropine, quinine, digoxin, quinidine, biologically active peptides, chlorin e6, cephradine, cephalothin, cis-hydroxy-L-proline, melphalan, penicillin V, aspirin, nicotinic acid, chemodeoxycholic acid, chlorambucil, and the like. The compounds are covalently bonded to the polycarbonate or polyarylate copolymer by methods well understood by those of ordinary skill in the art. Drug delivery compounds may also be formed by physically blending the biologically or pharmaceutically active compound to be delivered with the polymers of the present invention having pendent carboxylic acid groups using conventional techniques well-known to those of ordinary skill in the art.
  • For purposes of the present invention, biologically active compounds are also defined as including crosslinking moieties, such as molecules with double bonds (e.g., acrylic acid derivatives), which can be attached to the pendent carboxylic acid groups for crosslinking to increase the strength of the polymers. Biologically active compounds, for purposes of the present invention, are additionally defined as including cell attachment mediators, biologically active ligands and the like.
  • As noted above, the polymers of the present invention contain pendent carboxylic acid groups at selected repeating subunits. For the purposes of the present invention, homopolymers (Formula VIII, x=0) are defined as containing a pendent carboxylic acid group at each diphenolic subunit. These homopolymers can be polycarbonates or polyarylates and may contain polyalkylene oxide blocks. The homopolymers are best described as new, degradable polyanions that may have a number of pharmacological and biological activities. Likewise, for the purposes of the present invention, copolymers (Formula VIII, 0<x<1) are defined as containing a pendent carboxylic acid group at some of the diphenolic subunits. These copolymers can be polycarbonates or polyarylates and may contain polyalkylene oxide blocks.
  • In terms of processability, homopolymers (as defined above) tend to have very high glass transition temperatures because of strong intrachain and interchain hydrogen bonding. Homopolymers are soluble in water because of the high density of free carboxylic acid groups present and have a pH-dependent solubility profile. Their solubility is significantly reduced in slightly acidic media. Homopolymers are also soluble in commonly used organic solvents such as mixtures of methylene chloride and methanol. Because of their solubility in both water and organic media, they can be processed by solvent casting techniques and are good film formers. Homopolymers can also be processed into porous foams by salt leaching techniques as described in Freed et al., J. Biomed. Mater. Res., 27, 11-23 (1993), as long as the aqueous extraction steps are performed inslightly acidic media (pH 4-5) so that the homopolymers do not dissolve. Homopolymers can also be processed into porous foams by phase separation techniques, as described in Schugens et al., J. Biomed. Meter. Res., 30, 449-462 (1996) as long as a saturated solution of sodium chloride is used instead of water as the “non-solvent”. The disclosure of these publications is incorporated herein by reference.
  • The copolymers as defined above may contain from about 1 to about 99 mole percent of monomeric subunits having pendent carboxylic acid groups. Their properties are strongly affected by the mole fraction of free carboxylic acid groups present. Copolymers that have less than 20 molar percent of monomeric repeating subunits with pendent carboxylic acid groups are processible by compression molding and extrusion. As a general rule, copolymers with less than 20 molar percent of monomeric repeating subunits with pendent carboxylic acid groups are not soluble in water.
  • For copolymers having more than 20 mole percent of monomeric subunits with pendent carboxylic acid groups, some thermal degradation has been observed during conventional compression molding and extrusion at elevated temperatures. Copolymers having more than 20 mole percent of monomeric subunits with pendent carboxylic acid groups tend to exhibit increased swelling (due to imbibition of water) during exposure to aqueous media and when more than about 50 mole percent of monomeric subunits carry free carboxylic acid groups, the copolymer tend to become water soluble and their behavior will be similar to the behavior of the corresponding homopolymers, which dissolve in pH 7.4 phosphate buffer to the extent of about 2 mg/mL.
  • Irrespective of the amount of carboxylic acid groups, all copolymers of the present invention are good film-forming materials. Copolymers having less than about 70 mole percent of monomeric subunits with pendent carboxylic acid groups can be processed into porous foams by salt leaching techniques as described in Freed et al., J. Biomed. Mater. Res., 27, 11-23 (1993), or by phase separation techniques, as described in Schugens et al., J. Biomed. Meter. Res., 30, 449-462 (1996). The disclosure of these publications is incorporated herein by reference. Copolymers having more than about 70 mole percent of monomeric subunits with pendent carboxylic acid groups tend to be water soluble and must be processed into porous foams as described for the corresponding homopolymers.
  • It has now been found that the free carboxylic acid groups have a profound effect on the degradation and resorption rates of the polymers of the present invention. This makes it possible to fine-tune the degradation/resorption of the polymers of the present invention by controlling the molar fraction of free carboxylic acid groups (as defined with respect to Formula VIII). This is a significant advantage over the polycarbonates and polyarylates of the prior art which do not have pendent free carboxylic acid groups and whose degradation/resorption rate could not be readily varied by small changes in the polymer structure. The effect of the free carboxylic acid groups on degradation/resorption can be very dramatic as shown by the example of a polycarbonate: Poly (DTE carbonate) is a polymer defined by Formula VIII where x=1, f=0, and R12 is defined by Formula V where c=2, d=1 and R1, ═CH2—CH3. It has been found previously, that this polymer will not lose any mass when stored in phosphate buffered solution under physiological conditions for over 18 months. However, if about 20 mole percent of the R1, groups are replaced by free carboxylic acid groups, thin films of the corresponding copolymer will exhibit significant mass loss after as little as 20 weeks under identical storage conditions. If about 50 percent of the R1, groups are replaced by free carboxylic acid groups, thin films of the corresponding copolymer will completely degrade/dissolve within about one week.
  • The composition of the polymers of the present invention can also be used to influence the interactions with cells. When the polycarbonates or polyarylates of the present invention do not contain polyalkylene oxide (f=0 in Formula VE), they can be more adhesive growth substrates for cell cultures compared to the ester-protected polymers of the prior art. The negative charge from the free carboxylic acid groups present on the surface of the polymers has been discovered to improve the attachment and growth of rat lung fibroblasts and may facilitate specific interactions with proteins, peptides and cells. The polymers are thus useful as scaffolding implants for tissue reconstruction. The polymer surfaces may also be modified by simple chemical protocols to attach specific peptides, in particular, the important peptides containing variations of the “RGD” integrin binding sequence known to affect cellular attachment in a profound way. Thus, the ability to immobilize peptides and proteins via the free carboxylic acid groups onto the polymer surface to elicit selective cellular responses will be of major importance in tissue engineering applications and in implant design. The necessary chemical techniques to attach ligands to polymer-bound carboxylic acid groups are well known in the art and have, among others, been described by Nathan et al., Bioconj. Chem., 4, 54-62 (1993). The disclosure of this publication is incorporated herein by reference.
  • On the other hand, the incorporation of polyalkylene oxide blocks decreases the adhesiveness of the polymeric surfaces. Polymers for which f is greater than 5 mole percent according to Formula Vin are resistant to cell attachment and may be useful as non-thrombogenic coatings on surfaces in contact with blood. These polymers also resist bacterial adhesion.
  • The polymers of the present invention having pendent carboxylic acid groups may be prepared by the palladium-catalyzed hydrogenolysis of corresponding polymers having pendent benzyl carboxylate groups. Essentially any palladium-based hydrogenolysis catalyst is suitable for use with the present invention. Palladium on barium sulfate is preferred because it has been found to be the easiest to separate from the polymer. This not only provides a polymer of high purity, it also permits the efficient recycling of this expensive catalyst.
  • A level of palladium on barium sulfate between about 5 and about 10 percent by weight is preferred. Lower levels either extend reaction time or reduce yield and higher levels represent an unnecessary expense.
  • The use of dimethylformamide as the reaction solvent is critical. The polymer starting material having pendent benzyl carboxylate groups should be dissolved in dimethylformamide at a solution concentration (w/v %) between about 5 and about 50 percent, and preferably between about 10 and about 20 percent.
  • The polymer is stirred until a clear solution is obtained. The palladium catalyst is then added, after which the hydrogen source is supplied to the reaction mixture.
  • The amount of palladium catalyst to be employed is that amount that is effective to catalyze the hydrogenolysis reaction. The absolute mass ratio of elemental palladium to the polymer is not as important as the surface activity of the elemental palladium. The amount of a catalyst preparation to be used will depend upon the specific catalytic activity of the preparation, and this can be readily determined by one of ordinary skill in the art without undue experimentation.
  • For a preparation containing about 5 percent by weight of palladium on barium sulfate, between about 15 and about 30 weight percent, and preferably about 25 weight percent, of the preparation should be used relative to the polymeric starting material. If the catalyst preparation is being recycled, higher levels of the preparation will be needed, because as the catalyst is reused, the palladium is slowly deactivated, and the amount used must be adjusted to maintain the stated catalytic activity. However, the increases in catalyst levels needed to adjust for the loss of catalytic activity can also be determined by one of ordinary skill in the art without undue experimentation.
  • Essentially any hydrogen source for palladium-catalyzed hydrogenolysis is suitable for use with the present invention. For example, the reaction mixture may be supplied with a hydrogen gas blanket. Alternatively, a transfer hydrogenolysis reagent, such as 1,4-cyclohexadiene may be used. The use of a transfer hydrogenolysis reagent in combination with hydrogen gas blanketing is preferred. The reaction rate was found to accelerate dramatically when the two hydrogen sources were used together.
  • When the transfer hydrogenolysis reagent is employed as a hydrogen source, a stoichiometric excess relative to the polymeric starting material should be employed. With 1,4-cyclohexadiene, this represents an excess up to about 50 weight percent, and preferably about a 10 weight percent excess, relative to the polymeric starting material.
  • The hydrogenolysis reaction can also be performed under pressure of hydrogen gas in a PARR hydrogenolysis apparatus. Under these conditions, the removal of benzyl ester pendent chains is particularly fast and no transfer hydrogenolysis reagent needs to be added. Irrespective of the exact mode of conducting the reaction, it is important to maintain strictly anhydrous conditions.
  • The progress of the reaction can be measured by monitoring the removal of the benzyl ester from the polymeric starting material in reaction aliquots by NMR spectroscopy. When the reaction has come to completion (about 24 to 48 hours), the polymer is isolated by filtering off the solid palladium catalyst and the filtrate is added into water to precipitate the polymer. The polymer can then be purified by dissolving in 9:1 methylene chloride-methanol (about 10 percent to about 20 percent w/w) and reprecipitating in ether. The polymeric product may then be dried to constant weight under high vacuum.
  • The polymers of the present invention having pendent carboxylic acid groups are not limited to those polymers prepared by hydrogenolysis. Any other method that allows for the selective removal of a pendent carboxylate ester group is suitable for use in the preparation of the polymers of the present invention. For example, iodotrimethylsilane may be used to selectively remove methyl ester pendent chains in the presence of ethyl ester pendent chains. However, the hydrogenolysis method of the present invention is preferred because it produces a higher reaction yield.
  • The polymers of the present invention can find application in areas where both solid materials and solvent-soluble materials are commonly employed. Such applications include polymeric scaffolds in tissue engineering applications and medical implant applications, including the use of the polycarbonates and polyarylates of the present invention to form shaped articles such as vascular grafts and stents, bone plates, sutures, implantable sensors, barriers for surgical adhesion prevention, implantable drug delivery devices, scaffolds for tissue regeneration, and other therapeutic agent articles that decompose harmlessly within a known period of time.
  • Controlled drug delivery systems may be prepared, in which a biologically or pharmaceutically active agent is physically embedded or dispersed within a polymeric matrix or physically admixed with a polycarbonate or polyarylate of the present invention. Because the polymers of the present invention have a pH dependent dissolution rate, they are useful as drug coatings for gastrointestinal release to protect some drugs from degrading in the acidic environment of the stomach because the polymers are stable and non-water soluble in acidic environments but dissolve and degrade rapidly when exposed to neutral or basic environments.
  • The following non-limiting examples set forth hereinbelow illustrate certain aspects of the invention. All parts and percentages are by mole percent unless otherwise noted and all temperatures are in degrees Celsius. Poly(DTBn-DTE carbonates) were prepared using the method disclosed by U.S. Pat. No. 5,099,060. The 5 percent palladium on barium sulfate catalyst, 1,4-cyclohexadiene, and thionyl chloride were obtained from Acros Organics, a division of Fisher Scientific Company. Poly (ethylene glycol) 2000 (PEG 2000) was obtained from Aldrich Chemical Company. Tyrosine benzyl ester as its p-toluenesulfonic acid salt was obtained from Sigma Chemical Company. All solvents were HPLC grade. All other reagents were of analytical grade and were used as received.
  • EXAMPLES
  • Examples use the following product characterization procedures.
  • Spectroscopy
  • 1H NMR spectra and 13C NMR spectra were recorded respectively at 199.98 MHz and 49.99 MHz on a Varian Gemini 200 in 5 mm tubes at 10 percent (w/v) in deuterated solvents. Chemical shifts are reported in ppm.
  • Molecular Weights
  • Molecular weights were determined by GPC on a chromatographic system consisting of a Perkin-Elmer Model 410 pump, a Waters Model 410 Refractive Index Detector and a Perkin-Elmer Model 2600 computerized data station. Two PL-gel GPC columns (105 and 103 Angstrom pore size, 30 cm length) were operated in series at a flow rate of 1 mL/min tetrahydrofuran (THF). Polymer solutions (5 mg/mL) were prepared, filtered (0.45 micron membrane filter) and allowed to equilibrate for 30 minutes prior to injection. The injection volume was 25 microliters. Molecular weights were calculated relative to polystyrene standards (PolymerLaboratories, Inc.) without further corrections.
  • Thermal Analysis
  • Determination of product purity was based on melting point depression measured with a TA Instruments 910 Differential Scanning Calorimeter (DSC) calibrated with indium. For determination of the melting temperature, a 2.0 mg sample was subjected to a single run at a heating rate of 1 C/min. over a 60 C range.
  • Atomic Absorption
  • Residual levels of the catalyst preparation were measured by atomic absorption by Quantitative Technologies Inc.
  • The following table defines the abbreviations adopted for the diphenols illustrated by the examples below:
  • Desaminotyrosyl tyrosine free acid DT
    Desaminotyrosyl tyrosine ethyl ester DTE
    Desaminotyrosyl tyrosine benzyl ester DTBn
  • Example 1 Hydrogenolysis of Poly(DTBn5o-DTEsO Carbonate) Preparation
  • In a 500 mL round-bottomed flask was placed 15 g of poly (DTBn-DTE carbonate) which contained DTBn and DTE in a 1:1 ratio. To the flask was then added 150 mL of dry DMF and the mixture was stirred until a clear solution was obtained. To this solution were added 3.5 g of 5 percent Pd on BaSO4 catalyst and 7 mL of 1,4-cyclohexadiene (hydrogen donor). The mixture was stirred at room temperature. A rubber balloon filled with hydrogen gas was attached to the mouth of the flask using a gas inlet adapter. The balloon was replenished with hydrogen as needed. After about 40 h of stirring a 0.5 mL sample was withdrawn, centrifuged, and then precipitated by adding to water with stirring. The precipitate was dried and analyzed by 1H NMR, which showed complete conversion of the benzyl groups to free acid. The reaction was stopped and the reaction mixture was centrifuged. The supernatant was filtered using 0.45 tM syringe filter in several portions. (A celite bed on a fritted glass funnel can also be used for the filtration.) A clear light yellow filtrate was obtained. The filtrate was added to 1.5 L of deionized water with agitation using a mechanical stirrer. (A high speed blender can also be used for the precipitation to obtain finely divided particles.) The precipitated product was isolated by filtration and washed with 750 mL of water in a high speed blender. The product was dried in a nitrogen stream for 16 h and then dried in a vacuum oven at room temperature for two days. For further purification, the product was dissolved in 150 mL of 9:1 methylene chloride-methanol and precipitated with 1.5 L of ether and then dried as above.
  • The hydrogenation can also be carried out in a PARR hydrogenator at high hydrogen pressures (60 psi). When a hydrogenator is used at high hydrogen pressures, the transfer hydrogen donor, 1,4-cyclohexadiene is not necessary.
  • Structure Proof
  • The 1H NMR spectrum of the product in DMSO-d6 showed the following resonances (8, ppm relative to TMS): 8.40 (br s, 1H, NH of DTE), 8.25 (br s, 1H, NH of DT), 7.15-7.35 (m, 8H, aromatic H's), 4.50 (m, 1H, CH of tyrosine), 4.03 (q 1H, CH 2, —CH3), 2.20-3.20 (M, 6H, CH2's of DAT and Tyrosine), 1.11 (t., 1.5H, CH2, —CH 3). Also a multiplet that is found in poly(DTBn-DTE carbonate) at 5.1 ppm for benzyl H's was completely absent indicating complete removal of the benzyl protecting group. The equal intensity of the two NH peaks indicate that the DT and DTE are in equal concentration. The ratio of H's of tyrosine CH to the H's of CH2, —CH3 show that there is one ethyl ester group for every two monomer subunits. These spectral data indicate that the polymer contains DT and DTE in 1:1 ratio and the benzyl protecting group is completely removed.
  • Characterization
  • The molecular weight of the product was determined by GPC using the THF as the mobile phase. A Mw of 74 Kda and Mn 47 Kda were obtained. The Tg of the polymer was found to be 114° C. by DSC and the decomposition temperature (for 10 percent decomposition) was 309° C. Atomic absorption measurements showed a Pd concentration of 39 ppm and a barium concentration less than the detection limit (10 ppm).
  • Example 2 Hydrogenolysis of Poly(DTBn0.05-DTE0.95 Carbonate) Preparation
  • The hydrogenolysis of a 15 gram sample of poly (DTBn-DTE carbonate), which contained DTBn and DTE in a 1:19 ratio and had a Mw of 286 Kda and Mn of 116 Kda was performed as in Example 1.
  • Structure Proof
  • The 1H NMR spectrum of the product in DMSO-d6 showed the following resonances (δ, ppm relative to TMS): 8.40 (br s, 0.95H, NH of DTE), 8.25 (br s, 0.05H, NH of DT), 7.15-7.35 (m, 8H, aromatic H's), 4.71 (m, 1H, CH of tyrosine), 4.03 (q, 1.9H, CH 2—CH3), 2.1-3.3 (m, 6H, CH2's of DAT and Tyrosine), 1.11 (t, 2.85H, CH2—CH 3). Also a multiplet that is found in poly (DTBn-DTE carbonate) at 5.1 ppm due to benzyl H's was completely absent indicating complete removal of the benzyl protecting groups. The 1:19 ratio of the DT-NH peak to the DTE-NH peak indicates that the polymer is made of 5% DT and 95% DTE. The ratio of CH group to the ethyl ester group shows that there are nineteen ethyl ester groups for every twenty monomer subunits. These spectral data indicate that the polymer contains DT and DTE in 1:19 ratio and the benzyl protecting group is completely removed.
  • Characterization
  • The molecular weight of the product was determined by GPC using THF as the mobile phase. A Mw of 125 Kda and Mn 55 Kda were obtained. The Tg of the polymer was found to be 96 C by DSC and the decomposition temperature (for 10% decomposition) was 334 C.
  • Example 3 Hydrogenolysis of Poly(DTBn0.025-DTE0.90 Carbonate) Preparation
  • Hydrogenolysis of a 15 g sample of poly (DTBn-DTE carbonate) which contained DTBn and DTE in a 1:9 ratio and had a Mw of 183 Kda and Mn of 84 Kda was performed as in Example 1.
  • Structure Proof
  • The 1H NMR spectrum of the product in DMSO-d6 showed the following resonances (δ, ppm relative to TMS): 8.40 (br s, 0.9H, NH of DTE), 8.25 (br, s, 0.1H, NH of DT), 7.15-7.35 (m, 8H, aromatic H's), 4.50 (m, 1H, CH of tyrosine), 4.03 (q, 1.8H, CH 2, CH3), 2.1-3.3 (m, 6H, CH2's of DAT and Tyrosine), 1.11 (t, 2.7H, CH 2, —CH3). Also a multiplet that is found in poly (DTBn-DTE carbonate) at 5.1 ppm due to benzyl H's was completely absent indicating complete removal of the benzyl protecting groups. The 1:9 ratio of the DT-NH peak to the DTE-NH peak ester group shows that there are nine ethyl ester groups for every ten monomer subunits. These spectral data indicate that the polymer contains DT and DTE in 1:9 ratio and the benzyl protecting group is completely removed.
  • Characterization
  • The molecular weight of the product was determined by GPC using THF as the mobile phase. A Mw of 100 Kda and Mn 46 Kda were obtained. The Tg of the polymer was found to be 98 C by DSC and the decomposition temperature (for 10% decomposition) was 330 C.
  • Example 4 Hydrogenolysis of Poly(DTBn0.25-DTE0.75 Carbonate) Preparation
  • Hydrogenolysis of a 15 g sample of poly (DTBn-DTE carbonate) which contained DTBn and DTE in a 1:3 ratio and had a Mw of 197 Kda and Mn of 90 Kda was performed as in Example 1.
  • Structure Proof
  • The 1H NMR spectrum of the product in DMSO-d6 showed the following resonances (5, ppm relative to TMS): 8.40 (br s, 0.75H, NH of DTE), 8.25 (br s, 0.25H, NH of DT), 7.15-7.35 (m, 8H, aromatic H's), 4.50 (m, 1H, CH of tyrosine), 4.03 (q, 1.5H, CH 2—CH3), 2.1-3.3 (m, 6H, CH2's of DAT and Tyrosine), 1.11 (t, 2.25H, CH2—CH 3). Also a multiplet that is found in poly (DTBn-DTE carbonate) at 5.1 ppm due to benzyl H's was completely absent indicating complete removal of the benzyl protecting groups. The 1:3 ratio of the DT-NH peak to the DTE-NH peak indicates that the polymer is made of 25% DT and 75% DTE. The ratio of CH group to the ethyl ester group shows that there are three ethyl ester groups for every four monomer subunits. These spectral data indicate that the polymer contains DT and DTE in 1:3 ratio and the benzyl protecting group is completely removed.
  • Characterization
  • The molecular weight of the product was determined by GPC using THF as the mobile phase. A Mw of 115 Kda and Mn 57 Kda were obtained. The Tg of the polymer was found to be 106° C. by DSC and the decomposition temperature (for 10% decomposition) was 309° C.
  • Example 5
  • Poly(DT-DTE carbonate) copolymers with DT contents of 20 percent, 40 percent, 60 percent and 100 percent were also prepared. Solvent casting films were made and pH-dependent dissolution and degradation studies were performed. Poly(100% DT carbonate) was found to be stable and insoluble in pH<5 acidic buffer solution. However, 25 to 30 mg polymer film dissolved in 10 mL of PBS of pH 7.4 at 37° C. in several hours. Degradation of the dissolved polymer was followed by aqueous GPC using a UV detector at 220 nm. It was observed that the polymer dissolved without significant degradation. When the polymer solution in buffer was incubated at 37° C. the polymer degraded rapidly.
  • Dissolution and degradation rates of the copolymers decreased with decreasing DT content. The copolymer with 60 percent DT content dissolved in pH 7.4 PBS in one day. The copolymer with 40 percent DT content dissolved in pH 7.4 PBA in two days. The copolymer with 20 percent DT content was not soluble in pH 7.4 PBS at 37° C.
  • Example 6 Hydrogenolysis of Poly(DTBn-Adipate) Preparation
  • In a 500 mL pressure bottle was placed 21 g of poly (DTBn-adipate) having a Mw of 76.8 Kda and Mn of 43.7 Kda. To the bottle was then added 200 mL of DMF and the mixture was stirred until a clear solution was obtained. To this solution were added 4 g of 5% Pd on BaSO4 catalyst. The pressure bottle was attached to the Parr hydrogenator and the air inside the bottle was displaced with hydrogen by alternatively pressurizing with hydrogen and then pressurizing. The bottle was maintained at a hydrogen pressure of 60 psi and then subjected to shaking for 24 h. An aliquot was withdrawn and after suitable treatment examine by 1H NMR which showed complete removal of the benzyl group. The reaction was stopped and the reaction mixture was centrifuged. The supernatant was filtered using a celite bed on a sintered glassfunnel. The filtrate was added to 2.0 L of cooled deionized water in a high speed blender. The precipitated product was isolated by filtration and washed with 2.0 L of water. The product was dried in a stream of nitrogen for 16 h and then dried in vacuum oven at room temperature for 2 days.
  • Structure Proof
  • The 1H NMR spectrum of the product in DMSO-d6 showed the following resonances (8, ppm relative to TMS): 8.26 (br s, 0.95H, NH), 7.00-7.09 (m, 8H, aromatic H's), 4.71 (m, 1H, CH of tyrosine), 2.2-3.3 (m, 10H, CH2's of DAT, Tyrosine and CH2—CO—), 1.74 (t, 4H, CH2—CH2 of adipate). Also, a multiplet that is found in poly (DTBn-adipate) ai 5.1 due to benzyl H's was completely absent, indicating complete removal of the benzyl protecting groups. Also, the amide NH peaks had shifted from 8.45 ppm in poly (DTBn-adipate) to 8.26 ppm. The phenyl resonance of the benzyl group at 7.35 ppm was also absent in the product. No other significant changes in the spectrum were observed.
  • Characterization
  • The molecular weight of the product was determined by GPC using THF as the mobile phase. A Mw of 36.2 Kda and Mn 25.4 Kda were obtained. The Tg of the polymer was found to be 106° C. by DSC and the decomposition temperature (for 10% decomposition) was 334° C.
  • Example 7 The Unexpected Acceleration of Polymer Degradation Due to the Presence of Free Carboxylic Acid Groups
  • Poly (DTE carbonate) is a solid, extremely hydrophobic polymer that absorbs less than 3% (by weight) of water and that exhibits no detectable mass loss due to resorption under physiological conditions. Upon incorporation of monomer units with free carboxylic acid groups, these material properties change to an unexpected extent. FIG. 1 illustrates that when x=0.5, f=0, and A=C═O (as defined in Formula VIII), the copolymer will completely resorb (dissolve) within 100 hours at physiological conditions in vitro (phosphate buffered solution, pH 7.4, 37 C), and when x=0, f=0, and A=C═O (as defined in Formula VIII), the free acid homopolycarbonate will completely resorb (dissolve) within about 7 hours at physiological conditions in vitro.
  • The polymers with free carboxylic acid groups can be cast into films either by compression molding or by solvent casting and can be fabricated into sponges by salt leaching techniques or by phase separation techniques. The homopolymers (x=0, f=0, and A=C═O as defined in Formula VIII) dissolve in phosphate buffer of pH 7.4 to the extent of 2 mg/mL. When examined by aqueous GPC using UV detection at 200 nm it was found that the polymer dissolved without significant backbone degradation. However, once in solution, backbone degradation to low molecular weight oligomers and eventually to monomer occurred. After 70 h of incubation the peak molecular weight decreased from 40,000 g/mole to about 4,000 g/mole and about 10% of the sample weight consisted of monomer. With poly (DT0.5-DTE0.5 carbonate) the solubility is considerably reduced to 0.2 mg/mL. However, a sample of this polymer also resorbed mostly by dissolution without significant backbone degradation. For copolycarbonates with a DT content of 25 mole percent and lower (x>0.75, f=0, and A=C═O, as defined in Formula VUE), no solubility was observed by HPLC.
  • The present invention thus provides new free-acid versions of prior art polymers with increased rates of degradation that are prepared by a highly selective palladium-catalyzed hydrogenolysis process. The new polymers satisfy heretofore unmet needs for tissue-compatible implantable biomaterials with reduced, as well as increased, rates of degradation.
  • The foregoing examples and description of the preferred embodiment should be taken as illustrating, rather than as limiting, the present invention as defined by the claims. As will be readily appreciated, numerous variations and combinations of the features set forth above can be utilized without departing from the present invention as set forth in the claims. Such variations are not regarded as a departure from the spirit and scope of the invention, and all such variations are intended to be included within the scope of the following claims.

Claims (35)

1. A polymer with a hydrolytically labile polymer backbone comprising non-toxic biocompatible diphenolic repeating units having the structure:
Figure US20080152690A1-20080626-C00017
wherein R9 is an alkyl, aryl or alkylaryl group with up to 18 carbon atoms having a pendent carboxylic acid group or the benzyl ester thereof; and
non-toxic biocompatible diphenolic repeating units having the structure:
Figure US20080152690A1-20080626-C00018
wherein R12 is an alkyl, aryl or alkylaryl group with up to 18 carbon atoms having a pendent carboxylic acid ester group selected from the group consisting of straight and branched alkyl and alkylaryl esters containing up to 18 carbon atoms and ester derivatives of biologically and pharmaceutically active compounds covalently bonded to said polymer, provided that said ester group is not a benzyl group or a group that is removed by hydrogenolysis.
2. The polymer of claim 1, characterized by said polymer having the structure:
Figure US20080152690A1-20080626-C00019
wherein each R7 is independently an alkylene group containing up to 4 carbon atoms;
A is a C═O group or a
Figure US20080152690A1-20080626-C00020
 group, wherein R is selected from the group consisting of saturated and unsaturated, substituted and unsubstituted alkyl, aryl and alkylaryl groups containing up to 18 carbon atoms;
k is between about 5 and about 3,000; and
x is greater than 0 and less than 1 and f ranges from 0 to less than 1.
3. The implantable medical device of claim 2, wherein f is 0.
4. The polymer of claim 2, wherein f ranges between about 0.05 and about 0.95.
5. The polymer of claim 2, wherein k is between 2 and about 200.
6. The polymer of claim 2, wherein x is between about 0.5 and about 0.75.
7. The polymer of claim 1 or 2, wherein R9 has a structure selected from the group consisting of:
Figure US20080152690A1-20080626-C00021
wherein R2 is hydrogen or a benzyl group and a and b are independently 0, 1 or 2.
8. The polymer of claim 7, where in R9 has the structure:
Figure US20080152690A1-20080626-C00022
wherein a is 2 and b is 1.
9. The polymer of claim 1 or 2, wherein said pendent group of R9 comprises a pendant benzyl carboxylate group.
10. The polymer of claim 1 or 2, wherein said pendent group of R9 comprises a pendant carboxylic acid group.
11. The polymer of claim 1 or 2, wherein R12 has a structure selected from the group consisting of:
Figure US20080152690A1-20080626-C00023
wherein R2 is selected from the group consisting of straight and branched alkyl and alkylaryl groups containing up to 18 carbon atoms and derivatives of biologically and pharmaceutically active compounds covalently bonded to said polymer; and c and d are independently 0, 1 or 2.
12. The polymer of claim 11, wherein R12 has the structure:
Figure US20080152690A1-20080626-C00024
wherein c is 2 and d is 1.
13. The polymer of claim 1 or 2, wherein said ester group of said pendent carboxylic acid ester group of R12 is a straight-chained alkyl group selected from the group consisting of ethyl, butyl, hexyl and octyl groups.
14. A block copolymer comprising the polymer of claim 1, block copolymerized with poly(alkylene oxide) repeating units, each poly(alkylene oxide) repeating unit comprising between about 5 and about 3,000 alkylene oxide groups comprising an alkylene group containing up to 4 carbon atoms.
15. The polymer of claim 2 or 14, wherein said alkylene group is ethylene.
16. The polymer of claim 14, wherein each poly(alkylene oxide) repeating unit contains between about 20 and about 200 alkylene oxide groups.
17. The polymer of claim 2, wherein A is a
Figure US20080152690A1-20080626-C00025
group, wherein R8 is selected from the group consisting of —CH2—C(═O)—, —CH2—CH2—C(═O)—, —CH═CH— and (—CH2—)z, wherein z is an integer between 2 and 8, inclusive.
18. The polymer of claim 17, wherein R8 is selected from the group consisting of substituted and unsubstituted aryl and alkylaryl groups containing from 6 to 12 carbon atoms.
19. A medical device comprising the polymer of claim 10, adapted for implantation into the body of an animal.
20. The medical device of claim 19, wherein the device is in the form of a suture, bone implant, vascular graft or stent.
21. The medical device of claim 19, wherein the surface of said device is coated with said polymer.
22. The medical device of claim 19, comprising a biologically or pharmaceutically active compound in combination with said polymer, wherein said active compound is present in an amount sufficient for therapeutically effective site-specific or systemic drug delivery.
23. The medical device of claim 22, wherein said biologically or pharmaceutically active compound is covalently bonded to said polymer.
24. An implantable medical device in the form of a sheet consisting essentially of the polymer of claim 10 for use as a barrier for surgical adhesion prevention.
25. A method for site-specific or systemic drug delivery comprising implanting in the body of a patient in need thereof an implantable drug delivery device comprising a therapeutically effective amount of a biologically or pharmaceutically active compound in combination with the polymer of claim 10.
26. The method of claim 25, wherein said biologically or pharmaceutically active compound is covalently bonded to said polymer.
27. The method of claim 25, wherein said biologically or pharmaceutically active compound is physically admixed with a biologically or pharmaceutically active agent.
28. A method for preventing the formation of adhesions between injured tissues comprising inserting a barrier between said injured tissues a sheet consisting essentially of the polymer of claim 10.
29. A controlled drug delivery system comprising a biologically or pharmaceutically active agent physically coated with the polymer of claim 10.
30. A controlled drug delivery system comprising a biologically or pharmaceutically active agent physically embedded or dispersed into a polymeric matrix form from the polymer of claim 10.
31. A controlled drug delivery system comprising a biologically or pharmaceutically active agent covalently bonded to the polymer of claim 10.
32. A method of regulating cellular attachment, migration and proliferation on a polymeric substrate comprising contacting living cells, tissues or biological fluids containing living cells with the polymer of claim 10.
33. The method of claim 32, wherein said polymer is in the form of a coating on a medical implant.
34. The method of claim 32, wherein said polymer is in the form of a film.
35. The method of claim 32, wherein said polymer is in the form of a polymeric tissue scaffold.
US12/046,378 1997-11-07 2008-03-11 Biodegradable, anionic polymers derived from the amino acid l-tyrosine Abandoned US20080152690A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/046,378 US20080152690A1 (en) 1997-11-07 2008-03-11 Biodegradable, anionic polymers derived from the amino acid l-tyrosine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US6465697P 1997-11-07 1997-11-07
US09/056,050 US6120491A (en) 1997-11-07 1998-04-07 Biodegradable, anionic polymers derived from the amino acid L-tyrosine
US35042399A 1999-07-08 1999-07-08
US12/046,378 US20080152690A1 (en) 1997-11-07 2008-03-11 Biodegradable, anionic polymers derived from the amino acid l-tyrosine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US35042399A Continuation 1997-11-07 1999-07-08

Publications (1)

Publication Number Publication Date
US20080152690A1 true US20080152690A1 (en) 2008-06-26

Family

ID=26734912

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/056,050 Expired - Lifetime US6120491A (en) 1996-11-27 1998-04-07 Biodegradable, anionic polymers derived from the amino acid L-tyrosine
US12/046,378 Abandoned US20080152690A1 (en) 1997-11-07 2008-03-11 Biodegradable, anionic polymers derived from the amino acid l-tyrosine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/056,050 Expired - Lifetime US6120491A (en) 1996-11-27 1998-04-07 Biodegradable, anionic polymers derived from the amino acid L-tyrosine

Country Status (9)

Country Link
US (2) US6120491A (en)
EP (3) EP1908490B1 (en)
JP (2) JP4481488B2 (en)
AT (3) ATE273041T1 (en)
AU (1) AU730549B2 (en)
CA (2) CA2309278C (en)
DE (3) DE69839851D1 (en)
ES (2) ES2309422T3 (en)
WO (1) WO1999024107A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100228343A1 (en) * 2008-10-11 2010-09-09 Rutgers, The State University Phase-separated biocompatible polymer compositions for medical uses
WO2011014858A1 (en) * 2009-07-31 2011-02-03 Rutgers, The State University Of New Jersey Bioresorbable polymers synthesized from monomer analogs of natural metabolites
WO2015160501A1 (en) 2014-04-18 2015-10-22 Auburn University Particulate vaccine formulations for inducing innate and adaptive immunity
US9605112B2 (en) 2009-10-11 2017-03-28 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
US10087285B2 (en) 2014-12-23 2018-10-02 Rutgers, The State University Of New Jersey Biocompatible iodinated diphenol monomers and polymers
US10293044B2 (en) 2014-04-18 2019-05-21 Auburn University Particulate formulations for improving feed conversion rate in a subject
CN110621718A (en) * 2017-06-07 2019-12-27 美敦力公司 Hydrogenation of tyrosine-derived polyarylates
US10583199B2 (en) 2016-04-26 2020-03-10 Northwestern University Nanocarriers having surface conjugated peptides and uses thereof for sustained local release of drugs
US10774030B2 (en) 2014-12-23 2020-09-15 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
US11124603B2 (en) 2012-02-03 2021-09-21 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
US11472918B2 (en) 2012-02-03 2022-10-18 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6746482B2 (en) * 1994-10-17 2004-06-08 Baxter International Inc. Method for producing medical devices and devices so produced
US6120491A (en) * 1997-11-07 2000-09-19 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
EP1702914B1 (en) * 1997-11-07 2011-04-06 Rutgers, The State University Radio-opaque polymeric biomaterials
US6623521B2 (en) 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
US20020151668A1 (en) 1998-04-13 2002-10-17 Ken James Construction of copolymer libraries
US20070233272A1 (en) * 1999-02-23 2007-10-04 Boyce Todd M Shaped load-bearing osteoimplant and methods of making same
US8133421B2 (en) * 1999-02-23 2012-03-13 Warsaw Orthopedic, Inc. Methods of making shaped load-bearing osteoimplant
US20070032853A1 (en) 2002-03-27 2007-02-08 Hossainy Syed F 40-O-(2-hydroxy)ethyl-rapamycin coated stent
US7807211B2 (en) 1999-09-03 2010-10-05 Advanced Cardiovascular Systems, Inc. Thermal treatment of an implantable medical device
US7521061B2 (en) * 1999-12-31 2009-04-21 Rutgers, The State University Of New Jersey Pharmaceutical formulation for regulating the timed release of biologically active compounds based on a polymer matrix
EP1263453A4 (en) * 1999-12-31 2008-02-20 Univ Rutgers Pharmaceutical formulation for regulating the timed release of biologically active compounds based on a polymer matrix
US7326425B2 (en) 1999-12-31 2008-02-05 Rutgers, The State University Pharmaceutical formulation composed of a polymer blend and an active compound for time-controlled release
US6953560B1 (en) 2000-09-28 2005-10-11 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
US7807210B1 (en) 2000-10-31 2010-10-05 Advanced Cardiovascular Systems, Inc. Hemocompatible polymers on hydrophobic porous polymers
US6780424B2 (en) * 2001-03-30 2004-08-24 Charles David Claude Controlled morphologies in polymer drug for release of drugs from polymer films
US8740987B2 (en) * 2001-06-04 2014-06-03 Warsaw Orthopedic, Inc. Tissue-derived mesh for orthopedic regeneration
US6695920B1 (en) 2001-06-27 2004-02-24 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
US8741378B1 (en) 2001-06-27 2014-06-03 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device
US7682669B1 (en) 2001-07-30 2010-03-23 Advanced Cardiovascular Systems, Inc. Methods for covalently immobilizing anti-thrombogenic material into a coating on a medical device
US8303651B1 (en) 2001-09-07 2012-11-06 Advanced Cardiovascular Systems, Inc. Polymeric coating for reducing the rate of release of a therapeutic substance from a stent
US7271234B2 (en) * 2002-04-24 2007-09-18 Rutgers, The State University Of New Jersey Polyarylates for drug delivery and tissue engineering
US20060182752A1 (en) * 2003-05-15 2006-08-17 Rutgers, The State University Tri-block polymers for nanosphere-based drug or gene delivery
US8591951B2 (en) * 2002-05-15 2013-11-26 Joachim B. Kohn Tri-block copolymers for nanosphere-based drug delivery
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7056523B1 (en) 2002-06-21 2006-06-06 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7033602B1 (en) 2002-06-21 2006-04-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7491234B2 (en) * 2002-12-03 2009-02-17 Boston Scientific Scimed, Inc. Medical devices for delivery of therapeutic agents
US7758880B2 (en) 2002-12-11 2010-07-20 Advanced Cardiovascular Systems, Inc. Biocompatible polyacrylate compositions for medical applications
US7776926B1 (en) 2002-12-11 2010-08-17 Advanced Cardiovascular Systems, Inc. Biocompatible coating for implantable medical devices
US7074276B1 (en) 2002-12-12 2006-07-11 Advanced Cardiovascular Systems, Inc. Clamp mandrel fixture and a method of using the same to minimize coating defects
US20050251267A1 (en) * 2004-05-04 2005-11-10 John Winterbottom Cell permeable structural implant
US20060002968A1 (en) 2004-06-30 2006-01-05 Gordon Stewart Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
US8435550B2 (en) 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US6916868B2 (en) * 2003-01-23 2005-07-12 Integra Lifesciences Corporation Selective modification of pendent functionalities of polymers
US7279174B2 (en) 2003-05-08 2007-10-09 Advanced Cardiovascular Systems, Inc. Stent coatings comprising hydrophilic additives
US20050118344A1 (en) 2003-12-01 2005-06-02 Pacetti Stephen D. Temperature controlled crimping
US7785512B1 (en) 2003-07-31 2010-08-31 Advanced Cardiovascular Systems, Inc. Method and system of controlled temperature mixing and molding of polymers with active agents for implantable medical devices
JP5186109B2 (en) 2003-09-25 2013-04-17 ラトガース,ザ ステート ユニバーシティ Polymer products that are essentially radiopaque for embolization treatment
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US9114198B2 (en) 2003-11-19 2015-08-25 Advanced Cardiovascular Systems, Inc. Biologically beneficial coatings for implantable devices containing fluorinated polymers and methods for fabricating the same
US8192752B2 (en) 2003-11-21 2012-06-05 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices including biologically erodable polyesters and methods for fabricating the same
US7435788B2 (en) 2003-12-19 2008-10-14 Advanced Cardiovascular Systems, Inc. Biobeneficial polyamide/polyethylene glycol polymers for use with drug eluting stents
AU2005210630A1 (en) * 2004-01-30 2005-08-18 Warsaw Orthopedic, Inc. Stacking implants for spinal fusion
US8685431B2 (en) 2004-03-16 2014-04-01 Advanced Cardiovascular Systems, Inc. Biologically absorbable coatings for implantable devices based on copolymers having ester bonds and methods for fabricating the same
US8778014B1 (en) 2004-03-31 2014-07-15 Advanced Cardiovascular Systems, Inc. Coatings for preventing balloon damage to polymer coated stents
US8293890B2 (en) 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US7820732B2 (en) 2004-04-30 2010-10-26 Advanced Cardiovascular Systems, Inc. Methods for modulating thermal and mechanical properties of coatings on implantable devices
US9561309B2 (en) 2004-05-27 2017-02-07 Advanced Cardiovascular Systems, Inc. Antifouling heparin coatings
US7563780B1 (en) 2004-06-18 2009-07-21 Advanced Cardiovascular Systems, Inc. Heparin prodrugs and drug delivery stents formed therefrom
US20050287184A1 (en) 2004-06-29 2005-12-29 Hossainy Syed F A Drug-delivery stent formulations for restenosis and vulnerable plaque
US7763065B2 (en) 2004-07-21 2010-07-27 Reva Medical, Inc. Balloon expandable crush-recoverable stent device
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
US7494665B1 (en) 2004-07-30 2009-02-24 Advanced Cardiovascular Systems, Inc. Polymers containing siloxane monomers
WO2006023130A2 (en) * 2004-08-12 2006-03-02 Surmodics, Inc. Biodegradable controlled release bioactive agent delivery device
EP1923075B1 (en) 2004-08-13 2015-11-11 Rutgers, The State University Radiopaque polymeric stents
EA016906B1 (en) * 2004-08-13 2012-08-30 Рутгерс, Дзе Стейт Юниверсити Radiopaque polymeric stents
US7648727B2 (en) 2004-08-26 2010-01-19 Advanced Cardiovascular Systems, Inc. Methods for manufacturing a coated stent-balloon assembly
US7244443B2 (en) 2004-08-31 2007-07-17 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrophilic monomers
US8110211B2 (en) 2004-09-22 2012-02-07 Advanced Cardiovascular Systems, Inc. Medicated coatings for implantable medical devices including polyacrylates
US8603634B2 (en) 2004-10-27 2013-12-10 Abbott Cardiovascular Systems Inc. End-capped poly(ester amide) copolymers
US7390497B2 (en) 2004-10-29 2008-06-24 Advanced Cardiovascular Systems, Inc. Poly(ester amide) filler blends for modulation of coating properties
WO2006053291A2 (en) * 2004-11-09 2006-05-18 Proxy Biomedical Limited Tissue scaffold
US8609123B2 (en) 2004-11-29 2013-12-17 Advanced Cardiovascular Systems, Inc. Derivatized poly(ester amide) as a biobeneficial coating
US7892592B1 (en) 2004-11-30 2011-02-22 Advanced Cardiovascular Systems, Inc. Coating abluminal surfaces of stents and other implantable medical devices
US8292944B2 (en) 2004-12-17 2012-10-23 Reva Medical, Inc. Slide-and-lock stent
US7604818B2 (en) 2004-12-22 2009-10-20 Advanced Cardiovascular Systems, Inc. Polymers of fluorinated monomers and hydrocarbon monomers
US7419504B2 (en) 2004-12-27 2008-09-02 Advanced Cardiovascular Systems, Inc. Poly(ester amide) block copolymers
US8007775B2 (en) 2004-12-30 2011-08-30 Advanced Cardiovascular Systems, Inc. Polymers containing poly(hydroxyalkanoates) and agents for use with medical articles and methods of fabricating the same
US7795467B1 (en) 2005-04-26 2010-09-14 Advanced Cardiovascular Systems, Inc. Bioabsorbable, biobeneficial polyurethanes for use in medical devices
US8778375B2 (en) 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US7823533B2 (en) 2005-06-30 2010-11-02 Advanced Cardiovascular Systems, Inc. Stent fixture and method for reducing coating defects
US8021676B2 (en) 2005-07-08 2011-09-20 Advanced Cardiovascular Systems, Inc. Functionalized chemically inert polymers for coatings
US7785647B2 (en) 2005-07-25 2010-08-31 Advanced Cardiovascular Systems, Inc. Methods of providing antioxidants to a drug containing product
US7735449B1 (en) 2005-07-28 2010-06-15 Advanced Cardiovascular Systems, Inc. Stent fixture having rounded support structures and method for use thereof
US7914574B2 (en) 2005-08-02 2011-03-29 Reva Medical, Inc. Axially nested slide and lock expandable device
US9149378B2 (en) 2005-08-02 2015-10-06 Reva Medical, Inc. Axially nested slide and lock expandable device
US20070050009A1 (en) * 2005-08-30 2007-03-01 Aiden Flanagan Bioabsorbable stent
WO2007044669A2 (en) * 2005-10-07 2007-04-19 Lonza Walkersville, Inc. Engineered biological matrices
JP5339913B2 (en) 2005-11-03 2013-11-13 タイレックス・インコーポレイテッド Resorbable phenolic polymer
AU2012202056B2 (en) * 2005-11-03 2012-10-18 Medtronic, Inc. Resorbable phenolic polymers
US8007526B2 (en) * 2005-12-01 2011-08-30 Bezwada Biomedical, Llc Difunctionalized aromatic compounds and polymers therefrom
US7935843B2 (en) * 2005-12-09 2011-05-03 Bezwada Biomedical, Llc Functionalized diphenolics and absorbable polymers therefrom
US7976891B1 (en) 2005-12-16 2011-07-12 Advanced Cardiovascular Systems, Inc. Abluminal stent coating apparatus and method of using focused acoustic energy
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US8287914B2 (en) 2006-01-12 2012-10-16 Rutgers, The State University Of New Jersey Biomimetic hydroxyapatite synthesis
EP1976460A4 (en) 2006-01-19 2012-06-20 Warsaw Orthopedic Inc Injectable and moldable bone substitute materials
US8315700B2 (en) * 2006-02-08 2012-11-20 Tyrx, Inc. Preventing biofilm formation on implantable medical devices
MX2008010126A (en) 2006-02-08 2010-02-22 Tyrx Pharma Inc Temporarily stiffened mesh prostheses.
US8591531B2 (en) * 2006-02-08 2013-11-26 Tyrx, Inc. Mesh pouches for implantable medical devices
US20070196428A1 (en) 2006-02-17 2007-08-23 Thierry Glauser Nitric oxide generating medical devices
US7713637B2 (en) 2006-03-03 2010-05-11 Advanced Cardiovascular Systems, Inc. Coating containing PEGylated hyaluronic acid and a PEGylated non-hyaluronic acid polymer
AU2007236549B2 (en) * 2006-04-07 2011-11-03 The University Of Melbourne Porous polymer blend structures
AU2007236550B2 (en) * 2006-04-07 2012-09-13 The University Of Melbourne Porous polymer structures
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7985441B1 (en) 2006-05-04 2011-07-26 Yiwen Tang Purification of polymers for coating applications
US8304012B2 (en) 2006-05-04 2012-11-06 Advanced Cardiovascular Systems, Inc. Method for drying a stent
US7775178B2 (en) 2006-05-26 2010-08-17 Advanced Cardiovascular Systems, Inc. Stent coating apparatus and method
US8568764B2 (en) 2006-05-31 2013-10-29 Advanced Cardiovascular Systems, Inc. Methods of forming coating layers for medical devices utilizing flash vaporization
US9561351B2 (en) 2006-05-31 2017-02-07 Advanced Cardiovascular Systems, Inc. Drug delivery spiral coil construct
US8703167B2 (en) 2006-06-05 2014-04-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable medical devices for controlled release of a hydrophilic drug and a hydrophobic drug
US8778376B2 (en) 2006-06-09 2014-07-15 Advanced Cardiovascular Systems, Inc. Copolymer comprising elastin pentapeptide block and hydrophilic block, and medical device and method of treating
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8114150B2 (en) 2006-06-14 2012-02-14 Advanced Cardiovascular Systems, Inc. RGD peptide attached to bioabsorbable stents
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
EP2044142A2 (en) * 2006-06-29 2009-04-08 Medtronic, Inc. Poly(orthoester) polymers, and methods of making and using same
US9265865B2 (en) * 2006-06-30 2016-02-23 Boston Scientific Scimed, Inc. Stent having time-release indicator
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US8703169B1 (en) 2006-08-15 2014-04-22 Abbott Cardiovascular Systems Inc. Implantable device having a coating comprising carrageenan and a biostable polymer
RU2470040C2 (en) 2006-10-17 2012-12-20 Ратджерс, Те Стейт Юниверсити Оф Нью Джерси N-substituted monomers and polymers
EP2079416A4 (en) * 2006-10-30 2012-06-27 Univ Rutgers Electrospun matrices for delivery of hydrophilic and lipophilic compounds
US9023114B2 (en) 2006-11-06 2015-05-05 Tyrx, Inc. Resorbable pouches for implantable medical devices
WO2008127411A1 (en) 2006-11-06 2008-10-23 Tyrx Pharma, Inc. Mesh pouches for implantable medical devices
US8597673B2 (en) 2006-12-13 2013-12-03 Advanced Cardiovascular Systems, Inc. Coating of fast absorption or dissolution
US7704275B2 (en) 2007-01-26 2010-04-27 Reva Medical, Inc. Circumferentially nested expandable device
MX2009008030A (en) 2007-01-31 2009-10-19 Univ Rutgers Controlled release of actives in skin.
CA2682190C (en) * 2007-03-29 2015-01-27 Tyrx Pharma, Inc. Biodegradable, polymer coverings for breast implants
EP2150119B1 (en) * 2007-05-02 2018-04-11 Tyrx, Inc. Dihydroxybenzoate polymers and uses thereof
US8147769B1 (en) 2007-05-16 2012-04-03 Abbott Cardiovascular Systems Inc. Stent and delivery system with reduced chemical degradation
US9056155B1 (en) 2007-05-29 2015-06-16 Abbott Cardiovascular Systems Inc. Coatings having an elastic primer layer
AU2008265586B2 (en) 2007-06-21 2013-05-02 Medtronic, Inc. Phenyl ester side chains to increase polymer resorptivity
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US8109904B1 (en) 2007-06-25 2012-02-07 Abbott Cardiovascular Systems Inc. Drug delivery medical devices
US20100248389A1 (en) * 2007-09-20 2010-09-30 University Of Utah Research Foundation Electrochemical deposition of polymers on metal substrates
EP2211773A4 (en) 2007-11-30 2015-07-29 Reva Medical Inc Axially-radially nested expandable device
ITMI20072427A1 (en) * 2007-12-24 2009-06-25 I P S Internat Products & Ser POLYMAL POLYMERIC MATRICES WITH IMMEDIATE DEGRADATION FOR SOLID PRODUCTS FOR ORAL USE WITH MODIFIED RELEASE AND METHOD FOR ITS PREPARATION
US8173163B2 (en) * 2008-02-21 2012-05-08 Rutgers, The State University Of New Jersey Polymeric drug delivery compositions and methods for treating ophthalmic diseases
US8956642B2 (en) * 2008-04-18 2015-02-17 Medtronic, Inc. Bupivacaine formulation in a polyorthoester carrier
US8475823B2 (en) * 2008-04-18 2013-07-02 Medtronic, Inc. Baclofen formulation in a polyorthoester carrier
WO2010006046A1 (en) * 2008-07-10 2010-01-14 Tyrx Pharma, Inc. Nsaid delivery from polyarylates
CA2833960C (en) 2008-09-22 2015-12-22 Tyrx, Inc. Linear polyesteramides from aminophenolic esters
US7947071B2 (en) 2008-10-10 2011-05-24 Reva Medical, Inc. Expandable slide and lock stent
US20100215716A1 (en) * 2009-02-23 2010-08-26 Biomet Manufacturing Corp. Compositions and methods for coating orthopedic implants
US9839628B2 (en) 2009-06-01 2017-12-12 Tyrx, Inc. Compositions and methods for preventing sternal wound infections
EP2437724B1 (en) 2009-06-01 2015-09-30 Tyrx, Inc. Compositions and methods for preventing sternal wound infections
US8409279B2 (en) 2009-10-01 2013-04-02 Lipose Corporation Breast implant implantation method and apparatus
US8685433B2 (en) 2010-03-31 2014-04-01 Abbott Cardiovascular Systems Inc. Absorbable coating for implantable device
AU2011237303B2 (en) 2010-04-10 2013-10-31 Reva Medical, Inc Expandable slide and lock stent
EP3489313A1 (en) 2010-08-25 2019-05-29 Tyrx, Inc. Novel medical device coatings
EP2625577B1 (en) 2010-10-08 2019-06-26 Terumo BCT, Inc. Customizable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
US8883861B2 (en) 2010-11-01 2014-11-11 Rutgers, The State University Of New Jersey Iminic monomers and polymers thereof
AU2011326417A1 (en) 2010-11-12 2013-05-09 Tyrx, Inc. Anchorage devices comprising an active pharmaceutical ingredient
US8961948B2 (en) 2011-01-17 2015-02-24 Rutgers, The State University Of New Jersey Molecular surface design of tyrosine-derived polycarbonates for attachment of biomolecules
JP2014516604A (en) 2011-03-24 2014-07-17 シー・アール・バード・インコーポレーテッド Immobilization and protection of implanted medical devices
AU2012283875B2 (en) 2011-07-20 2016-05-12 Medtronic, Inc. Drug eluting mesh to prevent infection of indwelling transdermal devices
US8834772B2 (en) 2011-12-07 2014-09-16 Biomet Manufacturing, Llc Antimicrobial methacrylate cements
WO2014137454A1 (en) 2013-03-07 2014-09-12 Tyrx, Inc. Methods and compositions to inhibit the assemblage of microbial cells irreversibly associated with surfaces of medical devices
US9408732B2 (en) 2013-03-14 2016-08-09 Reva Medical, Inc. Reduced-profile slide and lock stent
AU2014305915B2 (en) 2013-08-07 2019-08-15 Reva Medical, Inc. Polymeric biomaterials derived from monomers comprising hydroxyacids and phenol compounds and their medical uses
EP3065788A1 (en) 2013-11-08 2016-09-14 Tyrx, Inc. Antimicrobial compositions and methods for preventing infection in surgical incision sites
JP6633522B2 (en) 2013-11-16 2020-01-22 テルモ ビーシーティー、インコーポレーテッド Cell growth in bioreactors
WO2015148704A1 (en) 2014-03-25 2015-10-01 Terumo Bct, Inc. Passive replacement of media
JO3394B1 (en) 2014-07-04 2019-10-20 Osteo Pharma B V Compositions and products for use in the treatment of bone fractures and defects
WO2016049421A1 (en) 2014-09-26 2016-03-31 Terumo Bct, Inc. Scheduled feed
WO2017004592A1 (en) 2015-07-02 2017-01-05 Terumo Bct, Inc. Cell growth with mechanical stimuli
US11965175B2 (en) 2016-05-25 2024-04-23 Terumo Bct, Inc. Cell expansion
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
EP3656841A1 (en) 2017-03-31 2020-05-27 Terumo BCT, Inc. Cell expansion
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
US10793670B2 (en) * 2017-06-07 2020-10-06 Medtronic, Inc. Synthesis of tyrosine derived polyarylates
US12043823B2 (en) 2021-03-23 2024-07-23 Terumo Bct, Inc. Cell capture and expansion

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870694A (en) * 1972-03-14 1975-03-11 Takeda Chemical Industries Ltd Peptide synthesis with n-hydroxy-5-norbornene-2,3-dicarboximide
US5317077A (en) * 1990-06-12 1994-05-31 Rutgers, The State University Of New Jersey Polyarylates containing derivatives of the natural amino acid l-tyrosine
US5587507A (en) * 1995-03-31 1996-12-24 Rutgers, The State University Synthesis of tyrosine derived diphenol monomers
US6048521A (en) * 1997-11-07 2000-04-11 Rutgers, The State University Copolymers of tyrosine-based polyarlates and poly(alkylene oxides)
US6120491A (en) * 1997-11-07 2000-09-19 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
US6319492B1 (en) * 1996-11-27 2001-11-20 Rutgers, The State University Copolymers of tyrosine-based polyarylates and poly(alkylene oxides)
US20020019446A1 (en) * 1995-07-28 2002-02-14 Stephen Brocchini Polymeric drug formulations
US6475477B1 (en) * 1997-11-07 2002-11-05 Rutgers, The State University Radio-opaque polymer biomaterials
US20070280992A1 (en) * 2004-10-04 2007-12-06 Qlt Usa, Inc. Sustained delivery formulations of rapamycin compounds
US20080299168A1 (en) * 2004-11-10 2008-12-04 Eric Dadey Stabilized Polymeric Delivery System

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3136025A1 (en) * 1981-09-11 1983-03-24 Hoechst Ag, 6000 Frankfurt "POLYMERS ETHYLENOXID-PROPYLENOXID- OR ETHYLENOXID-BUTYLENOXID-ETHERCARBONAEUREN, METHOD FOR THE PRODUCTION AND USE THEREOF"
US5216115A (en) * 1990-06-12 1993-06-01 Rutgers, The State University Of New Jersey Polyarylate containing derivatives of the natural amino acid L-tyrosine
US5198507A (en) * 1990-06-12 1993-03-30 Rutgers, The State University Of New Jersey Synthesis of amino acid-derived bioerodible polymers
JP3946250B2 (en) * 1995-03-31 2007-07-18 ラトガーズ,ザ・ステート・ユニバーシィティ Improved synthesis of tyrosine-derived diphenol monomers.
US5658995A (en) * 1995-11-27 1997-08-19 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
JP4410857B2 (en) * 1997-02-18 2010-02-03 ラットガーズ ザ ステイト ユニヴァーシティ Monomers derived from hydroxy acids and polymers prepared therefrom

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870694A (en) * 1972-03-14 1975-03-11 Takeda Chemical Industries Ltd Peptide synthesis with n-hydroxy-5-norbornene-2,3-dicarboximide
US5317077A (en) * 1990-06-12 1994-05-31 Rutgers, The State University Of New Jersey Polyarylates containing derivatives of the natural amino acid l-tyrosine
US5587507A (en) * 1995-03-31 1996-12-24 Rutgers, The State University Synthesis of tyrosine derived diphenol monomers
US5670602A (en) * 1995-03-31 1997-09-23 Rutgers, The State University Synthesis of tyrosine-derived diphenol monomers
US20020019446A1 (en) * 1995-07-28 2002-02-14 Stephen Brocchini Polymeric drug formulations
US6319492B1 (en) * 1996-11-27 2001-11-20 Rutgers, The State University Copolymers of tyrosine-based polyarylates and poly(alkylene oxides)
US6120491A (en) * 1997-11-07 2000-09-19 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
US6048521A (en) * 1997-11-07 2000-04-11 Rutgers, The State University Copolymers of tyrosine-based polyarlates and poly(alkylene oxides)
US6475477B1 (en) * 1997-11-07 2002-11-05 Rutgers, The State University Radio-opaque polymer biomaterials
US6852308B2 (en) * 1997-11-07 2005-02-08 Rutgers, The State University Radio-opaque polymeric biomaterials
US7056493B2 (en) * 1997-11-07 2006-06-06 Rutgers,The State University Radio-opaque polymer biomaterials
US20070280992A1 (en) * 2004-10-04 2007-12-06 Qlt Usa, Inc. Sustained delivery formulations of rapamycin compounds
US20080299168A1 (en) * 2004-11-10 2008-12-04 Eric Dadey Stabilized Polymeric Delivery System

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Domb, A..J., et al., "Handbook of Biodegradable Polymers", 1997, p. 262 *
Ertel, S.I., "Evaluation of series of tyrosine-derived polycarbonates as a degradable biomaterials", 1994, J. of Biomedical Materials Research, 28, pp. 919-930 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100228343A1 (en) * 2008-10-11 2010-09-09 Rutgers, The State University Phase-separated biocompatible polymer compositions for medical uses
US8476399B2 (en) 2008-10-11 2013-07-02 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
US8551511B2 (en) 2008-10-11 2013-10-08 Rutgers, The State University Of New Jersey Phase-separated biocompatible polymer compositions for medical uses
WO2011014858A1 (en) * 2009-07-31 2011-02-03 Rutgers, The State University Of New Jersey Bioresorbable polymers synthesized from monomer analogs of natural metabolites
WO2011014860A1 (en) * 2009-07-31 2011-02-03 Rutgers, The State University Of New Jersey Monomers and phase-separated biocompatible polymer compositions prepared therefrom for medical uses
WO2011014859A1 (en) * 2009-07-31 2011-02-03 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
US8415449B2 (en) 2009-07-31 2013-04-09 Rutgers, The State University Of New Jersey Bioresorbable polymers synthesized from monomer analogs of natural metabolites
US8765161B2 (en) 2009-07-31 2014-07-01 Rutgers, The State University Of New Jersey Monomers and phase-separated biocompatible polymer compositions prepared therefrom for medical uses
US9080015B2 (en) 2009-07-31 2015-07-14 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
US10202490B2 (en) 2009-10-11 2019-02-12 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
US11118011B2 (en) 2009-10-11 2021-09-14 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
US9605112B2 (en) 2009-10-11 2017-03-28 Rutgers, The State University Of New Jersey Biocompatible polymers for medical devices
US12030983B2 (en) 2012-02-03 2024-07-09 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
US11472918B2 (en) 2012-02-03 2022-10-18 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
US11124603B2 (en) 2012-02-03 2021-09-21 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
WO2015160501A1 (en) 2014-04-18 2015-10-22 Auburn University Particulate vaccine formulations for inducing innate and adaptive immunity
US10293044B2 (en) 2014-04-18 2019-05-21 Auburn University Particulate formulations for improving feed conversion rate in a subject
US11135288B2 (en) 2014-04-18 2021-10-05 Auburn University Particulate formulations for enhancing growth in animals
EP3693011A1 (en) 2014-04-18 2020-08-12 Auburn University Particulate vaccine formulations for inducing innate and adaptive immunity
US10774030B2 (en) 2014-12-23 2020-09-15 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
US10266647B2 (en) 2014-12-23 2019-04-23 Rutgers, The State University Of New Jersey Biocompatible iodinated diphenol monomers and polymers
US11649203B2 (en) 2014-12-23 2023-05-16 Rutgers, The State University Of New Jersey Polymeric biomaterials derived from phenolic monomers and their medical uses
US10087285B2 (en) 2014-12-23 2018-10-02 Rutgers, The State University Of New Jersey Biocompatible iodinated diphenol monomers and polymers
US10583199B2 (en) 2016-04-26 2020-03-10 Northwestern University Nanocarriers having surface conjugated peptides and uses thereof for sustained local release of drugs
US11207423B2 (en) 2016-04-26 2021-12-28 Northwestern University Nanocarriers having surface conjugated peptides and uses thereof for sustained local release of drugs
CN110621718A (en) * 2017-06-07 2019-12-27 美敦力公司 Hydrogenation of tyrosine-derived polyarylates

Also Published As

Publication number Publication date
ATE273041T1 (en) 2004-08-15
CA2484177A1 (en) 1999-05-20
AU1391399A (en) 1999-05-31
CA2309278C (en) 2009-10-13
ATE403463T1 (en) 2008-08-15
DE69839851D1 (en) 2008-09-18
DE69825618T2 (en) 2005-08-11
ATE454916T1 (en) 2010-01-15
DE69825618D1 (en) 2004-09-16
JP5421018B2 (en) 2014-02-19
CA2309278A1 (en) 1999-05-20
JP2001522899A (en) 2001-11-20
AU730549B2 (en) 2001-03-08
EP1028774A1 (en) 2000-08-23
EP1484080A1 (en) 2004-12-08
EP1484080B1 (en) 2008-08-06
JP2009299064A (en) 2009-12-24
EP1028774A4 (en) 2001-01-31
US6120491A (en) 2000-09-19
ES2227895T3 (en) 2005-04-01
EP1028774B1 (en) 2004-08-11
JP4481488B2 (en) 2010-06-16
DE69841453D1 (en) 2010-03-04
WO1999024107A1 (en) 1999-05-20
CA2484177C (en) 2010-03-30
ES2309422T3 (en) 2008-12-16
EP1908490B1 (en) 2010-01-13
EP1908490A1 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
EP1028774B1 (en) Biodegradable, anionic polymers derived from the amino acid l-tyrosine
EP0961801B1 (en) Monomers derived from hydroxy acids and polymers prepared therefrom
JP4996391B2 (en) Copolymer of tyrosine-based polycarbonate and poly (alkylene oxide)
US6319492B1 (en) Copolymers of tyrosine-based polyarylates and poly(alkylene oxides)
US6048521A (en) Copolymers of tyrosine-based polyarlates and poly(alkylene oxides)
JP2009514873A (en) Resorbable phenolic polymer
MXPA00004439A (en) Biodegradable, anionic polymers derived from the amino acid l-tyrosine

Legal Events

Date Code Title Description
AS Assignment

Owner name: RUTGERS, THE STATE UNIVERSITY, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KOHN, JOACHIM B.;BOLIKAL, DURGADAS;GUAN, SHUIYUN;REEL/FRAME:020719/0729;SIGNING DATES FROM 19990629 TO 19990630

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION