US20080133018A1 - Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints - Google Patents

Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints Download PDF

Info

Publication number
US20080133018A1
US20080133018A1 US11982100 US98210007A US2008133018A1 US 20080133018 A1 US20080133018 A1 US 20080133018A1 US 11982100 US11982100 US 11982100 US 98210007 A US98210007 A US 98210007A US 2008133018 A1 US2008133018 A1 US 2008133018A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
medical implant
polyethylene
polymer
molecular weight
implant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11982100
Inventor
Ronald Salovey
Harry A. McKellop
Fu-Wen Shen
Original Assignee
Ronald Salovey
Mckellop Harry A
Fu-Wen Shen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2/468Testing instruments for artificial joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION, OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS, OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/08Conditioning or physical treatment of the material to be shaped by using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0063After-treatment of articles without altering their shape; Apparatus therefor for changing crystallisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/047Coating with only one layer of a composition containing a polymer binder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/34Acetabular cups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30224Three-dimensional shapes cylindrical
    • A61F2002/30233Stepped cylinders, i.e. having discrete diameter changes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external and/or bone-contacting surfaces, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external and/or bone-contacting surfaces, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes, grooves
    • A61F2002/3082Grooves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external and/or bone-contacting surfaces, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external and/or bone-contacting surfaces, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes, grooves
    • A61F2002/30878Special external and/or bone-contacting surfaces, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes, grooves with non-sharp protrusions, for instance contacting the bone for anchoring, e.g. keels, pegs, pins, posts, shanks, stems, struts
    • A61F2002/30879Ribs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/32Joints for the hip
    • A61F2/36Femoral heads ; Femoral endoprostheses
    • A61F2/3609Femoral heads or necks; Connections of endoprosthetic heads or necks to endoprosthetic femoral shafts
    • A61F2002/3611Heads or epiphyseal parts of femur
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, E.G. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0069Three-dimensional shapes cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/085Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using gamma-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/16Forging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0087Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene

Abstract

The present invention discloses a method for enhancing the wear-resistance of polymers by crosslinking them, especially before irradiation sterilization. In particular, this invention presents the use of chemically crosslinked ultrahigh molecular weight polyethylene in in vivo implants.

Description

  • This is a continuation of co-pending U.S. patent application Ser. No. 10/752,167, filed on Jan. 3, 2004, which is a division of co-pending U.S. patent application Ser. No. 10/262,869, filed on Oct. 3, 2002, entitled “CHEMICALLY CROSSLINKED ULTRAHIGH MOLECULAR WEIGHT POLYETHYLENE FOR ARTIFICIAL HUMAN JOINTS”, which is a continuation of application Ser. No. 09/898,192, filed on Jul. 2, 2001 which is a continuation of application Ser. No. 09/406,305, filed on Sep. 27, 1999, and issued as U.S. Pat. No. 6,281,264, which is a continuation of application Ser. No. 08/698,638, filed on Aug. 15, 1996 and now abandoned, which is a division of application Ser. No. 08/376,953, filed on Jan. 20, 1995 and now abandoned. The entire contents of the parent applications are expressly incorporated herein by reference.
  • TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to polymers. It discloses a method for enhancing the wear-resistance of polymers, especially polymers that are to be irradiated, by crosslinking the polymers. The crosslinked polymers may be annealed to stabilize their size shrinkage. The polymers disclosed herein are particularly useful for making in vivo implants.
  • BACKGROUND OF THE INVENTION
  • Ultrahigh molecular weight polyethylene (hereinafter referred to as “UHMW polyethylene”) is commonly used to make prosthetic joints such as artificial hip joints. In recent years, it has become increasingly apparent that tissue necrosis and interface osteolysis, in response to UHMW polyethylene wear debris, are primary contributors to the long-term loosening failure of prosthetic joints. For example, the process of wear of acetabular cups of UHMW polyethylene in artificial hip joints introduces many microscopic wear particles into the surrounding tissues. The reaction of the body to these particles includes inflammation and deterioration of the tissues, particularly the bone to which the prosthesis is anchored. Eventually, the prosthesis becomes painfully loose and must be revised. It is generally accepted by orthopaedic surgeons and biomaterials scientists that the reaction of tissue to wear debris is the chief cause of long-term failure of such prostheses.
  • Laboratory experiments and examination of worn polyethylene components, as used in acetabular cups of total hip prostheses, after removal from patients, have shown that polyethylene wear in vivo primarily involves three fundamental mechanisms: adhesive, abrasive, and fatigue wear {Brown, K. J., et al., Plastics in Medicine & Surgery Plastics & Rubber Institute, London, 2.1-2.5 (1975); Nusbaum, H. J. & Rose, R. M., J. Biomed. Materials Res., 13:557-576 (1979); Rostoker, W., et al., J. Biomed. Materials Res., 12:317-335 (1978); Swanson, S. A. V. & Freeman, M. A. R., Chapter 3, “Friction, lubrication and wear.”, The Scientific Basis of Joint Replacement, Pittman Medical Publishing Co., Ltd. (1977).}
  • Adhesive wear occurs when there is local bonding between asperities on the polymer and the opposing (metal or ceramic) counterface. If the ratio of the strength of the adhesive bond to the cohesive strength of the polymer is great enough, the polymer may be pulled into a fibril, finally breaking loose to form a wear particle. Small wear particles (measuring microns or less) are typically produced.
  • Abrasive wear occurs when asperities on the surface of the femoral ball, or entrapped third-body particles, penetrate into the softer polyethylene and cut or plow along the surface during sliding. Debris may be immediately formed by a cutting process, or material may be pushed to the side of the track by plastic deformation, but remain an integral part of the surface.
  • Fatigue wear is dependent on cyclic stresses applied to the polymer. As used herein, fatigue wear is an independent wear mechanism involving crack formation and propagation within the polymer. Cracks may form at the surface and coalesce, releasing wear particles as large as several millimeters and leaving behind a corresponding pit on the surface, or cracks may form a distance below the surface and travel parallel to it, eventually causing sloughing off of large parts of the surface.
  • There are gaps in the prior art regarding the contributions of the above three basic mechanisms to the wear of polyethylene cups in vivo. While numerous laboratory studies and analyses of retrieved implants have provided valuable details on wear in vivo, there is ongoing disagreement regarding which wear mechanisms predominate and what are the controlling factors for wear.
  • However, it is clear that improving the wear resistance of the UHMW polyethylene socket and, thereby, reducing the amount of wear debris generated each year, would extend the useful life of artificial joints and permit them to be used successfully in younger patients. Consequently, numerous modifications in physical properties of UHMW polyethylene have been proposed to improve its wear resistance.
  • UHMW polyethylene components are known to undergo a spontaneous, post-fabrication increase in crystallinity and changes in other physical properties. {Grood, E. S., et al., J. Biomedical Materials Res., 16:399-405 (1976); Kurth, J., et al., Trans. Third World Biomaterials Congress, 589 (1988); Rimnac, C. M., et al., J. Bone & Joint Surgery, 76-A(7):1052-1056 (1994)). These occur even in stored (non-implanted) cups after sterilization with gamma radiation which initiates an ongoing process of chain scission, crosslinking, and oxidation or peroxidation involving free radical formation. {Eyerer, P. & Ke, Y. C., J. Biomed. Materials Res. 18:1137-1151 (1984); Nusbaum, H. J. & Rose, R. M., J. Biomed. Materials Res., 13:557-576 (1979); Roe, R. J., et al., J. Biomed. Materials Res., 15:209-230 (1981); Shen, C. & Dumbleton, J. H., Wear, 30:349-364 (1974)}. These degradative changes may be accelerated by oxidative attack from the joint fluid and cyclic stresses applied during use. {Eyerer, P. & Ke, Y. C., J. Biomed. Materials Res., supra; Grood, E. S., et al., J. Biomed. Materials Res., supra; Rimnac, C. M., et al., ASTM Symposium on Biomaterials' Mechanical Properties, Pittsburgh, May 5-6 (1992)}.
  • On the other hand, it has been reported that the best total hip prosthesis for withstanding wear is one with an alumina head and an irradiated UHMW polyethylene socket, as compared to a un-irradiated socket. The irradiated socket had been irradiated with 108 rad of γ-radiation, or about 40 times the usual sterilization dose. {Oonishi, H., et al., Radiat. Phys. Chem., 39(6):495-504 (1992)}. The usual average sterilization dose ranges from 2.5 to 4.0 Mrad. Other investigators did not find any significant reduction in the wear rates of UHMW polyethylene acetabular cups which had been irradiated, in the solid phase, in special atmospheres to reduce oxidation and encourage crosslinking. {Ferris, B. D., J. Exp. Path., 71:367-373 (1990); Kurth, M., et al., Trans. Third World Biomaterials Congress, 589 (1988); Roe, R. J., et al., J. Biomed. Materials Res., 15:209-230 (1981); Rose, et al., J. Bone & Joint Surgery, 62A(4):537-549 (1980); Streicher, R. M., Plastics & Rubber Processing & Applications, 10:221-229 (1988)}.
  • Meanwhile, DePuy.DuPont Orthopaedic has fabricated acetabular cups from conventionally extruded bar stock that has previously been subjected to heating and hydrostatic pressure that reduces fusion defects and increases the crystallinity, density, stiffness, hardness, yield strength, and resistance to creep, oxidation and fatigue. {U.S. Pat. No. 5,037,928, to Li, et al., Aug. 6, 1991; Huang, D. D. & Li, S., Trans. 38th Ann. Mtg., Orthop. Res. Soc., 17:4.03 (1992); Li, S. & Howard, E. G., Trans. 16th Ann. Society for Biomaterials Meeting, Charleston, S.C., 190 (1990).) Silane cross-linked UHMW polyethylene (XLP) has also been used to make acetabular cups for total hip replacements in goats. In this case, the number of in vivo debris particles appeared to be greater for XLP than conventional UHMW polyethylene cup implants (Ferris, B. D., J. Exp. Path., 71:367-373 (1990)}.
  • other modifications of UHMW polyethylene have included: (a) reinforcement with carbon fibers {“Poly Two Carbon-Polyethylene Composite—A Carbon Fiber Reinforced Molded Ultra-High Molecular Weight Polyethylene”, Technical Report, Zimmer (a Bristol-Myers Squibb Company), Warsaw (1977)}; and (b) post processing treatments such as solid phase compression molding {Eyerer, P., Polyethylene, Concise Encyclopedia of Medical & Dental Implant Materials, Pergamon Press, Oxford, 271-280 (1990); Li, S., et al., Trans. 16th Annual Society for Biomaterials Meeting, Charleston, S.C., 190 (1990); Seedhom, B. B., et al., Wear, 24:35-51 (1973); Zachariades, A. E., Trans. Fourth World Biomaterials Congress, 623 (1992)}. However, to date, none of these modifications has been demonstrated to provide a significant reduction in the wear rates of acetabular cups. Indeed, carbon fiber reinforced polyethylene and a heat-pressed polyethylene have shown relatively poor wear resistance when used as the tibial components of total knee prosthesis. {Bartel, D. L., et al., J. Bone & Joint Surgery, 68-A(7):1041-1051 (1986); Conelly, G. M., et al., J. Orthop. Res., 2:119-125 (1984); Wright, T. M., et al., J. Biomed. Materials Res., 15: 719-730 (1981); Bloebaum, R. D., et al., Clin. Orthop., 269:120-127 (1991); Goodman, S. & Lidgren, L., Acta Orthop. Scand., 63(3) 358-364 (1992); Landy, M. M. & Walker, P. S., J. Arthroplasty, Supplement, 3:S73-S85 (1988); Rimnac, C. M., et al., Trans. Orthopaedic Research Society, 17:330 (1992); Rimnac, C. M. et al., “Chemical and mechanical degradation of UHMW polyethylene: Preliminary report of an in vitro investigation,” ASTM Symposium on Biomaterials' Mechanical Properties, Pittsburgh, May 5-6 (1992)}.
  • SUMMARY OF THE INVENTION
  • one aspect of the invention presents a method for reducing the crystallinity of a polymer so that it can better withstand wear. An effective method for reducing the crystallinity of the polymer is by crosslinking. For reduction of crystallinity, the polymer may be irradiated in the melt or, preferably, chemically crosslinked in the molten state. The method is particularly useful for polymer which undergoes irradiation sterilization in the solid state. It is advantageous if the crosslinked polymer is annealed to stabilize its shrinkage.
  • Another aspect of the invention presents a method for making in vivo implants based on the above treatment of the polymer.
  • Another aspect of the invention presents a polymer, made from the above method, having an increased ability to withstand wear.
  • Another aspect of the invention presents in vivo implants made from the polymer described above.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 presents SEM micrographs of fracture surfaces of the compression molded UHMW polyethylene (after irradiation) at magnifications of (A)×200 and (B)×5000.
  • FIG. 2 presents SEM micrographs of fracture surfaces of compression molded UHMW polyethylene crosslinked with 1 wt % peroxide (after irradiation) at magnifications of (A)×200 and (B)×5000.
  • FIG. 3 presents the geometry of the acetabular cup tested for wear on the hip joint simulator used in EXAMPLE 2 below.
  • FIG. 4 presents a schematic diagram of the hip joint simulator used in EXAMPLE 2 below.
  • FIG. 5 presents a graph comparing the amounts of wear of the modified and unmodified UHMW polyethylene cups during a run lasting a million cycles.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Abbreviations used in this application are as follows:
      • DSC—differential scanning calorimetry.
      • FTIR—Fourier Transform Infrared Spectroscopy
      • SEM—scanning electron microscopy
      • UHMW—ultra-high molecular weight
      • UHMWPE—ultra-high molecular weight polyethylene, also referred to as UHMW polyethylene
      • WAXS—wide angle X-ray scattering
  • Cutting through the plethora of choices and confusion in the art, applicants discovered that a low degree of crystallinity is a major factor in increasing the ability of polyethylene to withstand wear in vivo, contrary to the above teaching of DePuy.DuPont Orthopaedic. Solid polymers that can crystallize generally contain both crystalline and amorphous states. These two states have different physical properties. The applicants believe that the crystalline component of polymers is more brittle and less wear-resistant than the amorphous component, the amorphous component being more ductile and more wear-resistant.
  • In the present invention, the degree of crystallinity of the polymer is preferably reduced by crosslinking. The crosslinking can be achieved by various methods known in the art, for example, by irradiation crosslinking of the molten polymer; photocrosslinking of the molten polymer; and crosslinking of the polymer with a free radical generating chemical. The preferred method is chemical crosslinking. As indicated, if the crosslinking is to be achieved by irradiation, the polymer should be irradiated in the melt, unlike the above mentioned prior art irradiation methods, such as in Oonishi et al. Applicants also discovered that such a crosslinked polymer is useful for in vivo implant because it is wear resistant. Such in vivo implant has not been envisioned by the prior art. Moreover, since acetabular cups are routinely sterilized by irradiation which increases the crystallinity of UHMW polyethylene {Bhateja, S. K., J. Macromol. Sci. Phys., B22:159 (1983); Bhateja, S. K., et al., J. Polym. Sci., Polym. Phys. Ed., 21:523 (1983); and Bhateja, S. K. & Andrews, E. H., J. Mater. Sci., 20:2839 (1985)}, applicants realized that the irradiation in fact makes the polymer more susceptible to wear, contrary to the teaching of the prior art such as Oonishi et al, supra. By crosslinking the polymer before sterilization by irradiation, applicants' method mitigates the deleterious effects of irradiation, such as chain scission. Applicants' method calls for determination of the crystallinity after irradiation to adjust the crosslinking conditions to reduce crystallinity. The polymer may also be irradiated under certain conditions e.g., in nitrogen atmosphere to reduce the immediate and subsequent amounts of oxidation. Reducing oxidation increases the amount of crosslinking. In producing acetabular cups, applicants discovered that both uncrosslinked and crosslinked cups show shrinkage in size, but crosslinked cups tend to shrink more than uncrosslinked cups. Thus, the present invention also provides for annealing the crosslinked polymer in order to shrink it to a stable size before reshaping the polymer.
  • Most importantly, implants which are produced by the foregoing methods of the invention are more wear resistant than conventional untreated polymer. Thus, an example of the present invention presents an UHMW polyethylene acetabular cup of a total hip prosthesis which has been chemically crosslinked by a peroxide, and then sterilized by irradiation, showing only one fifth of the wear of a control cup after a simulated year of in vivo use.
  • Method for Treating the Polymers
  • One aspect of the invention presents a method for treating a polymer to reduce its crystallinity to less than 45% to enable the resulting polymer to better withstand wear. The polymer's crystallinity is preferably reduced by crosslinking in the molten state followed by cooling to the solid state. Preferably, the crosslinking reduces the crystallinity of the polymer by about 10% to 50%; more preferably, by about 10% to 40%; and most preferably, by about 10% to 30% compared to an uncrosslinked polymer. For example, the preferable degree of crystallinity of crosslinked UHMW polyethylene is between about 24% to 44%; more preferably, between 29% to 44%; and most preferably, between about 34% to 44% After sterilization by irradiation, the crosslinked polymer has a reduced crystallinity compared to the uncrosslinked polymer. Preferably, the irradiated crosslinked polymer possesses about 10% to 50%; more preferably, about 10% to 40%; and most preferably, about 10% to 30% less degree of crystallinity compared to the uncrosslinked but irradiated polymer. For example, the preferable degree of crystallinity of irradiated, crosslinked UHMW polyethylene is between about 28% to 51%; more preferably, between about 33% to 51%; and most preferably, between about 39% to 51%. For example, EXAMPLE 1, Table 1 below shows the degree of crystallinity for UHMW polyethylene containing different weight percentage of peroxide. In the following EXAMPLE 2, UHMW polyethylene which was crosslinked by 1% weight (wt) peroxide exhibited about 39.8% crystallinity, i.e. about a 19% reduction in crystallinity compared to uncrosslinked UHMW polyethylene which possessed about 49.2% crystallinity. After gamma irradiation to an average dose of about 3.4 Mrad, the crosslinked UHMW polyethylene exhibits about 42% crystallinity, i.e., a reduction of about 25% in crystallinity compared to the originally uncrosslinked but radiation sterilized UHMW polyethylene which possessed about 55.8% crystallinity. Thus, it is contemplated that after the usual sterilization dosage in the solid state, which generally averages between 2.5 to 4.0 Mrad, the treated polymer preferably possesses less than about 45% crystallinity, and more preferably about 42% crystallinity or less. Also, the treated polymer preferably possesses less than about 43%, more preferably less than about 40%, crystallinity before irradiation in the solid state.
  • If the polymer is to be molded, e.g. as an acetabular cup, the polymer may be placed in the mold and crosslinked therein. Further crosslinking examples are: (1) irradiation of the polymer when it is in a molten state, e.g. UHMW polyethylene has been crosslinked in the melt by electron beam irradiation; and molten linear polyethylene has been irradiated with fast electrons {Dijkstra, D. J. et al., Polymer, 30:866-709 (1989); Gielenz G. & Jungnickle, B. J., Colloid & Polymer Sci., 260:742-753 (1982)}; the polymer may also be gamma-irradiated in the melt; and (2) photocrosslinking of the polymer in the melt, e.g. polyethylene and low-density polyethylene have been photocrosslinked {Chen, Y. L. & Ranby, B., J. Polymer Sci.: Part A: Polymer Chemistry, 27:4051-4075, 4077-4086 (1989)}; Qu, B. J. & Ranby, B., J. Applied Polymer Sci., 48:711-719 (1993)}.
  • Choices of Polymers
  • The polymers are generally polyhydrocarbons. Ductile polymers that wear well are preferred. Examples of such polymers include: polyethylene, polypropylene, polyester and polycarbonates. For example, UHMW polymers may be used, such as UHMW polyethylene and UHMW polypropylene. An UHMW polymer is a polymer having a molecular weight (MW) of at least about a million.
  • For in vivo implants, the preferred polymers are those that are wear resistant and have exceptional chemical resistance. UHMW polyethylene is the most preferred polymer as it is known for these properties and is currently widely used to make acetabular cups for total hip prostheses. Examples of UHMW polyethylene are: Hostalen GUR 415 medical grade UHMW polyethylene flake (Hoechst-Celanese Corporation, League City, Tex.), with a weight average molecular weight of 6×106 MW; Hostalen GUR 412 with a weight average molecular weight of between 2.5×106 to 3×106 MW; Hostalen GUR 413 of 3×106 to 4×106 MW; RCH 1000 (Hoechst-Celanese Corp.); and HiFax 1900 of 4×106 MW (HiMont, Elkton, Md.). GUR 412, 413 and 415 are in the form of powder. RCH 1000 is usually available as compression molded bars. Historically, companies which make implants have used GUR 412 and GUR 415 for making acetabular cups. Recently, Hoechst-Celanese Corp. changed the designation of GUR 415 to 4150 resin and indicated that 4150 HP was for use in medical implants.
  • Methods for Characterizing the Polymers (Especially the Determination of Their Crystallinity
  • The degree of crystallinity of the crosslinked polymer may be determined after it has been crosslinked or molded. In case the treated polymer is further irradiated, e.g., to sterilize the polymer before its implant into humans, the degree of crystallinity may be determined after irradiation, since irradiation effects further crystallization of the polymer.
  • The degree of crystallinity can be determined using methods known in the art, e.g. by differential scanning calorimetry (DSC), which is generally used to assess the crystallinity and melting behavior of a polymer. Wang, X. & Salovey, R., J. App. Polymer Sci., 34: 593-599 (1987).
  • X-ray scattering from the resulting polymer can also be used to further confirm the degree of crystallinity of the polymer, e.g. as described in Spruiell, J. E., & Clark, E. S., in “Methods of Experimental Physics”, L. Marton & C. Marton, Eds., Vol. 16, Part B, Academic Press, New York (1980). Swelling is generally used to characterize crosslink distributions in polymers, the procedure is described in Ding, Z. Y., et al., J. Polymer Sci., Polymer Chem., 29: 1035-38 (1990). Another method for determining the degree of crystallinity of the resulting polymer may include FTIR (Painter, P. C. et al., “The Theory Of Vibrational Spectroscopy And Its Application To Polymeric Materials”, John Wiley and Sons, New York, U.S.A. (1982)} and electron diffraction. FTIR assesses the depth profiles of oxidation as well as other chemical changes such as unsaturation (Nagy, E. V., & Li, S., “A Fourier transform infrared technique for the evaluation of polyethylene orthopaedic bearing materials”, Trans. Soc. for Biomaterials, 13:109 (1990); Shinde, A. & Salovey, R., J. Polymer Sci., Polym. Phys. Ed., 23:1681-1689 (1985)}. A further method for determining the degree of crystallinity of the resulting polymer may include density measurement according to ASTM D1505-68.
  • Methods for Chemically Crosslinking the Polymers
  • The polymer is preferably chemically crosslinked to decrease its crystallinity. Preferably, the crosslinking chemical, i.e. a free radical generating chemical, has a long half-life at the molding temperature of the chosen polymer. The molding temperature is the temperature at which the polymer is molded. The molding temperature is generally at or above the melting temperature of polymer. If the crosslinking chemical has a long half-life at the molding temperature, it will decompose slowly, and the resulting free radicals can diffuse in the polymer to form a homogeneous crosslinked network at the molding temperature. Thus, the molding temperature is also preferably high enough to allow the flow of the polymer to occur to distribute or diffuse the crosslinking chemical and the resulting free radicals to form the homogeneous network. For UHMW polyethylene, the molding temperature is between 150° to 220° C. and the molding time is between 1 to 3 hours; the preferable molding temperature and time being 170° C. and 2 hours, respectively.
  • Thus, the crosslinking chemical may be any chemical that decomposes at the molding temperature to form highly reactive intermediates, free radicals, which would react with the polymers to form the crosslinked network. Examples of free radical generating chemicals are peroxides, peresters, azo compounds, disulfides, dimethacrylates, tetrazenes, and divinyl benzene. Examples of azo compounds are: azobis-isobutyronitride, azobis-isobutyronitrile, and dimethylazodi isobutyrate. Examples of peresters are t-butyl peracetate and t-butyl perbenzoate.
  • Preferably the polymer is crosslinked by treating it with an organic peroxide. The preferable peroxides are 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne (Lupersol 130, Atochem Inc., Philadelphia, Pa.); 2,5-dimethyl-2,5-di-(t-butylperoxy)-hexane; t-butyl α-cumyl peroxide; di-butyl peroxide; t-butyl hydroperoxide; benzoyl peroxide; dichlorobenzoyl peroxide; dicumyl peroxide; di-tertiary butyl peroxide; 2,5 dimethyl-2,5 di(peroxy benzoate) hexyne-3; 1,3-bis(t-butyl peroxy isopropyl) benzene; lauroyl peroxide; di-t-amyl peroxide; 1,1-di-(t-butylperoxy) cyclohexane; 2,2-di-(t-butylperoxy)butane; and 2,2-di-(t-amylperoxy) propane. The more preferred peroxide is 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne. The preferred peroxides have a half-life of between 2 minutes to 1 hour; and more preferably, the half-life is between 5 minutes to 50 minutes at the molding temperature.
  • Generally, between 0.2 to 5.0 wt % of peroxide is used; more preferably, the range is between 0.5 to 3.0 wt % of peroxide; and most preferably, the range is between 0.6 to 2 wt %.
  • The peroxide can be dissolved in an inert solvent before being added to the polymer powder. The inert solvent preferably evaporates before the polymer is molded. Examples of such inert solvents are alcohol and acetone.
  • For convenience, the reaction between the polymer and the crosslinking chemical, such as peroxide, can generally be carried out at molding pressures. Generally, the reactants are incubated at molding temperature, between 1 to 3 hours, and more preferably, for about 2 hours.
  • The reaction mixture is preferably slowly heated to achieve the molding temperature. After the incubation period, the crosslinked polymer is preferably slowly cooled down to room temperature. For example, the polymer may be left at room temperature and allowed to cool on its own. Slow cooling allows the formation of a stable crystalline structure.
  • The reaction parameters for crosslinking polymers with peroxide, and the choices of peroxides, can be determined by one skilled in the art. For example, a wide variety of peroxides are available for reaction with polyolefins, and investigations of their relative efficiencies have been reported {Lem, K. W. & Han, C. D., J. Appl. Polym. Sci., 27:1367 (1982); Kampouris, E. M. & Andreopoulos, A. G., J. Appl. Polym. Sci., 34:1209 (1987) and Bremner, T. & Rudin, A. J. Appl. Polym. Sci., 49:785 (1993)}. Differences in decomposition rates are perhaps the main factor in selecting a particular peroxide for an intended application {Bremner, T. & Rudin, A. J. Appl. Polym. Sci., 49:785 (1993)}. Bremner and Rudin, id., compared three dialkyl peroxides on the basis of their ability to increase the gel content, crosslinking efficiency, and storage modulus of virgin polyethylene through a crosslinking mechanism and found that they decreased in the order of α,α-bis(tertiary butylperoxy)-p-diisopropyl benzene>dicumyl peroxide>2,5-dimethyl-2,5-di-(tertiary butylproxy)-hexyne-3 at the same active peroxide radical concentrations and temperature.
  • More specifically, peroxide crosslinking of UHMW polyethylene has also been reported {de Boer, J. & Pennings, A. J., Makromol. Chem. Rapid Commun., 2:749 (1981); de Boer, J. & Pennings, A. J., Polymer, 23:1944 (1982); de Boer, J., et al., Polymer, 25:513 (1984) and Narkis, M., et al., J. Macromol. Sci. Phys., B 26:37, 58 (1987)}. de Boer et al. crosslinked UHMW polyethylene in the melt at 180° C. by means of 2,5-dimethyl-2,5-di-(tert-butylperoxy)-hexyne-3 and found that crosslinks and entanglements, whether trapped or not, contributed to the same degree to the decrease in crystallinity of UHMW polyethylene upon crosslinking {de Boer, J. & Pennings, A. J., Polymer, 23:1944 (1982)}. It was concluded that an almost completely crosslinked (or gelled) material with high crystallinity and good mechanical properties could be obtained by using as little as 0.2-0.3 wt % of peroxide.
  • Some of the above references investigated the effect of peroxide crosslinking on UHMW polyethylene, such as in lowering crystallinity; and the effects of reaction parameters, such as peroxide concentrations {de Boer, J. & Pennings, A. J., Polymer, 23:1944 (1982); Narkis, M., et al., J. Macromol. Sci. Phys., B 26:37-58 (1987)}. However, these references do not address the effect of peroxide crosslinking or the lowering of crystallinity in relation to the wear property of the resulting polymer. For example, de Boer and Pennings, in Polymer, 23:1944 (1982), were concerned with the effect of crosslinking on the crystallization behavior and the tensile properties of UHMW polyethylene. The authors found that tensile properties, such as tensile strength at break point and Young's modulus, of the UHMW polyethylene, showed a tendency to decrease with increasing peroxide content.
  • Similarly, Narkis, M., et al., J. Macromol. Sci. Phys., B 26:37-58 (1987), separately determined the effects of irradiation and peroxide on the crosslinking and degree of crystallinity of UHMW polyethylene (Hostalen GUR 412), high molecular weight polyethylene, and normal molecular weight polyethylene. However, M. Narkis et al., did not study the inter-relationship of peroxide crosslinking and irradiation, nor their effects on wear resistance.
  • Use of Crosslinked Polymers for In Vivo Implants
  • Another aspect of the invention presents a process for making in vivo implants using the above chemically crosslinked polymer. Since in vivo implants are often irradiated to sterilize them before implant, the present invention provides the further step of selecting for implant use, a polymer with about 45% crystallinity or less after irradiation sterilization. For γ-irradiation sterilization, the minimum dosage is generally 2.5 Mrad. The sterilization dosage generally falls between 2.5 and 4.0 Mrad. The preferable degree of crystallinity is between 25% to 45% crystallinity. In EXAMPLE 2 below, the polymer has about 39.8% crystallinity after crosslinking; and about 42% crystallinity after further irradiation with γ-radiation to an average dose of about 3.4 Mrad. Thus, the chemically crosslinked UHMW polymer preferably possesses less than about 43% crystallinity before irradiation in the solid state, and less than about 45% crystallinity after irradiation with γ-radiation to an average dose of about 3.4 Mrad.
  • Annealing of Crosslinked Polymers
  • Applicants observed that both crosslinked and uncrosslinked polymers tended to shrink, but the crosslinked polymer tended to shrink more than the uncrosslinked polymer (see EXAMPLE 3 below). Thus, the present invention further provides for annealing a polymer to pre-shrink it to a size which will not shrink further (i.e. stabilize the polymer's shrinkage or size). Thus, one aspect of the invention provides for a method of: 1) crosslinking a polymer, 2) selecting a crosslinked polymer of reduced crystallinity, 3) annealing the polymer to stabilize its size. Thus, the polymer can be molded at a size larger than desired, and the molded polymer is then annealed to stabilize its size. After size stabilization, the molded polymer is then resized, such as by machining, into a product with the desired dimension.
  • The annealing temperature is preferably chosen to avoid thermal oxidation of the crosslinked polymer which will increase its crystallinity. Thus, the annealing temperature is preferably below the melting point of the molded polymer before irradiation. For example, the melting temperatures of molded UHMW polyethylene and molded 1 wt % peroxide UHMW polyethylene are 132.6° C. and 122.3° C., before irradiation, respectively. The preferable annealing temperature for both these molded UHMW polyethylenes is between 60° C. to 120° C., before irradiation, and more preferably 100° C. These temperatures were determined by observation, based on experiments, of their minimal effect on thermal oxidation of the molded polymers. The annealing time is generally between 1 to 6 hours, and more preferably between 2 to 4 hours. In the case of UHMW polyethylene, the annealing time is preferably between 2 to 4 hours, and more preferably about 2 hours.
  • To further avoid thermal oxidation of the crosslinked polymer, the annealing is most preferably conducted in a vacuum oven.
  • To ensure that the crosslinked and annealed polymer has the desired degree of crystallinity, its degree of crystallinity is preferably determined after the annealing process, using the method(s) described previously.
  • Wear-Resistant Polymers
  • Another aspect of the invention presents a polymer with 45% of crystallinity or less, in particular, after irradiation in the solid state and/or annealing. In EXAMPLE 2 below, the polymer has about 39.8% crystallinity after crosslinking; and about 42% crystallinity, after further irradiation with γ-radiation to an average dose of about 3.4 Mrad; or about 40.8% crystallinity, after crosslinking and annealing, but before irradiation in the solid state.
  • The polymers of the present invention can be used in any situation where a polymer, especially UHMW polyethylene, is called for, but especially in situations where high wear resistance is desired and irradiation of the solid polymer is called for. More particularly, these polymers are useful for making in vivo implants.
  • In Vivo Implants Made of Crosslinked Polymers
  • An important aspect of this invention presents in vivo implants that are made with the above polymers or according to the method presented herein. These implants are more wear resistant than their untreated counterpart, especially after irradiation. In particular, these in vivo implants are chemically crosslinked UHMW polymers, which have been molded, annealed, and resized into the shape of the implants. Further, the chemically crosslinked UHMW polymer preferably possesses less than about 43% crystallinity before irradiation in the solid state, and less than about 45% crystallinity, after γ-irradiation to an average dose of 3.4 Mrad, in the solid state. The modified polymer can be used to make in vivo implants for various parts of the body, such as components of a joint in the body. For example, in the hip joints, the modified polymer can be used to make the acetabular cup, or the insert or liner of the cup, or trunnion bearings (e.g. between the modular head and the stem). In the knee joint, the modified polymer can be used to make the tibial plateau (femoro-tibial articulation), the patellar button (patello-femoral articulation), and trunnion or other bearing components, depending on the design of the artificial knee joint. In the ankle joint, the modified polymer can be used to make the talar surface (tibio-talar articulation) and other bearing components. In the elbow joint, the modified polymer can be used to make the radio-humeral joint, ulno-humeral joint, and other bearing components. In the shoulder joint, the modified polymer can be used to make the glenoro-humeral articulation, and other bearing components. In the spine, the modified polymer can be used to make intervertebral disk replacement and facet joint replacement. The modified polymer can also be made into temporo-mandibular joint (jaw) and finger joints. The above are by way of example, and are not meant to be limiting.
  • Having described what the applicants believe their invention to be, the following examples are presented to illustrate the invention, and are not to be construed as limiting the scope of the invention.
  • EXAMPLES Example 1 Experimental Details
  • Commercial-grade UHMW polyethylene GUR 415 (from Hoechst-Celanese Corporation, League City, Tex.), with a weight average molecular weight of 6×106, was used as received. The peroxide used was 2,5-dimethyl-2,5-bis(tert-butylperoxy)-3-hexyne (Lupersol 130, Atochem Inc., Philadelphia, Pa.). The reason for choosing Lupersol 130 was its long half-life at elevated temperature. The peroxide will decompose slowly, and the resultant free radicals can diffuse in the specimen to form a homogeneous network at elevated temperatures.
  • Mixing of the UHMW polyethylene and the peroxide was accomplished by dispersing polyethylene powder in an acetone solution of the peroxide and subsequently evaporating the solvent {de Boer, J., et al., J. Polym. Sci., Polym. Phys. Ed., 14:187 (1976); de Boer, J. & Pennings, A. J., Makromol. Chem, Rapid Commun., 2:749 (1981) and de Boer, J. & Pennings, A. J., Polymer, 23:1944 (1982)}. The mixed powder (22 g) was poured into the mold cavity and then compression molded in a mold between two stainless-steel plates at 120° C. and ram pressure 11×103 kPa for 10 minutes in order to evacuate the trapped air in the powder. After pressing, the pressure was reduced to 7.5×103 kPa and the specimen was heated to 170° C. by circulated heating oil. These conditions were held for 2 hours. The half-life time of peroxide at 170° C. in dodecane is about 9 minutes. After 2 hours, pressure was increased to 15×103 kPa to avoid cavities in the specimen and sink marks on the surface and the specimen was slowly cooled in the mold to room temperature. The mold was in the shape of an acetabular cup for a total hip prosthesis.
  • The specimens were irradiated with γ-rays at room temperature in air atmosphere by SteriGenics International (Tustin, Calif.). Cobalt-60 was used as a source of gamma irradiation. The radiation doses were delivered at a dose rate of 5 kGy/hr. Specimens received doses to an average of about 34 kGy (i.e., an average of about 3.4 Mrad).
  • The physical properties of specimens before and after irradiation were characterized by DSC, equilibrium swelling, FTIR, and WAXS measurements. Surface morphology was examined by SEM.
  • Results and Discussion
  • Before irradiation, the degree of crystallinity, peak melting temperature, and recrystallization temperature for the peroxide-free specimen are 49.2%, 132.6 and 115.5° C., respectively. For a 1 wt % peroxide specimen, the degree of crystallinity, peak melting temperature, and recrystallization temperature are reduced to 39.8%, 122.3 and 110.1° C., respectively. Peroxide crosslinking reactions are accompanied by the decomposition of peroxide and abstraction of hydrogen atoms, and the resulting combination of alkyl radicals to produce carbon-carbon crosslinks. Generally, this reaction was performed above the melting temperature of the polymer. Thus the crosslinking step preceded the crystallization step. It was suggested that crystallization from a crosslinked melt produced an imperfect crystal, and crosslinks suppressed crystal growth, resulting in the depression of melting temperature and a decreased crystallinity (decreased crystallite size) {de Boer, J. et al., J. Polym. Sci., Polym. Phys. Ed., 14:187 (1976); de Boer, J. & Pennings, A. J., Makromol. Chem. Rapid Commun., 2:749 (1981); de Boer, J. & Pennings, A. J., Polymer, 23:1944 (1982) and Narkis, M., et al., J. Macromol. Sci. Phys., B26:37 (1987)}. Wide-angle x-ray scattering shows that the degree of crystallinity, crystal perfection and size decrease after peroxide crosslinking. For swelling measurement, the peroxide-free specimen dissolves completely in boiling p-xylene. The gel content, degree of swelling, and average molecular weight between crosslinks for the 1 wt % peroxide specimen are 99.6%, 2.53, and 1322 (g/mol), respectively. Because of the extremely long polymer chains in UHMW polyethylene, only a few crosslinks were needed for gelation. In addition, an almost 100% gel can be obtained by peroxide crosslinking because no chain scission occurs by peroxide crosslinking.
  • After irradiation, the degree of crystallinity and peak melting temperature for the peroxide-free specimen were increased to 55.8% and 135° C., respectively. It was suggested that irradiation-induced scission of taut tie molecules permits recrystallization of broken chains from the noncrystalline regions, and results in an increase in the degree of crystallinity and an increased perfection of existing folded chain crystallites {Narkis, M., et al., J. Macromol. Sci. Phys., B26:37 (1987); Bhateja, S. K., J. Macromol. Sci. Phys., B22:159 (1983); Bhateja, S. K., et al., J. Polym. Sci. Polym. Phys. Ed., 21:523 (1983); Kamel, I. & Finegold, L., J. Polym. Sci., Polym. Phys. Ed., 23:2407 (1985); Shinde, A. & Salovey, R., J. Polym. Sci., Polym. Phys. Ed., 23:1681 (1985); Bhateja, S. K. & Andrews, E. H., J. Mater. Sci., 20:2839 (1985); Minkova, L., Colloid Polym. Sci., 266:6 (1988); Minkova, L. & Mihailov, M., Colloid Polym. Sci., 268:1018 (1990) and Zhao, Y., et al., J. Appl. Polym. Sci., 50:1797 (1993)}. The gel content after irradiation for the peroxide-free specimen was 70.8%.
  • For the 1 wt % peroxide specimen, the degree of crystallinity and peak melting temperature after irradiation were increased to 42% (about 2% increase) and 125.1° C., respectively. The gel content decreased to 97.5% after irradiation, whereas, the degree of swelling and molecular weight between crosslinks increased to 3.35 and 2782 (g/mol), respectively. Apparently, irradiation-induced scission of taut tie molecules resulted in a decreased gel content and an increased degree of swelling. However, after peroxide crosslinking, the effect of irradiation on network properties was mitigated. As a result of peroxide crosslinking, radiation-induced chain scission becomes less important in determining gel content. We suggest that peroxide crosslinking reduces the effect of irradiation on the crosslinked network because crosslinks introduced by peroxide crosslinking stabilize chain fragments resulting from the scission of taut tie molecules and suppress recrystallization of broken chains. Wide-angle x-ray scattering showed that crystal perfection increased after irradiation. It is suggested that crystal perfection was improved by irradiation-induced scission of taut tie molecules in the amorphous regions.
  • FTIR measurements showed that, after irradiation, the carbonyl concentration significantly increased. This is because the free radicals produced by irradiation reacted with oxygen dissolved and/or diffused in the polymer. In addition, the carbonyl concentration in irradiated peroxide-crosslinked samples was higher, compared to the peroxide-free sample (after irradiation). Peroxide, crosslinking produces tertiary carbons, therefore, the concentration of tertiary carbons increases with increasing peroxide concentration. Applicants believe that tertiary carbons are more susceptible to oxidation during irradiation. Therefore, carbonyl concentration in the irradiated peroxide-crosslinked samples increased with increasing peroxide concentration.
  • After irradiation, scanning electron micrographs were taken of the fracture surfaces of the peroxide-free and 1 wt % peroxide specimens, compression molded at 170° C. for 2 hours and subsequently slowly cooled to room temperature. The micrographs are shown in FIGS. 1 and 2, respectively. As shown in FIG. 1, a brittle (rough) fracture boundary of size comparable to that of the original UHMW polyethylene powder particles is observed. Close examination (×5000 magnification) shows an oriented nodular structure, composed of many smooth, submicron spheres. These smooth, minute spheres are believed to correspond to those present in the raw UHMW polyethylene powder and to form an aggregate. In FIG. 2, peroxide crosslinked samples show a ductile (smooth) fracture surface, compared to the rough fracture surface of peroxide-free specimen. The difference in appearance of fracture surfaces for peroxide-free and 1 wt % peroxide specimens is due to the crystallinity difference. After irradiation, the degree of crystallinity for the peroxide-free and 1 wt % peroxide specimens were 55.8 and 42%, respectively. It is believed that the peroxide-free specimen (55.8% crystallinity) suffered higher forces and less deformation during fracturing process, leading to a sharp break in the polymer.
  • The crosslinking experiment was also conducted with different concentrations of Lupersol 130, using a smaller amount, 5 g, of GUR 415 and a smaller mold which was in the form of a disk. It was observed that the degree of crystallinity of the crosslinked polymer decreased with increased concentrations of Lupersol 130. The result is shown in Table 1 below:
  • TABLE 1
    wt % Crystallinity (%) Crystallinity (%)
    Peroxide Before Irradiation After Irradiation
    0 49.2 55.8
    0.2 44.0 50.0
    0.4 41.6 46.8
    0.6 41.3 46.2
    0.8 40.0 45.0
    1.0 39.8 42.0
    1.5 36.8 36.8
    2.0 36.5 36.7
  • Conclusions
  • Peroxide crosslinking leads to a decrease in the degree of crystallinity, peak melting temperatures, and recrystallization temperatures for 1 wt % peroxide specimen. Irradiation produces crosslinking in amorphous regions plus extensive scission of taut tie molecules and leads to increased crystallinity and crystal perfection, reduces gel content, and increases the degree of swelling of a crosslinked network.
  • Peroxide crosslinking reduces the effect of irradiation on the crosslinked network. This is because crosslinks introduced by peroxide crosslinking can stabilize the chain fragments resulting from the scission of taut tie molecules and suppress recrystallization of broken chains.
  • FTIR measurements showed that, after irradiation, the carbonyl concentration significantly increased. This is because the free radicals produced by irradiation react with oxygen dissolved and/or diffused in the polymer. In addition, carbonyl concentration in the irradiated peroxide-crosslinked samples is higher, compared to the peroxide-free sample (after irradiation). This is because peroxide crosslinking introduces tertiary carbons which are more susceptible to oxidation during irradiation, so that the carbonyl concentration in the irradiated peroxide-crosslinked samples increases.
  • Wide-angle x-ray scattering shows that crystal perfection increases after irradiation. It is suggested that crystal perfection is improved by irradiation-induced scission of taut tie molecules in the amorphous regions.
  • The peroxide-free specimen shows brittle fracture because of higher crystallinity (55.8%), whereas, the 1 wt % peroxide specimen shows ductile fracture due to lower crystallinity (42%).
  • Example 2 Materials and Methods
  • In this example, the wear resistance of the polyethylenes treated (modified) and untreated (unmodified) with peroxide in EXAMPLE 2 were tested. The control (unmodified) and modified polyethylenes were compression molded directly into the form of acetabular cups. These were then exposed to an average of approximately 3.4 Mrad of gamma radiation (SteriGenics International, Tustin, Calif.), to simulate the condition of cups that would be used in patients. Due to different amounts of post-molding shrinkage, the internal surface of each cup was machined to provide nearly identical internal diameters and ball-to-cup clearances among the control and modified cups (FIG. 3). As shown in FIG. 3B, the cup's outer radius 1 is 24.5 mm, its inner radius 2 is 16.1 mm, its height 3 is 29.8 mm, and its diameter 4 is 49.0 mm
  • The cups were pre-soaked in distilled water for three weeks prior to the wear test to minimize fluid absorption during the wear test. The wear cups were mounted on the hip joint simulator, including four cups of control polyethylene and three cups of modified polyethylene. Each cup was held in a urethane mold and mounted in a stainless steel test chamber, with a plexiglass wall to contain the bovine serum lubricant. The lubricant had 0.2% sodium azide added to retard bacterial degradation, and 20 milli-Molar ethylene-diaminetetraacetic acid (EDTA) to prevent precipitation of calcium phosphate on the surfaces of the ball (McKellop, H. & Lu, B., “Friction and Wear of Polyethylene-Metal and Polyethylene-Ceramic Hip Prostheses on a Joint Simulator, Fourth World Biomaterials Congress, Berlin, April 1992, 118). A polyethylene skirt covered each chamber to minimize air-borne contamination. The cups were oscillated against highly polished femoral balls of cast cobalt-chromium alloy, as used on artificial hips. The simulator applied a Paul-type cyclic load at one cycle per second {Paul, J. P., Proc. Instn. Mech. Engrs., 181, Part 3J, 8-15, (1967)} with a 2000N peak, simulating the load on the human hip during normal walking, and the cups were oscillated through a bi-axial 46 degree arc at 68 cycles per minute. At intervals of 250,000 cycles, the cups were removed from the wear machine, rinsed, inspected and replaced with fresh lubricant. At 500,000 cycles and one million cycles, all of the cups were removed from the wear simulator, cleaned, dried and weighed to determine the weight loss due to wear. One million cycles is the equivalent of about one year's use of a prosthetic hip in a patient. FIG. 4 presents a schematic diagram of the hip joint simulator. The arrow indicates the direction of the computer controlled simulated physiological load exerted on the simulated hip joint. The simulator contains: a torque transducer 5, the acetabular cup 6, a dual axis offset drive block 7, a test chamber 8, serum 9, and a femoral head 10.
  • Three soak-correction acetabular cups of each material (control and modified) were prepared in an identical manner, but were not wear tested. These cups were mounted in a separate test frame and a cyclic load, identical to that used in the wear test, was applied. These soak-correction cups were cleaned and weighed together with the wear test cups, and the average weight gain of the correction cups was added to the apparent weight loss of the wear test cups (i.e. to correct for fluid absorption by the wear test cups that would obscure the weight loss due to wear).
  • Results and Discussion
  • Because of the apparent “negative” wear at 0.5 million cycles (discussed below), the wear rates were calculated and compared for all of the cups only for the interval from 0.5 to 1.0 million cycles. The four control polyethylene cups showed comparable amounts of wear (FIG. 5), with an average corrected wear rate of 19.19 (S.D.=2.38) milligrams per million cycles (Table 2). This was within the range that applicants have measured for cups of conventional UHMW polyethylene in a variety of studies that applicants have run.
  • The wear was much lower for the modified cups (FIG. 5). As shown in Table 2, the mean wear rate for the modified cups was 4.12 (S.D.=1.26) milligrams per million cycles, i.e. about one-fifth of the wear of the control cups. This difference was statistically significant at the level of p=0.0002).
  • TABLE 2
    WEAR RATES FOR CONTROL AND MODIFIED POLYETHYLENES
    (INTERVAL FROM 0.5 TO 1.0 MILLION CYCLES)
    MEAN WEAR
    RATE
    CUP WEAR RATE (STANDARD
    MATERIAL NUMBER (mg/million cycles) DEVIATION)
    CONTROL C2 21.67 19.19
    POLYETHYLENE C3 16.78 (2.38)
    C4 17.57
    C9 20.76
    MODIFIED M4 4.08 4.12
    POLYETHYLENE M5 2.88 (1.26)
    M7 5.39
  • For the data point at 0.5 million cycles, the corrected weights were lower than the weights before the wear test. This was most likely the result of the wear being very small, and the fluid absorption by the test cups being slightly greater than the average gain of the soak correction cups, such that the correction factor did not entirely offset the fluid gain by the wear cups (giving an apparent “negative” wear). A small difference in water absorption rates between the wear cups and the correction cups could arise due to differences in equilibrium temperatures (the wear cups were typically at 35° C. to 45° C., whereas the soak correction cups were at room temperature, about 20° C.), due to mechanical agitation of the serum during oscillation of the wear test chambers, or other causes.
  • Example 3
  • During the wear test in the simulator described in EXAMPLE 2, it was discovered that the acetabular cups shrunk at simulated human body temperature. In order to stabilize the shrinkage, in this experiment (unrelated to EXAMPLE 2), the cups were annealed at 100° C. in a vacuum oven for 2 hours. After annealing, the total shrinkage in diameter for uncrosslinked and crosslinked cups was approximately 1% and 2%, respectively. The degrees of crystallinity of the annealed cups were determined by DSC. The degree of crystallinity of the uncrosslinked polymer was unchanged, whereas that of the crosslinked polymer was increased by approximately 1%. To test for further shrinkage, the cups were again put in the vacuum oven at 80° C. for two hours, and no further shrinkage was observed.
  • The present invention has been described with reference to specific embodiments. However, this application is intended to cover those changes and substitutions which may be made by those skilled in the art without departing from the spirit and scope of the appended claims.

Claims (19)

  1. 1. A medical implant for use within a body, said implant being formed of a crosslinked ultrahigh molecular weight polyethylene having a polymeric structure of 51% crystallinity or less, so as to increase wear resistance of said implant within the body.
  2. 2. In a medical implant having at least a first member and a bearing component providing a bearing contact surface for the first member, the bearing component made of crosslinked ultrahigh molecular weight polyethylene and wherein said crosslinked ultrahigh molecular weight polyethylene is characterized by a polymeric structure of at least 97.5% gel content, as determined by using boiling p-xylene.
  3. 3. The medical implant of claim 2, wherein crosslinking is achieved according to the method selected from the group consisting of: chemically crosslinking a polyethylene, irradiation crosslinking a polyethylene, and photocrosslinking a polyethylene.
  4. 4. The medical implant of claim 3, wherein said implant is further irradiated in the solid state for sterilization.
  5. 5. The medical implant of claim 4, wherein said implant is irradiated in air at a sterilization dose.
  6. 6. The medical implant of claim 3, wherein said crosslinked ultrahigh molecular weight polyethylene is further characterized by its lack of shrinkage.
  7. 7. The medical implant of claim 2, wherein the implant is a hip prosthesis, said first member is a femoral component and said bearing component is an acetabular component.
  8. 8. The medical implant of claim 2, wherein the medical implant is a prosthesis selected from the group consisting of: hip, knee, ankle, elbow, jaw, shoulder, finger and spine prostheses.
  9. 9. A medical implant bearing component with improved wear resistance for use within a joint prosthesis within a body, said implant bearing component is made of a crosslinked ultrahigh molecular weight polyethylene having a polymeric structure of at least 97.5% gel content, as determined by using boiling p-xylene, so as to increase wear resistance of said implant within the body.
  10. 10. The medical implant bearing component of claim 9, wherein said crosslinked ultrahigh molecular weight polyethylene is characterized by a polymeric structure of about 3.4 degree of swelling or less, as determined by using boiling p-xylene.
  11. 11. The medical implant bearing component of claim 9, wherein the joint prosthesis is a hip prosthesis and said implant is an acetabular component which cooperates with a femoral component.
  12. 12. The medical implant bearing component of claim 9, wherein the joint prosthesis is selected from the group consisting of hip, knee, ankle, elbow, jaw, shoulder, finger and spine prostheses.
  13. 13. The medical implant bearing component of claim 9, wherein said ultrahigh molecular weight polyethylene is further characterized by a smooth fracture surface, decreased tensile strength at break point, and decreased Young's modulus compared to a corresponding uncrosslinked ultrahigh molecular weight polyethylene.
  14. 14. The medical implant bearing component of claim 9, wherein crosslinking is achieved according to the method selected from the group consisting of chemically crosslinking a polyethylene, irradiation crosslinking a polyethylene, and photocrosslinking a polyethylene.
  15. 15. The medical implant bearing component of claim 14, wherein the medical implant is further irradiated in air at a sterilization dose in its solid state.
  16. 16. The medical implant bearing component of claim 15, wherein said ultrahigh molecular weight polyethylene has about 45% crystallinity or less, as determined by differential scanning calorimetry.
  17. 17. The medical implant bearing component of claim 16, wherein the crosslinked ultrahigh molecular weight polyethylene is further characterized by a lack of shrinkage.
  18. 18. The medical implant bearing component of claim 17, wherein said implant is an orthopaedic bearing component for use in hip or knee joint replacement.
  19. 19-143. (canceled)
US11982100 1995-01-20 2007-10-31 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints Abandoned US20080133018A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US37695395 true 1995-01-20 1995-01-20
US69863896 true 1996-08-15 1996-08-15
US09406305 US6281264B1 (en) 1995-01-20 1999-09-27 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US09898192 US20010049401A1 (en) 1995-01-20 2001-07-02 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10262869 US20030045603A1 (en) 1995-01-20 2002-10-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10752167 US20040208841A1 (en) 1995-01-20 2004-01-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US11982100 US20080133018A1 (en) 1995-01-20 2007-10-31 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11982100 US20080133018A1 (en) 1995-01-20 2007-10-31 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10752167 Continuation US20040208841A1 (en) 1995-01-20 2004-01-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Publications (1)

Publication Number Publication Date
US20080133018A1 true true US20080133018A1 (en) 2008-06-05

Family

ID=27007631

Family Applications (6)

Application Number Title Priority Date Filing Date
US09406305 Expired - Lifetime US6281264B1 (en) 1995-01-20 1999-09-27 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US09898192 Abandoned US20010049401A1 (en) 1995-01-20 2001-07-02 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10244661 Abandoned US20030158287A1 (en) 1995-01-20 2002-09-17 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10262869 Abandoned US20030045603A1 (en) 1995-01-20 2002-10-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10752167 Abandoned US20040208841A1 (en) 1995-01-20 2004-01-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US11982100 Abandoned US20080133018A1 (en) 1995-01-20 2007-10-31 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US09406305 Expired - Lifetime US6281264B1 (en) 1995-01-20 1999-09-27 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US09898192 Abandoned US20010049401A1 (en) 1995-01-20 2001-07-02 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10244661 Abandoned US20030158287A1 (en) 1995-01-20 2002-09-17 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10262869 Abandoned US20030045603A1 (en) 1995-01-20 2002-10-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US10752167 Abandoned US20040208841A1 (en) 1995-01-20 2004-01-03 Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints

Country Status (5)

Country Link
US (6) US6281264B1 (en)
EP (1) EP0722973B2 (en)
JP (2) JP3323728B2 (en)
CA (1) CA2166450C (en)
DE (2) DE69631076D1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010049401A1 (en) * 1995-01-20 2001-12-06 The Orthopaedic Hospital And University Of Southern California Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US20070059334A1 (en) * 2005-08-18 2007-03-15 Zimmer Technology, Inc. Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US20100029858A1 (en) * 2007-04-10 2010-02-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US20100137481A1 (en) * 2008-11-20 2010-06-03 Zimmer Gmbh Polyethylene materials
US20110028600A1 (en) * 2007-04-10 2011-02-03 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
WO2011053713A1 (en) * 2009-10-29 2011-05-05 Depuy Products, Inc. Methods of making crosslinked polymeric material for orthopaedic implants
US8399535B2 (en) 2010-06-10 2013-03-19 Zimmer, Inc. Polymer [[s]] compositions including an antioxidant
US8652212B2 (en) 2008-01-30 2014-02-18 Zimmer, Inc. Orthopedic component of low stiffness
US9199185B2 (en) 2009-05-15 2015-12-01 Cummins Filtration Ip, Inc. Surface coalescers
US9204971B2 (en) 2003-06-27 2015-12-08 Memometal Technologies System and method for ankle arthroplasty
US9708467B2 (en) 2013-10-01 2017-07-18 Zimmer, Inc. Polymer compositions comprising one or more protected antioxidants
US10092675B1 (en) * 2017-08-12 2018-10-09 Dewey M Sims, Jr. Wear-resistant joint arthroplasty implant devices

Families Citing this family (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414049A (en) * 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
USRE44762E1 (en) 1994-09-21 2014-02-11 Bmg Incorporated Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same
US20050125074A1 (en) * 1995-01-20 2005-06-09 Ronald Salovey Crosslinking of polyethylene for low wear using radiation and thermal treatments
US8865788B2 (en) * 1996-02-13 2014-10-21 The General Hospital Corporation Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US20020156536A1 (en) * 1996-02-13 2002-10-24 Harris William H. Polyethylene hip joint prosthesis with extended range of motion
JP5073626B2 (en) * 1996-02-13 2012-11-14 ザ ジェネラル ホスピタル コーポレイション Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US5879400A (en) * 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US8563623B2 (en) 1996-02-13 2013-10-22 The General Hospital Corporation Radiation melt treated ultra high molecular weight polyethylene prosthetic devices
RU2211008C2 (en) * 1996-02-13 2003-08-27 Массачусетс Институт Оф Текнолоджи Prosthetic devices out of polyethylene of ultra-high molecular weight treated with irradiation and fusion
US6228900B1 (en) 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
WO1998001085A1 (en) * 1996-07-09 1998-01-15 The Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6017975A (en) 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
EP1028760B1 (en) 1996-10-15 2004-04-14 Orthopaedic Hospital Wear resistant surface-gradient cross-linked polyethylene
US6692679B1 (en) 1998-06-10 2004-02-17 Depuy Orthopaedics, Inc. Cross-linked molded plastic bearings
US6627141B2 (en) 1999-06-08 2003-09-30 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6245276B1 (en) 1999-06-08 2001-06-12 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6432349B1 (en) 1999-06-29 2002-08-13 Zimmer, Inc. Process of making an articulating bearing surface
US6143232A (en) * 1999-07-29 2000-11-07 Bristol-Meyers Squibb Company Method of manufacturing an articulating bearing surface for an orthopaedic implant
US6184265B1 (en) 1999-07-29 2001-02-06 Depuy Orthopaedics, Inc. Low temperature pressure stabilization of implant component
US6365089B1 (en) * 1999-09-24 2002-04-02 Zimmer, Inc. Method for crosslinking UHMWPE in an orthopaedic implant
CN1268308C (en) 1999-12-17 2006-08-09 卡蒂菲西尔公司 Prosthetic device
US6395799B1 (en) 2000-02-21 2002-05-28 Smith & Nephew, Inc. Electromagnetic and mechanical wave energy treatments of UHMWPE
WO2001080778A1 (en) 2000-04-27 2001-11-01 The Orthopaedic Hospital Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
US6503439B1 (en) 2000-06-15 2003-01-07 Albert H. Burstein Process for forming shaped articles of ultra high molecular weight polyethylene suitable for use as a prosthetic device or a component thereof
DE60128474T2 (en) 2000-07-31 2008-01-24 Brian R. Boston BURROUGHS Acetabularteile, reduce the Luxationsrisiken
US6818172B2 (en) 2000-09-29 2004-11-16 Depuy Products, Inc. Oriented, cross-linked UHMWPE molding for orthopaedic applications
DE60122360D1 (en) * 2000-09-29 2006-09-28 Depuy Orthopaedics Inc Treatment of an exposed preform of a prosthetic bearing element made of polyethylene with a supercritical fluid
US6626947B2 (en) 2000-10-03 2003-09-30 Depuy Orthopaedics, Inc. Press fit acetabular cup and associated method for securing the cup to an acetabulum
US6955876B2 (en) * 2000-11-01 2005-10-18 Kane Michael D Compositions and systems for identifying and comparing expressed genes (mRNAs) in eukaryotic organisms
US6558426B1 (en) 2000-11-28 2003-05-06 Medidea, Llc Multiple-cam, posterior-stabilized knee prosthesis
DE10105085C1 (en) 2001-02-05 2002-04-18 Plus Endoprothetik Ag Rotkreuz Production of implant part, e.g. bearing for hip prosthesis, by crosslinking ultra-high molecular weight polyethylene parison with ionizing radiation includes recombination of free radicals with microwaves and/or ultrasound
US6547828B2 (en) 2001-02-23 2003-04-15 Smith & Nephew, Inc. Cross-linked ultra-high molecular weight polyethylene for medical implant use
US7776085B2 (en) * 2001-05-01 2010-08-17 Amedica Corporation Knee prosthesis with ceramic tibial component
US7695521B2 (en) 2001-05-01 2010-04-13 Amedica Corporation Hip prosthesis with monoblock ceramic acetabular cup
US20050177238A1 (en) * 2001-05-01 2005-08-11 Khandkar Ashok C. Radiolucent bone graft
WO2002102275A3 (en) * 2001-06-14 2003-03-27 Amedica Corp Metal-ceramic composite articulation
US7182784B2 (en) 2001-07-18 2007-02-27 Smith & Nephew, Inc. Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene
US6652586B2 (en) * 2001-07-18 2003-11-25 Smith & Nephew, Inc. Prosthetic devices employing oxidized zirconium and other abrasion resistant surfaces contacting surfaces of cross-linked polyethylene
GB0122117D0 (en) 2001-09-13 2001-10-31 United Ind Operations Ltd Method of crosslinking polyolefins
US7160492B2 (en) * 2001-12-12 2007-01-09 Depuy Products, Inc. Orthopaedic device for implantation in the body of an animal and method for making the same
EP1463457A4 (en) * 2002-01-04 2006-12-20 Massachusetts Gen Hospital A high modulus crosslinked polyethylene with reduced residual free radical concentration prepared below the melt
US7186364B2 (en) 2002-01-28 2007-03-06 Depuy Products, Inc. Composite prosthetic bearing constructed of polyethylene and an ethylene-acrylate copolymer and method for making the same
US7819925B2 (en) 2002-01-28 2010-10-26 Depuy Products, Inc. Composite prosthetic bearing having a crosslinked articulating surface and method for making the same
EP1332733B1 (en) 2002-01-28 2006-06-14 Depuy Products, Inc. Composite prosthetic bearing and method of manufacture
WO2003064141A1 (en) 2002-01-29 2003-08-07 Paul Smith Sintering ultrahigh molecular weight polyethylene
DE60334767D1 (en) * 2002-02-19 2010-12-16 Kazuhiko Ishihara An artificial joint member made of a polymeric material
US20030207661A1 (en) * 2002-05-01 2003-11-06 Alexander Tregub Annealing of CMP polishing pads
JP2003338156A (en) * 2002-05-20 2003-11-28 Fuji Photo Film Co Ltd Magnetic disk cartridge
CA2429930C (en) 2002-06-06 2008-10-14 Howmedica Osteonics Corp. Sequentially cross-linked polyethylene
US7745532B2 (en) * 2002-08-02 2010-06-29 Cambridge Polymer Group, Inc. Systems and methods for controlling and forming polymer gels
US7485670B2 (en) * 2002-08-02 2009-02-03 Cambridge Polymer Group, Inc. Systems and methods for controlling and forming polymer gels
US7329284B2 (en) 2002-09-27 2008-02-12 Depuy Products, Inc. Concave resurfacing prosthesis
WO2004032987A1 (en) * 2002-10-11 2004-04-22 Cartificial A/S Medical device comprising a bio-compatible polymeric product with a layered structure
EP1555963A4 (en) 2002-10-23 2008-12-31 Mako Surgical Corp Modular femoral component for a total knee joint replacement for minimally invasive implantation
US6677395B1 (en) * 2002-11-27 2004-01-13 Basell Poliolefine Italia S.P.A. Irradiated, oxidized olefin polymer dispersing agents
US6994727B2 (en) * 2002-12-17 2006-02-07 Amedica Corporation Total disc implant
US7326252B2 (en) * 2002-12-20 2008-02-05 Smith & Nephew, Inc. High performance knee prostheses
US7344565B2 (en) * 2003-02-04 2008-03-18 Wright Medical Technology, Inc. Acetabular component insertion and extraction tool for use therewith, and method of locking an acetabular component to an insertion and extraction tool
US7938861B2 (en) 2003-04-15 2011-05-10 Depuy Products, Inc. Implantable orthopaedic device and method for making the same
US20040265165A1 (en) * 2003-06-30 2004-12-30 Depuy Products, Inc. Free radical quench process for irradiated ultrahigh molecular weight polyethylene
US7214764B2 (en) * 2003-06-30 2007-05-08 Depuy Products, Inc. Free radical quench process for irradiated ultrahigh molecular weight polyethylene
US7218232B2 (en) * 2003-07-11 2007-05-15 Depuy Products, Inc. Orthopaedic components with data storage element
EP1648354A4 (en) * 2003-07-11 2010-03-31 Depuy Products Inc In vivo joint space measurement device and method
WO2005007025A3 (en) 2003-07-11 2006-01-12 Depuy Products Inc In vivo joint implant cycle counter
US7470288B2 (en) * 2003-07-11 2008-12-30 Depuy Products, Inc. Telemetric tibial tray
US7384430B2 (en) * 2004-06-30 2008-06-10 Depuy Products, Inc. Low crystalline polymeric material for orthopaedic implants and an associated method
US7927335B2 (en) 2004-09-27 2011-04-19 Depuy Products, Inc. Instrument for preparing an implant support surface and associated method
US7892287B2 (en) * 2004-09-27 2011-02-22 Depuy Products, Inc. Glenoid augment and associated method
US7922769B2 (en) 2004-09-27 2011-04-12 Depuy Products, Inc. Modular glenoid prosthesis and associated method
US20060074353A1 (en) * 2004-09-27 2006-04-06 Deffenbaugh Daren L Glenoid instrumentation and associated method
US7547405B2 (en) 2004-10-07 2009-06-16 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US8262976B2 (en) 2004-10-07 2012-09-11 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7462318B2 (en) * 2004-10-07 2008-12-09 Biomet Manufacturing Corp. Crosslinked polymeric material with enhanced strength and process for manufacturing
US7344672B2 (en) 2004-10-07 2008-03-18 Biomet Manufacturing Corp. Solid state deformation processing of crosslinked high molecular weight polymeric materials
US7160329B2 (en) * 2004-12-01 2007-01-09 Mayo Foundation For Medical Research And Education Radial-capitellar implant
US7335697B2 (en) * 2004-12-23 2008-02-26 Depuy Products, Inc. Polymer composition comprising cross-linked polyethylene and methods for making the same
US7896921B2 (en) 2004-12-30 2011-03-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
US7879275B2 (en) 2004-12-30 2011-02-01 Depuy Products, Inc. Orthopaedic bearing and method for making the same
US7883653B2 (en) 2004-12-30 2011-02-08 Depuy Products, Inc. Method of making an implantable orthopaedic bearing
US7435372B2 (en) 2005-03-31 2008-10-14 Zimmer, Inc. Liquid bath annealing of polymers for orthopaedic implants
EP1896088A2 (en) * 2005-06-14 2008-03-12 Cartificial A/S Medical device for insertion into a joint
US7803310B2 (en) 2005-06-14 2010-09-28 Omni Life Science, Inc. Crosslinked polyethylene article
US7538379B1 (en) * 2005-06-15 2009-05-26 Actel Corporation Non-volatile two-transistor programmable logic cell and array layout
US8343230B2 (en) * 2005-09-22 2013-01-01 Depuy Products, Inc. Orthopaedic bearing material
US20070077268A1 (en) * 2005-09-30 2007-04-05 Depuy Products, Inc. Hydrophobic carrier modified implants for beneficial agent delivery
US8252058B2 (en) * 2006-02-16 2012-08-28 Amedica Corporation Spinal implant with elliptical articulatory interface
US20070198093A1 (en) * 2006-02-17 2007-08-23 Amedica Corporation Spinal implant with offset keels
US7635725B2 (en) * 2006-02-21 2009-12-22 The Brigham And Women's Hospital, Inc. Crosslinked polymers
US20070212162A1 (en) * 2006-03-08 2007-09-13 Scott Schank Shearing-force mechanism with cross-linked thermoplastic
US7812098B2 (en) 2006-03-31 2010-10-12 Depuy Products, Inc. Bearing material of medical implant having reduced wear rate and method for reducing wear rate
DK1891987T3 (en) 2006-08-25 2010-12-13 Depuy Products Inc Substrate for medical implant
US7897170B2 (en) * 2006-08-25 2011-03-01 Boston Scientific Scimed, Inc. Medical devices having improved mechanical performance
US7897171B2 (en) 2006-08-25 2011-03-01 Boston Scientific Scimed, Inc. Medical devices having improved mechanical performance
US7604665B2 (en) 2006-09-20 2009-10-20 Depuy Products, Inc. Glenoid component for shoulder arthroplasty
WO2008052574A1 (en) 2006-10-30 2008-05-08 Plus Orthopedics Ag Processes comprising crosslinking polyethylene or using crosslinked polyethylene
US8328873B2 (en) 2007-01-10 2012-12-11 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US8187280B2 (en) 2007-10-10 2012-05-29 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
JP5448842B2 (en) 2007-01-10 2014-03-19 バイオメト マニファクチャリング コーポレイションBiomet Manufacturing Corp. Knee joint prosthesis system and embedding method
US8163028B2 (en) 2007-01-10 2012-04-24 Biomet Manufacturing Corp. Knee joint prosthesis system and method for implantation
US8562616B2 (en) 2007-10-10 2013-10-22 Biomet Manufacturing, Llc Knee joint prosthesis system and method for implantation
WO2008098250A9 (en) * 2007-02-10 2008-12-31 Small Bone Innovations Inc Radial head implant and related instrument
US8641959B2 (en) 2007-07-27 2014-02-04 Biomet Manufacturing, Llc Antioxidant doping of crosslinked polymers to form non-eluting bearing components
JP6223653B2 (en) 2007-09-04 2017-11-01 スミス・アンド・ネフュー・オルソペディクス・アーゲー Ultra-high molecular weight polyethylene for the articular surface
US20110035017A1 (en) * 2007-09-25 2011-02-10 Depuy Products, Inc. Prosthesis with cut-off pegs and surgical method
US9204967B2 (en) 2007-09-28 2015-12-08 Depuy (Ireland) Fixed-bearing knee prosthesis having interchangeable components
US8632600B2 (en) 2007-09-25 2014-01-21 Depuy (Ireland) Prosthesis with modular extensions
US8715359B2 (en) 2009-10-30 2014-05-06 Depuy (Ireland) Prosthesis for cemented fixation and method for making the prosthesis
EP2319462B1 (en) 2009-10-30 2013-04-03 DePuy Products, Inc. Prosthesis with composite component
DK2316382T3 (en) 2009-10-30 2014-05-12 Depuy Ireland Prosthesis for uncemented fixation
EP2316384B1 (en) 2009-10-30 2013-04-03 DePuy Products, Inc. Prosthesis with modular extensions
EP2319460A1 (en) 2009-10-30 2011-05-11 DePuy Products, Inc. Prosthesis with cut-off pegs
US8128703B2 (en) 2007-09-28 2012-03-06 Depuy Products, Inc. Fixed-bearing knee prosthesis having interchangeable components
US8586667B2 (en) 2008-05-13 2013-11-19 Smith & Nephew Orthopaedics Ag Oxidation resistant highly-crosslinked UHMWPE
US9101476B2 (en) 2009-05-21 2015-08-11 Depuy (Ireland) Prosthesis with surfaces having different textures and method of making the prosthesis
US8236061B2 (en) 2008-06-30 2012-08-07 Depuy Products, Inc. Orthopaedic knee prosthesis having controlled condylar curvature
US8206451B2 (en) 2008-06-30 2012-06-26 Depuy Products, Inc. Posterior stabilized orthopaedic prosthesis
US9168145B2 (en) 2008-06-30 2015-10-27 Depuy (Ireland) Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US8187335B2 (en) 2008-06-30 2012-05-29 Depuy Products, Inc. Posterior stabilized orthopaedic knee prosthesis having controlled condylar curvature
US8192498B2 (en) 2008-06-30 2012-06-05 Depuy Products, Inc. Posterior cructiate-retaining orthopaedic knee prosthesis having controlled condylar curvature
US8828086B2 (en) 2008-06-30 2014-09-09 Depuy (Ireland) Orthopaedic femoral component having controlled condylar curvature
US9119723B2 (en) 2008-06-30 2015-09-01 Depuy (Ireland) Posterior stabilized orthopaedic prosthesis assembly
DE102008047009A1 (en) * 2008-07-11 2010-01-21 Mathys Ag Bettlach Joint socket with physiological load transfer
EP2318636A4 (en) 2008-08-06 2016-04-20 Milwaukee Electric Tool Corp Precision torque tool
DE102008053793A1 (en) 2008-10-21 2010-04-22 Aesculap Ag Synthetic polymer material, useful for producing medical articles e.g. catheters and trocar, comprises amino acids and/or peptides having anti-oxidative effect
US8241365B2 (en) * 2008-12-23 2012-08-14 Depuy Products, Inc. Shoulder prosthesis with vault-filling structure having bone-sparing configuration
JP4806717B2 (en) * 2009-06-25 2011-11-02 株式会社沖データ Image processing system
DK2617392T3 (en) 2009-10-30 2015-02-16 Depuy Synthes Products Llc Prosthesis having surfaces with different textures
US8231683B2 (en) * 2009-12-08 2012-07-31 Depuy Products, Inc. Shoulder prosthesis assembly having glenoid rim replacement structure
GB0922339D0 (en) 2009-12-21 2010-02-03 Mcminn Derek J W Acetabular cup prothesis and introducer thereof
US9011547B2 (en) 2010-01-21 2015-04-21 Depuy (Ireland) Knee prosthesis system
US9132209B2 (en) 2010-05-07 2015-09-15 Howmedia Osteonics Corp. Surface crosslinked polyethylene
US8523476B2 (en) 2010-06-01 2013-09-03 Reell Precision Manufacturing Corporation Positioning and damper device using shear force from cyclic differential compressive strain of a cross-linked thermoplastic
DE102010029633A1 (en) 2010-06-02 2011-12-08 Hd Kunststoffe & Kunststofferzeugnisse Gmbh Crushing of ultra high molecular weight polyethylene fibers
US8465548B2 (en) 2010-11-24 2013-06-18 DePuy Synthes Products, LLC Modular glenoid prosthesis
US8480750B2 (en) 2010-11-24 2013-07-09 DePuy Synthes Products, LLC Modular glenoid prosthesis
US8551177B2 (en) 2011-03-18 2013-10-08 DePuy Synthes Products, LLC Revision glenoid kit
US9763679B2 (en) 2011-03-18 2017-09-19 DePuy Synthes Products, Inc. Combination driver/anti-rotation handle for shoulder arthroplasty
ES2528706T3 (en) 2012-02-01 2015-02-11 DePuy Synthes Products, LLC Instrument for use in shoulder arthroplasty
US9820758B2 (en) 2011-03-18 2017-11-21 DePuy Synthes Products, Inc. Combination reamer/drill bit for shoulder arthoplasty
US8764836B2 (en) 2011-03-18 2014-07-01 Lieven de Wilde Circular glenoid method for shoulder arthroplasty
US9226830B2 (en) 2011-03-18 2016-01-05 DePuy Synthes Products, Inc. Device and method for retroversion correction for shoulder arthroplasty
US8959717B2 (en) 2012-03-12 2015-02-24 Reell Precision Manufacturing Corporation Circumferential strain rotary detent
US9237953B2 (en) 2013-03-15 2016-01-19 Depuy (Ireland) Mechanical assembly of pegs to prosthesis
US9586370B2 (en) 2013-08-15 2017-03-07 Biomet Manufacturing, Llc Method for making ultra high molecular weight polyethylene
US9144499B2 (en) 2013-12-17 2015-09-29 Depuy (Ireland) Low profile mobile/fixed prosthetic knee systems
US10070959B2 (en) 2016-09-28 2018-09-11 DePuy Synthes Products, Inc. Method of texturing prosthetic implants

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414049A (en) * 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
US6125200A (en) * 1997-12-16 2000-09-26 Adobe Systems Incorporated Removing non-text information from a color image
US6228900B1 (en) * 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6281264B1 (en) * 1995-01-20 2001-08-28 The Orthopaedic Hospital Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US6494917B1 (en) * 1996-10-15 2002-12-17 Orthopaedic Hospital Wear resistant surface-gradient crosslinked polyethylene
US20030212161A1 (en) * 2000-04-27 2003-11-13 Mckellop Harry A Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them
US6800670B2 (en) * 1996-07-09 2004-10-05 Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments

Family Cites Families (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE544324A (en) * 1955-01-11
US2904480A (en) * 1955-06-06 1959-09-15 Grace W R & Co Polyethylene
US2948666A (en) 1956-11-21 1960-08-09 Gen Electric Irradiation process
NL91090C (en) * 1957-11-02 1958-12-15
US3563869A (en) * 1957-11-05 1971-02-16 Grace W R & Co Irradiated polyethylene
US3022543A (en) * 1958-02-07 1962-02-27 Grace W R & Co Method of producing film having improved shrink energy
US2948866A (en) * 1958-10-24 1960-08-09 Cie Ind Des Telephones Adjustable correcting networks
US3057791A (en) * 1959-07-06 1962-10-09 Phillips Petroleum Co Radiation curing of polymers
US3090770A (en) * 1960-04-26 1963-05-21 Grace W R & Co Blended polyethylene compositions of improved clarity and method of making same
US3297641A (en) 1964-01-17 1967-01-10 Grace W R & Co Process for cross-linking polyethylene
DE1241994B (en) 1964-01-31 1967-06-08 Glanzstoff Ag A process for the saturation of double bonds in polyolefines
DE1669649B2 (en) * 1966-05-27 1971-05-19 A process for the manufacture of finely divided schaumfoermiger olefin polymers with high waermestandfestigkeit
US3832827A (en) * 1967-12-18 1974-09-03 J Lemelson Container forming and filling apparatus
DE1805921C3 (en) * 1968-10-30 1979-06-07 Dynamit Nobel Ag, 5210 Troisdorf
BE794718Q (en) 1968-12-20 1973-05-16 Dow Corning Ltd Process for crosslinking of olefins
JPS4810618B1 (en) 1969-03-10 1973-04-05
US3758273A (en) 1970-04-03 1973-09-11 Gillette Co Processes for sterilizing polypropylene objects
JPS526314B2 (en) * 1971-11-01 1977-02-21
US4055769A (en) * 1972-03-21 1977-10-25 Conrad Sander Method and apparatus for curing, a coating on a substrate
US3944536A (en) 1973-06-18 1976-03-16 E. I. Du Pont De Nemours & Company Exceptionally rigid and tough ultrahigh molecular weight linear polyethylene
US3944538A (en) * 1973-10-02 1976-03-16 Miklos Bodanszky Process and apparatus for the synthesis of peptides not linked to polymers
DE2447627C3 (en) * 1974-10-05 1980-06-26 Dr. Rudolf Kuerner Chemische Spezialprodukte Inh. Dr. Rudolf Kuerner, 6380 Bad Homburg
US4055862A (en) 1976-01-23 1977-11-01 Zimmer Usa, Inc. Human body implant of graphitic carbon fiber reinforced ultra-high molecular weight polyethylene
US4226905A (en) * 1978-04-18 1980-10-07 Du Pont Canada Inc. Manufacture of film from partially crosslinked polyethylene
US4138382A (en) 1978-05-01 1979-02-06 Dow Corning Corporation Hydrophilic, water-swellable, crosslinked, copolymer gel and prosthesis employing same
US4281420A (en) * 1979-02-15 1981-08-04 Raab S Bone connective prostheses adapted to maximize strength and durability of prostheses-bone cement interface; and methods of forming same
US4455691A (en) * 1979-10-03 1984-06-26 Minnesota Mining And Manufacturing Company Silicone gel filled prosthesis
US5017627A (en) * 1980-10-09 1991-05-21 National Research Development Corporation Composite material for use in orthopaedics
DE3131812C2 (en) 1981-08-12 1983-06-16 Hewing Gmbh & Co, 4434 Ochtrup, De
JPS64985B2 (en) 1981-08-14 1989-01-10 Asahi Chemical Ind
JPS614849B2 (en) 1982-03-12 1986-02-13 Nitto Electric Ind Co
US4483333A (en) 1982-06-01 1984-11-20 Wrf/Aquaplast Corporation Orthopedic cast
US4586995A (en) * 1982-09-17 1986-05-06 Phillips Petroleum Company Polymer and irradiation treatment method
US4816517A (en) 1982-09-29 1989-03-28 Vulkor, Incorporated Crosslinked polymer interdispersions containing polyolefin and method of making
JPS647615B2 (en) * 1983-03-14 1989-02-09 Mitsuboshi Belting Ltd
DE3312543A1 (en) * 1983-04-07 1984-10-11 Bayer Ag 2,2-dimethyl-3- (2-halogeno-vinyl) -cyclopropancarbonsaeureester, processes for their preparation and their use as schaedlingsbekaempfungsmittel
US4518552A (en) 1983-11-09 1985-05-21 Mitsuboshi Belting Ltd. Method of producing accurately sized material of ultra high molecular weight polyethylene
GB8332952D0 (en) 1983-12-09 1984-01-18 Ward I M Polymer irradiation
GB8333032D0 (en) * 1983-12-10 1984-01-18 Bp Chem Int Ltd Orientated polyolefins
US4587163B1 (en) * 1984-03-06 1990-04-03 E Zachariades Anagnostis
US4539374A (en) 1984-03-21 1985-09-03 E. I. Du Pont De Nemours And Company Polyolefin with improved processing properties
WO1985004323A1 (en) * 1984-03-30 1985-10-10 Hexcel Corporation Orthopedic device and method of making the same
DE169259T1 (en) 1984-07-25 1986-04-30 Surgical Patent Products Inc. Ltd., Panama, Pa Gefaessprothesen for dry storage, methods for treatment and their use in surgery.
US5160472A (en) 1984-10-24 1992-11-03 Zachariades Anagnostis E Method of producing composite structures of ultra-high-molecular-weight polymers, such as ultra-high-molecular-weight polyethylene products
US4655769A (en) 1984-10-24 1987-04-07 Zachariades Anagnostis E Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
US4944974A (en) 1984-10-24 1990-07-31 Zachariades Anagnostis E Composite structures of ultra-high-molecular-weight polymers, such as ultra-high-molecular-weight polyethylene products, and method of producing such structures
US4682666A (en) * 1984-12-31 1987-07-28 J. I. Case Company Operator compartment assembly
US4820466A (en) * 1985-01-31 1989-04-11 Zachariades Anagnostis E Process for obtaining ultra-high modulus products
RU2031906C1 (en) * 1985-01-31 1995-03-27 Химонт Инкорпорейтед Method of polypropylene modification
US4950151A (en) * 1985-01-31 1990-08-21 Zachariades Anagnostic E Rolling die for producing high modulus products
JPH0116308B2 (en) 1985-03-06 1989-03-23 Oosaka Daigakucho
FR2578780B1 (en) 1985-03-12 1987-08-14 Commissariat Energie Atomique Piece polyolefin high molecular weight, including joint replacement, and process for its production by forging in a closed matrix
GB2172744B (en) * 1985-03-23 1989-07-19 Stc Plc Semiconductor devices
DE3545116A1 (en) * 1985-05-17 1986-11-20 Transaktor Kb International Bottle for emergency water and methods of making a bottle with emergency water ration
US4701288A (en) * 1985-06-05 1987-10-20 Bausch & Lomb Incorporated Method of making articles of dissimilar polymer compositions
JPH0470023B2 (en) * 1985-09-27 1992-11-09 Nisso Kk
US4876049A (en) 1985-11-21 1989-10-24 Nippon Petrochemicals Co., Ltd. Method for preparing molded articles of ultra-high molecular weight polyethylene
US4870136A (en) 1985-11-30 1989-09-26 Mitsui Pertrochemical Industries, Ltd. Molecular oriented, silane-crosslinked ultra-high-molecular-weight polyethylene molded article and process for preparation thereof
JPH0639499B2 (en) * 1986-04-17 1994-05-25 日本石油株式会社 Method for manufacturing ultra-high molecular weight polyethylene crosslinked product
US4682656A (en) * 1986-06-20 1987-07-28 Otis Engineering Corporation Completion apparatus and method for gas lift production
US4965846A (en) * 1986-08-11 1990-10-23 Baxter International Inc. Pivot pin bearing/seal with loose eyelet especially suited for disposable continuous flow blood filtration system cartridges
US4743493A (en) 1986-10-06 1988-05-10 Spire Corporation Ion implantation of plastics
US5972444A (en) * 1991-10-15 1999-10-26 The Dow Chemical Company Polyolefin compositions with balanced shrink properties
US4828827A (en) * 1986-12-12 1989-05-09 Ethicon, Inc. Process for augmenting soft tissue with cross-linked polyvinyl pyrrolidone
US4888369A (en) 1987-01-21 1989-12-19 Himont Incorporated Polypropylene composition resistant to high energy radiation, and radiation sterilized articles therefrom
JP2541567B2 (en) * 1987-07-21 1996-10-09 三井石油化学工業株式会社 Reinforcing fiber material
GB2207436B (en) * 1987-07-24 1991-07-24 Nat Research And Dev Corp The Solid phase deformation process
JPH0542944B2 (en) * 1987-09-09 1993-06-30 Tonen Corp
US4981173A (en) * 1988-03-18 1991-01-01 Otis Engineering Corporation Electric surface controlled subsurface valve system
BE1001574A6 (en) * 1988-04-07 1989-12-05 Flatech Internationa B V B A Orthopaedic and podological material - comprising thermoplastic high density polyethylene contg. silane(s)
FR2631832B1 (en) 1988-05-24 1994-05-27 Unirec A method for reducing the coefficient of friction and the wear between a metal part and a piece was based on an organic polymer or copolymer and its application to joint prostheses
US5047446A (en) * 1988-07-22 1991-09-10 Himont Incorporated Thermal treatment of irradiated propylene polymer material
US5014494A (en) * 1988-09-27 1991-05-14 Sherwood Medical Company Method of sterilizing medical articles
US5478906A (en) 1988-12-02 1995-12-26 E. I. Du Pont De Nemours And Company Ultrahigh molecular weight linear polyethylene and articles thereof
JPH04502028A (en) 1988-12-02 1992-04-09
JP2590015B2 (en) * 1989-02-15 1997-03-12 三田工業株式会社 The toner image developing device
US5030402A (en) * 1989-03-17 1991-07-09 Zachariades Anagnostis E Process for producing a new class of ultra-high-molecular-weight polyethylene orthopaedic prostheses with enhanced mechanical properties
CA2021814C (en) 1989-07-25 2002-04-02 James A. Davidson Zirconium alloy-based prosthesis with zirconium oxide or zirconium nitride coating
DE3929163A1 (en) * 1989-09-02 1991-03-07 Bayer Ag Secondary amino having copolymers which a process for their production and their use as binders or binder component
US5024670A (en) 1989-10-02 1991-06-18 Depuy, Division Of Boehringer Mannheim Corporation Polymeric bearing component
US5037928A (en) 1989-10-24 1991-08-06 E. I. Du Pont De Nemours And Company Process of manufacturing ultrahigh molecular weight linear polyethylene shaped articles
CA2031406C (en) * 1989-12-21 2002-05-28 Paolo Galli Graft copolymers of polyolefins and a method of producing same
US5153039A (en) * 1990-03-20 1992-10-06 Paxon Polymer Company, L.P. High density polyethylene article with oxygen barrier properties
US5200439A (en) 1990-04-13 1993-04-06 Mitsui Toatsu Chemicals, Inc. Method for increasing intrinsic viscosity of syndiotactic polypropylene
US5130376A (en) 1990-04-23 1992-07-14 Hercules Incorporated UHMWPE/styrenic molding compositions with improved flow properties and impact strength
US5236563A (en) 1990-06-18 1993-08-17 Advanced Surface Technology Inc. Surface-modified bioabsorbables
US5133757A (en) 1990-07-31 1992-07-28 Spire Corporation Ion implantation of plastic orthopaedic implants
US5352732A (en) * 1990-08-07 1994-10-04 E. I. Du Pont De Nemours And Company Homogeneous, high modulus ultrahigh molecular weight polyethylene composites and processes for the preparation thereof
US5210130A (en) 1990-08-07 1993-05-11 E. I. Du Pont De Nemours And Company Homogeneous, high modulus ultrahigh molecular weight polyethylene composites and processes for the preparation thereof
US5180484A (en) * 1990-08-27 1993-01-19 Uop Caustic free liquid/liquid process for sweeting a sour hydrocarbon fraction
US5236669A (en) * 1990-09-12 1993-08-17 E. I. Du Pont De Nemours And Company Pressure vessel
US5702448A (en) 1990-09-17 1997-12-30 Buechel; Frederick F. Prosthesis with biologically inert wear resistant surface
DE4030564A1 (en) 1990-09-27 1992-04-02 Hoechst Ag Graft on the basis of ultra high molecular weight polyethylene
US5192323A (en) 1990-11-05 1993-03-09 Zimmer, Inc. Method of surface hardening orthopedic implant devices
JPH04185651A (en) * 1990-11-21 1992-07-02 Fujikura Ltd Production of crosslinked polyolefin molding
JPH04198242A (en) 1990-11-27 1992-07-17 Komatsu Ltd Ultrahigh-molecular-weight polyethylene composition
US5178812A (en) * 1990-11-28 1993-01-12 E. I. Du Pont De Nemours And Company Method of making composites having improved surface properties
US5137688A (en) * 1990-11-29 1992-08-11 General Electric Company Irradiated articles molded from polycarbonate-polyamide blends
US5059196A (en) * 1991-03-07 1991-10-22 Dow Corning Wright Corporation Femoral prosthesis holder/driver tool and method of implantation using same
US5292584A (en) * 1991-04-11 1994-03-08 E. I. Du Pont De Nemours And Company Ultrahigh molecular weight polyethylene and lightly-filled composites thereof
US5508319A (en) 1991-06-21 1996-04-16 Montell North America Inc. High melt strength, ethylene polymer, process for making it, and use thereof
US5439949A (en) 1991-08-21 1995-08-08 Rexene Corporation Propylene compositions with improved resistance to thermoforming sag
US5334640A (en) * 1992-04-08 1994-08-02 Clover Consolidated, Ltd. Ionically covalently crosslinked and crosslinkable biocompatible encapsulation compositions and methods
US5236583A (en) * 1992-05-20 1993-08-17 Wang Yiu Te High-pressure/vacuum operated apparatus for sewage and mud disposal
US5296583A (en) * 1992-07-09 1994-03-22 University Of Michigan Calcification-resistant synthetic biomaterials
US5238563A (en) * 1992-07-29 1993-08-24 Exxon Research & Engineering Company Multi-element housing
US5466530A (en) 1993-01-21 1995-11-14 England; Garry L. Biocompatible components fabricated from a substantially consolidated stock of material
US5443519A (en) 1993-04-22 1995-08-22 Implex Corporation Prosthetic ellipsoidal acetabular cup
US5435723A (en) * 1993-08-18 1995-07-25 O'brien; Gary R. Endosseous dental implant system
EP0714460A4 (en) * 1993-08-20 1998-01-07 Smith & Nephew Richards Inc Self-reinforced ultra-high molecular weight polyethylene composites
US5549700A (en) 1993-09-07 1996-08-27 Ortho Development Corporation Segmented prosthetic articulation
US5449145A (en) * 1993-10-08 1995-09-12 Surgin Surgical Instrumentation, Inc. Valve device for controlling flows in surgical applications
US5407623A (en) 1994-01-06 1995-04-18 Polteco, Inc. Process for obtaining ultra-high modulus line products with enhanced mechanical properties
WO1995021212A1 (en) 1994-02-03 1995-08-10 Smith & Nephew Plc Surface treatment
US5593719A (en) * 1994-03-29 1997-01-14 Southwest Research Institute Treatments to reduce frictional wear between components made of ultra-high molecular weight polyethylene and metal alloys
US5709020A (en) * 1994-07-19 1998-01-20 University Of Kentucky Research Foundation Method for reducing the generation of wear particulates from an implant
US5515590A (en) 1994-07-19 1996-05-14 University Of Kentucky Research Foundation Method for reducing the generation of wear particulates from an implant
US5508079A (en) * 1994-08-15 1996-04-16 Owens-Corning Fiberglas Technology, Inc. Conformable insulation assembly
US5545453A (en) * 1994-08-15 1996-08-13 Owens Corning Fiberglas Technology, Inc. Conformable insulation assembly
CA2654851C (en) * 1994-09-21 2011-01-18 Bmg Incorporated Ultra high molecular weight polyethylene molded article for artificial joints and method of preparing the same
US5507804A (en) 1994-11-16 1996-04-16 Alcon Laboratories, Inc. Cross-linked polyethylene oxide coatings to improve the biocompatibility of implantable medical devices
US5609638A (en) 1994-11-29 1997-03-11 Zimmer, Inc. Reinforced polyethylene for articular surfaces
ES2230553T3 (en) * 1994-11-30 2005-05-01 Implant Innovations, Inc. Preparation of an implant surface.
US5625858A (en) * 1995-01-18 1997-04-29 Canon Kabushiki Kaisha Contact charging member, process for producing same and electrophotographic apparatus using same
US5609643A (en) * 1995-03-13 1997-03-11 Johnson & Johnson Professional, Inc. Knee joint prosthesis
JP3904095B2 (en) * 1995-12-21 2007-04-11 大日本インキ化学工業株式会社 Powder coating compositions and coating method
US5674293A (en) * 1996-01-19 1997-10-07 Implant Sciences Corp. Coated orthopaedic implant components
US8865788B2 (en) * 1996-02-13 2014-10-21 The General Hospital Corporation Radiation and melt treated ultra high molecular weight polyethylene prosthetic devices
US5879400A (en) * 1996-02-13 1999-03-09 Massachusetts Institute Of Technology Melt-irradiated ultra high molecular weight polyethylene prosthetic devices
US5753182A (en) * 1996-02-14 1998-05-19 Biomet, Inc. Method for reducing the number of free radicals present in ultrahigh molecular weight polyethylene orthopedic components
US5721334A (en) * 1996-02-16 1998-02-24 Newyork Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Process for producing ultra-high molecular weight low modulus polyethylene shaped articles via controlled pressure and temperature and compositions and articles produced therefrom
US5714206A (en) * 1996-05-06 1998-02-03 Morton International, Inc. Two component powder coating system and method for coating wood therewith
US6017975A (en) * 1996-10-02 2000-01-25 Saum; Kenneth Ashley Process for medical implant of cross-linked ultrahigh molecular weight polyethylene having improved balance of wear properties and oxidation resistance
US5798417A (en) * 1996-10-15 1998-08-25 E. I. Du Pont De Nemours And Company (Fluorovinyl ether)-grafted high-surface-area polyolefins and preparation thereof
US5879407A (en) * 1997-07-17 1999-03-09 Waggener; Herbert A. Wear resistant ball and socket joint
US6692679B1 (en) * 1998-06-10 2004-02-17 Depuy Orthopaedics, Inc. Cross-linked molded plastic bearings
US6281262B1 (en) * 1998-11-12 2001-08-28 Takiron Co., Ltd. Shape-memory, biodegradable and absorbable material
US6245276B1 (en) * 1999-06-08 2001-06-12 Depuy Orthopaedics, Inc. Method for molding a cross-linked preform
US6184265B1 (en) * 1999-07-29 2001-02-06 Depuy Orthopaedics, Inc. Low temperature pressure stabilization of implant component
US6407623B1 (en) * 2001-01-31 2002-06-18 Qualcomm Incorporated Bias circuit for maintaining a constant value of transconductance divided by load capacitance

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5414049A (en) * 1993-06-01 1995-05-09 Howmedica Inc. Non-oxidizing polymeric medical implant
US20010049401A1 (en) * 1995-01-20 2001-12-06 The Orthopaedic Hospital And University Of Southern California Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US20030158287A1 (en) * 1995-01-20 2003-08-21 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US6281264B1 (en) * 1995-01-20 2001-08-28 The Orthopaedic Hospital Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US20030045603A1 (en) * 1995-01-20 2003-03-06 The Orthopaedic Hospital And University Of Southern California Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US20050048096A1 (en) * 1996-07-09 2005-03-03 Fu-Wen Shen Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6228900B1 (en) * 1996-07-09 2001-05-08 The Orthopaedic Hospital And University Of Southern California Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6800670B2 (en) * 1996-07-09 2004-10-05 Orthopaedic Hospital Crosslinking of polyethylene for low wear using radiation and thermal treatments
US20040266902A1 (en) * 1996-07-09 2004-12-30 Fu-Wen Shen Crosslinking of polyethylene for low wear using radiation and thermal treatments
US20080133021A1 (en) * 1996-07-09 2008-06-05 Fu-Wen Shen Crosslinking of polyethylene for low wear using radiation and thermal treatments
US6494917B1 (en) * 1996-10-15 2002-12-17 Orthopaedic Hospital Wear resistant surface-gradient crosslinked polyethylene
US6125200A (en) * 1997-12-16 2000-09-26 Adobe Systems Incorporated Removing non-text information from a color image
US20030212161A1 (en) * 2000-04-27 2003-11-13 Mckellop Harry A Oxidation-resistant and wear-resistant polyethylenes for human joint replacements and methods for making them

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030045603A1 (en) * 1995-01-20 2003-03-06 The Orthopaedic Hospital And University Of Southern California Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US20030158287A1 (en) * 1995-01-20 2003-08-21 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US20040208841A1 (en) * 1995-01-20 2004-10-21 Ronald Salovey Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US20010049401A1 (en) * 1995-01-20 2001-12-06 The Orthopaedic Hospital And University Of Southern California Chemically crosslinked ultrahigh molecular weight polyethylene for artificial human joints
US9204971B2 (en) 2003-06-27 2015-12-08 Memometal Technologies System and method for ankle arthroplasty
US20110135917A1 (en) * 2005-08-18 2011-06-09 Zimmer Gmbh Ultra High Molecular Weight Polyethylene Articles And Methods Of Forming Ultra High Molecular Weight Polyethylene Articles
US20070059334A1 (en) * 2005-08-18 2007-03-15 Zimmer Technology, Inc. Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US8470903B2 (en) 2005-08-18 2013-06-25 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US7846376B2 (en) 2005-08-18 2010-12-07 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US7863348B2 (en) 2005-08-18 2011-01-04 Zimmer Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US8673202B2 (en) 2005-08-18 2014-03-18 Zimmer, Gmbh Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US20090118390A1 (en) * 2005-08-18 2009-05-07 Abt Niels A Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
US20110028600A1 (en) * 2007-04-10 2011-02-03 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US20110133371A1 (en) * 2007-04-10 2011-06-09 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9277949B2 (en) 2007-04-10 2016-03-08 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US8178594B2 (en) 2007-04-10 2012-05-15 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9926432B2 (en) 2007-04-10 2018-03-27 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US20100029858A1 (en) * 2007-04-10 2010-02-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9265545B2 (en) 2007-04-10 2016-02-23 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8664290B2 (en) 2007-04-10 2014-03-04 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8669299B2 (en) 2007-04-10 2014-03-11 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US9822224B2 (en) 2007-04-10 2017-11-21 Zimmer, Inc. Antioxidant stabilized crosslinked ultra high molecular weight polyethylene for medical device applications
US8129440B2 (en) 2007-04-10 2012-03-06 Zimmer, Inc. Antioxidant stabilized crosslinked ultra-high molecular weight polyethylene for medical device applications
US8652212B2 (en) 2008-01-30 2014-02-18 Zimmer, Inc. Orthopedic component of low stiffness
US9718241B2 (en) 2008-01-30 2017-08-01 Zimmer, Inc. Method of manufacturing an acetabular component
US20100137481A1 (en) * 2008-11-20 2010-06-03 Zimmer Gmbh Polyethylene materials
US9745462B2 (en) 2008-11-20 2017-08-29 Zimmer Gmbh Polyethylene materials
US9199185B2 (en) 2009-05-15 2015-12-01 Cummins Filtration Ip, Inc. Surface coalescers
WO2011053713A1 (en) * 2009-10-29 2011-05-05 Depuy Products, Inc. Methods of making crosslinked polymeric material for orthopaedic implants
US8399535B2 (en) 2010-06-10 2013-03-19 Zimmer, Inc. Polymer [[s]] compositions including an antioxidant
US9708467B2 (en) 2013-10-01 2017-07-18 Zimmer, Inc. Polymer compositions comprising one or more protected antioxidants
US10092675B1 (en) * 2017-08-12 2018-10-09 Dewey M Sims, Jr. Wear-resistant joint arthroplasty implant devices

Also Published As

Publication number Publication date Type
DE69631076D1 (en) 2004-01-29 grant
DE69631076T2 (en) 2004-10-21 grant
US20030045603A1 (en) 2003-03-06 application
CA2166450A1 (en) 1996-07-21 application
EP0722973B1 (en) 2003-12-17 grant
EP0722973A1 (en) 1996-07-24 application
JPH093207A (en) 1997-01-07 application
JP3323728B2 (en) 2002-09-09 grant
US20010049401A1 (en) 2001-12-06 application
US20040208841A1 (en) 2004-10-21 application
EP0722973B2 (en) 2013-02-13 grant
CA2166450C (en) 2008-03-25 grant
US6281264B1 (en) 2001-08-28 grant
US20030158287A1 (en) 2003-08-21 application
JP2003000698A (en) 2003-01-07 application
JP3652669B2 (en) 2005-05-25 grant

Similar Documents

Publication Publication Date Title
Endo et al. Comparison of wear, wear debris and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses
Grobbelaar et al. The radiation improvement of polyethylene prostheses. A preliminary study
US6627141B2 (en) Method for molding a cross-linked preform
McKELLOP et al. Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene: a hip-simulator study
Oral et al. α-Tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear
US6414086B1 (en) Compositions, processes and methods of improving the wear resistance of prosthetic medical devices
Roe et al. Effect of radiation sterilization and aging on ultrahigh molecular weight polyethylene
Sobieraj et al. Ultra high molecular weight polyethylene: mechanics, morphology, and clinical behavior
Oral et al. Vitamin E diffused, highly crosslinked UHMWPE: a review
US7846376B2 (en) Ultra high molecular weight polyethylene articles and methods of forming ultra high molecular weight polyethylene articles
McKellop et al. Development of an extremely wear‐resistant ultra high molecular weight polythylene for total hip replacements
US20050069696A1 (en) Medical implant or medical implant part and method for producing the same
Goldman et al. Comparison of the effects of gamma radiation and low temperature hydrogen peroxide gas plasma sterilization on the molecular structure, fatigue resistance, and wear behavior of UHMWPE
US6395799B1 (en) Electromagnetic and mechanical wave energy treatments of UHMWPE
Xie et al. Wear performance of ultrahigh molecular weight polyethylene/quartz composites
WO2008113388A1 (en) Oxidation resistant highly-crosslinked uhmwpe
Oral et al. Mechanisms of decrease in fatigue crack propagation resistance in irradiated and melted UHMWPE
US20080215142A1 (en) Cross-linking of antioxidant-containing polymers
US20100137481A1 (en) Polyethylene materials
US20080119582A1 (en) Method For Making Oxidation Resistant Polymeric Material
US20030208278A1 (en) Supercritical fluid treatment of irradiated polyethylene
EP0729981A1 (en) Ultrahigh-molecular-weight polyethylene molding for artificial joint and process for producing the molding
US6448315B1 (en) Method for the preparation of UHMWPE doped with an antioxidant and an implant made thereof
US6794423B1 (en) Fracture-resistant, cross-linked ultra high molecular weight polyethylene shaped material and articles made therefrom
JPH11239611A (en) Sliding member for artificial joint and manufacture therefor